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Abstract

Let B be a ring with identity 1, D a derivation of B, and B[X;D] the
skew polynomial ring such that αX = Xα+D(α) for each α ∈ B. Then
conditions are given for Xp − Xa − b ∈ B[X;D] to be an H-separable
and Galois polynomial where p is a prime integer.
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1 Introduction

Throughout this paper, B will mean a ring with identity element 1 and D a
derivation of B. Let B[X; D] be the skew polynomial ring in which the mul-
tiplication is given by αX = Xα + D(α) (α ∈ B). A ring extension A/B
is called separable if the A-A-homomorphism of A ⊗B A onto A defined by
a⊗ b → ab splits, and A/B is called H-separable if A⊗B A is A-A-isomorphic
to a direct summand of a finite direct sum of copies of A. As is well known,
an H-separable extension is a separable extension. The notion of H-separable
extensions was introduced by K. Hirata as a generalization of Azumaya alge-
bras. An Azumaya C-algebra means a separable extension over its center C.
K. Sugano had studied consistently H-separable extensions. Let f be a monic
polynomial in B[X; D] such that fB[X; D] = B[X; D]f . Then the residue
ring B[X; D]/fB[X; D] is a free ring extension of B. If B[X; D]/fB[X; D] is
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a separable (resp.H-separable) extension of B, we call f is a separable (resp.H-
separable) polynomial in B[X; D]. These provide typical and essential exam-
ples of separable and H-separable extensions. K. Kishimoto, T. Nagahara, Y.
Miyashita, and the author studied extensively separable polynomials in skew
polynomial rings (See References). In [2, 5], the author gave a characterization
of H-separable polynomials in skew polynomial rings. If the coefficient ring
B is not commutative, the condition is complicated and not easy to check.
As was shown in [5], if B[X; D] contains an H-separable polynomial of de-
gree ≥ 2, then B is necessarily of a prime characteristic p. Therefore in the
following, we assume that B is of a prime characteristic p. In [12], G. Szeto
and L. Xue succeeded to give a nice characterization of a polynomial Xn − u
to be H-separable in skew polynomial rings of automorphism type. However,
considering skew polynomial rings of derivation type, the situation is not par-
allel. So the purpose of this paper is to give some intelligible conditions for a
polynomial f = Xp − Xa − b in B[X; D] to be H-separable and Galois. For
p = 2, some interesting work was done in [9, 10, 11]. The following is the
main result (Theorem 3.3): Let f = Xp − Xa − b be in B[X; D] such that
fB[X; D] = B[X; D]f . If there exists an element z ∈ Z, the center of B, such
that D(z) is invertible in Z, then f is an H-separable polynomial in B[X; D].
In addition, if z is an invertible element in Z, then, f is a Galois polynomial
in B[X; D].

Moreover, a ring extension A/B is called G-Galois, if there exist a finite
group G of automorphisms of A such that B = AG (the fix ring of G in A) and∑

i xiσ(yi) = δ1,σ (σ ∈ G) for some finite number of elements xi, yi ∈ A. We call
{xi, yi} a G-Galois coordinate system for A/B. As is well known, a G-Galois
extension is a separable extension. Let f be a monic polynomial in B[X; D]
such that fB[X; D] = B[X; D]f . Then f is called a Galois polynomial in
B[X; D] if the residue ring B[X; D]/fB[X; D] is a G-Galois extension over B
for some finite group G. We shall show that some H-separable polynomials
are Galois polynomials.

We shall use the following conventions:

Z = the center of B.

ur (resp. u�) = the right (resp. left) multiplication in B by u ∈ B.

Iu = ur − u� = the inner derivation of B by u ∈ B.

B[X; D](0) = the set of all monic polynomials g in B[X; D] such that

gB[X; D] = B[X; D]g.

BD = {α ∈ B| D(α) = 0}, ZD = {α ∈ Z| D(α) = 0}.
D∗ : B[X; D] → B[X; D] be the inner derivation of B[X; D] by X,

namely D∗(ΣiX
idi) = ΣiX

iD(di).
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2 Preliminary results

We shall state some basic results which were already known. The following is
easily verified by a direct computation.

Lemma 2.1 ([1, Corollary 1.7]) Let f = Xp−Xa−b be in B[X; D] . Then
f is in B[X; D](0), that is, fB[X; D] = B[X; D]f , if and only if

1. a ∈ ZD, and b ∈ BD.

2. Dp − arD = Ib.

The following is a characterization of an H-separable polynomial.

Lemma 2.2 ([2, Lemma 1.5]) Let f = Xp − Xa − b be in B[X; D](0), and
I = fB[X; D]. Then f is an H-separable polynomial over B if and only if
there exist yi, zi ∈ B[X; D] with deg yi < p and deg zi < p such that αyi = yiα,
αzi = ziα (α ∈ B) and

∑

i

D∗p−1(yi)zi = 1 (mod I)
∑

i

D∗k(yi)zi ≡ 0 (mod I) (0 ≤ k ≤ p − 2).

The above characterization of an H-separable polynomial is not easy to
check. So, in the next section, we shall give some intelligible sufficient conditons
for a polynomial f to be H-separable.

Concerning Galois polynomials, the following lemma is important.

Lemma 2.3 ([7, Theorem 1.1 and Corollary 1.1]) Let f = Xp − X − b be
in B[X; D](0). Then f is a Galois polynomial over B.

Proof. For convenience, we outline the proof. Let S = B[X; D]/fB[X; D]
and x = X + fB[X; D] ∈ S. The mapping σ : S → S defined by σ(

∑
i x

idi) =∑
i(x + 1)idi is a B-automorphism of S of order p. Let G =< σ >. It is easy

to see that SG = B. We put here

aj = j−1σj(x) and bj = (−j−1)x (1 ≤ j ≤ p − 1).

Then the expansions of

Πp−1
j=1(aj + bj) = 1 and Πp−1

j=1(aj + σk(bj)) = 0 (1 ≤ k ≤ p − 1)

enable us to see the existence of a G-Galois coordinate system for S/B. Thus,
S is a G-Galois extension over B.
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3 Main results

To show the main theorem (Theorem 3.3), we first prove the following lemma
which is a special case of our main theorem.

Lemma 3.1 Let f = Xp − Xa − b be in B[X; D](0). If there exists an
element z ∈ Z such that D(z) = 1, then f = Xp − b, that is, a = 0, and
f is an H-separable polynomial in B[X; D]. In addition, if z is an invertible
element in Z, then, f is a Galois polynomial in B[X; D].

Proof. By Lemma 2.1.(2), we have

Dp(α) − D(α)a = αb − bα (α ∈ B).

We put α = z in the above. Then since D(z) = 1, we have a = 0. For
0 ≤ i ≤ p − 1, we put xi = −zi, yi = zp−i−1. Then we can easily see

p−1∑

i=0

Dp−1(xi)yi = 1 and
p−1∑

i=0

Dk(xi)yi = 0 (0 ≤ k ≤ p − 2).

Therefore f = Xp−b is an H-separable polynomial in B[X; D] by Lemma 2.2.
Next, we assume z is an invertible element in Z. We consider the derivation

Δ = z�D = zD of B. Then since D(z) = 1, we have Δ(z) = z. Hence by the
well known Hochschild’s formula, we have

Δp = (zD)p = zpDp + (zD)p−1(z)D = zpDp + zD = zpIb + Δ = Δ + Izpb.

We set here Y = zX. Then

αY = Y α + Δ(α) (α ∈ B).

So, we see that B[X; D] = B[Y ; Δ] and Y p = (zX)p = (Xz+1)p = (Xz)p+1 =
Xpzp + Xz + 1. Hence Y p − Y = (Xpzp + Xz + 1) − (Xz + 1) = Xpzp =
(f +b)zp = fzp+bzp. It follows from Lemma 2.3 that g = Y p−Y −bzp = fzp is
a Galois polynomial in B[Y ; Δ]. Noting B[X; D] = B[Y ; Δ] and fB[X; D] =
B[X; D]f = gB[Y ; Δ] = B[Y ; Δ]g, we see that f is also a Galois polynomial
in B[X; D].

The following is an immediate consequence of Lemma 3.1.

Corollary 3.2 Let f = Xp − b be in B[X; D](0). If there exists an element
z ∈ Z such that D(z) = 1, then f is an H-separable polynomial in B[X; D].
In addition, if z is an invertible element in Z, then, f is a Galois polynomial
in B[X; D].
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Now we prove the main theorem.

Theorem 3.3 Let f = Xp − Xa − b be in B[X; D](0). If there exists an
element z ∈ Z such that D(z) is invertible in Z, then f is an H-separable
polynomial in B[X; D]. In addition, if z is an invertible element in Z, then,
f is a Galois polynomial in B[X; D].

Proof. Assume that cD(z) = 1 for some c ∈ Z. We put Δ = cD. Then
Δ(z) = 1, and

Δp = (cD)p = cpDp + (cD)p−1(c)D

= cp(aD + Ib) + Δp−1(c)D

= (cp−1a + Δp−1(c)c−1)Δ + Icpb.

Since Δ(z) = 1, we have cp−1a + Δp−1(c)c−1 = 0, and so Δp = Ibcp,
bcp ∈ BΔ. We set Y = cX. Then

αY = Y α + Δ(α) and αY p = Y pα + Δp(α) (α ∈ B).

So, we see that B[X; D] = B[Y ; Δ] and Y p− bcp = cpf . Hence by the previous
Corollary 3.2, Y p − bcp is an H-separable and Galois polynomial in B[Y ; Δ],
and so f is also an H-separable and Galois polynomial in B[X; D].

The following corollaries are immediate consequences of Theorem 3.3.

Corollary 3.4 If B is a simple ring and D|Z �= 0, then f = Xp − Xa − b
in B[X; D](0) is always an H-separable and Galois polynomial in B[X; D].

Corollary 3.5 If B is a field and D �= 0, then f = Xp−Xa−b in B[X; D](0)

is always an H-separable and Galois polynomial in B[X; D].

We shall conclude our study with the following example.

Example 3.6 Let k be a field of a prime characteristic p and B = k[t], the
polynomial ring. Let D = d

dt
, then Dp = 0, D(t) = 1 and BD = k[tp]. Then

for any u ∈ k[tp], f = Xp − u is an H-separable and Galois polynomial in
B[X; D]. Next, Let Δ = t d

dt
, then Δp −Δ = 0, Δ(t) = t and BΔ = k[tp]. Then

for any u ∈ k[tp], g = Y p−Y −u is a Galois polynomial in B[Y ; Δ]. However,
since the ideal generated by Δp−1(B) does not equal to B, it follows from [2,
Theorem 3.1] that g is not an H-separable polynomial in B[Y ; Δ].
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