176 Genome Informatics 14: 176-185 (2003)

On Half Gapped Seed

Wei Chen Wing-kin Sung

chenweil@comp.nus.edu.sg ksung@comp.nus.edu.sg

School of Computing, National University of Singapore, Singapore, 117543

Abstract

In this paper, we proposed a new type of seed for Blast-like homology search tools called “half
seed”. This new seed is better than the “consecutive seed” used by the original Blast tools in both
sensitivity and efficiency. When compared with the “gapped seed”, which is proposed together with
a new Blast-like searching tool, PatternHunter, this new seed offers a much wider range of choices
for performing tradeoff between sensitivity and efficiency. This property is especially useful when
some searching applications want to get more precise results with limitation on hardware resources,
or vice versa.

Keywords: ‘half match’ position, half gapped seed

1 Introduction

Homology search is the problem of locating the approximate matches within one DNA sequence or
between two sequences. This problem has a lot of applications in biology. Finding faster and more
sensitive methods for homology search has attracted a lot of research works.

The first solution to the homology search problem is contributed by Smith and Waterman [11].
Their method is dynamic programming in nature and compares every base in the first sequence with
every base in the other sequence to generate a precise local alignment. Although this method gives
the most sensitive solution, it is also the slowest one. In order to improve the efficiency, without too
much loss in sensitivity, many ideas are presented. Among them, FASTA [9], SIM [6], the Blast family
(Altschul [1]; Gish, [5]; Altschul [2]; Zhang [15]; Tatusova and Madden, [13]), Blat [7], SENSEI [12],
MUMnmer [4], QUASAR [3], REPuter [8] and PatternHunter [10] are the most famous ones. All of
these methods can be divided into two major tracks.

The first track is represented by MUMmer [4], QUSAR [3] and REPuter [8], which use suffix
trees [14]. Two major problems make them less popular. First, although suffix tree is good in dealing
with exact matches, it is not good for finding approximate matches. Therefore, methods based on
suffix tree normally can only find matches with high homology. Second, suffix tree is very big and
methods based on suffix tree suffer from the storage limitation.

The second track is represented by Blast, which is probably the most widely used approach now.
Their basic idea is to finds short exact matches(hits) in the whole sequence first, which are then ex-
tended into longer alignments through dynamic programming process. FASTA [9], SIM [6], Blastn [13],
WU-Blast [5], and Psi-Blast [2] encounter space and efficiency problem when they are used to com-
pare relatively long sequences. SENSEI [12] is much faster and cost less working space, though it is
incapable to allow gapped alignments. Blat [7] is a Blast-like homology searching tool, which is very
fast to get results while it is limited by the high similarity requirements. MegaBlast [15] is the most
efficient among Blast family, while its output is also rough.

Blast type methods all face an inevitable dilemma caused by the length of the exact match hit,
that is, longer exact match hit increases the efficiency but reduces the accuracy; while shorter one
gives better sensitivity but prolongs the executing time.

On half gapped seeds 177

Ma et al. proposed the PatternHunter [10] to solve the awkward dilemma. They introduce the
new idea, gapped seed, which is used to seek nonconsecutive short matches. The total number
of nonconsecutive matches is called weight for their seeds. Once these matches are found, they
are extended to longer alignments by dynamic programming. According to their experimental results,
“gapped seeds” can reach both higher efficiency and better sensitivity than Blast’s original consecutive
seeds.

Depending on applications, we sometime require better sensitivity while we can tolerant a little
decrease in efficiency. “Gapped seeds” allows us to perform such tuning only by changing its weight.
More precisely, reducing the weight of the “gapped seed” brings better sensitivity while we should
sacrifice a lot in efficiency. In other words, the “gapped seeds” are incapable of providing finely flexible
tradeoff choices. For example, when we reduce the weight from 7 to 6, the sensitivity can be improved
from 0.8 to 0.9 when two sequence have 0.6 similarity. But at the same time, the searching time is
prolonged by 4 times! Such kind of tuning is too rough for many applications. Therefore, we would
like to ask if we can give a better solution to solve the problem of tradeoff between the sensitivity and
the efficiency.

This paper gives a positive answer to this question. We propose a new type of seed called “half
seed”. This new type of seed is a generalization of the gapped seed, which will be defined in detail in
Section 2. Similar to the gapped seed, the half seeds are better than the existing consecutive seeds in
both sensitivity and efficiency. Moreover, the half seeds provide a more flexible tradeoff between speed
and sensitivity. Especially for the cases where we cannot afford to have a big jump in both efficiency
and sensitivity, the half seeds are particularly useful.

The paper is organized as follows. Section 2 gives all the necessary and useful definitions for fully
understanding what is a half seed. We also give a convenient notation to represent the different classes
of seeds, which is used throughout this paper. Section 3 compares the half seeds with the gapped seeds
in term of both sensitivity and efficiency by performing a series of experiments. The results show that
the half seeds can really offer flexible choices of tradeoff than gapped seed between sensitivity and
efficiency. In Section 4, we mention the impacts on sensitivity and efficiency when parameters are
changed in our new seeds. From those results, we can have a fundamental idea of how to tune the
tradeoff for “half seeds”.

2 What is a Half Seed?

Before describing our new seeds, let’s first have a brief review of the seeds used in Blast family and
PatternHunter. These seeds can be represented using some 0 — 1 strings of length L. What’s the
meaning for these 0 and 17 They represent two important definitions, ‘match’ positions and ‘don’t
care’ positions.

Definition 1 Consider two length L substrings S and S’ from the query sequence and the database
sequence, respectively. Suppose position ¢ of the seed is 1, which is denoted as the ‘match’ position.
Then, (S,S") is said to have a match at position i, if S[i] = S'[i].

Definition 2 Consider two length L substrings S and S’ from the query sequence and the database
sequence, respectively. Suppose position i of the seed is 0, which is denoted as the ‘don’t care’ position.
(S,8") is said to have a match at position i, no matter S[i] = S’[i] or not.

Definition 3 For a length L seed, we say there is a hit when two length L substrings from query and
database sequence match at all the corresponding positions in the seed.

Definition 4 We denote the seed which only contains ‘match’ positions “consecutive seed”. We denote
the seed which contains both ‘match’ positions and ‘don’t care’ positions “gapped seed”.

178 Chen and Sung

For Blast, they use the “consecutive seed” 11111111111, which means every pair of length 11
substrings from query and database sequence should be identical at all these 11 ‘match’ positions to
get a hit. For PatternHunter, they use the “gapped seed” 110100110010101111, which means there is
a hit for a pair of length 18 substrings from query and database sequence when they are identical at
the 11 ‘match’ positions regardless of those characters at the 7 ‘don’t care’ positions.

After we have an idea of the seeds used in Blast and PatternHunter, we will introduce our new
seeds as follow. First of all, there is a fundamental definition called ‘neighbor nucleotide’.

Definition 5 Recall that every DNA sequence is composed of a set of 4 different nucleotides, N =
{A,C,G,T}. For every nucleotide x € N, neig{z} is a predefined subset of N —{x}, which represents
the set of neighbor nucleotides of x. When |neig{z}| = 2, we call it ‘two neighbor’ definition, and
when |neig{x}| =1, we call it ‘one neighbor’ definition.

To generalize the gapped seeds to the half gapped seeds, apart from ‘match’ positions and ‘don’t
care’ positions, we need to introduce a new kind of positions known as ‘half match’ positions, which
are defined as follows.

Definition 6 Consider two length L substrings S and S’ of the query sequence and the database
sequence, respectively. Suppose position i of the seed is 0.5, which is denoted as the ‘half match’
position. (S,S") is said to have a match at position i , if S[i] = S’[i] or S[i] € neig{S’[i]}.

Now, we are ready to define the “half seed” and the “half gapped seed”.

Definition 7 We call the seed which contains ‘match’ positions and ‘half match’ positions “half seed”.
We call the seed which contains ‘match’ positions, ‘don’t care’ positions and ‘half match’ positions “half
gapped seed”.

For example, 1 0.5 100 0.5 0 1 is a “half gapped seed” of length 8 with 3 match positions, 2 half
match positions, and 3 don’t care positions. This seed implies that there is a hit between two length
8 substrings from query and database sequence, S and S’ respectively, when they are identical at all
the 3 ‘match’ positions, and (S[2] € neig{S’[2]}) N(S[6] € neig{S’[6]}), regardless of those characters
at ‘don’t care’ positions.

Based on the definition for ‘neighbor nucleotides’, we know that the probability of having a match
at ‘half match’ positions depends on the definition of the ‘neighbor nucleotide’. Such probability is %
if we use the ‘two neighbor’ definition and is % if we use the ‘one neighbor’ definition.

To ease the description of the seed, we name the seeds according to their composition of match
positions, half match positions and don’t care positions. More precisely, if a seed has s; match
positions, s9 half match positions in ‘one neighbor’ definition, s3 half match positions in ‘two neighbor’
definition, and s4 don’t care positions, then we denote the seed as a (s1, s2, S3, s4) seed. For example,
(6,0,0,4) represents a weight 6 and length 10 gapped seed, and (6,2,0,1) represents a length 9 half
gapped seed with 6 match positions and 2 half match positions in ‘one neighbor’ definition.

Before we move ahead into further discussion, we give another three important definitions based

on [10], which are related to evaluating seeds in later comparisons.

Similarity: Consider a pair of fixed length sequences, the pair is said to be of similarity « if they
have a% of the positions share the same characters.

Sensitivity: The sensitivity of a seed is the probability of getting at least one hit in a pair of fixed
length sequences of a certain similarity.

Efficiency: The efficiency of a seed is represented by the expected number of hits in a fixed length
region.

On half gapped seeds 179

3 Half Gapped Seeds vs Gapped Seeds

As stated in Section 1, one major problem of using “gapped seed” is the inflexibility in making tradeoff
between sensitivity and efficiency. Consider the scenario where we cannot stand severe decrease in
the efficiency, but meanwhile, we still want to get more sensitive outputs. Then, we will be in an
awkward situation by using “gapped seeds”. That is, if we decrease the weight of “gapped seed” to
get better sensitivity, the large amount of loss in efficiency is unaffordable; on the other hand, if we
keep its weight to guarantee the speed, it is impossible to increase the sensitivity.

Can we avoid such awkward situation by using “half gapped seeds”? By comparing the tradeoff
abilities between “half gapped seeds” and “gapped seeds”, this section gives a positive answer to
the above question by comparing the sensitivities and the efficiencies of them. As for efficiency, the
expected number of hits for gapped seeds can be computed based on Lemma 1 of [10]. For half gapped
seeds, the expected number of hits can be computed using the following lemma.

Lemma 1 Given a length M “half gapped seed” with W1 half positions and Wy match positions
within a length L regions of similarity 0 < p < 1, for 1 neighbor definition, the expected number

1
of hits is (L — M + 1)(5(1 —o)W1p"2; for 2 neighbor definition, the expected number of hits is

(L~ M+ 1) (1 p)"p™

Proof: The expected number of hits in the sum of possibility that the seed fits substring in the region

1
over (L — M + 1) possible positions. The possibility for every successful alignment is (§(1 —p))Vipt2

)"

2
for 1 neighbor definition and (5(1 — p)W1p"2 for 2 neighbor definition. |

We did extensive experiments to compare “half gapped seed” and “gapped seed”. Our experiment
is as follows. For all (s1, s2, s3,54) seeds, that is, for all half gapped seeds with s; match positions, so
half match positions (one neighbor definition), s3 half match positions (two neighbor definition), and
s4 don’t care positions, we compute their sensitivity based on dynamic programming. By comparing
their goodness, we can get the optimal (s1, s2, s3, s4) seed among all (s1, s2, s3, s4) seeds. For efficiency,
according to Lemma 1, all (s1, so, s3, s4) seed have the same efficiency and its value can be computed
using Lemma 1.

We demonstrate that half gapped seeds can give a more flexible tradeoff between sensitivity and
efficiency by Figures 1(a) and 1(b). The two graphs show the sensitivity and the efficiency of the
optimal weight 6 gapped seed (optimal (6,0,0,4) seed), the optimal (6,0,1,4) seed, the optimal
(6,1,0,4) seed, and the optimal weight 7 gapped seed (optimal (7,0,0,4) seed). Figure 1(a) shows
that there is a gradually increase in sensitive for the four seeds in order and Figure 1(b) reveals their
loss in efficiency in terms of expected number of hits accordingly. We also observe that there exists
a big empty space between the optimal weight 6 and the optimal weight 7 gapped seeds for both
sensitivity and efficiency. This means that gapped seeds give a big jump for both sensitivity and
efficiency. Moreover, by having one (one-neighbor or two-neighbor) half gapped seed, we can already
fill up the empty space between the two gapped seeds.

Based on the analysis of both “half gapped seeds” and “gapped seeds”, we know that one can
benefit from using “half gapped seeds” as they offer more flexible abilities in performing tradeoff
between sensitivity and efficiency. “Half gapped seeds” are really useful when one want to increase the
precision of the searching results while the hardware capacity cannot afford too much loss of efficiency.

In the next section, we will study some key parameters in “half gapped seeds” to show their effect
on the sensitivity and efficiency tradeoff.

180 Chen and Sung

N

60 T T

o
©

o
@

°
3

I3
>

30

sensitivity
o
@
I
expected number of hits

o
=
T

20

o
w

o
)

101

I
[

0 I . . .
. 1 [¢] 0.1 0.2 0.3 0.4 .
similarity similarity

o2
o
o

(a) Sensitivity (b) Efficiency

Figure 1: Comparison on sensitivities and efficiencies between optimal weight 6,7 gapped seeds, optimal
(6,1,0,4) seed, and optimal (6,0,1,4) seed.

4 Further Study of Half Gapped Seeds

Previous sections reveal the fact that “half gapped seeds” are more flexible than “gapped seeds” when
performing tradeoff between sensitivity and efficiency. This section describes the key parameters in
the “half gapped seeds” that affect the tradeoff. The study helps to give a fundamental idea of how
to tune the tradeoff for the half gapped seed to suit the user requirement.

4.1 The Number of ‘Half Match’ Positions

If we fixed the number of match positions and ‘don’t care’ positions for “half gapped seeds”, what
will happen if we change the number of half match positions? According to our experimental results,
if we only change the number of half match positions, the more the half match positions are, the less
sensitive the seed will be, and the more efficient it will become.

Table 1: The top three sensitivities for “half gapped seeds” differing only in the number of ‘half match’
positions when the similarity between query and database sequences is 0.6.

(6,0,0,1) | (6,0,1,1) | (6,0,2,1) | (6,0,3,1)
0.796263 | 0.782873 [0.730733 [0.679517

0.796263 | 0.782873 | 0.729445 | 0.679517
0.789812 | 0.782001 | 0.729445 | 0.677894

Table 1 shows that if we only increase the number of half match positions, the sensitivity will
decrease in a certain degree. In this sense, we sacrifice the sensitivity of the seeds, so we should get
some benefit in the efficiency. Let’s see what happens to the expected number of hits for these seeds
to verify this assumption.

Figure 3 plots the equations in Lemma 1 for the three half gapped seeds we used in Table 1. We
find that, as we increase the number of half match positions, the efficiency of these seeds improve.

On half gapped seeds 181

60 T T

— seed (6,0,0,1)
— - seed (6,0,1,1)
seed (6,0, 2,1)
— seed (6,0,3,1)
50
40
2
2
k]
@
£
S 30
<
e}
2
o
[
o
x
[
20
101
O Il Il L -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

similarity

Figure 2: Comparison on the expected number of hits between “half gapped seeds” differing only in
the number of ‘half match’ positions on 64-bits regions.

By Table 1 and Figure 2, it is clear that more half match positions make “half seeds” less sensitive
but more efficient; while less half match positions make them more sensitive but more efficient.

4.2 The Definition of Neighbor Nucleotides

As we mentioned in Section 2, there are two different definitions for neighbor nucleotides in “half
seeds”: ‘one neighbor’ definition and ‘two neighbor’ definition. If we compare the “half seeds” that
have the same number of half match positions, match positions and ‘don’t care’ positions while use
different neighbor nucleotide definitions, we will find they also vary on both sensitivity and efficiency.
This property of “half seeds” shows another way of performing various tradeoffs between efficiency
and sensitivity.

We conduct the experiments between the (6,0,1,1) half seed and the (6,1,0,1) half seed. Since
one neighbor definition is more restricted, it is quite obvious that the two-neighbor definition one
has better sensitivity, while the one-neighbor definition has higher efficiency. The experimental result
agrees with our intuition.

Below table lists the top three most sensitive seeds for the above two seeds. Figure 3 shows the
difference in their expected number of hits.

Table 2: The top three sensitivities for “half gapped seeds” using different neighbor nucleotides defi-
nition when the similarity of query and database sequence is 0.6.

(6,0,1,1) | (6,1,0,1)
0.782873 | 0.715385
0.782873 | 0.715385
0.782001 | 0.714139

These results imply that the ‘two neighbor’ definition can help the “half gapped seeds” to get

182 Chen and Sung

60 T T T
seed (6, 0, 1, 1)
— seed (6,1,0,1)

40

30

expected number of hits

20

10

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
similarity

Figure 3: Comparison on the expected numbers of hits between “half gapped seeds” differing only in
neighbor nucleotides definition on 64-bits regions.

better sensitivity, but it also reduce their efficiency; ‘one neighbor’ definition decreases the sensitivity
of the “half gapped seeds”, but it can improve their efficiency.

4.3 The Number of ‘Don’t Care’ Positions

Besides the above two parameters, the number of ‘don’t care’ positions in the “half gapped seed”
also affects the result. In general, assume the parameters remain unchanged, when we increase the
number of ‘don’t care’ positions, the sensitivity of the seed will first increase to a maximum value,
then the sensitivity decreases with the increasing of the number of ‘don’t care’ positions. To analyze
this parameter, we conduct some experiments on the “half gapped seeds” with the same number of
half match positions and match positions, and the same neighbor nucleotides definition, but different
number of ‘don’t care’ positions. The result is as follow.

Table 3: The top three sensitivities for “half gapped seeds” having different number of ‘don’t care’
positions when the similarity between query and database sequence is 0.6.

(6,0,1,0)](6,0,1,1) [(6,0,1,2) | (6,0,1,3) [(6,0,1,4) | (6,0,1,5)

0.747137 0.782873 0.78908 0.794778 0.793832 0.791674
0.747137 0.782873 0.78908 0.794778 0.793832 0.791674
0.745968 0.782001 0.787612 0.793739 0.792491 0.791669

For efficiency, based on Lemma 1, when two seeds have the same number of match positions
and half match positions, the efficiency improves as the number of ‘don’t care’ positions in the seed
increases.

In Table 3, we find that with the increase of ‘don’t care’ positions from 0 to 5, the sensitivity
of the “half gapped seeds” will first increase until it reaches the maximal value, and then it keeps
decreasing. Hence, there exists a threshold, says «, so that when the number of ‘don’t care’ positions

On half gapped seeds 183

is smaller than «, the sensitivity of the “half gapped seed” always increases. After that, the sensitivity
will decrease gradually. On the other hand, the efficiency of the “half gapped seeds” always get better
and better with more ‘don’t care’ positions. So, until the number of ‘don’t care’ positions is bigger
than «, this parameter takes effect in the tradeoff ability for the “half gapped seed”, that is, increasing
the number of ‘don’t care’ positions can improve the efficiency while sacrificing on the sensitivity, and
vice versa.

4.4 The Usage of the 3 Key Parameters

Till now we have analyzed three key parameters in the composition of “half gapped seeds”, and have
a clear picture of the effects when they are changed separately. But in real situations, different “half
gapped seeds” are usually different in more than one parameters. What will happen when more than
one of them change simultaneously? The results of the above analysis give us some hints that we
can find some finer tuning for the tradeoff by change these three parameters together carefully. After
thoroughly studying such situations, we are glad to find there exists a series of “half seeds” that can
provide finer levels of tradeoff between two successive weighted optimal “gapped seeds”.

Here we give an example. We listed four “half gapped seeds” that can provide different tradeoffs
between sensitivity and speed compared with the weight 6 and 7 optimal “gapped seeds”. These “half
seeds” are limited by two constraints, first, their sensitivity must be better than weight 7 optimal
“gapped seed”; second, their efficiency must be better than weight 6 optimal “gapped seeds”. And
one of the hidden constraint is that they must strictly obey the rule between each other that the
more sensitivity it is, the less efficiency it is. We list the four “half gapped seeds” according to their
sensitivities in decreasing order:

1.105100011011 in two neighbor nucleotides definition;
2.1101100.5010.51 in two neighbor nucleotides definition;
3.110010100.511 in one neighbor nucleotides definition;

4.11051010.500.511 in two neighbor nucleotides definition.

Besides sensitivities, their efficiencies are in increasing order. Now we present the result of com-
parison between these four seeds with optimal weight 6 and 7 “gapped seeds”.

Figure 4 shows that the sensitivity of these four “half gapped seeds” are in between that of the
two “gapped seeds”, and Figure 5 shows the efficiencies of these four seeds change according to their
sensitivities, that is the more sensitive, the less efficient. We can also find that the curves of each “half
gapped seed” is still between the curves of “gapped seeds”.

Above comparison reveals that our new seeds can provide higher flexibility in performing tradeoff
compared with “gapped seeds”. This property is especially useful when different requirements of
applications are needed. So we can reach the conclusion that “half gapped seeds” are better than
“gapped seeds” in performing tradeoffs between sensitivity and efficiency.

5 Conclusion

In this paper, we present a new seed called “half gapped seed”. This seed introduces the novel concept
of ‘half match’ positions into the formation of seeds. We find this new type of seeds can provide more
flexible choices of tradeoffs between sensitivity and speed when compared with the “gapped seeds”.
We illustrate the usage of three key parameters in the composition of “half gapped seed”. By changing
one or more of them, we can provide finer level of tradeoffs than “gapped seeds”. In some fields where
tradeoffs are required, the “half gapped seeds” can always perform better than the “gapped seeds”.

184 Chen and Sung

T
091 4
0.8 B
0.7F seed (6,0,2,3) | -
seed (6,0,3,2)
seed (7,0,0,4)
0.6 seed (6,1,0,4) |
seed (6,0,1,4)
seed (6,0,0,4)

sensitivity
o
ol
T

0.4 B
0.3 B
0.2 B
0.1 R
0 | L = Il Il Il Il 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
similarity

Figure 4: Comparison on sensitivities between the four listed “half gapped seeds” and the optimal
weight 6 and 7 “gapped seeds” on 64-bits regions.

60 T T T
seed (6,0, 3, 2)
— —seed (6,1,0,4)
— seed (7,0,0, 4)
seed (6,0, 1, 4)
50 — seed (6, 0,0, 4)
—- seed (6,0, 2,3)
40
2
2
k]
9]
£
S 30
<
e}
2
o
[
o
x
[
20
101
O Il L L L Il Il 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

similarity

Figure 5: Comparison on efficiencies between the four listed “half gapped seeds” and the optimal
weight 6 and 7 “gapped seeds” on 64-bits regions.

On half gapped seeds 185

References

1]

2]

[10]

[11]

[12]

[13]

[14]
[15]

Altschul, S.F., Gish, W., Miller, W., Myers, E., and Lipman, D.J., Basic local alignment search
tool, J. Mol. Biol., 215:403—410, 1990.

Altschul, S.F., Madden, T.L., Schuaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman,
D.J., Gapped blast and psi-blast: a new generation of protein database search programs, Nucleic
Acids Res., 25:3389-3402, 1997.

Burkhardt, S., Crauser, A., Lenhof, H.P., Rivals, E., Ferragina, P., and Vingron, M., q-Gram
based database searching using a suffix array, Third Annual International Conference on Com-
putational Molecular Biology, Lyon, 11-14, 1999.

Delchur, A.L., Kasif, S., Fleischumann, R.D., Peterson, J., White, O., and Salzberg, S.L., Align-
ment of whole genome, Nucleic Acids Res., 27:2369-2376, 1999.

Gish, W. Wu-Blast 2.0 Website: http://blast.wustl.edu/.

Huang, X. and Miller, W., A time-efficient, linear-space local similarity algorithm, Adv. Appl.
Math, 12:337-257, 1991.

Kent, W.J., BLAT: the BLAST-like alignment tool, Genome Research, 12(4):656-664, 2002.

Kurtz, S. and Schleiermacher, C., REPuter—fast computation of maximal repeats in complete
genomes, Bioinformatics, 15:426-427, 1999.

Lipman, D.J. and Pearson, W.R., Rapid and sensitive protein similarity searchers, Science,
227:1435-1441, 1985.

Ma. B., John. T., and Li. M., PatternHunter: faster and more sensitive homology search, Bioin-
formatics, 18:440-445, 2002.

Smith, T.F. and Waterman, M.S., Identification of common molecular subsequence, J. Mol. Biol.,
147:195-197, 1981.

States, D. SENSEI website: http://stateslab.wustl.edu/software/sensei/.

Tatusova, T.A. and Madden, T.L., Blast 2 sequence—a new tool for comparing protein and nu-
cleotide sequences, FEMS Microbiol. Lett., 174:247-250, 1999.

Weiner, P.; Linear pattern matching algorithms, Switching and Automata Theory, 1-11, 1973.

Zhang, 7., Schwartz, S., Wagner, L., and Miller, W., A greedy algorithm for aligning DNA se-
quence, J. Comput. Biol., 7:203-214, 2000.

