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Abstract

We propose a multi-scale GAN model to hallucinate real-

istic context (forehead, hair, neck, clothes) and background

pixels automatically from a single input face mask, without

any user supervision. Instead of swapping a face on to an

existing picture, our model directly generates realistic con-

text and background pixels based on the features of the pro-

vided face mask. Unlike facial inpainting algorithms, it can

generate realistic hallucinations even for a large number

of missing pixels. Our model is composed of a cascaded

network of GAN blocks, each tasked with hallucination of

missing pixels at a particular resolution while guiding the

synthesis process of the next GAN block. The hallucinated

full face image is made photo-realistic by using a combi-

nation of reconstruction, perceptual, adversarial and iden-

tity preserving losses at each block of the network. With a

set of extensive experiments, we demonstrate the effective-

ness of our model in hallucinating context and background

pixels from face masks varying in facial pose, expression

and lighting, collected from multiple datasets subject dis-

joint with our training data. We also compare our method

with popular face inpainting and face swapping models in

terms of visual quality, realism and identity preservation.

Additionally, we analyze our cascaded pipeline and com-

pare it with the progressive growing of GANs, and explore

its usage as a data augmentation module for training CNNs.

1. Introduction

Generative adversarial nets (GANs) have revolutionized

face synthesis research with algorithms being used to gen-

erate high quality synthetic face images [62, 9, 35, 36]

or artificially edit visual attributes of existing face images

like age [19, 2], pose [67, 75, 28], gender, expression and

hairstyle [7, 54, 25]. However, these models require the

full face image, comprising of the actual face, the con-

text (forehead, hair, neck, clothes) and background pix-

* This work was done while SB was at Notre Dame

Figure 1: Our model, instead of swapping faces or inpainting missing fa-

cial pixels, directly hallucinates the entire context (forehead, hair, neck,

clothes) and background from the input face mask. Sample results - (a)

original face images from LFW [27] (2D aligned), (b) corresponding face

masks (input), and (c) the hallucinated output generated by our cascaded

network of GANs trained on [59]. All images are 128×128 in size.

els, to work. They fail to generate plausible results when

the context and background pixels are absent (i.e., when

only the face mask is present). Facial inpainting models

[44, 73, 29, 13, 72, 43, 55] that inpaint ‘holes’ work well

when the missing pixels are small in number, located on or

near the face. They do not generate realistic results when all

of the context and background pixels are masked, as demon-

strated in [69] and the experiments in Section 4 of this paper.

As a potential solution, we propose a cascaded GAN model

that requires only a few thousand training face images to

generate realistic synthetic context and background pixels

from face masks with different gender, ethnicity, lighting,

pose and expression, across different datasets. Our model

can be used to generate - (1) supplemental training data for

CNNs, adding variety to the hair and background for real

subjects or synthetic face masks generated by [49, 5] (sec-

tion 4.4 of this paper), and (2) stock images for media usage

without any copyright and privacy concerns.
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During training, our model takes as input a face image

and its masked version, 128×128 in size, and downsam-

ples both to their 64×64, 32×32, 16×16, and 8×8 versions.

Training starts at the lowest GAN block (block 8), where it

learns to reconstruct the 8×8 full face image from the cor-

responding 8×8 masked input. The output of this network

is then upscaled 2x using a pixel shuffling block [65] and

passed to the next GAN block (block 16). Thus instead of

masked black pixels, block 16 receives a 16×16 input with

roughly hallucinated context and background pixels, guid-

ing it towards the direction of correct reconstruction. Its

16×16 output is then upscaled and sent to block 32 and so

on (see Figure 2). At each block, we independently learn to

hallucinate context and background pixels through recon-

struction loss, adversarial loss provided by a discriminator,

perceptual loss from [78] and an identity preserving loss

using the pre-trained VGG-Face model [57]. During testing

we only use the trained generator and pixel shuffling blocks

to hallucinate the final 128×128 full face image from an

input face mask. Sample results can be seen in Figure 1.

We perform the following experiments to assess the ef-

fectiveness of our model:

1. To gauge the effectiveness of our model in generat-

ing identity preserving, natural looking and diverse set of

images we - (a) perform face matching experiments on [27]

using the ResNet-50 model [24], (b) calculate SSIM [70]

and perceptual error [61] values, and (c) the FID [26] be-

tween original and hallucinated images.

2. Using the above metrics, we compare our model with

popular facial inpainting algorithms - GenFace [44], Deep-

Fillv1 [72], SymmFCNet [43], and EdgeConnect [55].

3. We compare our model with the popular DeepFake1

face swapping application. Since it works only with tight

face crops from a single identity, we train it on the LFW[27]

subject, George W Bush, with the highest number of im-

ages (530). The trained network is used to synthesize source

face crops, which are blended in the target face images.

4. We compare our single pass cascaded network with its

progressively growing (ProGAN) version [35], where initial

set of layers in the generator model are learned for a num-

ber of training epochs at the lowest resolution (8×8), and

then we add new layers to learn hallucination at a higher

resolution (16×16) and so on.

5. Using the CASIA-WebFace [74] dataset, we evalu-

ate the potential usage of our model as a data augmentation

module for training CNNs.

The main contributions of our paper are as follows:

1. We propose a method that can automatically synthe-

size context and background pixels from a face mask, us-

ing a cascaded network of GAN blocks, without requiring

any user annotation. Each block learns to hallucinate the

masked pixels at multiple resolutions (8×8 to 128×128) via

1https://en.wikipedia.org/wiki/Deepfake

a weighted sum of reconstruction, adversarial, identity pre-

serving and perceptual losses. Trained with a few thousand

images, it can hallucinate full face images from different

datasets with a wide variety in gender, ethnicity, facial pose,

expression and lighting.

2. We compare our model with recently proposed facial

inpainting models [44, 72, 43, 55] and the DeepFake face

swapping software. Our model generates photo-realistic re-

sults that produce higher quality scores (identity preserva-

tion, realism and visual quality) compared to the other al-

gorithms on LFW [27].

3. We analyze the differences between the end-to-end

training of our cascaded model with the ProGAN training

regime from [35] while keeping the network architecture,

and factors like training data, hyper parameters, and loss

function fixed. We show the cascaded architecture to benefit

the hallucination process and generate sharper results.

4. We evaluate the potential application of our model

as a generator of supplemental training data for CNNs,

to augment the intra-class variance by adding diverse hair

and backgrounds to existing subjects of the dataset. When

trained on this augmented data, we show the ResNet-50

model [24] to produce a boost in test performance.

2. Related Work

Face synthesis: While face synthesis research has

greatly benefited from GANs [20, 62, 9, 35, 36], work

in this domain began by simply combining neighborhood

patches from different images to synthesize new faces

[45, 3]. Other methods include expression and attribute

flow for synthesizing new views of a face [52, 71]. Many

works have also explored the use of a 3D head model to

generate synthetic views of a face or frontalize it to an uni-

form setting [22, 49, 4, 5] while others have used GANs

for this purpose [28, 67, 75]. Researchers have also used

deep learning models to reconstruct face images from their

rough estimates [16, 69, 6] or with new attributes altogether

[7, 25, 14].

Face swapping: The first face swapping pipeline was

proposed in [10], where a face is de-identified by blend-

ing together facial parts from other images. Many methods

have modified this idea of recombining facial parts to gen-

erate synthetic images for de-identification or data augmen-

tation [53, 3, 37]. In [56], a 3D morphable model based

shape estimation is used to segment the source face and fit

it to the target image prior to blending. Instead of using fa-

cial textures, the method in [54], uses latent variables from

a deep network for face swapping. A style transfer [18]

based face swapping approach was proposed in [40]; but it

requires the network to be trained on only one source sub-

ject at a time. DeepFake is another recent method for face

swapping, where an autoencoder is trained to reconstruct

tight face crops of a subject from its warped versions. This
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Figure 2: Our multi-scale cascaded network pipeline. Starting from the lowest resolution block (8×8), we proceed higher up through a set of GAN blocks

in a single pass (left to right in the figure). Except the last block, the output of each block is upscaled 2x and fed as input to the next block. To preserve fine

facial details at each resolution, we add the mask image at each resolution before feeding the input. The final 128×128 output, with hallucinated context

and background pixels, is generated by block 128. More details about the architecture of block 128 is provided in Figure 3.

trained autoencoder is then used to hallucinate the source

subject from different target face images. However, it works

with one subject at a time and requires the target images to

be highly constrained in visual attributes making it imprac-

tical for many real world applications.

Face inpainting: Image inpainting started with [8] trans-

ferring low-level features to small unknown regions from

visible pixels. In [51, 31], this idea is used to reconstruct

facial parts in missing regions using a positive, local linear

representation. A simple inpainting scheme was proposed

in [31], which uses features like ethnicity, pose and expres-

sion to fill missing facial regions. GANs have also been

used for image completion, e.g. in [29, 44], a generator is

used to hallucinate masked pixels, with discriminators and

parser networks refining the results. In [73, 72, 55], infor-

mation from the available data, surrounding image features,

and edge structures are used for inpainting respectively. Fa-

cial symmetry is directly enforced in [43] to improve global

consistency. In [60, 33], the inpainting process is guided by

a rough sketch provided by the user. All these methods work

well with small targeted masks[79], located on or near the

face region, but perform poorly when a large masked area

is presented[69], like the full context and background.

When supplied with a face mask (i.e., limited data) the

goal of our model is to automatically hallucinate realistic

context and background pixels. While doing so the gen-

der, ethnicity, pose, expression of the input subject should

be preserved. While face swapping [40, 56, 54] and face

editing [7, 25] algorithms have dealt with transferring the

face and facial attributes from one identity to another, they

require - (1) the full face image to work, and (2) similar-

ity in visual appearance, and pose for identity preservation.

Unlike previous work, we treat this problem along the same

lines as image colorization [77, 42] and directly hallucinate

the missing pixels taking cues from the input data without

any involvement from the user.

3. Our Method

Since there can be many plausible hallucinations from a

single face mask, we control this unconstrained problem us-

ing the training data. When provided with a face mask IM

during training, our model tunes its weights w such that its

generated output G(IM ) looks similar to the original face

image IGT . The weights are parameterized by IGT itself

and after a few training epochs, the model learns to gen-

erate G(IM ) closely identical to IGT . During testing, this

trained model requires only a face mask (IM ), and not the

full face image (IGT ), to hallucinate realistic context and

background pixels from the learned representations.
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3.1. Network Architecture

Cascaded Network. Inspired by [17, 68, 40], we im-

plement a multi-scale architecture comprising of five GAN

blocks to learn hallucination at multiple resolutions (8×8

to 128×128), as depicted in Figure 2. Unlike prior cas-

caded architectures, our model learns to hallucinate context

and background for different image resolutions through a

combination of multiple losses. Each block contains an

encoder-decoder pair working as the generator. The en-

coder at the highest resolution block ‘block 128’, as shown

in Figure 3, takes the input and downsamples it through a

set of strided convolution layers (stride = 2), except the first

layer where we encapsulate extra spatial information using

an atrous convolution layer [76] with dilation rate of 2. Each

of the next strided convolution layers is followed by a resid-

ual block [24] to facilitate the learning process. The output

of the encoder is fed to the decoder which is composed of

five convolution and pixel shuffling blocks [65] for upscal-

ing the feature by two in each dimension.

We add skip connections [63, 24, 28] between encoder

and decoder layers with the same tensor shape to propagate

finer details from the input. The final 3 channel output is

obtained by passing the upsampled result through a con-

volution layer with tanh activation [62, 64]. Since the in-

put and output of ‘block (N/2)’ is half in height and width

compared to ‘block N’, each GAN block contains one fewer

residual and pixel shuffling layers than its next GAN block.

Except ‘block 128’, the output of each block is upscaled 2x

through a pixel shuffling layer and fed as input to the next

block. Thus, instead of a face mask, the block receives a

rough hallucination to guide it towards the right direction.

For all blocks, we also replace pixels in the face mask re-

gion of G(IM ) with original pixels from IM , before loss

computation, to keep finer details of the face intact and fo-

cus only on the task of context and background generation.

During training, we provide each block with a discrim-

inator to guide the generated samples towards the distribu-

tion of the training data. We use the popular CASIA-Net

architecture from [74] as the discriminator, after removing

all max pooling and fully connected layers and adding batch

normalization [30] to all convolution layers except the first

one. A leaky ReLU [50] activation (slope = 0.2) is used for

all layers except the last one where the sigmoid activation

is adopted to extract a probability between 0 (fake) and 1

(real), as suggested by [62]. Each layer is initialized using

He’s initializer [23, 35]. During testing, only the trained

generator and pixel shuffling blocks are used to hallucinate

the synthetic output, with resolution of 128×128.

Progressively Growing Network (ProGAN). Address-

ing the recently proposed progressive growing of GANs

to generate high quality samples [35, 13, 36], we also de-

velop a ProGAN version of our model for comparison.

Instead of the cascaded architecture where all the GAN

Figure 3: block 128 architecture. The encoder is composed of five residual

blocks while the decoder upsamples the encoded feature using five pixel

shuffling blocks. The solid curved arrows between layers represent skip

connections. During training the generator learns to hallucinate the origi-

nal full face image IGT from the face mask IM via reconstruction, iden-

tity preserving, perceptual and adversarial losses. We replace pixels in the

face mask of G(IM ) with original pixels from IM to preserve fine details.

blocks are trained in each iteration, we train the lowest res-

olution block 8 first with 8×8 face masks. After a few

training epochs, we stop and load additional layers from

block 16 and start training again with 16×16 face masks.

This process of progressively growing the network by stop-

ping and resuming training is continued till we have a

trained block 128 model, as depicted in Figure 4. During

testing, the trained block 128 is used to hallucinate con-

text and background pixels directly from previously unseen

128×128 face masks. To maintain consistency, the loss

function, hyper parameters and training data are kept the

same with our cascaded network.

3.2. Loss Function

For each block of our network we learn context and

background hallucinations independently. So we assign a

combination of different losses, described below, to make

the synthesized output at each resolution both realistic and

identity preserving. We represent the image height, width

and training batch size as H , W and N respectively.

1. Pixel loss (Lpixel): To enforce consistency between

the pixels in the ground truth IGT and hallucinated face im-

ages G(IM ), we adopt a mean l1 loss computed as:

Lpixel =
1

N ×H ×W

N
∑

n=1

H
∑

i=1

W
∑

j=1

∣

∣(IGT
n )ij − (G(IMn ))ij

∣

∣

(1)

where H and W increase as we move to higher blocks in our

network, 8×8 → 16×16, 16×16 → 32×32, and so on. We

use l1 loss as it preserves high frequency signals better than

l2 in the normalized image thus generating sharper results.

2. Perceptual loss (Lpc): To make our hallucinations

perceptually similar to real face images, we add the LPIPS

metric (ver. 0.0) from [78] to our loss function. This metric

finds a dissimilarity score between a pair of images, derived

from deep features with varying levels of supervision, and
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Figure 4: Pipeline of our progressively growing (ProGAN) network. We

train the lowest resolution block for 50 epochs, then introduce additional

layers for the next resolution block and resume training. This network

growing continues till block 128. During testing, we only use the trained

block 128.

is shown to be more consistent with human perception than

classic similarity metrics like PSNR and SSIM [70]. We use

LPIPS as a regularizer to support Lpixel. It is computed as:

Lpc =
1

N

N
∑

n=1

LPIPS(G(IMn ), IGT
n ) (2)

where LPIPS is the dissimilarity score generated by the

AlexNet [41] model2 (in PyTorch [58]) provided by the au-

thors. An Lpc value of 0 suggests perfect similarity between

G(IM ) and IGT . Since the code does not support low-res

images, Lpc is not applied on ‘block 8’ and ‘block 16’.

3. Adversarial loss (Ladv): To push our hallucinations

towards the manifold of real face images, we introduce an

adversarial loss. This is achieved by training a discriminator

along with the generator (encoder-decoder) at each block of

our network. We use a mean square error based LSGAN

[47] for this work as it has been shown to be more stable

than binary cross entropy [20]. The loss is calculated as:

Ladv =
1

N

N
∑

n=1

(

D(G(IMn ))− c
)2

(3)

where D is the discriminator and c is set to 1 as we want to

fool D into labeling the synthetic images as real.

4. Identity loss (Lid): To preserve essential features of

the identity in the input face mask in the generated output,

we use the pre-trained VGG-Face [57] model to provide a

supporting metric. We calculate the l2 distance between the

fc7 layer features between IGT and G(IM ) and apply that

as content loss similar to neural style transfer [18]. The

closer this metric moves towards 0, the better the hallucina-

tion quality. The loss is calculated as:

Lid =
1

N ×#F

N
∑

n=1

#F
∑

i=1

(F (G(IMn ))i − F (IGT
n )i)

2 (4)

2Available here: https://github.com/richzhang/

PerceptualSimilarity

where F is the 4096-D feature vector from VGG-Face [57].

5. Total variation loss (Ltv): Similar to [34, 28, 40], we

add a total variation loss as a regularizer to suppress spike

artifacts, calculated as:

Ltv =

H
∑

i=i

W
∑

j=1

(G(IM )i,j+1 −G(IM )i,j)
2+

(G(IM )i+1,j −G(IM )i,j)
2 (5)

The final loss L is computed as the weighted sum of the

different losses:

L = Lpixel + λ1Lpc + λ2Ladv + λ3Lid + λ4Ltv (6)

4. Experiments

Training Data.For training our model, we randomly

sample 12,622 face images (7,761 male and 4,861 female)

from the public dataset in [59]. These images were acquired

specifically for recognition tasks, with variety of facial pose

and neutral background. Image mirroring is then applied for

data augmentation. To acquire the face masks, we first de-

tect the face region using Dlib [38] and estimate its 68 facial

keypoints with the pre-trained model from [11]. We remove

images that Dlib fails to detect a face from. The eye centers

are then used to align the faces and pixels outside the con-

vex hull of the facial landmark points in the aligned image

is masked. Both the aligned and masked versions are then

resized using bilinear interpolation to 8×8×3, 16×16×3,

32×32×3, 64×64×3 and 128×128×3, with pixels normal-

ized between [0,1], for training different network blocks.

Training Details. We train our model with the Adam op-

timizer [39] with generator and discriminator learning rates

set as 10−4 and 2 × 10−4 respectively. For each block,

we train its discriminator with separate real and synthesized

mini-batches with label smoothing applied to the real mini-

batch, as suggested by [62, 64]. Other hyper-parameters are

set empirically as λ1 = 1, λ2 = 0.1, λ3 = 10, λ4 = 10−6.

We train our model on the NVIDIA Titan Xp GPU, using

Tensorflow [1] and Keras [15], with a batch size of 10, for a

hard limit of 50 epochs, as we find validation loss to plateau

around this stage. We use the trained generator and pixel

shuffling blocks from this model for our experiments.

Metrics for Quality Estimation. To evaluate the effec-

tiveness of our model in the task of context and background

hallucination, and compare with other works, we use the

following metrics:

(1) Mean Match Score: We use the 256-dimensional

penultimate layer descriptor from the ‘ResNet-50-

256D’ model [24](‘ResNet-50’ here on), pre-trained on

VGGFace2[12]3, as feature representation for an image for

all our face recognition experiments. The deep features

3Available here: https://github.com/ox-vgg/vgg_face2
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Figure 5: Sample results from LFW [27] (128×128 in size), generated using GenFace [44], DeepFillv1 [72], SymmFCNet [43], EdgeConnect [55], and our

cascaded and ProGAN [35] models. Note the variation in gender, pose, age, expression and lighting in the input images.

are extracted for each original image and the hallucinated

output in the dataset. The mean match score ρ is calculated

by averaging the Pearson correlation coefficient between

each feature pair as:

ρ =
1

N

N
∑

i=1

Cov((Fo)i, (Fh)i)

σ(Fo)iσ(Fh)i

(7)

where Cov denotes covariance, N is the number of images

in the dataset, and (Fo)i and (Fh)i are the feature vectors of

the i-th original and hallucinated images respectively. Ide-

ally, we would like the hallucinated images to match well,

but not perfectly, with the original images i.e., ρ should be a

little less than 1. Such a value would suggest that our model

retains vital facial features of the input identity while adding

variations in its visual attributes. The more the source face

is modified, the more the gap widens, as specified in [56].

(2) Mean SSIM: To evaluate the degree of degradation,

or noise, in the hallucinated output, we compute the SSIM

[70] value for each (original,synthetic) image pair in the

dataset. A higher mean SSIM value suggests less noisy hal-

lucinations and therefore a better model.

(3) FID: To evaluate the realism of the generated sam-

ples, we use the Frechet Inception Distance (FID) metric

proposed in [26]. FID uses activations from the Inception-

v3 [66] network to compare the statistics of the generated

dataset to the real one. A lower FID suggests generated

samples to be more realistic, and signifies a better model.

(4) Mean Perceptual Error: To evaluate the perceptual

dissimilarity between the original and the hallucinated im-

ages, we use the PieAPP v0.1 metric using the pre-trained

model from [61]. The metric calculates the level of distor-

tion between a pair of images, using a network trained on

human ratings. A lower mean perceptual error indicates less

noise in the hallucinated output, therefore a better model.

4.1. Comparison with Facial Inpainting Models

To gauge how our model compares with algorithms for

generating missing pixels, we make use of four popular fa-

cial inpainting models: GenFace [44], DeepFillv1 [72],

SymmFCNet [43], and EdgeConnect [55]. We choose

these models for our experiments, as - (1) they are open

source with a pre-trained (on face images from CelebA

[46]) models available for use, unlike [29, 13, 60], (2) they
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Table 1: Quantitative results on the LFW [27] dataset.

Model Mean Match Score Mean SSIM [70] FID [26] Mean Perceptual Error [61]

GenFace [44] 0.543 0.491 177.06 3.536

DeepFillv1 [73] 0.481 0.321 241.696 3.204

SymmFCNet [43] 0.457 0.333 207.117 2.434

EdgeConnect [55] 0.454 0.178 141.695 3.106

DeepFake 0.459 0.448 43.03 1.857

Ours (ProGAN) 0.668 0.466 103.71 2.255

Ours (Cascaded) 0.722 0.753 46.12 1.256

can work with 128×128 face images, unlike [73], and (3)

require no any user annotation, unlike [33].

To compare the models, we generate hallucinations us-

ing face masks from LFW [27]. Since each model is trained

with different binary masks of missing pixels, we provide

the model a binary mask with every pixel outside the face

labeled as ‘0’ instead of the actual masked face we feed

to our trained model. Both qualitative and quantitative

comparisons can be seen in Fig. 5 and Table 1 respec-

tively. As shown in the table, our model (both versions)

performs much better than the inpainting models for all met-

rics. These models aim to hallucinate the missing pixels,

usually on or near the face region, using visual cues pro-

vided by facial pixels available in the image. Such cues

are absent when whole of the context and background is

masked, leading to noisy output. On the other hand, our

model is specifically trained, and better suited for this task.

4.2. Comparison with DeepFake Face Swap

Owing to its huge popularity, we compare our model

against the DeepFake face swapping application. The soft-

ware essentially trains an autoencoder to learn transforma-

tions to change an input face crop (target) to another iden-

tity (source) while keeping target visual attributes intact.

Since this autoencoder learns transformations for one sub-

ject at a time, we train it using 64×64 tight face crops of

‘George W Bush’, the LFW[27] identity with the most im-

ages (530). The autoencoder4 is trained for 10K iterations

using these 530 images, following which it can be used to

hallucinate images of ‘George W Bush’ from face crops of

other subjects and then blended onto the target images. The

results of such a face swapping process can be seen in Fig-

ure 6 where we swap ‘George W Bush’ face images onto

the context and background of ‘Colin Powell’. We choose

‘Colin Powell’ as the mean hypercolumn [21] descriptor

of his images, using conv-[12,22,33,43,53] features from

VGG-Face [57], is proximal to that of ‘George W Bush’.

Although DeepFake produces plausible results (lower

FID [26] in Table 1), it requires both the source and target

subjects to have fairly similar skin tone, pose and expres-

4We use the implementation from the most popular repo: https:

//github.com/deepfakes/faceswap

Figure 6: Top row - synthetic images generated using DeepFake where

the face mask (rectangle) is from ‘George W Bush’ but the context and

background are from real face images of ‘Colin Powell’ (from LFW [27]).

Bottom row - synthesized context and background, using our trained cas-

caded model, for some images of the subject ‘George W Bush’.

sion. Without such tight constraints, artifacts at the bound-

ary of the blending mask are present as can be seen in the

top row of Figure 6 due to the difference in skin tone and

absence of eyeglasses in the source identity. Our model, on

the other hand, has no such constraints as it learns to hal-

lucinate the full set of context and background pixels from

the provided face mask itself. Also, our model achieves a

higher mean match score than DeepFake suggesting that it

preserves more discriminative features of the source in the

hallucinated images while adding variations in appearance.

4.3. Comparison with our ProGAN Model

For the progressively growing (ProGAN [35]) version

of our model, we set a training interval of 50 epochs after

which we add new layers to the current block and resume

training. Compared to the 96.53 hours required to train our

cascaded network, our ProGAN model requires 66.24 hours

to complete the full training at all scales, when trained on

the same Titan Xp GPU system. The absence of multi-scale

training, upscaling between blocks and depth concatena-

tions during each iteration is the reason behind its lower

training time. At the end of training, we feed 128×128 face

masks to block 128 and get the hallucinated face images at

the same resolution. We compare our cascaded and Pro-

GAN models using masked face images from LFW [27];

the quantitative results are shown in Table 1 and few quali-

tative samples can be seen in Figure 5.
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Table 2: Distribution and performance of training datasets with and

without augmentation using our model.

Training

Data

CW [74]

Images

(Identities)

Hallucinated

Images

(Identities)

LFW [27]

Performance

(TPR@FPR = 0.01)

Dataset 1
494,414

(10,575)
0 0.963

Dataset 2
494,414

(10,575)

494,414

(10,575)
0.971

Although the ProGAN model hallucinates slightly

sharper results than the cascaded model due to the absence

of upscaling between GAN blocks, it suffers from blurry ar-

tifacts, especially in the hair. This can be attributed to the

fact that we only use block 128 of the ProGAN model to

synthesize the output directly at of 128×128 like the trained

generator from a single resolution GAN. Since the halluci-

nation process in the cascaded network is guided at each

resolution by the previous block, such artifacts are less fre-

quent in its case. This might also be the reason of the dif-

ference in FID and perceptual error values between the two

models in Table 1.

4.4. Effectiveness as Supplemental Training Data

To evaluate if our model can be used to augment existing

face image datasets, we perform a recognition experiment

using the CASIA-WebFace (CW) dataset [74]. CW con-

tains 494,414 face images of 10,575 real identities collected

from the web. We align, mask and resize all the face images

from CW using the same pre-processing steps as our train-

ing data. These masked images are then fed to our trained

cascaded model to hallucinate synthetic context and back-

ground pixels. Since the identity of the input face mask is

preserved in our model (as shown by the Mean Match Score

in Table 1), we label the hallucinated image as the same

class as the original input from CW, similar to [49, 48, 5]. In

this way, we generate 494,414 synthetic images, with hal-

lucinated context and background, from 494,414 existing

images of 10,575 real identities. We prepare two training

sets from the images - 1) a dataset containing 494,414 real

images from CW and no synthetic images (Dataset 1 from

Table 2), and 2) a dataset containing 494,414 real images

and 494,414 synthetic images of the same 10,575 subjects

(Dataset 2 from Table 2).

We fine-tune the ResNet-50 [24] model with these

datasets in two separate training sessions, where 90% of the

data is used for training and the rest for validation. The

networks are trained using the Caffe [32] framework, with

a base learning rate = 0.001 and a polynomial decay pol-

icy where gamma = 0.96, momentum = 0.009, and step size

= 32K training iterations. We set the batch size = 16, and

train each network till its validation loss plateaus across an

epoch. After training terminates, we save its snapshot for

testing on the LFW dataset [27]. Each image is passed to the

snapshot and its 256-D vector is extracted from the penulti-

mate (feat extract) layer. We use these features to perform a

verification experiment (all vs. all matching) with Pearson

correlation for scoring, the results of which are presented

in Table 2. As shown, the supplemental synthetic images

introduce more intra-subject variation in context and back-

ground, which in turn slightly boosts the performance of the

network during testing. Our trained model can therefore be

used to augment existing face image datasets for training

CNNs, especially to generate the diverse context and back-

ground pixels in synthetic face masks generated by [49, 5].

An extended version of this paper containing more qual-

itative results, architecture details, and impact of individual

losses can be found here: https://arxiv.org/abs/

1811.07104.

5. Conclusion

In this paper, we propose a cascaded network of GAN

blocks that can synthesize realistic context and background

pixels given a masked face input, without requiring any user

supervision. Instead of swapping a source face onto a target

image or inpainting small number of missing facial pixels,

our model directly hallucinates the entire set of context and

background pixels, by learning their representation directly

from the training data. Each GAN block learns to halluci-

nate the missing pixels at a particular resolution via a com-

bination of different losses and guides the synthesis process

of the next block.

While trained on only 12K face images acquired at a

controlled setting, our model is effective in generating on

challenging images from the LFW [27] dataset. When com-

pared with popular facial inpainting models [44, 72, 43, 55]

and face swapping methods (DeepFake), our model gener-

ates more identity-preserving (evaluated using deep features

from ResNet-50 [24]) and realistic (evaluated using SSIM

[70], FID [26], and perceptual error [61]) hallucinations.

Our model can also be used to augment training data for

CNNs by generating different hair and background of real

subjects [74] or rendered synthetic face masks using [49, 5].

This can increase the intra-class variation in the training set,

which in turn can make the CNN more robust to changes in

hair and background along with variations in facial pose and

shape. The generated face images can also be used as stock

images by the media without any privacy concerns.

A possible extension of this work would be to increase

the resolution of the synthetic face images, possibly by

adding more generator blocks to the cascaded network in a

progressive manner [35, 13]. The soft facial features of the

generated output can also be varied by adding style based

noise to the generator [36], while keeping the subject iden-

tity constant. Implementing this scheme to work on full face

videos could be another avenue to explore.
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