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Abstract

Transfer learning has benefited many real-world applications
where labeled data are abundant in source domains but
scarce in the target domain. As there are usually multi-
ple relevant domains where knowledge can be transferred,
multiple source transfer learning (MSTL) has recently at-
tracted much attention. However, we are facing two major
challenges when applying MSTL. First, without knowledge
about the difference between source and target domains, neg-
ative transfer occurs when knowledge is transferred from
highly irrelevant sources. Second, existence of imbalanced
distributions in classes, where examples in one class domi-
nate, can lead to improper judgement on the source domains’
relevance to the target task. Since existing MSTL meth-
ods are usually designed to transfer from relevant sources
with balanced distributions, they will fail in applications
where these two challenges persist. In this paper, we propose
a novel two-phase framework to effectively transfer knowl-
edge from multiple sources even when there exist irrelevant
sources and imbalanced class distributions. First, an effec-
tive Supervised Local Weight (SLW) scheme is proposed to
assign a proper weight to each source domain’s classifier
based on its ability of predicting accurately on each local
region of the target domain. The second phase then learns
a classifier for the target domain by solving an optimiza-
tion problem which concerns both training error minimiza-
tion and consistency with weighted predictions gained from
source domains. A theoretical analysis shows that as the
number of source domains increases, the probability that the
proposed approach has an error greater than a bound is be-
coming exponentially small. Extensive experiments on dis-
ease prediction, spam filtering and intrusion detection data
sets demonstrate the significant improvement in classifica-
tion performance gained by the proposed method over exist-
ing MSTL approaches.

1 Introduction

Transfer learning refers to the scenario that given a
learning task on a target domain, knowledge is extracted
from one or several related domains (source domains) to
help the learning task on the target domain. It adapts
knowledge from source domains to the target domain
by considering unlabeled information on the target
domain. Such knowledge transfer is possible when the
target domain and source domains have the same set
of categories or class labels. The process of transfer
learning is deeply rooted from our individual experience:
We always borrow knowledge from other areas to help
learning in one area. Based on this simple philosophy,

many methods have been proposed on transfer learning
[10, 8, 2, 3, 9, 4, 6, 7] and many successful applications
including document classification, WiFi localization,
and sentiment classification [12] demonstrate the power
of transfer learning.

There are usually multiple source domains where
knowledge can be transferred, and how to take advan-
tage of the different predictive powers of the source do-
mains motivates the study of Multiple Source Transfer
Learning (MSTL) [10, 8, 2, 3, 9, 4]. MSTL is especially
useful when we have enough source domains who share
the same task with the target domain, however, two ma-
jor challenges prevent us to successfully apply MSTL
methods to many applications due to the existence of
irrelevant sources and imbalanced class distributions.
Some example applications are discussed as follows. We
could transfer knowledge from multiple other patients to
help predict on the target patient in disease diagnosis;
other users’ information could be used to help build a
better classifier for the target user in spam filtering; and
anomaly detection tools designed for existing intrusions
can be adapted to identify a new attack to computer
networks. In all these applications, there exist source
domains that are highly irrelevant to the target domain.
However, which source is irrelevant is usually unknown,
and incorporating such irrelevant sources will hurt the
prediction performance of MSTL algorithms. Further-
more, the number of positive examples (disease, spam,
intrusions) is much smaller than that of negative exam-
ples, resulting in difficulties of properly evaluating and
weighing source domains according to their predictive
behavior on the target domain. To illustrate the two
challenges and how they affect existing MSTL meth-
ods, we focus on Cardiac Arrhythmia Detection (CAD)
problem in the following discussions.

Cardiac Arrhythmia refers to a range of conditions
arising from abnormal activities in the heart. Cardiac
arrhythmia is commonly examined based on Electrocar-
diography data (ECG). The task of cardiac arrhythmia
detection is to build a classifier to predict the labels
(normal or abnormal) of the test samples, given a pa-
tient’s test ECG data samples and a small portion of



labeled ECG samples. In the CAD problem, we notice
that besides data of the target patient, ECG data from
many other patients who suffered arrhythmia are also
collected. Therefore, regarding each patient’s ECG and
associated labels as a source domain, this problem can
be casted as a multiple source transfer learning prob-
lem, which inspire some new challenges that previous
work on transfer learning seldom addresses.

Challenge I: Negative transfer. Negative trans-
fer [12, 14, 13] refers to the phenomenon that, instead of
improving performance, transfer learning from other do-
mains degrades the performance on the target domain.
Most previous work treats knowledge from every source
domain as a valuable contribution to the task on the
target domain. However, in the cardiac arrhythmia de-
tection task, when we are trying to transfer knowledge
from multiple other patients, it is over optimistic to be-
lieve that all source domains will contribute. In fact,
it is highly probable that some of the source patients
have drastically different distribution in their ECG data
than the target patient, which indicates that transfer-
ring from this kind of sources could harm the learning
on the target patient. We call such sources as irrel-
evant sources. Given multiple source domains, in the
worst case, the majority of the source domains could
be irrelevant. We believe that the occurrence of many
wrrelevant sources will trigger negative transfer if they
are not handled properly. Despite the fact that how to
avoid negative transfer is a very important issue, little
research has been done on this perspective.

Challenge II: Imbalanced distributions. Im-
balanced distributions in classes mean that one of the
classes constitutes only a very small percentage of the
data set. For the patients suffering cardiac arrhythmia,
normal heart beats outnumber arrhythmia a lot. In
such cases, accuracy is not a good evaluation measure
of classification performance, but many existing trans-
fer learning methods prefer to extract knowledge from
the sources that have high accuracy. In the circum-
stances of imbalanced distributions, we can easily design
a prediction, e.g., predicting every sample to be nor-
mal heart beat, that achieves extremely high accuracy.
However, for this particular task, source patient that is
good at predicting normal heart beats is hardly useful,
because naturally we care much more about the arrhyth-
mia cases. Although imbalanced distributions has been
well studied in traditional classification [16], yet how to
handle imbalanced distributions in source domains is a
topic seldom discussed in the literature of transfer learn-
ing.

In light of these challenges, we propose a two-phase
multiple source transfer framework, which can effec-
tively downgrade the contributions of irrelevant source
domains and properly evaluate the importance of source
domains even when the class distributions are imbal-
anced. In the first phase, a novel Supervised Local

Weight (SLW) scheme is proposed to assign an accu-
rate local weight to each source domain on each region of
the target domain. By utilizing label propagation from
the small amount of labeled data in the target domain,
the proposed scheme successfully identifies irrelevant
sources for each region and alleviate the effect of im-
balanced distributions on source domain weight assign-
ment. To further ensure that reasonable performance
is achieved even when all the source domains are irrele-
vant, we develop the second phase to learn a classifier by
solving an optimization problem involving both source
domain transferring and target domain classification.
Importantly, a theoretical analysis is presented to show
the error bound of the proposed method. As the num-
ber of source domains increases, the probability that the
proposed approach has an error greater than a bound
is becoming exponentially small. We compare the pro-
posed approach with state-of-the-art MTSL methods on
cardiac arrhythmia detection, email spam filtering and
network intrusion detection data sets, and the results
demonstrate that the proposed method gain significant
improvement on the classification performance.
The major contributions of this paper are:

e We explore new perspectives in transfer learning
where negative transfer and imbalanced distribu-
tions pose unique challenges to the transfer learn-
ing community.

e We propose a two-phase transfer learning frame-
work that properly addresses these two important
challenges.

e We provide a theoretical analysis to show the error
bound of the proposed approach.

e Extensive experimental results on three applica-
tions demonstrates that the proposed approach
outperforms existing transfer learning methods
with improvement up to 34.6%.

2 Problem Setting and Challenges

Assume there are k source domains. The s-th source
domain is characterized by a data set D® = (7, 97|72,
where x7 is the feature vector, y; is the corresponding
label, and n, is the total number of samples for source
domain s. The target domain has a few labeled data
DI = (zF',yI)|?, and plenty of unlabeled data DI =
ol 2" where n; and n, are the number of labeled
and unlabeled target domain samples, respectively. The
goal is to develop a target classifier f7 that can predict
the label of the test data in the target domain, using
knowledge extracted from source domains and a few
target labeled data.

Due to the imbalanced distributions, accuracy is
not that meaningful in evaluating classification per-
formance. Therefore, we calculate Receiver Operating




Characteristics (ROC) curve and assess the quality of
the ROC curve by Area Under the Curve (AUC). In the
following, we will discuss the two challenges in detail,
and explain why existing multiple source transfer learn-
ing techniques fail in these circumstances. Again, we
use CAD problem as an illustrating example, but the
discussions can be easily generalized to other applica-
tions whose data possess these two properties.

2.1 Negative Transfer The data sets in the CAD
problem come from MIT-BIH database [11]. We ran-
domly chose 13 patients belonging to two classes: ar-
rhythmia and normal heart beats. Given multiple
source patients, some of them are similar to the tar-
get patient but some of them are not. To show this,
we mandate that one patient (ID 201) is the target pa-
tient while all the other patients are source patients.
We train a classifier (in this case, Logistic Regression)
from each source patient’s data and use the classifier to
predict the test set of patient 201’s data. Table 1 shows
the prediction results of the classifier trained from each
source patient on patient 201.

Table 1: Negative Transfer Examples

Relevant Sources Irrelevant Sources
1D AUC Accuracy 1D AUC Accuracy
121 0.701 35% 100 0.619 44%
202 | 0.807 88% 101 | 0.619 55%
210 | 0.739 84% 103 | 0.517 49%
215 | 0.673 76% 105 | 0.525 53%
230 | 0.643 5% 109 | 0.597 47%
232 | 0.689 78% 115 | 0.601 52%

It is straightforward to see that the 12 source patients
include relevant sources: 121, 202, 210, 215, 230,
232 and irrelevant sources: 100, 101, 103, 105, 109,
115. Without knowledge of the target test data, it
is impossible to know which source is relevant. If
we choose source patients from these 12 patients, the
collection is very likely to be a combination of both, and
in the worst case, the majority are irrelevant sources.

Table 2: Experimental Setup

Exp.# Source Patient IDs Comments
1 121, 202, 210, 215, 230, 232 All Relevant
2 100, 101, 103, 105, 109, 115 ATl Trrelevant
3 121, 101, 103, 105, 109, 115] | Majority Irrelevant
1 202, 101, 103, 105, 109, 115] | Majority Irrelevant
5 103, 202, 210, 215, 230, 232 Majority Relevant
6 105, 202, 210, 215, 230, 232 Majority Relevant
7 121, 202, 210, 101, 103, 105 Half Relevant
8 215, 230, 232, 101, 103, 105 Half Relevant
9 All Patients All Patients

The circumstances are quite different from the vari-
ous applications that transfer learning is applied [12],
where all (or most of) the sources are closely related to
the target. Therefore, previous transfer learning meth-
ods may induce negative transfer given multiple irrel-
evant sources. To show this, we design the following
experiments as described in Table 2. There are 9 exper-
iments in which each experiment takes different source

patients.
We have two natural baseline methods: 1) Un-
weighted average of multiple sources’ predictions

(Unweighted); and 2) best single prediction among
all source patients (Best). A good transfer learning
method should yield better results than the two base-
line methods. Two recent MSTL methods CRC [10]
and GCM [8] are compared here. Both methods rely
on the maximization of the consensus among sources.
CRC [10] assumes that all sources are closely related to
the target while GCM [8] implicitly assumes that the
majority of sources are similar to the target.

Table 3: Results Showing Negative Transfer

Exp.# | Unweighted | Best CRC [10] | GCM [g]
1 0.918 0.807 0.666 0.781
2 0.536 0.626 0.611 0.521
3 0.732 0.701 0.511 0.528
4 0.764 0.807 0.522 0.520
5 0.857 0.807 0.620 0.739
6 0.898 0.807 0.617 0.642
7 0.859 0.807 0.576 0.733
8 0.650 0.689 0.569 0.689
9 0.882 0.807 0.600 0.699

As shown in Table 3, in experiments 3 and 4 where
the majority of the sources are irrelevant, CRC and
GCM can’t beat the best prediction among all sources
and their performance are close to random guessing
(AUC=0.5). Therefore, multiple sources, if not handled
properly, will do more harm than good, and negative
transfer hurts performance. In other experiments,
CRC and GCM didn’t work well mainly because of
the imbalanced distributions in source patient data (as
will be discussed in Section 2.2). The experiments
confirm our speculation that negative transfer will cause
troubles and how to properly handle irrelevant sources
and avoid negative transfer needs to be addressed.

2.2 Imbalanced Distributions Most patients suf-
fering cardiac arrhythmia have much more normal heart
beats than arrhythmia. Such imbalanced distributions
in source patients are likely to yield classifiers that are
good at predicting normal heart beats and its overall ac-
curacy is high due to the large volume of normal heart
beats. Most existing transfer learning methods assign
high weights to such sources as their weighting scheme is
purely based on accuracy. However, predicting arrhyth-
mia accurately is much more important, and transfer
learning methods should take this factor into account.
Two recently proposed MSTL methods MDA [2] and
LWE [9] both weigh each source domain based on the
smoothness assumption that a source will gain a high
weight if its predictions are smooth among data samples
that are close in the feature space. MDA [2] computes a
single weight for each source while LWE [9] computes a
weight of each source on each sample. Both methods are
vulnerable to imbalanced distributions. For example,
suppose we have a classifier which predicts every sample



Table 4: Summary of Related Work

M| e | T T Mooy

CRC [10] o no mfaximi‘zat‘iorvl

of consensus

GCM [8] 1o 1o graph-based
consensus

global weight

MDA [2] yes no smoothness
assumption

local weight

LWE [9] yes no smoothness
assumption

local weight

SLW yes yes supervised
manifold

to be a normal heart beat. Such a classifier will be
assigned the highest weight by MDA and LWE because
its predictions are smooth everywhere.

Let’s take experiment 4 as an example. It is com-
posed of source patients [202, 101, 103, 105, 109, 115].
The weights computed by MDA for patients 202 and
105 are 0.234 and 0.662, respectively. Different from
MDA, LWE produces a weight distribution for each
source. In this experiment, the weight distributions for
patients 105 and 202 are almost the same. From Ta-
ble 1, we know that patient 105 is an irrelevant source
while patient 202 is a relevant source, yet patient 105
gains a higher weight by MDA than patient 202, and
the weights of patient 105 and 202 by LWE are almost
the same. As can be seen, both MDA and LWE as-
sign high weights to patient 105 because it has smooth
predictions, but such predictions make little use in the
CAD problem. For the previous two MSTL methods
CRC [10] and GCM [8], they are also vulnerable to im-
balanced distributions. Given multiple source patients,
it is likely to have many classifiers that are good at
predicting normal heart beats. CRC and GCM will
produce results that are consistent with the majority
of predictions from sources, thus incurring less satisfac-
tory performance. Table 4 summarizes the key features
of related worked discussed in this section. From the
above analysis, we believe that it is crucial to develop
a solution that can handle both negative transfer and
imbalanced distribution, which is achieved by a novel
approach called SLW. The details will be elaborated in
the following section.

3 Methodology

In this section, a two-phase approach, consisting of a
Supervised Local Weight (SLW) scheme (Section 3.1)
and a combined classifier learning step (Section 3.2), is
presented to handle negative transfer and imbalanced
distributions in multiple source transfer learning.

3.1 Supervised Local Weight Scheme We want
to assign a weight to each source domain which rep-
resents its predictive power on the target domain. The
weight should be local because each source may be good
in some regions but bad in some other regions. To

achieve this, we first propose a Supervised Local Weight
(SLW) scheme based on the following assumption:

o Supervised Manifold Assumption: If predictions
from a particular source domain are smooth and
consistent with true labels on a manifold, the source
domain will be assigned a high weight on this
manifold.

Let’s use a toy example to illustrate the Supervised
Manifold Assumption. Figure 1 shows the target label
distribution while Figure 2 shows the predictions from
a particular source domain s. In the figures, square
and triangle represent two different classes. As we can
see, the target data contain four manifolds/clusters.
The predictions from the source domain are smooth
in manifolds R1 and R4 and also consistent with true
labels. Therefore we will assign high weights to domain
s for samples in manifolds R1 and R4. In Region R2,
the predictions are not smooth, a low weight will be
assigned to domain s in this manifold. An important
observation arises that the predictions are smooth in
Region R3 but they are opposite to the true labels in
this manifold. Thus, we should assign a low weight to
domain s in Region R3. This assumption considers
local weights for each source, which is different from
the global weight assumption held by CRC [10], MDA
[2] and GCM [8]. Although LWE [9] calculates local
weights, it only considers unsupervised manifolds, which
may lead to wrong predictions in negative transfer and
imbalanced situations.
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Figure 1: Target Domain Figure 2: Source Domain

The proposed method is as follows. We first use the
spectral clustering [17] algorithm to partition the target
data into c¢ clusters, which minimizes:

min —
iyt 2

i=1

(3.1)

nT 2
ZWM< L _ b > 7
i,j=1 VDii V' Djj
where W;; is the similarity between two samples in
the target data, D is a diagonal matrix with its (4,%)
entry equal to the sum of the i-th row of W and f;
is the cluster id. Secondly, we propose to approximate
groundtruth of the target labels by label propagation
[18]. Given a small training set with labels in the target



domain, we can obtain the approximated label of each
sample by minimizing the following:

(3.2)
1[I F; F; il
min = Wil e — —2— [P+ > ||Fs — Hi?
(FynT, 2 Jzzl VD \/Dj; ;

where F; is a 1 X ¢ vector indicating the class member-
ship of a data object on the target domain to be com-
puted. H; denotes the initial label where H;; = 1 if sam-
ple ¢ is labeled class j. H; represents the training data
on the target domain. The intuition behind Eq. 3.2 is
to propagate the known labels based on the smoothness
assumption, which encourages label smoothness over all
data points in that similar examples tend to have simi-
lar labels. Note that Eq. 3.2 has a closed-form solution
as follows:

(3.3) F*=(I-6L) 'H,

where § = 1 andL = D~'/2WD~1/2,

For a given manifold /cluster C; and a source domain’s
predictions p, we have pc, denote the predictions of p
on the manifold C;, and F, denote the approximated
labels on the manifold C; drawn from Eq. 3.2. Given the
approximated labels, the local weight wy, ¢, is defined as:

Z’Ulepci ZUQEFCi 1{vl=v2}
|Cil 7

where wy, ¢, denotes the percentage of label matches
between predictions made by a source domain and those
made by label propagation.

The only difference between Eq. 3.1 and Eq. 3.2 is the
regularization term on the small amount of labels from
target domain. Therefore, we expect the approximated
labels from Eq. 3.2 are consistent with clusters from
Eq. 3.1. Eq. 3.4 assigns weights to each domain based
on the accuracy of the alignment in each local region
in the target domain. Based on Eq. 3.4, w,c, is
high if the predictions are smooth on the manifold
C; and consistent with approximated labels. wp ¢, is
low if the predictions are not smooth or not consistent
with approximated labels on the manifold C;. In this
way, we implement Supervised Manifold Assumption
by computing w, c,. The pseudo code in Algorithm
1 summarizes how to compute the supervised local
weights.

(34) Wp,C; =

3.2 Learning the Target Classifier The second
phase considers both the weighted predictions from all
sources and the target training data to learn a classifier
fT. It ensures that even in the worst case where most
of source domains are irrelevant, the performance of the
proposed method is no worse than the prediction using
target training data alone. In addition, we can generate
a “single” classifier which has the behavior similar to the
ensemble classifier, which leads to easy interpretation
and usage on future predictions.

Algorithm 1 Supervised Local Weight Computation
Input: predictions from each source domain p, ..., pg,
target training set DlT7 target testing set DI’ number
of clusters ¢, the parameter

Output: a n, X k weight matrix P,

1: Partition the testing set DI into ¢ clusters based on Eq.
3.1

2: Compute approximated labels F* using Eq. 3.3

3: For each cluster C}, given source prediction px, compute
the predictions on C; from px: pc,

4: For each cluster C;, given approximated labels F™*,
compute approximated labels on Cj: Fg,

5: Compute each entry of weight matrix P, using Eq. 3.4

6: Normalize each row of P, so that their sum is 1

Given the supervised local weights, the predicted
label for the i-th sample of the target domain combining
multiple sources is

k
(35) ilz = Zw&if'fy
s=1

where w;; is the local weight of source s on the i-
th sample and f; is the predicted label from source
s. Then we combine the information of both weighted
predictions from source domains and the training data
of the target domain by learning a classifier f7 to
minimize the following objective function:

(3.6)
1 - T T\2 T2 ﬁ % T 7 2
r?iTnnle(fi —hi )" Al e+ 5 > =kl

i=1 Jj=n;+1

The implications of Eq. 3.6 are three-fold: 1) We want
to minimize the training error; 2) we want the test data
close to the predicted labels from source domains and
B is the confidence of such belief; and 3) we want to
control the complexity of f7 which is governed by ~.

We mandate that f7 comes from a Reproducing
Kernel Hilbert Space that is induced by a Kernel
function K. By the Representer theorem [15], we can
find an optimal solution for the objective function in Eq.
3.6, which is a linear expansion of the kernel function
K as follows:

(3.7)

ny+ny

Z o K(zi, x).

=1

Taking Eq. 3.7 back into Eq. 3.6, we obtain the optimal
a* by solving the optimization problem in Eq. 3.6 and
we have the following solution for a*:

(3.8)

@)=

o = (JK 4 ~(n + Bn.)I) "' JH.

H is the label vector where H; = h; if sample i belongs
to training set, and H; = h; if sample i belongs to
testing set. J is a diagonal matrix of size (n; + n,) X
(n; + ny) where J=diag(1,...,1,6,...,0) with the first n;
diagonal entries as 1 and the rest as (.



3.3 Summary Since the Supervised Local Weight
scheme plays a more important role in the two-phase
framework, we name the overall approach as SLW.
SLW is able to handle the two challenges i.e., negative
transfer and imbalanced distribution for multiple source
transfer learning. The formal error analysis can be
found in the next section.

e Negative Transfer: SLW is able to handle negative
transfer in that it prevents low quality predictions
from irrelevant sources to have a high weight. Even
in the worst case scenario when all the sources are
irrelevant, SLW minimizes a combined loss function
involving both target training sets and weighted
predictions of source domains.

o Imbalanced Distribution: SLW handles imbalanced
distribution in source domains in that it prevents
predictions which have high accuracy to have high
weights in the manifold representing the minority
class. If predictions are smooth but opposite to the
true labels in a manifold, it will be assigned low
weights in this manifold.

4 Error Bound Analysis

In this section, we present a theoretical analysis on the
performance of the proposed approach. In Section 4.1,
we derive the equation for the error made by SLW. In
Section 4.2, we present the error bound.

4.1 Error Formulation Here we focus on binary
classification problems. Let Y be the random variable
that represents the class label of each sample in the
target domain’s data. Let Y = 1 denote a positive case
and Y = 0 denote a negative case.

Now we formulate the Supervised Manifold Assump-
tion. Suppose there are two natural clusters in the tar-
get set and each of them is associated with a label Y, = 1
or 0. We assume that cluster labels align with class la-
bels, i.e., Y. = 1 indicates a positive case and Y, = 0
indicates a negative case. Y, is in fact an approximated
label on each target object. Suppose P(Y. = 1) =t, i.e.,
the probability that a data sample falls into the cluster
denoting positive cases. Similarly we have P(Y. =0) =
1 — t. However, we don’t assume that objects in each
cluster always belong to the same class. Instead, we
assume that the chance of being a positive case in the
target object given a negative output by the approxi-
mated label (false negative) is P(Y = 1|Y, = 0) = ¢,
and consequently P(Y = 0|Y. = 0) = 1 — ¢. Similarly,
we define P(Y = 0|Y. = 1) = p (false positive), and
PY=1Y.=1)=1-p.

Next we link classification models derived from source
domains to the target domain. Suppose there are
k classifiers learnt from k source domains, and let
Ys; denote the prediction made by the s-th model
on a target object. Again, Y; = 1 indicates that

the s-th model predicts positive and Yy = 0 denotes
a negative case. Suppose each model follows the
Supervised Manifold Assumption in general but with
a probability of flipping the cluster label to the other
class. The chance of the s-th model making a different
prediction from the approximated label is P(Y; =
0Y. = 1) = ps, and P(Y, = 1|Y, = 0) = ¢s,
respectively.

In this analysis, we focus on the first phase of the pro-
posed method. SLW combines the output of k classifi-
cation models trained from the data of source domains
using weights derived from the manifold structure of the
target domain data. Let Y,,, denote the prediction made
by SLW. The following lemma presents the probability
of making false negative error (P(Y,, = 0|Y = 1)) based
on t, p, q, and {ps,qs}*_,. Note that all these variables
are probabilities, and thus they are all between 0 and 1.

LEMMA 4.1.

a2§:1(1 - QS)2 + bzlz:l Ps(l 7p8)
GZ§:1(1 —4qs) + bZ§:1(1 —Ps)
where a = (1 —t)q , b=1t(1 —p).

P(Yy, =0y =1) =

I

Proof. Let’s first compute P(Y,, = 0|Y, = 1). Since
SLW takes a weighted combination of base model output
Ys, we have P(Y,, = 0|Y, = 1) = ZleP(Ys =
0]Y. = 1)P(M;|Y, = 1) where P(M;|Y, = 1) indicates
the weight assigned to the s-th model. In SLW, a
model has a higher weight if its prediction aligns with
the manifold and a lower weight otherwise. When
Y. = 1, i.e., the cluster manifold indicates a positive
instance, we can use P(Y; = 1]Y. = 1) to simulate
the model weight P(M;|Y, = 1). Therefore, P(Y,, =
0. = 1) = X5, P(Y, = 0]Ye = DP(Y, = 1Y, =

1) = lezl ps(l — ps). Similarly, we can derive that

P(Y,, = 0]Ye = 0) = 30, (1 — g5)*.

We now show the probability of having ¥ = 1 and
Y. =1 but Y,,, = 0, i.e., the chance of SLW making
a false negative error when both approximated label
and the true label are positive. Due to independency
assumption across models and true class labels, we have

P(Y,, =0,Y =1,Y, = 1)
= P(Y,, = 0|Y, = 1)P(Y = 1|V, = 1)P(Y. = 1)

k
= t(l 7p) Zps(]- 7ps)'

Following the same procedure, we have P(Y,, =0,Y =
1,Y,=0)=(1-1t)q le:l(l — )% Summing up these
two probabilities, we have
PY,,=0Y=1)=
k k

(1 - t)QZ(l - QS)2 + t(]- _p) Zps(]- _ps)'

s=1 s=1



We can also get P(Y, 1,Y 1) (1 -
t)q Zle qs(1 — qs) + t(1 — p) Zle(l — ps)?. Based
on total probability and Bayes theorem, we can derive
the probability of SLW predicting wrong on positive in-
stances P(Y,, = 0|Y = 1) as shown in Lemma 4.1.

The false positive error of SLW P(Y,, = 1|Y = 0) can
be derived in a similar way. False negative error is
more critical in the imbalanced classification problem,
and thus we focus on the error bound analysis of false
negative error.

4.2 Error Bound We have the following theorem on
the error bound.

THEOREM 4.1. Suppose ps and qs are i.i.d and follow
uniform distribution U(0,1), let p > 325;%1’1) and i =
(1/3=p/2)a+ (1/6 — p/2)b, we have

57,72
Prob[P(Yy, = 0]Y = 1) > p] < exp ( ZCkf‘ > :

where a and b are defined in Lemma 4.1, k is the number
of source domains and C' is a constant.

Proof. To simplify the representation, let z; = (1 — gs)

and ys = (1 — ps), then we have

P(Yim =0)Y =1) 2 p

k
& Y (a? +b(1 = ys)ys — aprs —bpys) > 0

s=1

k
&Y Zs >0,
s=1

Zs = ax?+b(1—ys)ys —aprs—bpys is a random variable.

Since p; and g5 follow uniform distribution U(0, 1), we
have x5 and y; also follow uniform distribution U(0,1).
The expectation of Z; is as follows:

E[Z,] = Elaz? 4+ b(1 — ys)ys — apzs — bpys]

a/3+b/6 —ap/2—bp/2 = [

325131:“ so that g < 0. Since zg, ys,

a and b are bounded in [0,1], it is easy to see that Z
is also bounded. Let Z, be bounded by [m, n]. We can
set m=0,n=2.

The Hoeffding Inequality [5] shows that when ¢t > 0:

k k
ZZS—E ZZS

s=1 s=1

Let’s mandate p >

—2t2

7))

Zt] < exp <k(m

Now let t = —kji and C' = (m — n)?, and we have:

k
—2k i
> Z,>0| < .
>0 _exp< C )

s=1

Prob

Prob

That completes the proof.

Table 5: Performance Comparison (AUC)

CAD Prediction Data Set

Target. # CRC GCM MDA LWE DAM LP SLW
100 0.666 0.777 0.760 0.722 0.925 0.959 | 0.975
101 0.611 0.779 0.742 0.423 0.753 0.802 0.820
103 0.511 0.626 0.478 0.543 0.648 0.683 | 0.920
105 0.522 0.654 0.714 0.718 0.725 0.617 | 0.731
109 0.620 0.739 0.700 0.753 0.879 0.837 | 0.964
115 0.576 0.679 0.654 0.720 0.746 | 0.503 0.713
121 0.534 0.610 0.655 0.492 0.572 0.526 | 0.710
201 0.600 0.699 0.843 0.854 0.894 0.892 0.945
202 0.600 0.715 0.818 0.795 0.847 0.675 0.881
210 0.617 0.699 0.830 0.819 0.899 0.828 | 0.947
215 0.620 0.760 0.537 0.632 0.544 0.869 | 0.919
230 0.614 0.679 0.334 0.610 0.674 0.824 | 0.859
232 0.652 0.771 0.724 0.948 0.855 0.954 | 0.978

Email Spam Filtering Data Set
User # CRC GCM MDA LWE DAM LP SLW
U00 0.689 0.517 0.760 0.517 0.915 0.858 | 0.939
U01 0.789 0.837 0.535 0.905 0.853 0.818 | 0.936
U02 0.711 0.803 0.851 0.948 0.848 0.710 | 0.954
U03 0.722 0.916 0.908 0.804 0.827 0.827 | 0.973
U004 0.820 0.853 0.836 0.808 0.779 0.739 | 0.866
U05 0.786 0.806 0.702 0.839 0.776 0.735 0.842
U06 0.734 0.772 0.781 0.828 0.672 0.753 | 0.828
Uo7 0.800 0.864 0.914 0.907 0.827 0.848 | 0.941
U08 0.817 0.866 0.873 0.906 0.799 0.859 | 0.919
U09 0.824 0.872 0.850 0.927 0.744 0.856 | 0.949
U10 0.814 0.643 0.874 0.613 0.774 0.706 | 0.872
U1l 0.752 0.751 0.860 0.889 0.825 0.751 0.915
Ul2 0.552 0.884 0.857 0.886 0.755 0.867 | 0.909
U13 0.762 0.573 0.752 0.678 0.845 0.715 0.921
Ul4 0.722 0.735 0.847 0.861 0.815 0.714 | 0.877
ntrusion Detection Data Set
Task # CRC GCM MDA LWE DAM LP SLW
R2L 0.675 0.710 0.834 0.889 0.943 0.903 | 0.983
U2R 0.620 0.735 0.802 0.845 0.873 | 0.741 0.866
PROBE 0.631 0.703 0.851 0.928 0.948 0.803 | 0.986

Theorem 4.1 shows that given an error bound p, the
probability that SLW has an error greater than a
bound will be exponentially decreased when the number
of source domains increases. The error bound p is
closely related to the probability of errors made by each
source. We mandate that ps and ¢, follow i.i.d and
uniform distribution because we don’t have any prior
knowledge about the source domains. The experimental
evaluations show that SLW is able to reach a lower error
bound given multiple source domains.

5 Experiments

In this part, we demonstrate the effectiveness of the
proposed approach SLW. The algorithms are evaluated
on three application domains and compared with six
baseline methods.

5.1 Data sets We conduct experiments on three
real-life data sets introduced as follows:

Cardiac Arrhythmia Detection. The ECG data sets
in the CAD problem are from MIT-BIH database [11].
We randomly pick 13 patients’ ECG data (time-series).
Each patient’s data consists of around 1008 to 1416
samples of 39 dimensional feature vectors, belonging to
two classes: arrhythmia and normal heart beats. When
learning on one patient, we transfer knowledge from all
the other patients.

Spam Email Filtering. The email spam data set was
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Figure 3: ROC curves for Patient 201, 103, 109 and 215
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Figure 4: Impact of Number of Sources on Targets: Patient 201, 103, 109 and 215

released by ECML/PKDD 2006 discovery challenge!.
Its task B contains 15 different users’ email box, each
of which has different word distributions. The task
is to build a spam email filter for each individual
user by transferring knowledge from all the other users
(sources). The number of normal emails outnumbers
that of spam emails in that the percentage of spam
emails is roughly 25%.

Intrusion Detection. The KDD cup 99 data set?
consists of a series of TCP connection records for a
local area network. Each example in the data set
corresponds to a network connection, which is labeled as
either normal or an attack. Attacks fall into four main
categories: DOS, R2L, U2R, and Probing. We create
three data sets, each contains a large set of randomly
chosen normal examples and a set of attacks from one
category. The transfer learning scenario is to learn
a classifier on the target task domain by transferring
knowledge from the other task domains.

5.2 Baseline Methods To properly evaluate the
performance of the proposed approach, we compare
SLW with the following baseline methods: CRC [10],
GCM [8], MDA [2] and LWE [9], which we’ve discussed
about in detail in Section 2. In addition, we also include
another recent MSTL method DAM [4] as a baseline
method. DAM computes the weight of each source by
computing the Maximal Mean Discrepancy (MMD) [1]
between source samples and target samples. Moreover,
to show the benefits of transfer learning, we include

Thttp://www.ecmlpkdd2006.org/challenge.html
2http://kdd.ics.uci.edu/databases/kddcup99,/kddcup99.html

Label Propagation [18] as another baseline method,
which does not utilize source domain information but
only rely on the predictions made by propagation from
the small amount of labeled data in the target domain.

5.3 Performance Study In this set of experiments,
we use v = 0.1 ; 8 = 0.3 and the target training
set is 5% of the target data. Table 5 summarizes the
performance of all baseline methods and SLW on three
data sets. We first notice that CRC generally does
not perform well, and sometimes its performance is
worse than that of label propagation, which indicates
that it suffers from negative transfer. The reason is
that CRC tries to output a solution that represents
consensus, however, in the cases with many irrelevant
sources, consensus will give a wrong solution. GCM
works better than CRC when the majority of source
domains are relevant, for example, on the spam filtering
data set with U03 as the target user. Unfortunately,
when many sources are irrelevant, GCM cannot work
either, for example, on CAD and intrusion detection
problems. On the other hand, MDA and LWE is
vulnerable to imbalanced distributions. We observe that
on the tasks with highly imbalanced distributions, such
as CAD problems, MDA and LWE cannot beat label
propagation, but they perform relatively well on the
data sets where the imbalanced distribution problem
is less severe, such as the spam filtering data sets. In
general, DAM has pretty stable performance because it
relies on similarity in feature vectors between source and
target domains, and thus it is less vulnerable to these
two challenges.

Comparing with all these baseline methods, SLW
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achieves the best performance on almost all the ex-
periments. By utilizing the two-phase framework, the
proposed SLW approach can successfully transfer useful
knowledge even when irrelevant sources and imbalanced
distributions exist. The improvement in AUC can be
up to 34.6% and on average 12.3% compared with the
best baseline. The advantages of the proposed SLW
approach can be observed in more details in Figure 3
where we show the ROC curves of different methods
for patients 201, 103, 109 and 215 in CAD prediction,
respectively (due to space limit, we only show 4 cases).

Impact of Number of Source Domains. In our theoret-
ical analysis, we prove that as the number of source do-
mains increases, the probability that the proposed SLW
approach has an error greater than a bound is becoming
exponentially small. Figure 4 shows the impact of the
number of source domains on patients 201, 103, 109,
and 215 in CAD problem. On the z-axis, each num-
ber k represents CF, experiments, taking all possible &
source domains. The plots show the average and vari-
ance of the performance with regard to different number
of source domains. Results show that the performance
of SLW increases monotonically with regard to the num-
ber of source domains. The result is consistent with our
theoretical analysis.

Impact of Training Set Size. In our problem setting,
we maintain that the training set should not be big
because it is time-consuming to collect many labels. In
the experiments, we choose the training set to be at
most 5% of the target data. Figure 5 shows the impact
of different training set sizes on the CAD data sets. In
each experiment, we use one target patient, and all the
other patients are treated as source domains. Results
are averaged over 5 randomly chosen training set of
the same size. It can be seen that SLW’s performance
improves if given more labels.

6 Conclusions

Multiple source transfer learning transfers knowledge
from multiple source domains to a target domain where
labeled data are hard to get. Existing MSTL approaches
suffer from negative transfer and imbalanced distribu-
tions. To tackle these challenges, we propose an effec-
tive two-phase approach to transfer useful knowledge

from multiple source domains, and thus derive accurate
and robust predictions on the unlabeled target exam-
ples. We propose to first compute a supervised local
weight to approximate how likely each source domain
will help make the correct predictions. To further guar-
antee reasonable performance in the worst case scenario
when all the sources are irrelevant, we try to minimize
a combined loss function involving both target train-
ing sets and weighted predictions of source domains.
The proposed approach avoids the influence of nega-
tive transfer and imbalanced distributions. We present
a theoretical analysis to show the error bound of SLW.
Experiments on three applications comparing with six
baseline methods demonstrate the effectiveness of SLW
in multiple source transfer learning, in which it outper-
forms existing MSTL methods with AUC improvement
up to 34.6%.
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