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Introduction. The study of harmonic and Killing vector fields and Ricci
curvature in Riemannian manifolds without boundary has been started by
Bochner [1]V. Lichnerowicz Mogi [127, Tomonaga and Yano
have extended Bochner’s results to harmonic and Killing tensor fields of
order p(>1). They also have studied similar problems in manifolds with
certain inequalities satisfied by the Riemann-Christoffel, projective, conformal
and concircular curvature tensor fields [2] [3] [41 [12] [18] [221

On the other hand, harmonic tensor fields in Riemannian manifolds with
boundary have been studied by Conner [6]and by Duff and Spencer [7] Also
Nakae has treated curvatures and relative Betti numbers. Hsing
and Yano [197, [20], have studied harmonic and Killing tensor fields in
Riemannian manifolds with boundary.

The purpose of the present paper is to study, using integral formulas,
harmonic and Killing tensor fields and also conformal vector fields in Rieman-
nian manifolds with boundary, and extend the results for manifolds without
boundary shown in to the case of manifolds with boundary.

In §1, we give general notations for skew-symmetric tensor fields and
introduce a quadratic form F*® which will play an important role in this
paper. In this section we try to extend the notion of the Ricci curvature,
and obtain a geometrical meaning of the quadratic form F@®,

In §2, we give a definition of the compact Riemannian manifold with
boundary. We introduce the quadratic form H® and H® which will play
important roles togther with F®, Stokes’ theorem is proved in this section.

§1 and §2 are the preparations for §3, §4 and §5.

In §3, we obtain a necessary and sufficient condition for a skew-symmetric
tensor field to be a harmonic or Killing tensor field, and for a vector field to
be a conformal vector field.

In §4, we study non-existence of harmonic and Killing tensor fields and
also of conformal vector fields under certain conditions for the quadratic forms
F® H® and Hw®,

1) Numbers in brackets refer to the bibliography at the end of the paper.
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Some of the results in §3 and §4 have been obtained essentially by Yano
and Yano and the present author [23] But we state the theorems in
slightly different forms.

In §5, we study the manifold in which certain inequalities are satisfied by
Riemann-Christoffel projective, conformal or concircular curvature tensor fields.

As to tensor calculus, we refer to Eisenhart [9] or Schouten and in
notations of skew-symmetric tensors we refer to de Rham [14].

The author wishes to express his hearty thanks to Prof. Yano who en-
couraged him to study these problems and gave many valuable suggestions.

§1. Skew-symmetric tensor fields.

Let V,, be an m(=2) dimensional orientable Riemannian manifold of class
C= with positive definite metric and denote by g the fundamental tensor field
of V.

We shall fix an orientation of V,, and unless otherwise stated, every coor-
dinate system of V,, considered is assumed to be positively ordered.

Consider a p-tensor (or a tensor of order p) » and a ¢-tensor w at a point
of V.

If p=g, we denote by zl|_w and w _Jo» the (p—qg)-tensors at the point with
covariant components in each coordinate system given respectively by

1 I
WL wiyip_g = gl Vndregeagt T ®
and

(@ _0gdpeg = WY Wy aga Ay s

q!
where v;,..;, are the covariant components of » and wh™ the contravariant
components of .

When, in particular, p=¢q, four scalars »|l_w, w_lv, v_lw and w|[_v can
be defined and are equal to each other. We call this scalar inner product of
p and w, and we denote it by <{w»,w> or {w,v). Since the metric of V,, is
positive definite, {v,v) is always positive for non zero tensor ». We write
the square root of {z,»> as |v|.

If », w and « are the tensors of order p, ¢ and p+g respectively, we have
the formula
(1) {v Ju,wH)=<{v,ul_w).

If v is a skew-symmetric p-tensor and w is an arbitrary g¢-tensor (g=p),
it is easily found that

2) Throughout the paper, the Greek indices take the values 1,2, .-, and the
Latin indices take the values 1,2, ---,m—1.



Harmonic and Killing tensor fields 39

v w=(—1)P 0% |yp.
If » is skew-symmetric and w is symmetric or » is symmetric and w is
skew-symmetric, we have
vLw=w _fv=0.
Take a coordinate system (&%) and denote by g the determinant formed by

the covariant components of g.
Consider the quantities e,,.,, in the coordinate system (£*) given by

( /g, when (A, -, A») is an even permutation
‘ of (1,2, ---,m)

iyt ='—~'g, when (4, -+, 2,) is an odd permutation
! of (1,2, ,m)
L Q, otherwise.

Then ey,.,;, define a skew-symmetric tensor field of order . We denote this
tensor field by e.
For a skew-symmetric tensor », = is defined by

=y _le.

It is well known that for a skew-symmetric p-tensor », we have

(1.2) s = (— 1)m-pry |
If » and w are skew-symmetric p-tensors, using and we get
(1'3> <*ﬂy*w>:<01w>'

The exterior product of the skew-symmetric tensor » and w is denoted by
v Aw and is given by

_ (pt+e

@ AN Waidphpsrdprg = STal VearapWiap s1-apaql -
From this definition we get
wAv=(—1 v Nw.
Moreover, when ¢ <p, we have
v w = (=1 PrOPOx(zp A %v).

Now, we introduce an operator F and a quadratic form F*¥ at each point
of Vi

At a point of V,, we take a coordinate system (£*) and denote by K, .«
and K,; the covariant components of the curvature tensor field and the Ricci
tensor field respectively.

For a skew-symmetric p-tensor » at the point, Fp is a skew-symmetric
p-tensor at the point and given by
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—1 .
(Fi 0)11--~,{p = pKaEhv“lZv--Ap] + p(ng ) Kwﬁcmgvaﬁxgmzp] .

F® {8 the guadratic form on the vector space consisting of all skew-
symmetric p-tensors at the point and for a skew-symmetric p-tensor », F®()
is defined by

FPp)y=<{Fo,v>—=<v, Fv)>.
When » is a unit vector, £*X(v) has the form
FO0)= K, v"v*.
The right hand member of the above identity is the so-called Ricci curvature
with respect to the direction ».

To obtain a similar relation for the quadratic form F® (p>1) and the

curvature, we first extend the notion of the Ricci curvature.

Consider a p-dimensional sub-space S of the tangent space of 1, at the

point and choose an orthonormal base (#, #,---, #) such that (u, -, u) spans
(1) @ (m

S, then we have p(m—p) two-dimensional subspaces S;; Spanned by u) and (zg
{ J

(G=1,-,p,i=p+1,--,m). Denoting by K(S;;) the sectional curvatures with
respect to S;;, that is,

K(Sij) = — K.t tt"ut ",
@ (4 @ W

and summing up them, we have a guantity
»

RS)=> i ().

By a simple calculation we can find that R(S) is written in the form

14 R(S)= ZK ;u/fu'UrZ ZKV At uut u
) (@) i=1 j= @) () @
This shows that R(S) is independent of the choice of the last m—p vectors
# ,--,u of the orthonormal base.
(p+1) (m)
The first p vectors #,---,« form an orthonormal base of S. If we can

W
show that the right hand member of [(1.4) does not depend on the choice of

the orthonormal base of S, we can conclude that the quantity R(S) defined
above is independent of the choice of the orthonormal base such as (u, -,(u).
For this purpose we make the exterior product

U=1U/\ - /\M
(6] ®

and calculate the value of FFP(%). We then get

F(p)(u) ZK /l”ﬂ%z_l" E ZK_; pic uﬂuzu
i=1j=1 (OROHNGEE)]
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and thus from we obtain
(1.5) R(S)=F®(u).

If we take another orthonormal base (uw, --- ,Z,u) of S and make
i) p)

w=w /N - AN,
() ()

we have
w=ct,

where e=-+1 or —1, and consequently
(1.6) FPw)y=F®).

From and we can conclude that R(S) is independent of the choice
of the orthonormal base. We call R(S) defined above the extended Ricci curva-
ture with vespect to S.

If a skew-symmetric p-tensor » has a form

D=DAN > AD
1) (62

where (v), ,(v) are p linearly independent vectors, we call v to be simple. Then,
1 )
v determines a p-dimensional subspace spanned by v, .-+, v of the tangent space.
(1) »

It does not depend on the decomposition of ». When o’ is another simple
skew-symmetric p-tensor, » and ¢’ determine the same subspace if and only if

v=q-v
where ¢ is a non-zero scalar.

If we consider an orthonormal base (#, ---, #) of the subspace S determined
w (p)

by », we have
v—=tovl-u
where

w=u/N - N,
) ()

and therefore from
FP)= v |PFP"u)=||v|*?R(S) .

Thus we have

THEOREM 1.1. If v is @ simple skew-symmetric p-tensor at a point of Vi
and S is a p dimensional subspace detevmined by v of the tangent space of Vi
at the point, the value FI(v) coincides with the Ricci cuvvature with vespect to S
up o a factor i.e. we have

FPp)=|v[*R(S).

If v is simple, #v is also simple and the subspace S’ determined by #» is
the orthogonal complement of the subspace S determined by v.
From the definition of R(S) it is easily found that
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R(S)=R(5).
Therefore we can get from
(L7) FO=0 () = Fo(p)
for a simple skew-symmetric tensor ».

But this identity is satisfied by any skew-symmetric tensor, that is,
THEOREM 1.2. For any skew-Symmetric p-tensor v we have

F@=P(ap)= FP(p).

The proof of can be obtained by the straight-forward calcu-
lation, but we shall give another simple proof later.

In the remainder of this section we introduce the operators applied to
skew-symmetric tensor fields.

Unless otherwise stated, every tensor field is of class C* throughout the

papetr.
For a p-tensor field », we denote by <r» the covariant derivative of ». If

we take a coordinate system (£*) and denote by {:x} the Christoffel symbols,
the covariant components of <7» is given by
(VD)MI.../]p = V;vh...gp

=P {8 Yoy (it

Consider a skew-symmetric p-tensor field ».
The differential dv of » is given by
(dv)hi_z--vlpﬂ = (P+1)V[11012---Ap+1]
in the coordinate system (£%). dv is a skew-symmetric tensor field of order p+1.
The divergence d» of v is given by
0o =(—1y™P~Vxdxp ,
0v is the skew-symmetric tensor field of order p—1. In the coordinate system
the covariant components of v are given by
(51))}1...,1[)_1 :gga’ N @uirdp—1 -
Therefore, we have
dv=2g_|<v.
For a skew-symmetric tensor field », <o, Dy and [» are given respec-
tively by
v =ddv+div,
Dy=2g [~7~7v
and
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Ov=(p+1D)Dv—rwv.
The covariant components of Dv are
(Dv)1yay :gB“VBV“vh...Ap .
Avwp has the covariant components of the form

(Av)h"-lp - gﬁ“vﬁvw Vi1--dp “‘PK:: Ehvdlz---lp]

—1 o
— f@TlKBdchlzvﬁ Age-dpl -
Thus we have
v = Do—Fp
or
Fy = DU—A?} .

From the definition of 2, and D we can easily see that

Axp=sAp and Dxv==*Dv.
Therefore we get
Oxp=xJ2» and Fxpv=xlp.

If » is a skew-symmetric p-tensor at a point, we can extend v to a skew-
symmetric tensor field in a neighborhood of the point and we have at the
point

Fryp=xFp.
Thus we have

FM™ D)= (F%0, 50 = {x Fo, %0 )= Fo, v ) = F ().
This gives a proof of

§ 2. Riemannian manifolds with boundary.

A compact Riemannian manifold M with boundary B is a compact subdomain
of V, satisfying the following condition; At each point of the boundary B
of M there is a neighborhood U of the point in 7, and a coordinate system
(&Y, -, &™) (called @ boundary coordinate system) of V, such that UM is
represented by an inequality £'=0.

Since we can always choose as a boundary coordinate system a positively
ordered system, we shall assume that every boundary coordinate system con-
sidered is positively ordered.

If (&,---,&™) is a boundary coordinate system, B is locally represented by
E'=0 and (&% -, ™) becomes a coordinate system of B. Thus B is an m—1
dimensional submanifold of V,. If (¢i,...,&™) is another boundary coordinate

system, it is easily seen that we have on B
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2 o5t
o0&t &4

Since the Jacobian of the coordinate transformation of (&%) and (£%) is
positive, the Jacobian of the coordinate transformation of the coordinate sys-
tems (&% -+, &™) and (&% ---,&™) of Bis also positive. Therefore the coordinate
systems of B obtained from the boundary coordinate systems define an orien-
tation of B. In the following we assume that B is oriented by this orien-
tation.

At each point of the boundary B, there are two unit vectors normal to B.
In each boundary coordinate system the first contravariant component of the
one is positive and that of the other is negative. We denote the former by N.

In the sequel we use the following notations.

If (&, ..-,&™) is a coordinate system (not necessarily boundary) of V., at
a point of B and (»,-,7™ ") is a coordinate system of B whose domain is
contained in that of (£*), B is locally represented by

& =8 .
We denote by B¥ the derivative of £* with respect to #% i.e. we put

DE"
ont

>0 and =0 for A=2,--,m

Bf =
and
Biiit =Bl - Bi?.
Then the covariant components of the fundamental tensor field ‘g of B
are given by
/gji:gmBi'uf
and the determinant ‘g formed with ‘g,; is given by
,g =g det(le Bf; T Bfn—l)z .
In the following a tensor field of V,, defined in a neighborhood of M will
be called simply a tensor field on M.
The following theorem is well known.
STOKES' THEOREM. For an arbitrary vector field w on M, we have

2.1) j (ow)do = j (Nw)d's

wheve do and d’c ave the volume elements of V,, and B respectively.
ProOOF. First we remark that, in any coordinate system (&%) of V., (dw)do
is written in the form

(dw)do = (E 6‘4;3’ )dEl A e AdE™.

Using the partition of unity, it is easily seen that, for the proof of the
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theorem, it is sufficient to prove it in the following two case: One is the
case in which the carrier of w is contained in the interior of M and in a co-
ordinate neighborhood U, and the other is the case in which the carrier of w
is contained in a domain W of a boundary coordinate system.

Proof in the first case: We take a coordinate system (£*) in . We may
assume that the carrier of w is contained in a domain |4 <a.

Then we have

f fows :i o1 a\ggawﬁdfl e dgm=0.

On the other hand, since w is zero on B, the right hand member of
is clearly zero.

Proof in the second case: Let (£, ---, &™) be a boundary coordinate system
in w and (7, -, ™) be a coordinate system of B defined by (£*) i.e. 7=
& (i=1,--,m—1). Then in these coordinate systems (£*) and (3*) we have

v'g=~/gN?,
and the covariant components of N are (N, 0,---,0). N, and N* satisfy
N, Nt=1.

We may assume that the carrier of w is contained in a domain |&*| <.
Then we have

§ @z ={" (" { f_a 6\3/ VI g g
+f0{f I E %gf dgz - dgm}dg!
= f_aa j_aa Vo0, 7%, - 7 Dw0, 71, -+, 7 Ndpt - dymet
= j'_aa f:wlNl .\/gNldnl dﬂm—l
:j_aa"' jj“l(N;tW\/@dnl eee gyt

=jB<N,w>dfo.

Thus we have proved the theorem. q.e.d,

We denote by H the second fundamental tensor field of B with respect to
the normal N. In the local coordinate systems (£F) and (%) the covariant
components of I are given by

=[G+ n) e
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The equations of Gauss and of Weingarien can be written respectively
in the form

O { S { g s
and
Gy T ) BiN = 1B

For any skew-symmetric p-tensor # of B at a point, skew-symmetric
p-tensors Hwz and HAu are defined respectively by

(Htt)iyipy = PHoriy %41
and .
(Hu)'i]_“-ip == (gb“Hm)uir..ip—pHa[ilu%z...@-g} .
By a straightforward calculation, we get
(2.2) Heo = #Hu and Hsu=xHu.

The quadratic forms H*® and A® on the vector space consisting of all
skew-symmetric p-tensors of B at a point is defined respectively by
HP(u) = Hu, u) = {u, Hu)
and
E"Z’)(u):<ﬁu,u>:<u,Hu>.
From [(2.2) we obtain
THEOREM 2.1. For any skew-synumetric p-tensor u of B at a point we have

ﬁ(m—p—-l)(*%) = H®(y) and H v =P=D(s46) = ﬁ(p)(u) .

The quadratic form H® is the so-called fundamental quadratic form of B.

If M satisfies the following condition, we say that M Aas a convex (or con-
cave) boundary: At each point x of B any geodesic of V., through x and tangent
to B at x does not intevsect the interior (exterior) of M near x.

THEOREM 2.2, If M has a convex (or concave) boundary B, the quadratic
Fforms H® and H® (p=0,1, -, m—Y) is negative (or positive) semi-definite. If
the second fundamental form H® of B is negative (or positive) definite, M has
a convex (or concave) boundary B.

PrOOF. At a point x of B, take a boundary coordinate system (£, -.-,&™)
and an arbitrary coordinate system (%%, ---,7™Y) of B. Since B is locally
represented by &'=0, we have

By =08&9p'=0 (=1, ,m—1).

Therefore from the equations of Gauss, we get,

23) mN={ L} B,
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Let # be an arbitrary tangent vector to B at x, and (#*) be its components
in the system (z°). The components of # in the coordinate system of (&F) are
(Biu?). If (£2) is a geodesic of V,, such that

(EO0)=x,
and

(2.4) "*gl;* = B}:lﬂj y at #=40.
Since &%) satisfies the eqguation

d=&* dé* d&t

G2

dt  dt 0,
we have at =0,

dPET _ {/fj d&? jézft _ {:Z}B#%jui i

dt dt  dt
Thus from we get
(2.5) L~ —HowN, at {=0.

If we suppose that M has a convex (or concave) boundary, then

E(M=0
and &) =0 (or =0) for all # near 0.

Therefore #1(z) takes a minimal (or maximal) value at #=0, and we have

Z2
%ff_o (or =0) at #—=0.

From (2.5) this means that A®“(s) is non positive (or negative), for Nt is
positsve. This proves the first part of the theorem.

If we suppose that H® is negative (or positive) definite, then from (2.4)
and (2.5) we have

a8 =0 and e

7 e >0, (or <0) at ¢=0.

Thus, £4(¢) takes a minimal (or maximal) value at #=0, and therefore we

have
EH =0 (or <0) for all ¢ near 0.

This means that (£)) does not lie in the interior (or exterior) of M, and we
have proved the second part of the theorem. g.e.d.

Denote by f the injection of B into V,, and f* the dual map of the dif-
ferential map df of f.

For an arbitrary skew-symmetric p-tensor » of V,, at a point of B, con-
sidering » as a covariant tensor, we define a skew-symmetric p-tensor #r and
a skew-symmetric (p—1)-tensor nv of B by



48 T. TaKAHASHI

2.6) to=1*) and no=f¥N_{v)=1(N_Iv).
If we consider #» and sy as contravariant tensors, we have
2.0 v=df ¢tv)+ N A df (nv).

Thus v is zero if and only if fv and nv is zero. We call fv the tangential part
of » and nwv the normal part of v. If tv (or nov) is zero, v is said to be normal
(o7 tangential) to B.

If w is another skew-symmetric p-tensor of V,, at a point, we have the
following formula.

(v, >y =<{tv,tw)+{no, nw) .

In the coordinate systems, #v and nv are respectively represented by

(2 8) (tv)il'"ip = Bfllllgjﬂ)ljp

Ai-dp—
(nv)il"'ip—l = N’iBhl.‘..,;;_lll)“r..gp_l .
If » is a skew-symmetric p-tensor field on M, {v and »v are skew-symmetric
tensor fields on B.
Differentiating [2.8], we find
2A1-4
/v]'(tl))zl...ip = —j)Hml(nv)iZ...ipj —}—Bﬁl.l..ippvpvh...jp B
LA Ap—
/vj(nv)z'r--ip_l = ‘—Haj(t?))%mip-l+NlBjil}--ipzillva/ur--,!p_l

where ‘<7 denotes the covariant derivation with respect to the metric of B.
From these equations we can obtain the formulas:

ditv == tdv
(2‘9) { ~

8tv = 10v + Hunw—n(~T xv)
and

dny = ndv—Hiv-+i{(7 yv)
(2.10) {

ony = —ndv,

where <o =N _[<7v.

§3. Necessary and sufficient conditions.

In this section we shall consider necessary and sufficient conditions for a
skew-symmetric tensor field to be a harmonic field or a Killing field in M and
also for a vector field to be a conformal vector field in M.

If the differential and the divergence of a skew-symmetric tensor field v of
M vanish at each point of M, we call v @ harmonic field in M.

From this definition, it is easy to see that a harmonic field v in M satisfies

3.1 AHv=0
in M.
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In order to obtain necessary and sufficient conditions for v to be a harmonic
field in M, we shall introduce an integral formula.

For an arbitrary skew-symmetric tensor field » of M we have

{odv, v+ dvi*=ddvi_v)
and

{ddv,v>+|dv]2=0!_dv).
Adding these equations we get
(3.2 {Av, )+l dv 24|82 =08(dv L v+vl &).
Integrating on M and applying Stokes’ theorem to the vector field
dvl_v+vi_dv, we obtain
(33) jM[< AD, 0>+ do |2+ 6v 1P 1do = jB<N, dol_v+ol dvddo.

Using the formulas (2.6) and we have
(N,dvl_v-+v1 _de)>={nde,tv>{tdv,nv’.

Therefore we can write (3.4) in the form
GH [ Kavod+lai+lov|eldo= | [ndo,toy-+<tow, no)]d'o .

If » satisfies in M and moreover, satisfies

3.5 ndv =0
and
(3.6) tor=0

on B, we can find from the integral formula (3.4) that » is a harmonic field
in M.

Conversely, if » is a harmonic field in A, it satisfies and on B.

Thus we have

TUeoREM 3.1.8 In order that a skew-symmetric tensor field v of M is a
harmonic field in M it is necessary and sufficient that v satisfies

Lv=0 in M
ndv=0, tov=0 on B.
If a skew-symmetric tensor field » of M satisfies in M and on 5,

and p is tangential to B, we can find from (3.4) that » is a harmonic field in M.

Conversely, if » is a harmonic field in M and tangential to B, v satisfies
(3.1) in M, (3.5) on B, and nv=0 on B.
Thus we have

3) This follows from Duff’s lemma also (Algebraic geometry and topology, 1957,
p. 133).
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THEOREM 3.2. In order that a skew-symmetric tensor field v of M is a har-
monic field in M tangential to B it is necessary and sufficient that v satisfies

{ Av=0 in M
ndv=0, nv=90 on B.

From the formula [2.10) we have for an arbitrary skew-symmetric tensor
field »
3.7 ndv = —dnv— Hiv+1(V yv) .

We can easily find that » satisfies and nv=0 on B if and only if it
satisfies Hiv=#Vyv) and #nv =0 on 5.

Thus we have

COROLLARY. In order that a skew-symmetric ilensor field v of M is a har-
monic field in M tangential to B it is necessary and sufficiesit that v satisfies

Av=0 in M
Hio=t(Vyv), nv=0 on B.

If a skew-symmetric tensor field v of M satisfies [3.I) in A and on B
and » is normal to B, we can find from (3.4) that » is a harmonic field in A,

Conversely if » is a harmonic field in 3/ and normal to B, it satisfies [(3.1)
in M, (3.6) on B and f7v=0 on B.

Thus we have

THEOREM 3.3. In order that a skew-symmetric tensor field v of M is a har-
monic field in M normal to B it is necessary and sufficient that v satisfies

vVo=0 in M
=0, w=0 on B.
From the formula [(2.9) for an arbitrary skew-symmetric tensor field » of

M, we have
3.9 160 = dto—Hno+n(7 yv) .

We can easily find that » satisfies and tv=0 on B if and only if it
satisfies ﬁnv:n(va) and fv=0 on B.

Thus we have

COROLLARY. In order that a skew-symmetvic fensor field v of M is a har-
monic field in M normal to B it is necessary and sufficient that v satisfies

vo=10 in M
ﬁnv:n(va), tr=0 on B.

Next we consider Killing fields in M.
In the covariant derivative v of a skew-symmetric temsor field v of M is
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skew-symmetric at each point of M, we call v a Killing field in M. v is a Killing
field if and only if it satifies

(3.9 dv=(p-+1)Vv (p is the order of »).
If » is a Killing fleld in M it satisfies

(3.10) Cp =0

and

{3.11) v =0

in M.

In order to obtain necessary and sufficient conditions for » to be Killing
field, we shall introduce an integral formula.
For an arbitrary skew-symmetric tensor field » of M we have

(3.12) (Do, o3+(p+ D VolP=aTVv_2).
Forming (p+1)x(3.12)—(3.3), we have
{Ov, v+ (p+DveP—lldv|*—[dv]®
=3[ {(p+1)Vo—dv} _v—ov | 0v].

Since
(p+DVo,dv)=|ldv|?
we have
(3.13) H(p+Dvo—dv|iz= | (p-+-D)Vo [IP~ildv]*.
Therefore we get
(3.14) {00, 3+ (pH1)Vo—do f—| o

=8l {(p-+D)Vo—dv} _v—v|_dv].

Integrating (3.14) and applying Stokes’ theorem to the right hand member
we obtain an integral formula

(3.15) J < On o> Hl (o DV o—do |2~ 00 |*Jdo

:jB<N, {(p+-DVo—dv} _v—vl_60dd'o.

Therefore if » satisfies [3.10) and [3.11) in A/ and (3.9) only on B, we find
that v is a Killing field in M.

Thus we have

THEOREM 34. In order thal a skew-symmelric tensor jield v of M of order
D is a Killing field in M, it is necessary and sufficient that v satisfies

D=0, dv=0 in M
dv=(p+1)Vv on B.
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Since N_I1dv—(p+1)N_{Vo=N_Idv—(p+1)Vyv is a skew-symmetric ten-
sor at each point of B, we can make the tangential part and the normal part
of the tensor, that is, the tangential part is given by ndv—(p+1){ Vv yv) and
the normal part is given by —(p-+Dn(v ). Therefore v satisfles (3.9) on B,
if and only if it satisfies

(3.16) ndo = (p+DHV yv)
and
(3.17) n(V y0)=0
on B.
Since

(N {(p+-D)Vo—dv} LLo—v_dv)
= ((p+DUV yv)—ndv, tv) +{(p+Dn(V yv)—1tdv, nv) ,
we can write the integral formula (3.15) in the form

@18 [ [KOoo>+|(p+DTe—do |~ | a0 |*ldo

e L[((pqu)t(VNv)—ndv, 1 >+ (p+1n(V yv)—tov, nv)ld'o .

Thus we have

COROLLARY. In order that a skew-symmetric tensor field v of M of order p
is a Killing field in M, it is necessary and sufficient thal v satisfies

{ Ov=0, dv=0 in M
ndv=(p+DHVyv), (Vyv)=0 on R.

Also we have from
THEOREM 3.5. In order that a Skew-symmnetric tensor field v of M of order

pis e Killing field in M {angential to B, it is necessary and sufficient that v
satisfies
{ Oo=0, dv=0 in M

ndv=0p+DHV yv), nv=0 on B.

From we can easily see that » satisfies and is tangential to B
if and only if it satisfies p#(V yv)= —Hfv and nv=0.
Thus we have
COROLLARY. In order that a skew-symmelric tensor field v of M of order p
is a Killing field in M tangential to B, it is necessary and sufficient that v
satisfies
Ov=0, dv=0 in M

PV yv)=—Htv nv=0 on B.
We have easily from (3.18
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THEOREM 3.6. In orvder that a skew-symmetric lensor field v of Mis a
Killing field in M normal to B it is necessary and sufficient that v satisfies

{ Ov=0, 6v=0 in M
WV yr)=0, tv=0 on B.

It is easy to see from that » satisfies (3.1I)in M and [3.17) on B and
is normal to B if and only if it satisfies (3.11) in M and Anv=0 on B and is
normal to B.

Thus we have
COROLLARY. [In order that a skew-symmetric tensor field v of M is a Killing
field normal to B it is necessary and sufficient that v satisfies

Ov=0, &v=0 in M
ﬁnsz, to=0 on B.
In the rest of this section we consider conformal vector fields in M.
If @ vector field v satisfies at each point of M
(3.19) ZVv:dv-l—;%év-g,

we call v a conformal vector field in M2
A conformal vector field » in M satisfies

(3.20) Oo-- =2 g5p—=0.

m
On the other hand for an arbitrary vector field » of M we have

m—2 2
(3.21) {Ov+ o dov, 0>+ 2V v—dv— %5v-g 2

=0 {2Vr—dv— %%g} Lo},
Therefore we get an integral formula

(3.22) ‘fM[( Ov-+- ﬁ;2 ddv, v>+ || 2Vo—dv— ?2{ dv-g |z ldo

:.’. {N, {2V r—dp—- z—Bv-g} L vdd'e.
B m

Thus we have

THEOREM 3.7. In order that a vector field v of M is a conformal vector
field in M, it is necessary and sufficient that v satisfies

4) It is easily seen that a conformal tensor field of order >1 defined in is
necessarily a Killing field.
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Dv—k—@n:—zdavzo in M

2Vv:dv+—i—6v-g on B.

If » is a coenformal vector field in A, contracting with N we have

(3.23) 2V =N_ldot 2 00 N.
Thus the tangential part and normal part of Vv are given respectively
by
(3.24) 20(V 40y =ndv,
1
(3.25) n(V yv) = P or.

Since for an arbitrary vector field » of A/ we have
(N, {2V o—dv— ;%61) gt
= (2T )~ (), 203+ 2(n(V w0y~ = 00} - mo
the integral formula can be written in the form

(3.26) L{[( Do+ @m:% dov, v>+|2vVe—do— 73; ov - g |*de

:fﬂ[<2t(vN0)——ndv, w>+2{nvyo— ;%—61)} -nvido.

Thus we have
COROLLARY. In order that a veclor field v of M is a conformal vector field
in M, it is necessary and sufficient that v satisfies

{ Dot "2 g5y =0 in M

2V g0y =ndr, nvyv:v;?liﬁv on B.
Also we have from

THEOREM 3.8. In order that a vector field v of M is a conformal vector field
in M tangential to B, it is necessary and sufficient that v satisfies

{ mwﬂ’ﬂgidav:o in M

2V yv)=ndv, nwv=0 on B.

From the formula[3.7) we can find that a vector field » satisfies (3.24) on
B and is tangential to B if and only if it satisfles #(Vyv)= —Hfv, and no=0
on B.
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Thus we have
COROLLARY. I[n order that a vector field v of M is a conformal vector field
in M tangential to B, it is necessary and sufficient that v satisfies

vt "2 4sp—=0 in M
i

KV yv)= —Htv on B.
From we have

THEOREM 3.9. Im order that a veclor field v of M is a conformal vector field
in M normal to B it is necessary and sufficient that v satisfies

o+ 22 g3 =0 in M

n(VNv):;%ﬁv, fv=>0 on B.

From the formula it is easily seen that a vector field » of M satisfies
and is normal to B if and only if it satisfies (m—1)n(V yv)= —Hnv, and
tv=0 on A.

Thus we have
COROLLARY. In order that a vector field v of M is a conformal vector field
i M normal to B it is necessavy and sufficient that v satisfies

Do =2 g5p =0 in M
¥/

(m—l)n(va):—ﬁnv, =0 on B.

§4. Non existence of harmonc and Kililng fields and conformal fields in M.

In this section we shall consider the conditions for non existence of har-
monic fields, Killing fields or conformal vector fields.

Let v be an arbitrary skew-symmetric p-tensor field in M.

Forming (3.12)-(3.2) we have

41 (Dv—2nv,05+(p+D | Vo=l dvl*—]do|?

=HVvl_v—dvl_ v—v[. 6v).
Since
Dyp—Av=Fv

we can reduce (4.1) to the form
FP)+-(p-FD || Vo= dv |*—]|dv|E=(Vv _v—dv _v—v | dv).

Integrating this equation and applying Stokes’ theorem we have
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jM[F‘P’(vH—(zH- DIvolP—{dv*—|dv|*Ido

:jB<N, Vol v—dvl_v—vi_dvydo.
Since we have
{N,Vvlv—dv|_v—v!l_0dv)
= {tV yo—ndv, tv ) +<{nV yv—tdv, nv )
we get, using the formula and
{N, VoL v—dvL_v—v_dv)
=H ‘p)(tv)—%-ﬁ =Dy dnv, tv>—{Otv, nv ) .

On the other hand we find by virtue of compactness of B that

j [dnv, to>—<Ldtv,nv)>]d'o =2‘f {dnv,tv>d’a .
B B

Thus we obtain

4.2) IM[F‘”’(v)Jr(PnLl) Ivol*—ldvl*—|dvl*ldo

- fB[H(p’(tv)—l-FI“’“”(nv)JrZ {dnv, tv)]d'o.

If » is a harmonic field in M, we have

[ [Fo@+DI Vo lldo= [ LHt)+A 0 0w)+2{dno, 0)]d's -

Thus we have

THEOREM 4.1. If a harmonic field v in M of ovder p tangential (normal) to
B satisfies FP@)=0 in M and HP(tv)=0 (He9(mp)<0) on B, v satisfies
FO()=0 and Yo=0 in M and HP()=0 (A2 (nv)=0) on B.

Assume that F® is positive semi-definite at each point in M and H®(H @)
is negative semi-definite at each point on B, and let » be a harmonic field in
M of order p tangential (normal) to B. Then v satisfies the conditions in
and therefore » satisfies F®(»)=0 and VYv=0 in M and also
HP@)=10 (ﬁ @-(»p)=0) on B, Here we assume moreover that either F® ig
positive definite at one point at least in M or H‘P’(ﬁ @-D) is negative definite
at one point at least on B. Under the former assumption, we have =0 at
the point and thus we can conclude that p vanishes at every point in A7,
because v satisfies Vo =0. Under the later one, we have fo =0 (nr =0) at the
point, and thus from the formula we have »=0 at the point. Therefore
we can also conclude that » vanishes at every point in M.

Thus we have
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THEOREM 4.2. There exists no harmonic field in M of ovder p tangential
(normal) to B other than the zero temsor field, if F® is positive semi-definite
everywhere in M, H w’(ﬁ @=Ly ¢s negative semi-definile everywhere on B, and there
exists at least ome point x in M such that F® is positive definite at x, or such
that x is on B and H ‘p’(ﬁ -0 45 negative definite at x.

In particular, we have

COROLLARY 1. There exists no harmonic field in M of order p tangential
(normal) to B other than the zero tensor field, if one of the following conditions
is satisfied in M: (1) F® s positive definite evervwhere in M and H‘m(ﬁ (p-1)
is megative semi-definite everywhere on B. (2) F® (s positive semi-definite every-
where in M and H cp)(ﬁ @Y is negative definite everywhere on B.

The condition (1) in the corollary has been obtained by Yano in [207

From we find that if F® is positive semi-definite (or definite)
at a point then F™ P jg also positive semi-definite (or definite) at the point.
Also, from we find that H® is negative semi-definite (or definite)
if and only if A™ »-¥ is negative semi-definite (or definite).

Thus we have

COROLLARY 2. Under the assumptions in Theorem 4.2, there exists no har-
monic fleld in M of order p tangential (normal) to B and no harmonic field in
M of order m—p normal (tangential) to B other than the zero tensor field.

We denote by R,(M) (R,(M, B)) the absolute p-th Betti number of M (the
relative p-th Betti number of 3 modulo B).

By Duff and Spencer R, (M) (RM, B)) is equal to the number of lin-
early independent harmonic fields in M of order p tangential (normal) to B.

Then from [Corollary 2 of [Theorem 4.2 we have

COROLLARY 3. Under the assumption in Theorem 4.2 we have

RAM)= Ry M, BY=0  (Rpi(MD)=R,(M, B)=0).
In particular, applying the result in the parentheses of the corollary to
=1, we have R,(M, B)=0.
On the other hand, because of connectedness of M, we find that R,(M)=1
and Ry(M, B)=0.

Therefore using the homology sequence of the pair (M, B) (see [8]) we find
R(B)=R(M)=1. This means that B is connected.
Thus we have

COROLLARY 4. If the Ricci curvature of Vo, is non-negaetive at each point of
M, the mean curvalure of B is non-positive at each point of B, and moreover if
theve is one point at least in M such that the Ricci curvatuve is positive for all
directions at the point ov such that the point is on B and the mean curvature is
negalive at the point, then the boundary B of M is connected.

Next we consider the Killing fields in M.
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In the case of the Killing fields, the non existence conditions for the field
tangential to B and for the field normal to B do not go in parallel, because
from the corollary of a Killing field » normal to B satisfies Hnp =0
and so H® () =0.

First we consider the integral formula

From (3.13) we have for an arbitrary skew-symmetric p-tensor field #,

(DI volP—lde|* = | (p+DVe—do [*—p(p-+D | Vo i*.
Then we can write the integral formula in the form

§ LFP) -1 (p+ DV o—do [P —p(p+ 1| Vo |~ 80 |*]do
= LHD() A )2 dnw, 10 d's
When v is in particular a Killing field in M, we have
43) J TFo@-5(p+1) vol*ldo

= J‘B[H“’)(l‘v)nLﬁ‘1’“1’(7zv)+2 {dnw, tv)]d'o .

Thus we have

THEOREM 4.3. If a Killing field v in M of order p tangential to B satisfies
FPN=0 in M and H*tv)=0 on B, v satisfies FP@)=0 and Vv=0in M
and HP@v)=0 on B.

By a similar argument as in we have

THEOREM 4.4. There exists no Killing field in M of order p tangential to B
other than the zero tensor field, if F'P is negative semi-definite everywhere in
M, H® is positive semi-definite everywhere on B and if there exists one poini at
least in M such that FP is negative definite at the point, or such that the point
is on B and HP is positive definite at the point.

In particular

COROLLARY. There exists no Killing field in M of ovder p tangential to B
other than the zevo tensor field, if one of the following conditions is satisfied in
M: (1) F® is negative definite everywhere in M and H™® is positive semi-definite
everywhere on B. (2) F? is negative semi-definite everywhere in M and HP is
positive definite everywhere on B.

The condition (1) in the corollary has been obtained by Yano in [20]

If » is a Killing fleld in M of order p normal to B, then v satisfies

4.4) Hnp=0
and the integral formula can be reduced to the form

(45) [ LFP@—pp+ 1 7o |¥1do =0.
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Thus we have

THEOREM 4.5. If a Killing field in M of order p novmal to B satisfies
FPmp)=<0, then v satisfles FP0)=0 and Vo=0 in M.

If F® is negative semi-definite everywhere in M and there is one point
at least in M where F® is negative definite, then any Killing field » in M of
order p normal to B satisfies F®(»)=0 and Vo=0 in M, and from this we
have »=0 at the point. Therefore we can conclude that » vanishes every-
where in M.

If F® is negative semi-definite, the operator H is non-degenerate at one
point at least on B as an endomorphism of the vector space of skew-symmetric
(p—1)-tensors of B at the point, then, we have V=0 in M and nv=0 at
the point and so we have »=0 at the point. Therefore we can find that »
vanishes everywhere in M.

Thus we have

THEOREM 4.6. There exists no Killing field in M of order p normal to B
other than the zevo tensor field, if one aof the jollowing conditions is satisfied in
M: (1) F® is negative semi-definite everywhere in M and there is one point at
least in M where F® is negative definite. (2) FP is negative semi-definite
everywhere in M and there is one point at least on B where the operator B is
non-degenerate as an endomorphism of lhe vector space of all skew-symmetric
(p—V)-tensors of B al the point.

In particular

COROLLARY. If F® is negative definite everywhere in M, therve exists no
Killing field in M of order p normal to B olher than the zevo tensor field.

This corollary has been obtained by Yano and the present author in

Now, in order to obtain the non-existence conditions for conformal vector
field, we take an arbitrary vector field of M. Then by an easy calculation
we can write in the form

[ [Foe)+) 29 0—do— %60 g2 o |r— ’”7:2 |60 |#] do

= LHO(t0)+HOm)+2 dno, 1)1 ds,
where v is a conformal vector, we have

46) § [Fo@—21 vo =" o [51do

- j B[H<1>(w>+ﬁ<°>(m)+2 Cdn, t0)]d's .

Thus we have
THEOREM 4.7. If a conformal vector field v in M tangential to B satisfies
FOW=0 in M and HY(@r)=0 on B, v satisfies FO@)=0 and Vo=0 in M
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and HY@v)=0 on B.

THEOREM 4.8. There exists no conformal vector field in M itangential to B
other tham the zero vector field, if the Ricci curvature of V., is negative semi-
definite everywhere in M, the second fundamental form of B is positive semi-
definite everywhere on B and moreover there exisis one point at least in M such
that the Ricci curvature is negative definite at the point or such that the point
is on B and there the second fundamental form is positive definite.

In particular,

COROLLARY. There exists no conformal vector field in M tangential to B
other than the zero vector field if one of the following conditions is satisfied in
M: (1) The Ricci curvatuve is negative definite everywhere in M and the second
Sundamental form of B is positive semi-definite everywhere on B. (2) The Ricci
curvature is megative semi-definite everywhere in M and the second fundamental
form of B is positive definite everywhere on B.

The condition (1) in the corollary has been obtained by Yano in [20 .
If we denote by @ the mean curvature of B, i.e.

Q :gin;lj ’
then A®(nv) is written in the form
A O(pp) = Q - (nv)?.

Remark here that #» is a function on B for » is a vector field.

Then if » is a conformal vector field in M normal to B, is reduced
to the form

[ [Fow—2vvl— 72 o0r1do
:_f Q- (nv)do.

Thus we have

THEOREM 4.9. When the mean curvature of B 1S non-negative everywhere
on B, a conformal wvector field in M novrmal to B satisfying FP@)=0 satisfies
FOW)Y=0 and Vo—=0 in M and Q- (nv*=0 on B.

THEOREM 4.10. There exists no conformal vector field in M normal to B
other than the zero wvector field, if the Ricci curvature is negative semi-definite
everywhere in M, the mean curvature of B is non-negative everywhere on B, and

moreovey there exists one point at least in M such that the Ricci cuvvature is

negative definite at the point or such that the point is on B and theve the mean
curvatuve does not vanish.

In particular
COROLLARY 1. There exisis no conformal vector field on M normal ito B
other than the zero vector field, if one of the following conditions is satisfied in
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M: (1) The Ricci curvature is negative definite everywhere in M and the mean
curvature is non-negative everywheve on B. (2) The Ricci curvature is negative
semi-definite everywhere in M and the mean curvature is positive everywhere on B.

The condition (1) in the corollary has been obtained by Yano

If the second fundamental form of B is positive semi-definite (or definite),
then the mean curvature is non-negative (or positive).

Thus we have

COROLLARY 2, Under the condition in Theorem 4.5, there exists no conformal
vector field in M either tangential or normal to B other than the zero vector field.

§5. Some applications.

We denote by K the curvature tensor field of M, by P the projective
curvature tensor field of M, by Z the concircular curvature tensor field of M
and by C the conformal curvature tensor field of M.

If in a local coordinate system (&%) the covariant components of the curva-
ture tensor field K are denoted by K, .. and those of the Ricci tensor field
are denoted K,,, the covariant components of P, Z and C are given respec-
tively by

1
Py,uﬂm - Kuy}.m_ m—1 (gvxKyl_gpruz)

R
Zopin = Ko pan— “mim—1) (ox8ur—Eun&vd)

1
Cu;ull: - KD/JRIC— %__‘_7 (gwstul—‘gnyM—}—ngux‘—ngyx)

R
oY m—gy (Ew&ui—Eunsi)»
where R is the curvature scalar of M.

We denoe by L the smallest eigenvalue of the matrix (K,,;) and also by
L’ the largest eigenvalue.

Now we introduce the quantities ﬁ, Z and C, respectively given by

(5.2) Z=Sup _»2%.@,
(5.3) ¢ =Syp 2lCLww)

at each point of M, where w is a skew-symmetric tensor of order Z.
First we consider the curvature tensor field K.



62 T. TAKAHASHI

If K satisfies
1 2K w,wd

(5.4) 0<5 A=~ =4,

o |® =

for any skew-symmetric tensor of order 2 and for some positive constant A
at each point of M, then the quadratic form F® is positive definite for
p=1,2,---,[m/2]. (See [18] or [2Z]) From [Theorem 1.2, we find that F® ig
positive definite for p=1,2, .-, m—1.

Similary, if K satisfies

2(K|_w, w}
(5.5) A= »—quz— 2 A=0

for any skew-symmetric tensor of order 2 and for some positive constant A
at each point of M, then F% is negative definite for p=1,2, -+, [1/2] (see
or [227]), and thus F® is negative definite for p=1,2,---,m—1.

Next we consider P, Z and C.

Using P, L and L’ we can find that for any skew-symmetric tensor v of

order p, we have (see [18] or [22])

(5.56) F<m<v>>p(’” 21— 2L p) o

and also

G7) Fo s p(L5HB= 2R 1) o,
Therefore if L and P satisfy

5.8) o S —1HP p=1,,m—1

m—

F® is positive definite for p=1, ---,m—1 and if they satisfy

(5.9) mbpx?1p, p=1,,m—1

then F® is positive semi-definite for p=1, .-, m—1. Also if L’ and P satisfy

(5.10) mb s 2L p, p=1,-,m—1

F® is negative definite for p=1,---,m—1 and if they satisfy
(5.11) mb e PLp, p=1,-,m—1

F® is negative semi-definite for p=1, ---, m—1.
Using L, L/, R and 2, we have for any skew-symmetric tensor » of order

p (see or [227
1

(.12) Fo() 2 p(L— %({;1__1)1) — 222 2) ol
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and

(5.13) Fo)2p(—L— L Re 2L 2) o).

Thus if L, R and Z satisfy

(5.14) —7%” 31) r> 2712, (p=1, -, m—1)

F® ig positive definite for p=1,---,m—1 and if they satisfy

(5.15) I ngibm 1)1) R= le 2z, (p=1, -, m—1)

then F® is positive semi-definite for p=1,---,m—1. Also if L/, R, Z satisfy

(5.16) Lig— {m_ll) R> le Z, (p=1,,m—1)

then F*® is negative definite for p=1, .-, m—1 and if they satisfy

, p—1 p—1 1 e
(5.17) L'+ o1y R= 15 Z, (p=1,,m—1)

F@® ig negative semi-definite for p=1, ---, m—1.
Using L, L/, R and C we have for any skew-symmetric tensor » of order

p(=m/2) (see [18] or [ZZ]

618 Pz L A R= 2L E e

and

61 FoOE(— A U gy RE25C) ol

Thus if L, R and C satisfy

m—2p p—1 p—1 A —1 ..
F® is positive definite for p=1,---,[m/2] and therefore from
we find that F® is positive definite for p=1,---,m—1, and if they satisfy

m—2p p—1 p—-1 A _
(5.21) =2 Lt e o=y 29 € (p=1,--,0m/2])

(5.20)

then F@ is positive semi-definite for p=1,2, -, m—1. Also if L', R, ¢ satisfy

m=2p y,__ p—1 p—1 4 _
(5.22) m—2 = Dy B> g € (p=1,-,[m/23)

then F® is negative definite for p=1, .-, m—1, and if they satisfy

623) =y R2E5EC =1, D2
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then F is negative semi-definite for p—1, .-, m—1.

Thus we have

THEOREM 5.1. If, in a compact Riemannian manifold M with convex bound-
ary B, one of the inequalities (5.8), (5.14) or (5.20) is satisfied, or the curvature
tensor field K satisfies (5.4) for any skew-symmetric tensor of order 2 and for
some postive constant A, then we have R(M)=R,M,B)=0 for p=1,--,m—1.

THEOREM 5.2. If, in a compact Riemannian manifold M with convex boundary
B, one of the inequalities (5.9), (5.15) or (5.21) is satisfied and there exists one
point at least on B where the second fundamental form of B is negative definite,
then we have R M)= R (M, B)=0.

THEOREM b.3. If, in a compact Riemannian manifold M with boundary B,
one of the inequalities (5.10), (5.16) or (5.22) is satisfied or the curvature tensor
field K satisfies (5.5) for any skew-symmetric tensor of ovder 2 and for some
positve constant A, then there exists no Killing field in M of order p (= 1,2, -+ ,m—1),
normal to B other than the zero tensor field.

THEOREM 54. If, in a compact Riemannian manifold M with boundary B,
one of the inequalities (5.11), (5.17) or (5.23) is satisfied and there exists one point
at least on B where the operator H is non-degenerate, then there exists no Killing
field in M of order p (=1,2,---,m—1) normal to B other than the zero fensor
field.

THEOREM 5.5. If, in a Riemannian manifold M with concave boundary B,
one of the inequalities (5.10), (5.16) or (5.22) is satisfied or the curvature tensor
field K satisfies (5.5) for any skew-symmelric tensor of ovder 2 and for some
positive constant A, there exists neither Killing field in M of order p (=1, -+ ,m—1)
tangential to B nor conformal vector field in M tangential or normal to B other
than the zero temsor field.

THEOREM 5.6. If, in a Riemannian manifold M with concave boundary B,
one of the inequalities (5.11), (5.17) or (5.23) is satisfied and there exists one point
at least on B where the second fundamental form of B is positive definite, then
therve exists neither Killing field in M of order p (=1,2, - ,m—1) tangential to B

nor conformal vector field in M tangential or normal to B other than the zero
tensor field.
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