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Abstract. In this paper we use an identity of Hardy-Stein type in investigations of
the harmonic #7(B) and Bergman b7 (B) spaces.

1. Introduction and auxiliary results.

Throughout this paper n is an integer greater than 1, B(a,r) =
{x e R"||x —a| < r} denotes the open ball centered at a of radius r, where |x|
denotes the norm of xe R" and B is the open unit ball in R". S=0B=
{xeR"||x| =1} is the boundary of B.

Let dV denote the Lebesgue measure on R”, do the surface measure on S,
o, the surface area of a S, dVy the normalized Lebesgue measure on B, doy the
normalized surface measure on S.

Let #(B) denote the set of complex-valued harmonic functions on B, #7(B)
denote the set of harmonic functions on B such that:

1/p
[ —— (L ru<r¢>v’dmv<c>) < too

O<r«l1

and let b”(B) denote the Bergman space i.e., the set of harmonic functions # on B
such that:

1/p
= (| o aveo) " < e
A function f e CI(B) is said to be a Bloch function if
11l = sug(l — XDV (x)] < +o0

where |V (x)| = (> [0f(x)/ oxi|®)'?. The space of Bloch functions is denoted
by %(B).
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Let p > 0. A Borel function f, locally integrable on B, is said to be a
BMO,(B) function if

1/p
|
Fllawro, = sup 7J £ = faanl"dV(x) | <+
” ||BM01, Bla.r)c B V(B(a,r)) B(g7r)| ( ) B( )| ( )

where the supremum is taken over all balls B(a,r) in B, and fp(, , is the mean
value of f over B(a,r).

In [6] for p>1, Muramoto proved that %(B)N #(B) is isomorphic to
BMO,N #(B) as Banach spaces. That paper inspired us to calculate exactly
BMO norm which is the theme of [8]. We proved the following:

THEOREM A. Let ue #(B), p>1. Then
a)

plp—1)
[ull5rro, = sup
BMOp aeB,0<r<1—|q| 2”(” - 2)

" (JB tta,r () = 1 (0)| 2|Vt () (2" + (1 = 2)|x]* — ) dVN(x)>

for n>3
b)

[ullzsro, = sup  p(p—1)

ae B,0<r<l—|a|

. (J 4, (X) = 11,1 (0) 72Vt (x) > (In(1/[x]) — T + |x]) dVN<X>>

for n=2.

In the proof of this theorem we essentially also proved a generalization of
Hardy-Stein identity, [2|. This identity is included in the following lemma.

LeMMA 1. Let 1 <p < +o0, ue #(B), then
j u(r)” do (?)
S

1 - - i
= O + L ) PO = P v, 03 (1)
I’l(l’l o 2) rB
It is interesting that is a consequence of the Riesz decomposition
theorem, see, for example [4], of the subharmonic function |u|” on rB into a
difference between a harmonic function and a potential.
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CoROLLARY 1. Let 1 <p < +oo, ue #(B), re(0,1) then

| oo done) < L= [ ol puo ave). @)
S

dl” B

Note that this identity is of Hardy-Stein type.

This lemma will be the main tool in this paper. We will use this lemma in
investigations of spaces #”(B) and b”(B). Similar identity exists in the case of
holomorphic functions in [9], but the author does not use it. We shall keep our
attention to the case n > 3. Analogous results hold in the case n =2. For-
mulations and proofs of this results we leave to the reader.

We will need another lemma in our consideration.

LemMa 2. Let I(r) be a nonnegative nondecreasing function on the interval
[0,1), ne N, M >0, and let

1) < | )" dpk M 3)
0
then for each €€ (0,r) the following inequality

I(r) < Q—f—l—l(e)

holds.

Proor. From (3) we have

nt" V(1)
(M +n [y 1(p)p"" dp)

Integrating (4) from ¢ to r in the variable 7, we obtain

M I(p)p"td
( +nf% (p)p | AW,
(M +n [, 1(p)p""dp) g

<n/t. (4)

In

1.e.

r

M-l—nJ
0

I(p)p"'dp < (M + nrl (p)p""! d/)) @

0
Since I(r) is nondecreasing we have
<M + nJ I(p)p"! dp) (g) < (M+ I(e)e”)% =M—+I(e)r".

0 e

From which the result follows. O
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In section 2 we prove several necessary and sufficient conditions for a
harmonic function in the unit ball to be in #7(B) (Theorems 1-4). In Theorem
5 we investigate the rate of growth of

E(r) = J W) AVu(x) PV (x), ue #7(B),

as r — 1. In Theorem 6 we give a local estimate of derivatives of such functions.

In section 3, we prove necessary and sufficient condition for a harmonic
function in the unit ball to be in harmonic Bergman space b”(B) (Theorem
7). We also investigate the rate of growth of E(r) as r — 1, for ueb?(B)
(Theorem 8).

2. Hardy harmonic 7 (B) space.

In this section we consider Hardy harmonic #7(B) space.

THEOREM 1. Let 1 < p < +o0. Function u € #(B) belongs to #"(B) if and
only if

jB () A7) 21— 6 Vi (x) < +oo.

If ue #7(B), 1 <p < +o0, then

pip—1) -
il = | Wl v+ ZE | ol o = ) v

Proor. Multiplying the formula (2) by " and integrating from 0 to r, we
obtain

r

er"dipL u(pO)|F doy () dp = MJ

p j ()2 V) 2 dViy () dp.
0 n 0 JpB

Applying integration by parts on the left hand side of previous equality and
using Fubini’s theorem on the right hand side we obtain

” L u(r0)|? dox(0)
B J @)1 V() +p(p27,;1)J P W = ) dV(x). - (5)

If u e #7(B), then by polar coordinates easily follows u € b”(B). From that
by the monotone convergence theorem we have

lim JrB lu(x)|” dVy(x) = JB lu(x)|” dVy(x).

r—1-0



On harmonic Hardy and Bergman spaces 987

Since functions " and |[¢[u(r()|” doy({) are nondecreasing then function
" [ [u(r()|” doy({) is also such a function. From ue A#7(B) also follows

lim " L lu(r0)|” don({) = L lu*(O))” don(0),

r—1-0

where u*({) is a usual radial limit for a function in #7.
From all of the above we have there exists

Tim [ ) 0% = ) V().

By the monotone convergence theorem we have

Tim | )P 0% = P v )

- JB ,,EIEO (o) [P 72|V ()2 (7 = 6] (%) d Vv (x)

- J ()2 Wa(x) P(1 = [x]) dVi(x)

as required.
Conversely, if M = [, [u(x)|”*|Vu(x)]*(1 — |x|*) dVx(x) < +o0, then by (5)
we have

r”J lu(rQ)|” doy({) < J u(x)|” dVy(x)+ My, MyeR,, re(0,1). (6)
S rB

Let I(r) = [ |u(r()|” don((), then we may simply write (6) in the following
form

r

r"I(r) < nJ p" " (p)dp + M,.
0

Taking ¢ =1/2 in we have I(r) < M2"+1(1/2), for re[1/2,1).
Since I(r) is nondecreasing function we have I(r) < I(1/2), for r € [0,1/2]. Thus
the result follows. ]

THEOREM 2. Let ue #7(B), 1 < p < +o0, then

el = @) + 2L [ 2o = 1) v

Proor. Since u € #?(B), letting r — 1 in formula (1), and noting that the
integrand is positive and increasing in r we obtain the above formula. ]
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Next theorem is a generalization of [Lemma 1 and [Lemma 2 in [2].

the following notation:

L = (] |u<rc>|5do-N<¢>)l/S.

THEOREM 3. Let s>0. If ue #*(B), 1 <p <2, then
1 2
JO (1 - p)12s/(s—p+2) (p7 VI/I) dp < +00.
If 2<p<s+2, s<p, then (7) implies ue #°(B).
PrOOF. By condition u € #”(B) is equivalent with

jB () A7) 21— |5 dV ()

1
= J rnfl(] — rz)J !u(VC)\p_z\Vu(rC)\z dO'(C) dr < 1o
0 S

Let Jy(r) = [ lu(r)l" 2Vu(r0) > do (2).
If p <2, we can use Jensen’s inequality to the integral

Ip(r) :J Vu(rO)]> Ju(r)l*
I3(ryu) S u@rO) S 13(r,u)

s

dan ().
Since in that case 0 < s/(s—p+2) <1, we have

( Jy(r) )S/“‘P”’ . J Vu(rO P u(ro)
I5(r,u) s lu(r)|* I5(r,u)

dO'N(o

B J Vu(rO)| 7 day (017 (r,u),
S
1.€.
Jp(r) = 1772(r, u)1225/(s7p+2) (r,Vu).
From that we have
2
To(r) = |l Iy sy (r, V).

By (8) and we get

1
L (1 - rz)Izzs/(S_p+2)(r, Vu)dr < 4+ 0.

We use

It is easy to see that the last integral is equiconvergent with integral in (7).
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If 2<p<s+2, 5 <p, then in (10) the converse inequality holds. Therefore
from (1) we obtain, using polar coordinates,

) < O + 5P| )

plr=11(" -
< O+ BL= D 1200 o - 20

Since u € #(B), function I,(r,u) is nondecreasing in r; see, for example [4].
By Jensen’s inequality we get I(r,u) < I,(r,u) for s <p. Thus we have

o

B < OF + 5L [ 2 a2 dp

r

p(p—1 n-
<O+ B B o (gl = 7

r

£W®H2+mp—1)Oﬁwkﬁa@Jmﬂl—mdﬂ

o

From that follows second part of this theorem. OJ

COROLLARY 2. Let p>2, ue#(B). If [4(1—|x])[Vu(x)|”dV(x) < +o0,
then ue #"(B).

ProoF. Since ue #(B), function |Vu|’ is subharmonic, see [7], and
therefore 1,(r,Vu) is nondecreasing in r. If supy ., I/(r,Vu) is finite, then
SUPg<req Ipz(r, Vu) is also finite. Thus we have

1
J (1 —p)Ipz(p,Vu) dp < +0.
0

By Theorem 3, we obtain u € #7(B).

If supy.,; IJ(r,Vu) = +o0 we have there exists ro such that for r e [rg, 1),
I7(r,Vu)>1. Since p>2 we have Ipz(r, Vu) <I/(r,Vu) for relr,l).
Therefore

1 1
J (1 —p)Ipz(p,Vu) dp < J (L =p)7(p,Vu)dp < +o0.

ro ro
Hence

1
J (1 —p)Ipz(p,Vu) dp < +0.
0

Applying we obtain our result. ]
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By [Theorem 3, as in we can prove this result. Details we leave
to the reader.

COROLLARY 3. Let 1 <p <2, ue #*(B). Then
J (1 — |x])|Vu(x)|? dV(x) < +c0.
B
We shall give an elementary proof of the following theorem (i.e. without

using maximal theorem).

THEOREM 4. Let ue A (B) and supy.,., [¢|Vu(rl)|” doy(() < 400, p>2,
then ue #"(B).

Proor. Let I(r) = [¢[u(r()|” doy(() and
J(r) = J(r) = js ()P Vu(rl) > do ()

in polar coordinates (2) becomes

I'(ry=p(p—1)r'™" L p"~I(p)dp. (12)

Let us estimate J(r) by I(r). For that purpose we write J(r) as follows
[ JuGOP? Vur))”

J(F)—— p-2 p

s |Vu(rQ) P2 [IVulr)|l;

doy(0) - Vu(r) |2,
where
IVu(r |2 = L Vu(ro)|? dow Q).

For p > 2 we have p/(p—2) > 1. Applying Jensen’s inequality we obtain

)P/ (r=2) uCOF  VuCOl” o v 202
I < | Gty e O 7l

~ 10 wateor dw(é))zmp_a.

Thus

2
J(r) < 1(r)<P—2>/P< sup L |\7u(rc)|PdaN(g)> = Cy I ()P, (13)

O<r<1

Combining (12) and (13) we obtain
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7

I'(r) < Gpup(p = 1)r'™" JO " 1(p)" " dp.

Integrating from 0 to r we get

7

1®£M®+@WW—UJ

p
pI"J s ()27 dsdp
0 0

s (5)P=2p J p' " dpds

N

:mm+cmmp—w3L

1.e.

I(V) < I(O) —+ %J S”—ll(s)(l’*z)/l’(SZ—n . rZ—n) ds
- 0

<1(0) + % L s1(s) 72/ ds. (14)

Let o = (p—2)/p then (14) can be written

sI(s)ads)“, ¢ Gulr=1) (15)

r

17" < (I(O)+CJ e

0

From that we have

Crl(r)”
E —— <Cr, 0<r<l.
(1(0) + C [, sI(s)" ds)

Integrating from 0 to r we get

(1(0) + ch sI(s)* ds>1“ — 1) < (1 —a) - (16)

0

By (15) and (16) we have

2 1/(1-a) B 1)

I(r) < <(1 —oc)%ﬂ(())l—a) < <w+1(0)1—“) <o
thus u e #7(B).

REMARK 1. is a consequence of Minkowski’s inequality and
maximal theorem, also in the case p e (1,2).

THEOREM 5. Let 1 <p <+, ue #?(B), then

r—1-0

lim (1-— r)J u(x) [P |Vu(x)|* dV (x) = 0.
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Proor. Integrating the following formula

diJ ()7 do () = 2P ”J )PV a(x) 2 Vi ()
rJs n rB
from 0 to r we get
et J ()P dox(() - (n—1) er“j u(p0)|? dox(0) dp
S 0 S

_MJ’

- n 0 LB ’u(x”piz‘vu(x)‘deN(X) dp.

Since u e #7(B) we have u e b”(B). On the other hand

J 2 () do(Q) dp

0 JS
s ; d
- p”‘ZJ |M(PC)|pdaN(C)dp+J ﬂ”‘lj ulpO)V” dox(6)"
I, ¢ 12 s P

< ¢ -|—ch lu(x)|” dV(x) < +o0.
rB

Therefore, there exists

tim | 772 (0l do(©)dp.

from which it follows that

lim J J u(x) |2 Vu(x) |2 dVy (x) dp
r—1-0 Jg pB

exists.
Thus by Cauchy’s criterion we have

lim Jl J W) V() dp = 0.

r—1-0 J,

Since function J(p) = [ , |u(x)|”"*|Vu(x)|* dV(x) is nondecreasing we obtain

pB

1
(1—=r)J(r) < J J(p)dp — 0, asr—1-0,

r

which is what we needed to prove. ]
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In the following theorem we generalize [Lemma 2 in [5]. In that paper
Luecking proved theorem in the case of n =2. Also Luecking reproved Hardy-
Stein identity in that case and applied it in proving Littlewood-Paley inequality.

THEOREM 6. Let p>2 and ue #(B), then

n’p(p —1)

vuo) < =20

JB () P2V P — 1 dV(x), 03,

ProoF. It is well-known that if ue #(B) then u(x) = >_"% pm(x), where
pm(x) 1s harmonic homogeneous polynomial of degree m on B. By Holder
inequality we have ||u||,» < |jul|,». For ue #?(B), the following formula

400

il = [ 1pm(©F dow(© (1)

m=0

holds; see, for example [1, p. 122].
On the other hand, for homogeneous polynomial of degree m the following
formula (Vp,,(x),x) = mp,(x), xeR", holds. From (17) we have

+00

lull 2 — [u(0)]? = ZJ (02 dox(0) = JS (02 don(0)

m=1

— L 1KVpi(0), O dan(()

since u(0) = po(0). Let pi(x) =ayx; + -+ apxy, ai,...,a, € C, then

L Q0P don(®) = [ adi+-+a dont

— pS (Z ]a,-|2Cl~2 +2 Z a;a;C;C;) don(0).

i=1 i#]

By symmetry of the sphere and subintegral functions we have

[¢Cldon(Q) =0, i#j, and [(Fday()=1/n, i=1,...,n.
Thus

1 n
L KVp1(0), O dow(() = ZZ lai]*.
i=1
Since S0, |ail* = [Vpi(x)]* = [Vp1(0)]> = [Vu(0)|* we have

I
Vu(0)” < [l 5z = [u(O)] < [lull 50 — [(0)[*.
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By the inequality (¢ —b)?!+ 5% <a?, a>b>0, ¢ > 1, we obtain
Vu(0)” < n?([lull5r = [u(0)*)"* < n?2(Jlull?,, = u(0)]"). (18)

By the following formula

il = O + 533 | Wl " = D vy, (19

18) and (19) the result follows. O

J

3. Bergman b”(B) space.
In this section we consider harmonic Bergman space b”(B).

THEOREM 7. Let ue #(B), p > 1, then ueb’(B) if and only if
b= J ()P V) [P 215"+ (n = 2) x| = ) V() < +eo.
B

PrOOF. Multiplying the formula (1) by n#"~!, and integrating from 0 to 1,
applying Fubini’s theorem, for u € #(B), we obtain the following formula

Jilfy = O + 0= [ ) 2P + o 2 = ) Vi),

thus the result follows. L]

COROLLARY 4. ue€b?(B), p>1 if and only if
J ()P Va(x) (1 = [x])* dV (x) < +o0.
B

Proor. Let

L= | TGOl Pl (= D] = "+ 2)/ )" Vi ().

We leave to the reader that I, is equiconvergent with [ |u(x)[” 2Vu(x))? -
2 n—2
(1= [x)7/Ix[" = dV(x).
Using polar coordinates it is easy to see that the last integral is equicon-
vergent with

L ()| Vu() (1 = |x])* dV ().

If n > 3, the Green function for the ball B with pole in the origin is given
by G(|x|,1) = |x*" — 1. O

COROLLARY 5. Let 1 <p < +oo, then ueb?(B) if and only if
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L, = L u(x)|”2Vu(x)*G(|x], 1)(1 = |x]) dV(x) < +o0.

Proor. By [Theorem 7 it is enough to show that integrals L, and I, are
equiconvergent. We know that

I ~ JB ()" (x) P (1= [d])?/ x| V()

= JB ()P Vu)*G(1x], (1 = [x])? /(1 = [x") dV (x).

It is clear that expression

1 —|x| 1

L= x]"2 T4 x4+ [

for x € B takes values from the interval (1/(n—2),1]. Thus we have the re-
quired result. ]

REmMARK 2. Note that from previous estimates we have

o PP=1) o e o 22D
u(0) +2n(n—2)2c1 o < el < O Jr2n(n—2)c2 "

for positive ¢; = ¢j(n) and ¢, = ¢2(n).

THEOREM 8. Let u € b?(B), p > 1, then

lim (1 r)? LB u(x)|P2Vu(x) |2 dV (x) = 0.

Proor. By Fubini’s theorem we get

1
j j () V() 21— |x]) dV (x) dp = j () A7) 21— )2V (x).

0 B

Thus, by we have

1
lim J LB lu(x) |2 Vu(x) |2 (1 = |x]) dV (x) dp = 0.

r—1-0

It is obvious that

(1- r>jB ()2 W) A(1 — |x]) 4V (x)

1
< j j () A7) 21 — |x)) dV(x) dp.

r
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Therefore

lim (1 —7r) JB lu(x) [P |Vu(x)|*(1 — |x]) dV (x) = 0.

r—1-0

For |x| <r we have 1 —|x| >1—r, so we have

(1 - F)QJB ()" Vulx)|* dV (x) < (1~ F)J ()| V() (1 = |x]) dV(x),

rB

which finish the proof of the theorem. O
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