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Abstract. We analyse the security of iterated hash functions that compute an input dependent check-
sum which is processed as part of the hash computation. We show that a large class of such schemes,
including those using non-linear or even one-way checksum functions, is not secure against the second
preimage attack of Kelsey and Schneier, the herding attack of Kelsey and Kohno, and the multicollision
attack of Joux. Our attacks also apply to a large class of cascaded hash functions. Our second preimage
attacks on the cascaded hash functions improve the results of Joux presented at Crypto’04. We also
apply our attacks to the MD2 and GOST hash functions. Our second preimage attacks on the MD2
and GOST hash functions improve the previous best known short-cut second preimage attacks on these
hash functions by factors of at least 226 and 254, respectively.
Keywords: Iterated hash functions, checksums, multicollisions, second preimage and herding attack.

1 Introduction

Cryptographic hash functions are important tools of cryptology used in many applications for secure
and efficient information processing. In theory, hash functions are expected to resist collision and
(second) preimage attacks to provide security in such applications. Furthermore, they are often
assumed to behave “randomly”. In practice, the requirement of these security properties depends
entirely on the application.

For efficiency reasons, iterated hash functions are used in many real-life applications. The
Merkle-Damg̊ard construction [3,20] (MD construction in the rest of this article) is the most com-
monly used iterated hash function framework to design hash functions; almost all widely used hash
functions follow this framework. Given a fixed length input collision resistant compression function,
a variable length input collision resistant hash function can be designed using this framework.

A number of so-called generic attacks on the MD construction have shown that this construction
does not satisfy some expected security properties. This structure is not as resistant to second
preimage attacks as an ideal hash function as shown by Kelsey and Schneier [14] and it also has
other undesired weaknesses in the form of multicollision [11] and herding attacks [13].

In this paper, we study the security of iterated hash functions that use checksums with respect to
the generic attacks of [11,13,14] on the MD construction. This class of hash functions use checksums
in much the same way as the compression function. For a long time, checksums have been sought for
use in iterated hash functions aiming to increase the security of the overall hash function without
degrading its efficiency significantly. Hence, it is desirable that a checksum is at least as fast as the
compression function itself. Applications may even require checksum to be much faster than the
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compression function so that the speed of the total hash function construction approximates that
of the hash function without checksum. The hash function proposal of Quisquater and Girault [27]
which uses an additive checksum and the MD2 hash function of Rivest [28] which uses a non-linear
checksum are some earlier checksum based hash functions.

In this class of hash functions, a checksum is computed using the message and/or intermediate
hash values and subsequently appended to the message, which is then processed using the hash
function. If H is a MD hash function then we define a checksum-based hash construction H̃ to
process a message m by H̃(m) = H(m‖C(m)), where C is the checksum function computed over
m. Our notation is slightly abusive, as padding of the message is ignored. However, the attacks
presented later in this paper do not rely on any specific padding rule, and hence we shall be
using this notation repeatedly. We let the sizes of the hash and checksum states be d and n bits,
respectively. The hash value of H̃ is also n bits. The function C could be as simple as an XOR
of its inputs as in 3C [8], a modular addition as in GOST [30], a simple non-linear function as in
MD2 [12] or some complex one-way function such as the SHA-1 [23, 25] compression function. An
example construction using SHA-1 as the checksum function for SHA-256 hash function is defined
by SHA256(m‖SHA1(m)), which we shall return to later.

In this paper, we analyse a general class of checksum-based hash functions that can be defined
as H̃(m) = H(m‖C(m)) with respect to the generic attacks of [11, 13, 14] where the checksum
function C can be linear, non-linear or even one-way (hard to invert: inverting C requires about 2d

evaluations). Our attacks on the construction H̃ are summarised as follows:

1. The construction H̃ with any checksum including one-way checksum succumbs to the long
message second preimage attack of [14] and herding attack of [13] whenever d < n.

2. More efficient second preimage and herding attacks work on the construction H̃ having a linear
or non-linear but easily invertible C (C may be inverted in 1 evaluation) whenever d < 2n− 2.

3. Multicollisions on the construction H̃ for any checksum function when d ≤ n. If the checksum
function is easily invertible, multicollisions can be found for H̃ independently of the size of d.

We note that a checksum-based hash function can also be viewed as a cascaded construction
in which the hash values of hash functions in the cascade are combined and processed in the
end. Hence, our attacks on the construction H̃ also apply to the cascade of two independent hash
functions H and G defined by H(m)‖G(m) [26]. Similarly, our attacks easily extend to complex
looking cascaded structures of form H(m)‖G(m‖H(m)) [11, Section 4.3]. Our techniques combined
with the long message second preimage attack of [14] improve the previous second preimage attack
of Joux [11] on the cascade hash functions whose complexity is upper bounded by the brute force
second preimage attack on the strongest hash function (the one with the largest hash value) in the
cascade. This result also solves the open question of Dunkelman and Preneel [5] on the application
of the long message second preimage attack of [14] on the cascaded hashes.

Our multicollision attacks on the cascaded hash functions complement the results of [11] and [5],
which show that such schemes are only as collision resistant as the strongest of the individual hash
functions in the cascade. Dunkelman and Preneel [5] generalised the herding attack of [13] on the
cascaded hash functions. We note that this attack is also applicable to the checksum based hash
function H̃ since by using the compression function of one of the hash functions in the cascade as
a checksum function, a cascaded hash function can be turned into the checksum based hash H̃.
Hence, this herding attack works on H̃ with any C even when d ≤ n.



Our results also have implications to the security of the 128-bit MD2 hash function [12] devel-
oped by Rivest and the Russian standard GOST hash function [30]. Given a target message of 264

128-bit blocks, we find second preimages for MD2 in 271 evaluations of its compression function
improving the previous work of 297.6 based on a preimage attack [15]. Similarly, for a target message
of 2128 256-bit blocks, our techniques can find second preimages for GOST in about 2137 evaluations
of its compression function in comparison to the previous short-cut attack of 2192 [19].

We summarise the state of art of hash functions using checksums in Table 1 by combining our
results with those of [5].

Table 1. Attacks on hash functions using checksums.

Attack on checksum-based hash H̃ One-way C of size d Easily invertible C of size d

Long message second preimage attack of [14] d < n d < 2n − 2
Herding attack of [13] d ≤ n d < 2n − 2

Multicollision attack of [11] d ≤ n d of any size

The long message second preimage and herding attacks on some specific checksum based hash
functions are summarised in Tables 2 and 3. Our second preimage attacks on the MD2 and GOST
hash functions are faster than their previous best known attacks for only the challenged target
messages of sizes at least as large as indicated in Column 2 of Table 2. The other hash functions in
Table 2 specify an upper bound on the length of the messages (at most 264 − 1 bits) to be hashed
close to the values as indicated in Column 2. Table 3 summarises the first ever analytical results
of the herding attack on these hash functions. Our second preimage and herding attacks require
abundant memory as shown later in Section 6 of the paper.

Table 2. Second preimage attacks on specific hash functions.

Hash function Our complexity Known complexity Ideal complexity

MD2 271 for a target of 264 128-bit blocks 297.6 [15] 2128

GOST 2191 for a target of 265 256-bit blocks 2192 [19] 2256

SHA256(m‖SHA1(m)) 2202 for a target of 254 512-bit blocks 2256 [8] 2256

3C-SHA-256 2202 for a target of 254 512-bit blocks 2256 [8] 2256

Maelstrom-0 2202 for a target of 254 512-bit blocks 2256 [9] 2256

Table 3. Herding attacks on specific hash functions.

Hash function Our complexity Ideal complexity

MD2 287 2128

GOST 2172 2256

SHA256(m‖SHA1(m)) 2172 2256

3C-SHA-256 2172 2256

Maelstrom-0 2172 2256



1.1 Related work

Coppersmith [2] presented a short-cut collision attack on a 128-bit hash function based on the DES
algorithm proposed by Quisquater and Girault [27] which processes two supplementary checksum
blocks each computed independently using XOR and modular addition of message blocks. In un-
published work, Mironov and Narayanan (personal communication at Crypto’06, August, 2006)
developed a different technique to defeat XOR checksums in hash functions; this technique is less
flexible than ours, and does not work for long-message second preimage attacks. In [11], Joux pro-
vides a technique for finding 2k collisions for a MD hash function for only about k times as much
work as is required for a single collision, and uses this technique to attack cascade hashes. Nandi
and Stinson [22] have shown the applicability of multicollision attacks to a variant of MD in which
each message block is processed multiple times; Hoch and Shamir [10] extended the results of [22]
showing that generalised sequential hash functions with any fixed repetition of message blocks do
not resist multicollision attacks.

The MD2 hash function [12] uses a non-linear checksum function. Vulnerabilities in MD2 have
been exposed through collision attacks on its compression function [15, 29] and (second) preimage
attacks on the full hash function [15,21] by exploiting weaknesses in its compression function. The
technique of Dunkelman and Preneel [5] to herd cascaded hash functions is more generic than our
herding attack on the cascaded hashes, but it cannot be used to carry out the second preimage
attack of [14] on these hash functions. Mendel, Pramstaller and Rechberger [19] presented a short-
cut (second) preimage attack on the 256-bit GOST hash function for a target message of at least
257 message blocks in 2192 evaluations of the compression function.

1.2 Guide to the paper

In Section 2, we give an overview of cryptographic hash functions. In Section 3, we discuss hash
functions using checksums. In Sections 4 and 5, we introduce cryptanalytic tools that we later
use in Section 6 to perform generic attacks on the checksum based hash functions. In Section 7,
we apply our attacks to the cascaded hash functions. In Section 8, we discuss the application of
cryptanalytic collision attacks on the hash functions to carry out generic attacks on the checksum
based hash functions. In Section 9, we compare the approach of Mironov-Narayanan to defeat XOR
checksums in hash functions with our approach. In Section 10, we conclude the paper with some
open questions.

2 Cryptographic hash functions

Cryptographic hash functions process an arbitrary length message into a fixed length hash value.
Let H : {0, 1}∗ → {0, 1}n be an n-bit hash function. Three well-known attacks on H are:

– Collision attack: Find m,m∗, such that m 6= m∗ and H(m) = H(m∗).
– Preimage attack: Given Y = H(m), find m∗ such that H(m∗) = Y .
– Second preimage attack: Given m and H(m), find m∗ such that m 6= m∗ and H(m∗) =

H(m).

For an ideal H, the complexities of the collision and (second) preimage attacks are 2n/2 and
2n respectively. These complexities are measured in terms of evaluations of H. These attacks are
generic in the sense that they apply to any hash function independently of how it is designed.
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Fig. 1. The MD construction.

2.1 Merkle-Damg̊ard hash functions

Most iterated hash functions used in practice such as MD5 [28], SHA-1 [24] and SHA-256 [23, 25]
follow the MD hash function framework. An n-bit MD hash function H, as illustrated in Figure 1,
works as follows: Assume that H can process a message m with a maximum length of 2N bits. The
message is padded to a length which is a multiple of b in bits. The padding includes the binary
encoding of the length of the original message in the last N bits. This technique of including the
length of the message in the padding is known as MD strengthening [16]. The message m is then
partitioned into t message blocks m[i], 1 ≤ i ≤ t, each b bits long. Each block is processed using a
fixed input length compression function f : {0, 1}n × {0, 1}b → {0, 1}n. The compression function
iteration is defined by

H[i] = f(H[i − 1],m[i]),

where H[0] is the initial value (IV) of H. The values H[i], 0 < i < t, are called intermediate hash

values. The value H[t] is the hash value H(m). The hash construction H preserves the collision
resistance of the compression function f due to the inclusion of the MD strengthening. It requires
about 2n/2 evaluations of f to find a collision and 2n evaluations of f to find (second) preimages
for an ideal n-bit compression function f .

The following attacks apply to an n-bit MD hash function H and are generic to the iterated
hash functions even if their compression functions are ideal:

1. 2k-collision attack where k ≥ 1 [11]: Find a 2k-set of messages {m[1],m[2], . . . ,m[2k]} such
that m[i] 6= m[j] whenever i 6= j, and H(m[1]) = . . . = H(m[2k]). This attack takes about k2n/2

evaluations of f .

2. Long message second preimage attack [14]: Given a message m of approximately 2k mes-
sage blocks and H(m), find m∗ such that m 6= m∗ and H(m∗) = H(m). This attack requires
about k2n/2 + 2n−k evaluations of f .

3. Herding attack [13]: Construct a binary tree structure for H with 2k random hash values at
the leaves, and the hash value HT at the root. For each node in the tree there is a message
block that maps the hash value at that node to the hash value at the parent. Commit to Ht.
Later, when some relevant information m′ is available, construct a message m using m′, the
precomputed tree structure and some online computations such that H(m) = Ht. It takes about
2n/2+k/2+2 offline evaluations of f to compute the tree structure and 2n−k evaluations of f to
construct m.
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3 Hash functions using checksums

Hash functions that use checksums process an arbitrary length message using two chains: a hash

chain where a compression function f : {0, 1}n×{0, 1}b → {0, 1}n is iterated, and a checksum chain

where a checksum function C : {0, 1}d × {0, 1}b → {0, 1}d is iterated, as illustrated in Figure 2.
Typical values of d are b or n. If d < b, the checksum will be padded to a length of b bits. The
checksum function iteratively updates a checksum state using message blocks, intermediate hash
values or both as input, in much the same way as the compression function updates an intermediate
hash value. In the end, when the entire message has been processed in both the chains, the checksum
is processed as an additional message block in the hash chain.

For an easy presentation of analysis later in the paper, we consider schemes that compute
checksums using only message blocks. In fact, this implies no loss of generalisation if one assumes
that the checksum function knows the IV of the hash chain, since the checksum function may then
perform the exact same computations as those done in the hash chain. As a result, our analysis can
be easily modified to the case of checksum computation using intermediate hash values, or both
message blocks and intermediate hash values. Wherever applicable, we remark these extensions in
this paper. In addition, for ease of exposition, we limit the discussion to checksums of size at most
one message block – hence, d ≤ b. Our attacks described later in the paper also work when d > b
(but the complexity of the attack often depends on the concrete value of d).

Let H be an n-bit hash function iterated over the compression function f . Now an n-bit
checksum-based hash function may be described as

H̃(m) = H(m‖C(m)) = f(H(m), C(m)).

We repeat that this is a slight abuse of notation due to padding, but we ignore this difference
in the following. In the description of the attacks, we do not care about padding, except that in
the second preimage attack we make sure that the second preimage produced has the right length
(same as the first preimage). It is a simple matter to account for padding in our attacks.

3.1 XOR/additive checksum variants of MD

A number of variant constructions have been proposed, that augment the MD construction by
computing some kind of XOR/additive checksum on the message bits and/or intermediate hash



values, and providing the XOR/additive checksum as a final block for the hash function. In the
following sections we define some XOR/additive checksum variants of MDthat have appeared in
the literature.

3C hash function and its variants. The 3C construction maintains twice the size of the hash
value for its intermediate states using a hash chain and a checksum chain as shown in Figure 3.
In its hash chain, a compression function f with a block size b is iterated in the MD mode. In its
checksum chain, the checksum C[t] is computed by XORing all the intermediate states each of size
n bits. The construction assumes that b > n. At any iteration i, the checksum value is

⊕i
j=1 Hj.

The hash value Ht is computed by processing C[t] padded with 0 bits to make the final data block
pad(C[t]) using the last compression function.

f
H [0]

m[1]

-
f- . . .

. . .m[2]

-
-

m[3]

-
-

f

m[t]

-
-f- - H̃(m) = f(H [t], pad(C[t]))
- f

- ? - ?
. . . - ? - ?-pad

C[t] pad(C[t])

Fig. 3. The 3C-hash function.

A 3-chain variant of 3C called 3CM is used as a chaining scheme in the Maelstrom-0 hash
function [6]. At every iteration of f in the hash chain of 3CM, the n-bit value in the third chain
is updated using an LFSR. This result is then XORed with the data in the hash chain at that
iteration. All the intermediate hash values in the hash chain of 3CM are XORed in the second
chain. Finally, the hash value is obtained by concatenating the data in the second and third chains
and processing it using the last f function. F-Hash [17], another variant of 3C, computes the
hash value by XORing part of the output of the compression function at every iteration and then
processes it as a checksum block using the last compression function.

GOST hash function. GOST is a 256-bit hash function specified in the Russian standard GOST
R 34.11 [30]. The compression function f of GOST is iterated in the MD mode and a mod 2256

additive checksum is computed by adding all the 256-bit message blocks in the checksum chain.

An arbitrary length message m to be processed using GOST is split into b-bit blocks
m[1], . . . ,m[t − 1]. If the last block m[t − 1] is incomplete, it is padded by prepending it with
0 bits to make it a b-bit block. The binary encoded representation of the length of the true message
m is processed in a separate block m[t] as shown in Figure 4. At any iteration i, the intermediate
hash value in the hash chain and checksum chains are H[i] = f(H[i − 1],m[i]) where 1 ≤ i ≤ t
and m[1] + m[2] . . . + m[i] mod 2b respectively where 1 ≤ i ≤ t − 1. The hash value of m is
H[v] = f(H[t], C[t − 1]) where C[t − 1] = m[1] + m[2] . . . + m[t − 1] mod 2b.
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3.2 Our example one-way checksum variant of MD

We now define a 256-bit checksum-based hash function which will be used as a running example
throughout this paper. We stress that this is not a proposal.

Definition 1. The checksum-based hash function H̃ is defined as

H̃(m) = SHA256(m‖SHA1(m)).

This construction may be seen as a checksum-based extension of the SHA-256 hash function,
where the checksum function is the SHA-1 compression function. We assume that the compression
functions of SHA-256 and SHA-1 take similar amounts of time to evaluate. The hash functions
SHA-256 and SHA-1 hash messages of a maximum length of 264 − 1 bits [23, 25], which is almost
close to 255 512-bit blocks. Hence, while illustrating our attacks, we often consider that these hash
functions hash messages of about 255 512-bit blocks.

3.3 Some definitions

At every iteration i in the hash computation of H̃(m), the checksum function C updates a checksum
state as given by C[i] = C(C[i − 1],m[i]). We measure the number of evaluations of the checksum
function with a time parameter T . We use the following definitions later in the paper:

Definition 2. Inverting C: The process of computing C[i − 1] given C[i] and m[i] in time T .

Definition 3. Linking C: The process of computing m[i] given C[i] and C[i − 1] in time T .

For example, the XOR checksum function in 3C, 3CM and F-Hash and the additive checksum
function in GOST are invertible and linkable in time T = 1. The non-linear checksum function of
MD2 is also invertible and linkable in time T = 1 [15, 21]. In addition, the invertible non-linear
checksum of MD2 can be computed in time equivalent to about 1/52 ≈ 2−5.7 compression function
evaluations. We shall use these facts later in the paper. We shall also often assume that C and f
take a similar amount of time to evaluate.



4 Checksum control sequences

We will use a cryptanalytic tool which we call as checksum control sequence (CCS) to extend
a generic attack on an iterated hash function H to the checksum-based hash construction H̃ =
H(m‖C(m)). We define CCS as a data structure which lets us control the checksum value of
H̃, without altering the rest of the hash computation. We construct the CCS by building a Joux
multicollision [11] of the correct size using a brute-force collision search. It is important to note that
the CCS is not itself a single string which is hashed; instead, it is a data structure which permits
us to construct one of a very large number of possible strings, each of which has some effect on
the checksum, but leaves the remainder of the hash computation unchanged. That is, the choice
of a piece of the message from the CCS affects the checksum chain, but not the hash chain, of the
H̃ hash. Thus, CCS enables us to produce a message with any desired checksum, such that the
checksum has, in effect, been defeated and allows the generic attack to work on the hash function
H̃.

The CCS has two algorithms associated with it; a CCS construction algorithm and a CCS
searching algorithm. Our CCS algorithms are generic and can defeat checksum values computed
using a wide range of checksum functions. We also present very specific CCS algorithms that can
be used to defeat only simple checksums such as linear checksums. The complexities to construct
and use the specific CCS algorithms to defeat the linear checksums are sometimes better than the
generic CCS algorithms to defeat linear checksums; for example, defeating XOR checksums as in
3C using our specific CCS algorithm is faster than the generic one.

4.1 Constructing the CCS

Given some intermediate hash value Hiv, the CCS for H̃ is constructed as follows.
Algorithm.

1. Produce a 2d-collision over 1-block messages on the hash chain of H̃ with Hiv as its IV using
the multicollision method of [11] ignoring its impact on the checksum chain3.

2. The checksum computed over at least one of the 2d messages in the multicollision for H is
expected to be equal to some (at this point unknown) target checksum value Ct. All 2d messages
in the CCS produce the same intermediate hash value HCCS.

Complexity. Constructing the CCS takes about d× 2n/2 evaluations of the compression function.

Remark 1. If the checksum in H̃ is computed using intermediate hash values then a 2d-collision
over multi-block messages (e.g., 2-block messages) on its hash chain has to be produced to construct
the CCS.

4.2 Searching the CCS

Once a CCS is constructed, a generic attack may be carried out on H from the end of the CCS. To
extend this generic attack onto the construction H̃, a message in the CCS with the right checksum
Ct must be found by searching the CCS. We provide the following two techniques to find such a
message depending on the difficulty of inverting the checksum function C.

3 The checksum function need not be evaluated while the CCS is being constructed and it is sufficient to evaluate
the checksum function while searching the CCS.



Exploiting the tree structure of messages. If C is not easily invertible, e.g. SHA-1 in H̃, we
can exploit the tree structure of the messages in the CCS to find the right message. This takes
about 2d+1 evaluations of the checksum function C. This is a direct application of Joux’ collision
attack on the cascaded hash functions [11].

Meet-in-the-middle attack. If C is easily invertible, as the C in MD2, GOST and 3C, one may
perform a meet-in-the-middle attack on the message blocks in the CCS as follows:
Algorithm. Let the initial checksum be Civ, and the target checksum be Ct.

1. Compute all 2d/2 intermediate checksum values from the first d/2 message blocks in the CCS,
starting from Civ. Store all these values in the list L1.

2. Invert the checksum function C from Ct, using the last d/2 message blocks in the CCS. This
produces 2d/2 intermediate checksum values. Store all these values in the list L2.

3. Find a collision between L1 and L2. This collision corresponds to a message in the CCS which
produces the checksum Ct.

Complexity. This attack takes about 2d/2+1 evaluations of the checksum function C and requires
enough memory to store 2d/2+1 d-bit checksum values.

To generalise, if the checksum function is invertible in time T = 2τ , then searching the CCS for
the right message can be done in time about 2(d+τ)/2+1, by placing the “middle” in the meet-in-
the-middle attack at the (d/2 + τ/2)-th block (note that 0 ≤ τ ≤ d). The attack requires around
2(d−τ)/2+1 memory, i.e., a maximum of 2d/2+1 when τ = 0 (as above) and negligible memory when
τ = d.

5 CCS algorithms to defeat linear checksums

Specific CCS algorithms can be constructed and used to defeat XOR and additive checksums. The
XOR and additive checksums can be controlled efficiently using specific algorithms than the generic
algorithms described in Section 4.2.

For example, a 2k-collision on the underlying MD construction of 3C, in which the sequence
of individual collisions, each two message blocks long, gives us a choice of 2k different sequences of
message blocks that might appear at the beginning of this message. When we want a particular
k-bit checksum value, we can turn the problem of finding which choices to make from the CCS
into the problem of solving a system of k linear equations in k unknowns, which can be done very
efficiently using existing tools such as Gaussian elimination [1, Appendix A], [31]. This is shown
in Figure 5 for k = 2 where we compute the CCS by finding a 22 collision using random 2-block
messages. Then we have a choice to choose either H[1]⊕H[2] or H∗[1]⊕H[2] from the first 2-block
collision and either H[3] ⊕ H[4] or H∗[3] ⊕ H[4] from the second 2-block collision of the CCS to
control 2 bits of the checksum without changing the hash value after the CCS.

5.1 Defeating XOR checksums in hash functions

We now explain how to defeat the XOR checksum of 3C. Let Ct be the desired value of the checksum.
Algorithm.
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Fig. 5. Using the CCS to control 2 bits of the checksum (3C).

1. Build a CCS for 3C by constructing a 2n-collision consisting of two-block ordinary collisions
on the underlying MD construction. The 2n message block pairs in the CCS are denoted
(m[i],m∗[i]), 1 ≤ i ≤ 2n, and the corresponding intermediate hash values are denoted H[i] and
H∗[i] (we have H[i] 6= H∗[i] for i odd, and H[i] = H∗[i] for i even).

2. Let e0
i = H[2i − 1] ⊕ H[2i] and e1

i = H∗[2i − 1] ⊕ H[2i], 1 ≤ i ≤ n.

3. Find the n bits a[i], 1 ≤ i ≤ n such that e
a[1]
1 ⊕e

a[2]
2 ⊕. . .⊕e

a[n]
n =

⊕n
i=1(e

0
i ×(1−a[i])⊕e1

i ×a[i]) =
Ct. This equation can be seen as a set of n binary equations treating each bit of Ct individually.
That yields n linear equations in n unknowns, which can be solved using Gaussian elimination.

Complexity: It requires n(2n/2+1) evaluations of the compression function to construct the CCS
and around n3 XORs to solve n equations using Gaussian elimination (memory requirements are
negligible). In comparison, searching the CCS using the meet-in-the-middle attack requires 2n/2+1

XORs and about 2n/2+1 memory.

Remark 2. Similarly, XOR checksums can be defeated in F-Hash and 3CM. If an XOR checksum
is computed using both message blocks and intermediate hash values, linear equations due to the
XOR of the intermediate hash values and those of message blocks need to be solved.

5.2 Defeating additive checksums

Consider an additive checksum mod 2d computed using messages for a MD hash function. It is
possible to build a CCS as building it for XOR checksums, but both its construction and its use
require some different techniques.

Building a CCS with Control of Message Blocks. When the collision finding algorithm is
simply brute-force collision search, we can build a CCS for the complexity required to construct a
2d-collision. Using the CCS to control the checksum then requires negligible work.



In this algorithm, we construct a 2d-collision, in which each ordinary collision is two message
blocks long. We choose the two-block messages in the collisions in such a way that the additive
difference between the pair of two-block messages in each collision is a different power of two. The
result is a CCS in which the first collision allows us to add 20 to the checksum, the next allows us
to add 21, the next 22, and so on up to 2d−1. This means that the checksum is entirely controlled4.
In the following, arithmetic on message blocks is to be interpreted modulo 2d.
Algorithm. Constructing the CCS.

1. Let h = H[0].
2. For i = 1 to d:

(a) Let A,B be two random message blocks.
(b) For j = 1 to 2n/2:

i. X[j] = A + j
ii. X∗[j] = A + j + 2i−1

iii. Y [j] = f(f(h,X[j]), B − j)
iv. Y ∗[j] = f(f(h,X∗[j]), B − j)

(c) Search for a collision between the lists Y and Y ∗ (if the two lists are sorted during construc-
tion, then this search takes linear time). Let u and v be indices such that Y [u] = Y ∗[v].

(d) Let m[2i − 1] = X[u] and m[2i] = B − u.
(e) Let m∗[2i − 1] = X∗[v] and m∗[2i] = B − v.
(f) Now m∗[2i − 1] + m∗[2i] − (m[2i − 1] + m[2i]) = X∗[v] + B − v − (X[u] + B − u) =

A + v + 2i−1 + B − v − (A + u + B − u) = 2i−1.
(g) Let h = Y [u].

Searching the CCS for the message M [1]‖M [2]‖ · · · ‖M [2d] that produces the right checksum is
done as follows (assume the generic attack fixed the checksum Ct).
Algorithm. Searching the CCS.

1. Compute the checksum C0 of the message blocks m[i], 1 ≤ i ≤ 2d.
2. Let a = Ct − C0 mod 2d, and denote each individual bit of a by a[i], 1 ≤ i ≤ d.
3. For i = 1 to d:

(a) If a[i] = 0 let M [2i− 1] = m[2i− 1] and M [2i] = m[2i], otherwise let M [2i− 1] = m∗[2i− 1]
and M [2i] = m∗[2i].

At the end of this process, M contains a sequence of 2d message blocks which, when put in the
place of the CCS, will force the checksum to the desired value.
Complexity: Constructing the CCS requires about d2n/2+2 work. Searching the CCS for the right
message takes a negligible amount of time and memory. For the specific parameters of the GOST
hash, the total work is about 256 · 2130 = 2138. (The same CCS could be used for many different
messages.) In comparison, searching the generically constructed CCS on GOST using meet-in-the-
middle attack requires about 2129 addition operations.

6 Generic attacks on the checksum-based hash functions

In this section, we describe how to adapt generic attacks on the MD hash functions to the checksum-
based hash function H̃ = H(m‖C(m)). We illustrate every attack on H̃ whose checksum function
is invertible in time T = 2160 and on MD2, GOST and 3C-SHA-256 whose checksum functions are
invertible in time T = 1.
4 A variant of this algorithm could be applied to many other checksums based on group operations.



6.1 Second preimage attack

Using the CCS, we can defeat the checksum in the hash construction H̃ to carry out the second
preimage attack of [14]. The method is as follows: we first process the given target message with
H̃ and store all the intermediate hash values and checksum values. To find the second preimage
for H̃, we first construct an expandable message on the hash function H using a suitable method
from [14], then construct the CCS from the end of the expandable message. We carry out the second
preimage attack from the end of the CCS, and then we expand the expandable message to make
up for all the blocks skipped by the attack. Finally, we search the CCS to find the message which
results in the right checksum. Then we are able to produce a second preimage of the same length as
the target message, and with the same checksum. In algorithmic form, the attack works as follows.
Algorithm. Assume m = m[1]‖ · · · ‖m[t] is the given target message of length t ≈ 2k message
blocks. Assume that C is invertible in time T = 2τ .

1. Hash m and store the intermediate hash values H[i] and checksum values C[i] for 1 ≤ i ≤ t.
2. Starting from H[0] as defined by the hash function H̃, build an expandable message of size

from k up to 2k blocks. Let the resulting intermediate hash value be Hexp. Let mexp(ℓ) be the
expandable message of length ℓ blocks.

3. Construct a CCS of size 2d, starting from Hexp. Let the intermediate hash value at the end of
the CCS be HCCS.

4. Find a linking message block mlink, such that f(HCCS,mlink) equals one of the values H[i] of
the target message, where i > k + d. Let this i be i′. Find the corresponding checksum C[i′].

5. Compute the intermediate checksum of mexp(ℓ), where ℓ = i′ − d− 1. Let this checksum be C∗.
Search the CCS for a message which, starting from C∗, has checksum C[i′]. Let this message
be mCCS.

6. Finally, produce the second preimage as

m∗ = mexp(ℓ)‖mCCS‖mlink‖m[i′ + 1]‖ · · · ‖m[t].

Complexity. It takes about k2n/2 evaluations of the compression function f to construct the
expandable message of size from k up to 2k blocks using the generic expandable message algo-
rithm [14]. If fixed points can be easily found for f , then the expandable message may be produced
in time about 2n/2 [4, 14]. Constructing the CCS takes an expected time of d2n/2. It takes 2n−k

evaluations of the compression function f to find the linking block. The time required to search the
CCS is at most 2d. The total complexity is then about k2n/2 + d2n/2 + 2n−k ≈ 2n−k evaluations of
the compression function f and at most 2d evaluations of the checksum function.

The expandable message and the CCS can be pre-computed and stored before the long target
message is given. The expandable message of size at most 2k blocks constructed using the generic
method of [14] requires memory of size about 2k. If the expandable message is constructed using
fixed points [4,14] in the compression function then memory requirements are about 2n/2+1. Storing
a CCS of size 2d requires negligible memory. Memory required in order to search the CCS, assuming
that the checksum function can be inverted in time 2τ , is 2(d−τ)/2+1 due to the meet-in-the-middle
attack as described in Section 4.2 (negligible if the techniques of Section 5 can be used to search
the CCS). Storing the long target message and the intermediate hash and chaining values requires
about 2k memory.

Example 1. H̃ can hash messages of length up to about 255 blocks. Hence, the complexity of the
above attack given a target message of this length is about 2256−55 = 2201 compression function



evaluations of SHA-256. Note that the 2160 evaluations of the SHA-1 checksum function required to
defeat the 160-bit checksum of H̃ are negligible in comparison to 2201 SHA-256 compression function
evaluations. The attack requires storing about 255 message blocks, intermediate hash values, and
intermediate chaining values. This attack has the same complexity as the second preimage attack
of [14] on SHA-256. Hence, using SHA-1 as a checksum function for SHA-256 provides no additional
security than SHA-256 against the long message second preimage attack.

Example 2. The above attack is also applicable to MD2 [12] which uses a non-linear checksum
function with a 128-bit state computed over message blocks. Unlike MD hash functions, MD2 does
not use MD-strengthening, and it processes messages of any length. Given a target message of 264

blocks, the above attack can be used to find a second preimage for MD2 in about 271 evaluations
of its compression function. Memory requirements of the attack are on the order of 264. This
is an improvement over the previous best known second preimage attack on MD2 [15] based on
the preimage attack with a complexity of 297.6 compression function evaluations which requires
about 272 memory. In both attacks, the complexity due to evaluations of the checksum function is
negligible compared to the total complexity.

Example 3. The 256-bit GOST hash function uses a mod 2256 additive checksum computed over
message blocks and hashes messages up to 2256 bits. For a really long target message of 2128

256-bit blocks, our second preimage attack on GOST requires 2138 evaluations of its compression
function. Note that this complexity is due to the construction of the CCS. This is also equal to the
complexity required to construct the CCS for GOST by controlling message blocks as demonstrated
in Section 5.2. The attack requires about 2128 memory.

Similarly, the complexity to find a second preimage for 3C-SHA-256 for a given target message of
255 blocks is 2201 evaluations of the SHA-256 compression function and about 224 XOR operations
when the CCS is constructed and searched using the algorithm in Section 5.1. Memory requirements
of the attack are about 255.

6.2 Herding attack

We describe the herding attack on the checksum-based hash construction H̃(m) = H(m‖C(m)).
The attack consists of two phases: a pre-computation phase and an on-line phase.
Algorithm.

Precomputation phase:

1. Choose arbitrarily 2k intermediate hash values for H̃, and place them in the list L. Find 2k−1

pairwise collisions (under f) from these 2k hash values.
2. Given the new 2k−1 intermediate hash values, find again 2k−2 pairwise collisions from these

intermediate hash values.

3. Repeat this process until there is only a single hash value Hdia left. These collisions have the
structure of a binary tree and resemble a diamond.

4. Choose some fixed checksum value Ct and compute the hash value Ht = f(Hdia, Ct). Publish
Ht.

Online phase:

1. Form the message mpre from the relevant information that recently became available.



2. Starting from H[0] of H̃, compute the intermediate hash value Hpre of mpre. Let Cpre be the
corresponding checksum value.

3. Starting from Hpre, construct a CCS of size 2d. Let the intermediate hash value at the end of
the CCS be HCCS.

4. Search for a message block mlink such that f(HCCS,mlink) is equal to one of the hash values in
the list L. Let this value be Hlink.

5. There is always a path in the diamond structure which connects the value Hlink to the target
hash value Ht. Let this path be mdia.

6. Search for a message mCCS in the CCS which, when processed from Cpre using the checksum
function C via mlink and mdia equals the target checksum value Ct.

7. Now the message
m∗ = mpre‖mCCS‖mlink‖mdia

has the hash value Ht.

Note that in order to account for the MD strengthening, the length of the final message must
be fixed already in the precomputation phase.
Complexity. The precomputation phase has complexity roughly 2n/2+k/2+2 evaluations of the
compression function. The complexity of the online phase is the following. Constructing the CCS
requires about d2n/2 evaluations of f . Searching the CCS and through the linking block and diamond
to find a message which equals the published hash value takes time at most (k + 1)2τ + 2(d+τ)/2.
Finding the linking message takes time about 2n−k. With k ≈ n/3, the two phases have similar
complexity when the checksum is not taken into account. The checksum may add to this complexity
if the checksum function is large or one-way. As an example, with d ≪ 2n/3, the additional
complexity is negligible, even if C is one-way. If C is efficiently invertible, then the additional
complexity is negligible even with d < 4n/3. Memory requirements are about 2k+1 + 2(d−τ)/2+1 (or
2k+1 if the techniques of Section 5 can be used to search the CCS).

Example 4. When our herding attack is applied to H̃ with k = n/3 ≈ 85, the complexity of the
attack is about 2160 + 2160 + 85 × 2160 ≈ 2167 evaluations of the SHA-1 compression function and
2172 evaluations of SHA-256 compression function. Since the number of evaluations of the checksum
function is much lower than the number of evaluations of the compression function, the complexity
of the attack on H̃ is roughly the same as the complexity of the herding attack on SHA-256 [13].
The attack requires about 286 memory.

Example 5. The herding attack may also be applied to MD2. Since the MD2 checksum function is
invertible in time T = 1, and d = n, the additional work due to the checksum is negligible. Hence,
for a diamond width of k = 42, the herding attack on MD2 takes about 287 evaluations of the
compression function in both the precomputation and online phases. The attack requires around
265 memory.

Example 6. Similarly, herding 3C-SHA-256 with k = 84 requires about 2136+2172+84×2129+2171 ≈
2172 evaluations of the SHA-256 compression function and about 224 XOR operations. About 285

memory is required. Similarly, the herding attack on the GOST hash function with k = 84 requires
about 2172 evaluations of its compression function and memory around 285.

Remark 3. Our second preimage and herding attacks can also be applied to hash functions that use
checksums computed over intermediate hash values or both message blocks and intermediate hash



values by building a CCS so that each individual collision is two blocks long. Thus, our techniques
can be easily modified to attack non-linear checksum variants of the constructions 3C, F-Hash and
Maelstrom-0 that use intermediate hash values to compute checksums.

6.3 Multicollisions in checksum-based hash functions

The CCS used in the second preimage and herding attacks can also be used to construct multicol-
lisions on hash functions using checksums. In this section, we show some better algorithms to find
multicollisions in these hash functions without the need for constructing and searching the CCS.

Application of Joux’ collision attack on the cascaded construction. Since a checksum-
based hash function may be viewed as a cascaded construction [26] followed by a “merging” of the
two chains, Joux’s collision attack [11] on the cascaded construction applies to all checksum-based
hash functions. Such a collision can be used to construct multicollisions. A 2k-collision attack on
H̃ can be carried out as follows.
Algorithm. Let Civ = C[0].

1. For i from 1 to k do:

(a) Starting from Civ, find a 2n/2-collision on the checksum chain. Let the common checksum
value be C∗.

(b) Use brute force search to find a collision on the hash chain among the 2n/2 messages in the
multicollision on the checksum chain.

(c) Let Civ = C∗.

Complexity. The complexity of the attack, when Joux’s method to find multicollisions is used in
Step 1a, is k × n/2 × 2d/2 + k × 2n/2. Memory requirements are around 2n/2.

Note that in the above 2n-collision attack, we make no assumptions on the checksum function,
nor on the compression function, except that we assume they take about the same time to evaluate.
Hence, the roles of the two functions may be switched, so we may instead first find a 2d-collision
on the hash chain, and then brute force a collision on the checksum chain. The complexity is then
k × d/2 × 2n/2 + k × 2d/2.

Example 7. The above attack on H̃ has complexity about k× 287 + k × 2128 ≈ k × 2128 (and about
2128 memory). This is to be compared with the complexity of about k × 2128 for the attack on
SHA-256.

Using an easily linkable checksum function. If it is easy to link the checksum function C in
H̃ then multicollisions can be found for H̃ with complexity independent of d. Assume linking can
be done in time T = 2τ . Then we can find a 2k-collision as follows:
Algorithm. Let Civ = C[0].

1. For i from 1 to k do:

(a) Choose 2n/2 arbitrary message blocks, and compute the intermediate checksum values of
these blocks starting from Civ.

(b) Choose some arbitrary checksum value C∗, and find, for each of the checksum values com-
puted in the previous step, the message block that produces C∗.



(c) We now have 2n/2 two-block messages. Find a collision among these in the hash chain.

(d) Let Civ = C∗.

Complexity. Computing the checksum function 2n/2 times in the forward direction takes 2n/2 time.
Linking the checksum function 2n/2 times takes time T2n/2. The brute force collision attack on the
hash chain takes time 2n/2+1, since we need to process two message blocks. The total complexity
to find a collision is therefore about (T + 1)2n/2 evaluations of C and 2n/2+1 evaluations of the
compression function f . We repeat this k times to obtain a 2k-collision. The total complexity is
k(T + 1)2n/2 evaluations of C and k × 2n/2+1 evaluations of f . Memory requirements are about
2n/2. The messages in the multicollision are of 2k blocks each.

Example 8. Since the checksum function of MD2 is linkable in time T = 1 and its checksum function
can be evaluated in time equivalent to 2−5.7 compression function evaluations, the 2k-collision attack
on MD2 takes time about k × 265 + k × 259.3 ≈ k × 265 compression function evaluations. Memory
requirements are approximately 264. The messages in the multicollision are each 2k blocks in length.

Remark 4. If the checksum is computed using intermediate hash values, then every 1-block collision
on the hash chain would also result in a 1-block collision on the checksum chain. Hence a 2k-collision
can be constructed on such a checksum-based hash function in k × 2n/2 compression function
evaluations.

7 Application of our attacks to the cascaded hash functions

Since the attacks described in the previous section span both the hash chain and the checksum chain,
they can also be applied to some cascaded constructions [26]. Hence our attacks on the construction
H̃ are also applicable to the cascaded constructions of form H(m)‖G(m) and H(m)‖G(m‖H(m))
where H and G are two different iterated hash functions or two different variants of the same
hash function. In [11], Joux showed that with respect to collision and (second) preimage attacks,
a cascade of two hash functions is no more secure than the stronger hash function in the cascade.
Below, we provide complexities of our long message second preimage attack on some cascaded hash
functions for a given target message of 255 blocks and compare them with the work of [11].

While the second preimage attack of [11] on SHA256(m)‖SHA1(m) requires about 2256 eval-
uations of SHA-256 and 2160 evaluations of SHA-1, our attack requires about 2201 evaluations of
SHA-256 and 2160 evaluations of SHA-1, effectively the same as the complexity of the long mes-
sage second preimage attack of [14] on SHA-256 itself. In some cases, however, the weakest hash
function affects the complexity. For example, while the second preimage attack of Joux [11] on
SHA1(m)‖MD5(m) requires 2160 evaluations of SHA-1 and 2128 evaluations of MD5, our attack
needs 2105 evaluations of SHA-1 and 2128 evaluations of MD5. If H and G are of equal strengths,
then our second preimage attack is slightly better than the attack of [11]. See Table 4 for some
illustrations. It is important to note that the complexities of our second preimage attacks on the
cascaded hashes correspond to those applied to impractically long messages of 255 512-bit blocks
unlike those of [11]. Also, memory requirements are around 2n/2, where n is the output size of the
largest hash function in the cascade.

Similarly, it is straight-forward to apply our multicollision and herding attacks to the cascaded
hash functions. Our multicollision attacks on the cascaded hash functions complement the collision
attacks of [11] and [5] on these hash functions. The herding attack of Dunkelman and Preneel [5]



Table 4. Comparison of complexities to carry out the second preimage attack with those of Joux [11].

Hash Construction Joux’s work Our work Ideal case

SHA256(m)‖SHA1(m‖SHA256(m)) 2256 2201 2416

SHA256(m)‖SHA1(m) 2256 2201 2416

SHA1(m)‖MD5(m) 2160 2128 2288

SHA1(m)‖RIPEMD160(m) 2161 2160 2320

on the cascaded hash functions is more efficient than ours in some cases; especially when the two
hash functions in the cascade are of the same size. For example, to herd the cascaded hash function
SHA1(m)‖RIPEMD160(m), the on-line phase of the attack of [5] for k = 54 requires 2106 evaluations
of SHA-1 and about 2113 evaluations of RIPEMD-160. Our attack requires 2106 evaluations of SHA-1
and about 2160 evaluations of RIPEMD-160.

8 On carrying out generic attacks using cryptanalytic collision attacks

We note that it is difficult to construct the CCS using cryptanalytic collision finding algorithms
such as the ones built on MD5 and SHA-1 [33, 34] in order to defeat even linear checksums to
carry out generic attacks. For example, consider two 2-block colliding messages of the form (m[2i−
1],m[2i]),(m∗[2i − 1],m∗[2i]) for i = 1, . . . , t on the underlying MD of 3C based on the near
collisions due to the first blocks in each pair of the messages. Usually, the XOR differences of the
nearly collided intermediate hash values are either fixed or very tightly constrained as in the collision
attacks on MD5 and SHA-1 [33,34]. It is difficult to construct a CCS due to the inability to control
these fixed or constrained bits. Similarly, it is also difficult to build the CCS using colliding blocks
of the form (m[2i−1],m[2i]),(m∗ [2i−1],m[2i]). It is not possible to control the XOR checksum due
to 2-block collisions of the form (m[2i − 1],m[2i]), (m[2i − 1],m∗[2i]) [32] as this form produces a
zero XOR difference in the checksum after every 2-block collision. Similarly, cryptanalytic collision
attacks on the compression functions do not help in carrying out generic attacks on the hashes that
use non-linear checksums.

Though we cannot perform generic attacks on the hash functions that use linear checksums using
structured collisions, we can find multi-block collisions by concatenating two structured collisions.
Consider a one-block collision finding algorithm for the GOST hash function H. A call to this
collision finder results in a pair of b-bit message blocks (m[1],m∗[1]) such that m[1] ≡ m∗[1]+∆ mod
2b and f(H[0],m[1]) = f(H[0],m∗[1]) = H[1]. Now call the collision finding algorithm with H[1] as
the starting state, which results in a pair of blocks (m[2],m∗[2]) such that m∗[2] ≡ m[2]+∆ mod 2b

and f(H[1],m[2]) = f(H[1],m∗[2]) = H[2]. That is, H(H[0],m[1]||m[2]) = H(H[0],m∗[1]||m∗[2]).
Consider m[1] + m[2] mod 2b = ∆ + m∗[1] + m∗[2] − ∆ mod 2b = m∗[1] + m∗[2] mod 2b. This is a
collision in the additive checksum chain.

9 Comparison of our technique with that of Mironov and Narayanan

Mironov and Narayanan (personal communication at Crypto’06, August, 2006) have found an
alternative technique to defeat XOR checksums computed using message blocks. We call this design
GOST-x. While our approach from Section 5 to defeat the XOR checksum in GOST-x requires



finding a 2b-collision using b random 1-block messages (m[i],m∗[i]) for i = 1 to b, their technique
considers repetition of the same message block twice for a collision. In contrast to the methods
presented in this paper for solving systems of linear equations for the whole message, their approach
solves the system of linear equations once after processing every few message blocks. We note that
this constrained choice of messages would result in a zero checksum at the end of the 2b-collision
on this structure and thwarts the attempts to perform the second preimage attack on GOST-x.
The reason is that the attacker loses the ability to control the checksum after finding the linking
message block from the end of the CCS which matches some intermediate hash value obtained in
the long target message.

However, we note that their technique with a twist can be used to perform the herding attack
on GOST-x. In this variant, the attacker chooses the messages for the diamond structure that
all have the same effect on the XOR checksum. These messages would result in a zero checksum
at every level in the diamond structure. Once the attacker is forced with a prefix, processing the
prefix gives a zero checksum to start with and then solving a system of equations will find a set of
possible linking messages that will all combine with the prefix to give a zero checksum value. When
the approach of Mironov and Narayanan is applied to defeat checksums in 3C, 3CM and F-Hash,
the 2n 2-block collision finding algorithm used to construct the CCS must output the same pair
of message blocks on either side of the collision whenever it is called. This constraint is not there
in our technique, and the approach of Mironov and Narayanan is not quite as powerful. However,
it could be quite capable of defeating XOR checksums in many generic attacks. Because it is so
different from our technique, some variant of this technique might be useful in cryptanalytic attacks
for which our approach to defeat XOR checksums does not work.

10 Conclusion and open problems

Simple and fast checksums have been considered for a long time as possible methods of complicating
many attacks on hash functions.

The attacks of this paper show that many such checksum-based hash functions are vulnerable
to generic attacks on the iterated hash functions that do not depend on the intrinsic properties of
the components. It was shown that such attacks are possible even in the cases where the checksum
function is assumed to be ideal in the sense that inverting it can only be done in a brute-force
manner. Also, even if the checksum function is as strong as the compression function, multicollision
attacks are still applicable. Previous results [5] have shown that also herding attacks can be applied.
These combined results show that the checksum function in a hash function must be very strong if
it is to provide any additional security, and hence it is also likely to result in a severe reduction in
efficiency. Thus, checksum functions do not seem to provide the best protection for hash functions
against generic attacks. Better alternatives seem to be to continuously mix the outputs of two
different functions, such as the double pipe scheme of Lucks [18].

It is also fair to note that a checksum may still be a good way of protecting against shortcut
attacks. For instance, as far as we know, there is still no known shortcut collision attack on the
MD2 hash function, but there are very efficient collision attacks on its compression function.

Our study on the security of checksum based hash functions leaves a number of questions open.
Among these, the most interesting is, whether there are faster methods of circumventing checksums
than the use of a checksum control sequence. Another question is on constructing efficient checksum
control sequences to defeat simple non-linear checksums such as the ones in MD2 similar to the ones



constructed to defeat linear checksums. It is also an interesting research problem to improve the
1024-block collision attack on the GOST hash function [19] to a 2-block collision attack as described
in this paper using the collision attack on the compression function [19]. Another possible research
area is to construct alternative simple and efficient extensions to the MD construction that provide
protection against all generic attacks.
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