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1. Introduction. There exists considerable experimental evidence that heat transfer
by conduction in many materials can be accurately described by the classical linear
theory of heat conduction. This theory, for homogeneous and isotropic rigid bodies, is
based on Fourier's law

q = — kV0 (1.1)

in which the heat flux q is a linear function of the temperature gradient V0 and the
thermal conductivity k is a positive constant. It is further assumed that the internal
energy e depends linearly on the temperature difference 6 — 60 :

e = e0 + a{6 — 60) (1.2)

where the heat capacity a. is also a positive constant. Then Eqs. (1.1) and (1.2) combine
with the energy balance equation to yield the classical linear heat equation

6 = (K/a)V20. (1.3)

This theory has, however, two principal shortcomings. First, it is unable to account
for memory effects which may be prevalent in some materials, particularly at low tem-
peratures. Secondly, the parabolic heat equation (1.3) predicts an unrealistic result: that a
thermal disturbance at one point of the body is instantly felt everywhere in the body
(though not equally). This implies that in Fourier heat conductors, finite thermal dis-
continuities must propagate with infinite speed. It is these observations which lead one to
believe that for materials with memory, Fourier's law (1.1) may be a limiting approxi-
mation (perhaps for sufficiently steady temperature fields) to a more general nonlinear
constitutive assumption relating the heat flux q to the material's thermal history.

Gurtin and Pipkin [17] have proposed one such nonlinear memory theory of heat
conduction which is independent of the present value of the temperature gradient. This
theory generalizes constitutive relations deduced from kinetic theory by Maxwell [19]
and Cattaneo [2] and has associated with it finite wave speeds.1 Moreover, when this
theory is linearized, it yields the heat flux relation

q(t) = — f a(s)V9(( — s) ds (1.4)
Jo

* Received October 21, 1969; revised version received April 12, 1970.
1 Gurtin and Pipkin [17] studied temperature-rate waves and computed their speed of propagation.

The growth and decay of one-dimensional temperature-rate waves in the nonlinear theory has been
discussed by Chen [3].
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for isotropic materials. Special forms of this linearized theory have proved useful in
describing the transmission of heat pulses observed in liquid helium II and some di-
electrics at low temperatures (e.g., Brown, Ghung, and Matthews [1]).

In this paper we consider a slightly different memory theory of heat conduction
recently proposed by Coleman and Gurtin [7] (see also Gurtin [15]) which does depend on
the present value of the temperature gradient. After dispensing with some preliminaries,
their results are summarized in Sec. 3. In Sec. 4 we study slow and fast processes and, in
each situation, show that the rate of change of the internal energy is approximated by a
Gibbs relation and that the corresponding heat flux satisfies a heat conduction inequality.
We further show that these inequalities imply that the equilibrium conductivity tensor
and the instantaneous conductivity tensor evaluated at the equilibrium history are
positive semidefinite.

In Sec. 5 we deduce the linearized theory for isotropic media and show that the heat
flux in this instance is given by

q(t) = -k(O)V0(O - f K'(s)Vd(t - s) ds, (1.5)
*>0

where /c(s) is the heat conduction relaxation function and k(0) > 0. Clearly, Eq. (1.5)
reduces to Fourier's law (1.1) if k'(s) = 0; it corresponds to the linearized heat flux
relation (1.4) derived by Gurtin and Pipkin [17] if k(0) = 0.

Sees. 6 and 7 consider further the linearized theory with k(0) > 0 and k(0) = 0,
respectively. In each case, the appropriate linearized heat equation is cited; a uniqueness
theorem is proved for the associated initial-boundary-value problem; and the progressive
wave solution is studied. Moreover, for the linearized theory with k(0) = 0, we indicate
the relationship between plane temperature-rate waves2 and the corresponding progres-
sive wave solution.

2. Preliminaries. Let us consider a regular region (cf. Kellogg [18]) of three-di-
mensional Euclidean space £ occupied by a body ® whose configuration remains un-
changed for all time t £ (— °°, <») (i.e., a rigid body). Therefore, we do not distinguish
between the material points of ffi and their spatial positions x in S.

Fixing our attention to a specific point x £ (B, we let 6' and g", defined by

6\s) = 0(t — s) = 9(x, t — s), g\s) = g(t — s) = V0(x, t — s), (2.1)

0 < s < =0, be the histories up to time t of the absolute temperature (6 > 0) and the
temperature gradient at x. For conciseness we call the ordered pair3 (9', g') the thermal
history A' at x.

Now let us consider a fixed scalar influence function h(s)] i.e., a positive, monotone-
decreasing, continuous function on (0, °°) decaying to zero ass->oo fast enough to be
square-integrable over (0, ). Assuming such a function exists, the norm ||A'|| of a
measurable function pair (6', g') can be defined by

|]A'||2 = | A'(0)|2 + ||A;||2 (2.2)

2 Chen [4] has examined the growth and decay of plane waves and waves of arbitrary form within
the context of Gurtin and Pipkin's linearized theory.

3 Henceforth the set of all ordered pairs r = (<p, v), with <p G (R+ (the strictly positive reals) and
(the inner product space associated with £), will be assumed to have all the properties of the inner

product space of dimension four (R+ X O (cf. Coleman [5, p. 10]).
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where

11 A' 112 = f |A'(s)|2 h(s)2 ds, |A!(s)|2 = A'(S)-A'(S). (2.3)
^0

The quantity A'(0) = (8, g) = A is the present value of A', and A' = (d'r , g'r), called
the past history, denotes the restriction of A1 to the open interval (0, °o). The set of all
measurable function pairs A' with |[A'|| finite forms a Hilbert space 3C. The set of all
measurable function pairs A' -with 11 A, 11 finite is a subspace of 3C and is denoted by 3Cr .

Throughout this paper, the body ffi is assumed to be a homogeneous heat conductor
with memory characterized at each x £ (55 by three res-ponse junctionals 9?, and G.
These functional yield the present values of the free energy the entropy and
the heat flux qit) whenever the thermal history A' is specified at x (cf. Coleman and
Gurtin [7, Eqs. (3.3)]):

* = m'),
V = W, (2.4)

q = G(A').
We take as the common domain of definition of 91, and G the subset £> in 3C for
which 6' > 0. We further assume that ^3, 9?, and G are smooth functions over 2D with
respect to the norm || A'|| in the sense that $ is twice continuously Frochet differentiate
and 92 and G are each once continuously Fr£chet differentiable over 3D."

The smoothness assumption for the functional has several well-known conse-
quences. First, it imphes the existence and continuity of the first-order differential
operators DA = (De , Dj and 5A = (5e , 8S) given by (cf. Coleman [6, Sec. 9], Coleman
and Gurtin [7, Eqs. (3.9)])

Dtf(A') = §-6Wr,&: ;6, g),

D,W)-u = ,g: ;e,g + vu) If-o y

(2.5)

s,W Ur) =£vm + vnr,g'r ; e, g)

6&U' \u,) = £m , g'r + "r ',6, g)\.

v — 0 )

■0 J

which are valid for all A' £ 2D, all u £ $, and all pairs (pr , ur) £ 3Cr .5 Secondly, it
suffices for chain rules (Coleman [5], Mizel and Wang [20]); i.e.,

i = ft $(A') = DMA')-A + 8a$(A« | A:), (2.6)

4 Thus we are assuming that the material obeys the principle of fading memory as formulated by
Coleman and Noll [10], [11], [12]. See also Coleman and Mizel [9],

5 We note that expressions analogous to (2.5) can also be written for the functionals 9t and O and the
functional E soon to be defined.
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whenever the derivatives

A = |a(0, a: = | A(* - s) = A'(«), 0 < s < », (2.7)

exist and are in 3C. Finally, it implies that the seeond-order differential operators
Db 8e ^3 = 8e Dey3, 5^, etc., exist and are continuous.

Before continuing further, it is appropriate to introduce one other useful parameter;
that is, the internal energy e(t) defined by

e=*+8r,, (2g)

= @(A<).

We then define an admissible process in ® (at x) to be an ordered array [#(•)> g(-)>
e(')> v(')> <!(•)] with the following properties:

(i) d(-) and g(-) are continuous and piecewise smooth;
(ii) A1 = (6', g') G 3D for all i G (— 00, °0; and

(iii) e(-), and q(-) are given by (2.8)i and the constitutive equations (2.4).
The functions e(-) and q(-) determine the heat supply r(-) at x supplied by the body's
external "surroundings" through the energy balance equation

e — — V • q + r. (2.9)

In view of the above definition there corresponds to each choice of the time-dependent
temperature field 0, a unique admissible process compatible with the balance of energy
(cf. Coleman [5, Remark 1]).

3. Consequences of the Clausius-Duhem inequality. By requiring the Clausius-
Duhem inequality

>5-v.(J9) (3.1)

to hold for admissible processes, Coleman and Gurtin [7] have shown that the assertions
of the next three theorems are true.

Theorem 3.1.6 Assuming that the response junctionals 'p, and Q obey the hypothesis
of jading memory,7 the inequality (3.1) is satisfied jor all admissible processes ij and only ij

(i) ZMJ(A') = -9l(A'),
(ii) DsSP(A') = 0, and

(iii) Q(A')-g < 62a jor all sufficiently smooth A1 G 33.
The quantity <r(t) is called the internal dissipation and is given by either of the formulae

<r(<) = ~-0 5a$(A' | A'),

= ~ \ (e" — ev)-
(3.2)

An immediate consequence of Theorem 3.1 (i, ii) and (2.8) is that

DM A') = 6 DeVl(A') (3.3)

6 Cf. Coleman [5, Theorem 1]; Coleman and Gurtin [7, Theorem 6]; Gurtin [15, p. 43],
7 Coleman and Gurtin [7] employed a slightly weaker fading memory hypothesis than that discussed

in Sec. 2.
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and

2>f@(A') = Dt3l( A') = 0 (3.4)
for every A' £ SD.

To examine the equilibrium behavior of the material, we evaluate the response
functionals $, 91, Q and @ at an equilibrium history Af0; i.e., if A' is the constant history
A J = (6+, 0f) where

fff(s) = 9, Ot(s) = 0 (3.5)

(0 is the zero vector in d), 0 < s < ®, then (2.4) and (2.8)2 reduce to

r = ̂ j(aJ) = r{e), n" = m l) = ra, (3 6)
q°° = Q(Aj) = q(6), e" = f + Or," = <g(A J) = B°(d).

Theorem 3.2.8 For any A( £ 2D with 0'(0) = 0, ̂ P(A') > rp"(9); i.e., of all the thermal
histories A' ending with the present temperature 6, the equilibrium history A„ results in the
least free energy.

This minimal property of the free energy functional $ necessarily implies that

«#(A0 I Hr) = o, 5gWAo i Ur) = 0, 7)

«SP(aJ I nr , fr) + 2 «,8$(aJ I ur , iir) + 8$(aJ | u, , ur) > 0,
for every (jir , ur) £ 3Cr .

Theorem 3.3.9 The equilibrium response functions , fj', and q" obey the equations
of classical thermostatics:

© ^ (e) = -f(9),

(it) q"(0) = 0

for all 9 £ Si*.
It follows from (3.6)4 and the equilibrium entropy relation (Theorem 3.3 (i)) that

e.8)
In concluding this section, we prove one other result of interest.

Theorem 3.4. Given any equilibrium pair (9, 0),

^ (0) > Ds@(Ao);

i.e., the equilibrium heat capacity is greater than the instantaneous heat capacity evaluated
at the equilibrium history Aq .

8 Cf. Coleman [5, Theorem 3], Coleman and Gurtin [7, Eq. (3.32)], Gurtin [15, p. 45], Gurtin and
Pipkin [17, Eq. (4.8)].

• Cf. Coleman and Gurtin [7, Theorem 7], Gurtin [15, p. 45], Gurtin and Pipkin [17, Eqs. (4.11) and
(4.12)].
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Proof.10 Since (3.7) is to hold for every (jxr , ur) £ Kr , we let nr remain arbitrary^
and let u, = 0* , the zero past history. Then, (3.7) reduces to

59?(A0t I M,) = 0, I Mr , iO > o. (3.9)

Now, since (3.9)! holds for all values of 81 = dV (1+ is the constant history with the
value of unity),

A„fU)]=0. (3.10)

Letting fi, = lrf (the restriction of lf), (3.10) becomes

j- [5^(Aot I l!)] = DsmAl | ll) + «$(AI I 1: , 1I),de (3.11)
= - 8,91(4 I ll) + 52^(Ato I ll , lfr) = 0,

where we have made use of the commutative property of Sg and De and the entropy
relation (Theorem 3.1 (i)). It follows from (3.9)2, with nT = 1*, and (3.11)2 that

5«9rf(Ao | ll) = 5^(Ao | ll , ll) > 0. (3.12)
Returning to (3.6)3 , we compute the derivative of f}" with respect to 8:

(8) = D,mAt) + SMAo | ll), (3.13)

which, with (3.12), implies that

^(6)>Dsm( aI). (3.14)

Multiplying this result by 8, and then making use of (3.3) and (3.8), will complete the
proof.

Following a customary procedure in thermodynamics, we will assume that
Z),g(A0f) > 0. (3.15)

4. On slow and fast processes. Let 80 be a given constant temperature field and
let 3(A0) denote the subset of thermal histories A' £ D for which

A'(s) = Aj(S) = (dl(s), Ot(s)) (4.1)

for every s £ [s0 , <*>), s0 > 0.11
There corresponds to each A' £ 3(A0) a modified thermal history A'a, £ 3(A0)

defined by

A Us) = (8Us), ga,(s)) = (0'(Xs), g'(Xs)), (4.2)
0 < s < °°, with

A'x)(0) = (0<x> , g(x>) = (8, g) = A. (4-3)

10 Cf. Coleman [6, Sec. 8], for a similar argument in a different context.
11 This is merely a statement that for some time in the past an equilibrium situation corresponding

to the thermal pair (80, 0) existed in the body ®.
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We call A'(X) a retarded history in 3(A0) if 0 < X < 1 (cf. Coleman and Noll [10]) and an
accelerated history if X > 1 (cf. Gurtin and Herrera [16]). A slow process corresponds to
the limit X —* 0, a fast process to the limit X —♦ ».

We note for future use that

|a^(s) = x|a'©|£.x. , (4.4)

0 < s < cd , and we let e(X) , Va) > Q<x> > and o"cx> be the internal energy, the entropy, the
heat flux, and the internal dissipation at time t corresponding to the thermal history A'X) .

First, we consider slow processes and in this connection we make use of a lemma due to
Coleman and Noll [10].

Lemma 1. Let T'( ) be any junction in 3(A0). Then, letting be the retarded
history corresponding to T'( ) and r = r'(X)(0),

lim ||r'X3() - r\ )|| = o
X-.0

where T+ is the constant history with value r.

Theorem 4.1. Consider any A' £ 3(A0) with A'(0) = (6, g). Then

(i)12 lim [eCX) - 0rjCx>] = 0,
x-»o

(ii) 0(Af)-g < 0,

where A+ is the constant history with the value A = (6, g).

Proof. According to (3.2) x , the quantity 0(X)(r<X) is given by

^<x)°*(X) = — 5a'>P(A'(X) | AJX)r). (4.5)
Then, by the linearity of and Eqs. (2.7) and (4.4), we are permitted to write (4.5) as

^(X)C(X) — 5a^3^A(W

= X 5JP (a'( |A'®

£-X«

*-X*

(4.6)

It follows from this, the continuity of 5A^3, Lemma 1, and the boundedness of
(d/d£) A'(£) |j.o that (cf. Coleman [5, Remark 14])

lim 0(X)C-(X) = 0. (4.7)
X-.0

Then (3.2)2 and (4.3) imply that

lim — [e'(X) - &v(X)] = lim 0,X)o-<x) = 0, (4.8)
X—»0 X—»0

which proves (i). To prove (ii), we first observe that Lemma 1 and the continuity of Q
imply that

lim q(X) = G(Af). (4.9)
X-.0

12 Cf. Coleman [5, Remark 15]. It should be pointed out that Coleman's results are stronger than
those stated here.
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Then, since the dissipation inequality must hold for all values of X:

lim q(X) -g(X) < lim 0(X)<r<X) ; (4.10)
X—»0 X—»0

this along with (4.3), (4.7), and (4.9) yields the result desired. Hence Theorem 4.1
implies that during sufficiently slow processes, which start from equilibrium, the rate of
change of the internal energy can be approximated by a Gibbs relation and the corre-
sponding heat flux satisfies a heat conduction inequality.

That an analogous result also holds for fast processes will become apparent once we
have established

Lemma 2. Let r'( ) be any junction in 3(A0). Then, letting r[X)( ) be the accelerated
history corresponding to r'( ) and T = rJX)(0),

lim ||rjx,() - rl()|| =0
X-»CD

where r: = aJ on (0, =°) and r*(0) — T.

Proof. By definition of the norm (2.2) and (2.3),

llrU ) — rs( )1|2 = |r;x>(0) - r'(0)|2

+ f" |r|X)(s) - r5(s)|2 h(s)2 ds
•*0

+ f |r|X)(s) - r:(s)j2 h(sy ds. (4.11)

But, by hypothesis, rJX)(0) = r*(0); and since X is greater than unity, rjx,(s) = r'(Xs) =
Al(s) = T*(s) for all s £ [s0 , <=). Hence (4.11) reduces to

\\rU) - rx )||2 = [" |r'(Xs) - A0f(s)|2 h(s)2 ds. (4.12)
Jo

Taking the limit as X —» °° and then using Lebesgue's theorem, we have that

lim I|r<X)( ) - rx )||2 = f"lim |r'(Xs) - A^s)!' h(s)2 ds. (4.13)
X—»eo J 0 X-co

Now for every r'(Xs) £ 3(A0), T'(Xs) = A„(s) for every X > s0/s, 0 < s < s0 . Thus,
the right side of (4.13) vanishes and the proof is complete.

Theorem 4.2. Consider any A* £ 3(A0) with A'(0) = (0, g). Then

(i) lim [e(X) - 0vw] = 0,
*-.0

(ii)13 Q(A>g < 0,

where A* = A„ on (0, oo) and A*(0) = A = (0, g).

13 If the heat flux functional O is independent of the present value of g (cf. Gurtin and Pipkin
[17, Eq. (3.6)3]) and the material has a center of symmetry, then the limiting behavior for fast processes is
adiabalic; i.e., limx,„ qa) = 0. In this instance, the inequality given is trivially satisfied for every non-
zero g £
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Proof. It is clear that the proof can proceed in the same manner as that for Theorem
4.1 once we have proved that

lim 0(X)<T(X) = 0. (4.14)
x-=>

Let us examine the quantity dM<rm which was given in (4.6)2 • This expression holds for
both retarded and accelerated histories. Therefore, (4.14) can be established by proving
that

M3 U;MX) IA'® = 0 (4.15)
i-xs'

for all X sufficiently large. Now, for every A' £ 3(A0), the derivative (d/df) A'(£) |£_x, is
zero for every X > s0/s, 0 < s < s0 , and for every X > 1, s0 < s < . Hence, by the
continuity and linearity of 5...$, (4.15) holds and so does (4.14). The proof can now be
completed without difficulty.

The inequalities given in Theorems 4.1 and 4.2 are quite similar to the classical
heat conduction inequality and it is this similarity which lead us to

Theorem 4.3. The equilibrium conductivity tensor K(<n) and the instantaneous
conductivity tensor K(0) evaluated at the equilibrium history Ao = (#d i 0f) are -positive
semidefinite; i.e., every nonzero u £

u-K(n)u > 0, u-K(0)u > 0,

where

K(«>) = — [Z)gO(Ao) + 5gO(Ao | ll)], K(0) = -Z)gQ(A+0).
Proof. First consider the inequality

0(A+)-g = 6(Af) < 0. (4.16)

Clearly, the functional S, with 6 arbitrarily fixed, is maximized when g = 0. Let 6 = 60
and g = £u, u any arbitrary nonzero vector in d. Then

<5(0„l! , $ulj ; e0 , £u) = O(0ol! , £ul! ; e0 , £u) -£u (4.17)

and it follows that

^©(M'.ful r ; 0o,fr)lt-o = 0,

d <5(0olJ , ?ulrf ; 90 , |u)|{_0 < 0.

(4.18)

d?
Using (4.17) to compute the derivatives in (4.18), we have that

O(Ao) -u = 0, 2 ^ Q(0O1,+ , |ulPf ; 90 , &i) |t_0-u < 0. (4.19)

The first of (4.19), since it must hold for every nonzero u £ #, yields (see Theorem
3.3(H))

O(A0+) = 0. (4.20)
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Eq. (4.19)2 , when written in terms of first-order Fr^chet differentials, provides us with

u- [Z)gO(Ao) + 5gO(Ao 1 i:)]u < 0, (4.21)
which establishes the nonnegativeness of K (<*>). The restriction on K(0) can be
established in an identical manner by considering the inequality

0(At)-g<0. (4.22)

This completes the proof of the theorem.
5. Linearized theory for isotropic materials. Let 60 be a given constant temperature

field. We restrict our consideration here to thermal histories A' £ 2D which are always
close to the equilibrium history A„ = (df0 , 0f) in the sense that

6= sup {|0(r) — 0O|, |g(x)|} (5.1)
T€ ( —CD , f ]

is small at each x £ ®. Then, in view of the assumed smoothness of the response func-
tional O and <S, and Eq. (3.4), the heat flux and the internal energy can be approxi-
mated by

q = O(A') = Q(Ao) + DeO(A')(e — 90) + Dz Q(A0)g

+ 8eO(Al I el - d0ll) + 5gQ(Ao I gl) + o(e),
e = S(A') = (S(A0) + De(§.(A0)(6 — 80) + 5g(S(A0 | d'r — 0olr)

+ 5g@(Ao | gl) + o(t),
as e —► 0. These expressions represent the linearized theory when we neglect the terms
of 0(e).14

We now assume that the material is isotropic. Then the constitutive equations (5.2)
must satisfy the identities (cf. Coleman and Mizel [8, Sec. 5])

0(0' g') = GT0(9', Gg«), (§(<?', g') = <£(*', Gg') (5.3)
for all orthogonal tensors G £ 0, the full orthogonal group. Since —7 £ 0 (/ is the unit
tensor), it follows from (5.3) that

0(6', Ot) = 0, <8(0', g') = ®(0«, -g<), (5.4)

which in turn implies that

DoO(Al) = 0, 5«Q(Ao I el - e0ll) = 0, 5g@(A„ i gI) = 0. (5.5)
These results (5.5) plus the fact that 0(A„) = 0 from Theorem 3.3 (ii), reduces (5.2) to

q = DgO(Ao)g + SeO(Ao | g'), e = e0 + DeQz(Al)d + 59@(aJ | el), (5.6)
where e0 is a constant defined by

e0 = @(Aq) - .D8(S(Ao)0o - 5e@(Ao | 0O1,). (5.7)

The mapping g' —5gO(Ao | gl) is bounded and linear in g' and it maps the Hilbert
space 3Cr into d. Then by the Riesz representation theorem 8&0(Al \ gl) can be repre-
sented as an inner product on 3Cr for every g' £ 3Cr ; i.e.,

14 We do not develop the linearized constitutive equations for the free energy or entropy as they are
not needed in the sequel.
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5gO(A: | gj) = f T(s)g'(s)h(s)2 ds, (5.8)
J o

where T is a uniquely defined tensor-valued function on (0, <») with components in
3Cr . Clearly, T depends on 90 as well as s. Now let K(s), 0 < s < <», be the unique
solution of

K'(s) = jsK(s) = -T(s)h(s)\ K(0) = — Z)gO(Ao). (5.9)

By the isotropy of the material, /v(.s) must be an isotropic tensor:

K(s) = k(s)I. (5.10)

Hence, combining (5.8)-(5.10) with (5.6)j we arrive at the linearized constitutive equa-
tion for the heat flux:

q = -*(0)g - [ K'(s)g(t — s) ds. (5.11)
Jo

The scalar-valued function k(s) is called the heat conduction relaxation junction and k(0)
the instantaneous conductivity. If git — s) = g„(s) = g0 , a constant vector in &, for all
s G [0, °=), then either (5.6)! or (5.11) will yield the steady-state heat flux q0 :

q0 = — i<(ca)go , (5.12)

where k(<») is the equilibrium conductivity. It follows directly from Theorem 4.3 that
both k(<») and k(0) are nonnegative. While we would expect in most physical situations
that the equilibrium conductivity k( oo ) would be nonzero, there is no such justification
for assuming that the instantaneous conductivity k(0) also be nonzero. In fact, in view
of the experimental evidence cited earlier with regard to the linearized theory derived
by Gurtin and Pipkin [17], there is reason to suspect that in some materials k(0) may
become zero at very low reference temperatures d0 .

Proceeding in an analogous fashion, we can obtain from (5.6)2 the linearized constitu-
tive equation for the internal energy:

e = e0 + a(0)$ + f a'(s)9(t — s) ds, (5.13)
J 0

where
7^0°

a(0) = Ded(Al), a(») = [DMaJ) + 59<S(aJ | lrf)] = ^ (60). (5.14)

The function a(s) is called the energy-temperature relaxation function with a(0) being the
instantaneous heat capacity and a(c°) the equilibrium heat capacity. Theorem 3.4 im-
plies that

a(oo) > a(0) (5.15)

and following (3.15), we assume a(0) > 0.
To avoid repeated comments regarding the smoothness properties of the relaxation

functions k(s) and a(s), we assume once and for all that they are each of class C4 on
[0, oo) and that the first four of their derivatives are bounded and absolutely integrable
on [0, oo). It follows from the Riesz theorem that the first derivatives /(s) and a'(s)
have the properties
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[ \k'(s)\2 h(s)~2 ds < a>, f |a'(s) |2 h(s)~2 ds < » . (5.16)
J o Jo

This property (5.16) implies that the functions k'(s) and a'(s) must approach zero at a
faster rate than the influence function h(s) as s —> . Henceforth, we shall assume that
functions k"(s), a"(s), k'"(s) and a'"(s) also have this property.

6. Linearized theory with nonvanishing «(0). In this case, Eqs. (5.11), (5.13), and
(2.9) provide us with a complete set of field equations and they can be combined, noting
that g = V9, to give the linearized heat equation:

a(0)8(x, t) + f oc'(s)e(x, t - s) ds = k(O)V20(x, t)
Jo

+ f k'(s)V20(x, t — s) ds + r(x, t). (6.1)
J 0

(a) A uniqueness theorem. Here our concern is with obtaining sufficient conditions
for the uniqueness of solutions to the initial-boundary-value problem associated with
(6.1).

Due to the linearity of the field equations, it clearly suffices to show that null initial
and boundary data "will yield a null solution.

Theorem 6.1. Let 6 be a solution of (6.1) on (53 X (— ro, ro). Furthermore, suppose
that15

«(0) > 0, a'O0) > 0, k(0) > 0;

and

6 = 0 on ®X(— 00, 0], r = 0 on ®X(— 00 , °°),

9 = 0 ond($>sX(0, co), q-n = 0 on d(S>zX(0, «>),

where d<$> = d(S,B W d(Bq . Then,

0 = 0 on (BX(— 00, °°).

Proof. Let us compute the quantity16

Si(<) = [ f 6q-n dA dr — f f 6r dV dr. (6.2)
J — co «/ J (jj J - co J ®

Application of the divergence theorem and the energy balance equation (2.9) to (6.2)
vields

§,(*) = - f f (6e - q-g) rfFdr. (6.3)
J - co »/ ©

Using Fubini's theorem to interchange the order of integration and the linearized consti-
tutive equations (5.11) and (5.13), we have

16 We believe that a'(0) > 0 will insure that 0(x, i) is asymptotically stable in the sense that lim^co
0(x, t) = /(x);/(x) finite.

16 We might call Si(0 the thermal work; cf. Day and Gurtin [13, Eq. (6)].
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S,(f) = — f f a(0)6(x, t)2 dr dV — f f a'(O)0(x, r)0(x, r) dr dV
V <3, J — CO J (£> J — CO

-i f(i J © J —CO \v 0

- [ [ x(0)g(x, T)-g(x, t) dr dV
J ® J - oo

~ f® / (ij K'^g^X' T ~ S) ̂ S)"S(X> T)
If we now institute a change of variables (p = r — s) in the third and fifth terms and
then integrate these expressions by parts, the resulting expression for (<) is

s,(0 = ~ [ [' a(0)0(x, r)2 <2r <27 - f ^ 0(x, «)2 rfF
J & J — co J (& <u

- f f a"(t - r)0(x, Q0(x, r)drdV + f f a"(0)6(x, r)2 dr
J (Z J-co J 6S J — oo

+ f f f ol"'(t — p)6(x, r)0(x, p) dp c?r (27J(B J— •/-« (g g)

- [ g(x> 0-g(x, t) dV - [ [ K'{t - r)g(x, i)-g(x, r) dr dV
J <3> ^ «/ © J — CO

+ £ /_ * T)-g(x, t) drdV

+ [ f f k"(t - p)g(x, r)-g(x, p) dpdr dV.
«/(£ J — CO J — CO

The initial condition 0 = 0 on ® X (— °°, 0] permits the lower limits in (6.5) to be
changed to zero and the remaining null data implies that Sj(<) = 0 for every t £ (0, m).

For convenience we now set
<P = e{a'{ 0)/2)1/2, v = g(/c(0)/2)I/2, (6.6)

and
yjt - r) = 2a"(< - r)/a'(0), - r) = 2K'(t - t)/k(0). (6.7)

Since, by hypothesis, the functions a and k are of class C4 on [0, ), there exists a bound
B(t0) such that

B(t0) = sup {|Ti(OI + l-y2(0! + W(01 + WWII < (6-8)
teio.to)

for every t0 £ (0, ro). Let us suppose that t0 has been arbitrarily fixed and that t < t0 .
Then, using (6.6)-(6.8), and letting $ be the ordered pair (<j>, v), we can obtain the
following inequality from (6.5):

f f a(0) 10(x, r)|2 drdV + [ |<£(x, «)|2 dV
J(B Jo J ©

< B(t0){ [ f |$(x, r)| |$(x, t)\ dr dV + [ f |$(x, r)|2dr dV (6.9)
W (B J 0 J & Jo

f f f l$(x> T)l IH*, p)\dp dr dv\
J <$> Jo J0 )
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Both terms on the left side of the inequality are nonnegative and bounded, and hence it
follows that

f |$(x, t)\2dV < B(t0)i [ [' [*(x, r)| |*(x, t)drdV
J & (Z J 0

+ [ [' |*(x, r)|2 drdV + [ [' f |$(x, r)| |*(x, p)| dp dr rfF}- (6.10)
•/©•'O J <R *} o J o i

That this inequality implies the null solution § = 0 on ® X (0, ) follows almost
verbatim an argument given by Edelstein and Gurtin [14, proof of Lemma 3] to establish
a similar result. Hence the proof is complete.

(b) Plane -progressive waves. Consider the time-dependent temperature field

0(x, t) — 0O = A Re |exp (—£p-m) exp (' iw(t — ^ p-mjj| , p = x — x0 , (6.11)

for co > 0, £ > 0, u > 0, and A, all real numbers. The function (6.11) is called a damped
plane progressive wave with frequency co, attenuation £, speed u, direction m(|m| = 1),
and amplitude A. Clearly, this temperature field satisfies the linearized heat equation
(6.1) (with r = 0) if and only if

tco{a(0) + S'(co)} = (£ + ico/w)2{(c( 0) + ic'(o>)} (6.12)

where 5'(co) and k'(u) are Fourier transforms:

3'(co) = [ a'(s)e"i'" ds, k'(co) = f K'(s)e-"°' ds. (6.13)
Jo J 0

Then, for each frequency co there is exactly one set of values u = u{co) > 0, £ = £(co) > 0
which satisfies (6.12):

w(co)2 = [sec (f(co) — <p(co))][tan (y(co) - <p(co)) + sec (v(u) — ?>(«))],
1 w Wl (6.14)

?(") = [tan (y(w) — <p(co)) + sec (v(w) — <p(w))],

where

, ^ Im (k(0) -(- ic'(co)) , N Im (a(0) + 5'(co)) ,n ,tan f>(co) = ) )' " , tan <p(w) = ; ( "• (6.15)
Ke (k(0) + k (co)) Re (a(0) + a (co))

For classical heat conduction a(s) = a(°°) (constant), k(s) = k(c°) (constant) for
every s £ [0, =°) and (6.14) yields

«■» - (wr- - (isr- <6-16'
It follows from (6.13), and some known theorems on Fourier transforms that

lim a'(co) = a(°=) — a(0), lim coa'(co) = 0 (6.17)
«—»0 a>-*0

and

lim a'(co) = 0, lim coa'(co) = — ia'(0). (6.18)
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Similar limits can also be obtained for £'(a>). Then, using these formulas in connection
with (6.14), it is not difficult to show that as u —> 0

w(co) —>• uc(oj), £(co) —> £e(co), (6.19)

and as co —> oo

u(«) -> (2uK(0)/a(0)),/2, £(«) -> (wa(0)/2k(0))1 /2. (6.20)

Thus, we see that for low frequencies (w —» 0) the speed and attenuation of a damped
plane progressive wave approach the values predicted by the classical theory. For high
frequencies (« —» «=), the wave speed and attenuation are real and unbounded as in the
classical theory. Moreover, for k(0)/q:(0) greater (less) than k(» )/«(»), the wave speed is
greater (less) than and the attenuation is less (greater) than the values predicted by the
classical theory.

7. Linearized theory with vanishing k(0). For this case the linearized constitutive
equation for the heat flux becomes

q = - f K'(s)g(t — s) ds (7.1)
Jo

and the linearized heat equation (6.1) reduces to
/*a> n CO

a(O)0(x, 0 + / a'(s)6(x, t — s) ds = / k'(s)V26(x, t — s) ds + r(x, t). (7.2)17
Jo Jo

(a) A uniqueness theorem. As before, we are concerned with obtaining sufficient
conditions for the uniqueness of solutions to the initial-boundary-value problem associ-
ated with the heat equation (7.2).

Theorem 7.1. Let 6 be a solution of (7.2) on ® X (— 00, c°). Furthermore, suppose
thatis

a(0) > 0, a'(0) > 0, a"(0) > 0, k'(0) > 0,
and

6 = 0 on (BX(— , 0], r = 0 on ®X(— 03, ro),

8 = 0 on d<BsX(0, <*>), q-n = 0 on cftB^X^, <»);

where d($> = d($>e W d($>a . Then

6=0 on ® X (— 00, 00) •

The proof of this result is omitted since it is very similar to the one given for Theorem
6.1 once the quantity

S2W — f [ dq-n. dA dr — [ f drdVdr. (7.3)
J - od Jd<3> JJ (B

has been computed.

17 This equation can be written in a form similar to that derived by Gurtin and Pipkin [17]:

a(0)ff + a'(O)0 + J^ a"(s)6(t — s) ds = k'(0)V2® 4* Jo k"(s)V2®(' — s) ds r.
18 The positiveness of <*'(0) and a"(0) is believed to insure that the solution 6(x, t) is asymptotically

stable.
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(b) Plane -progressive waves. Let us again consider the sinusoidal temperature field
(6.11). Then the heat equation (7.2) (with r = 0) implies that the wave speed u and the
attenuation £ must obey the relations

w(co)2 = i -,| [sec (y(w) — ?>(co;)][tan (v(u>) — <p(co)) + sec (?(«) — <?(<*>))],
|a(0) + a (co) I

^ = ftan W") ~ f{u)) + sec (v(w) - «»(«))]> (7.4)
U(co)

where

/ N Im (*'(«)) + f 1 Im («(°) + 5'(")) r rNtan "<tt) = Re («'(«)) ' tan ^ = Re («(0) +«'(«))• (7"5)

Moreover, using the limits (6.17) and their counterparts for k'(co), it is not difficult to
verify that as co —> 0, u and £ approach the classical values uc and .

To analyze (7.4) for large co, an appropriate asymptotic expansion for each of the
Fourier transforms a'(co) and k(u>) is required and can be obtained by integrating (6.13)
twice by parts:

, a'(0)t a"(0) &"'(<*)
a (a)   2 2 ,

(7.6)
, k'(0)i K"(p) «'"(«)

K («)   5 2 ,
CO CO co

where a'"(co) and S"'(co) are the Fourier transforms of «"'(s) and k"'(s). We assume that
a(0) > 0, a'(0) > 0, a"(0) > 0, and k'(0) > 0 to insure that the temperature field (6.11)
is unique. It also seems physically reasonable to assume k"(0) < 0 on the basis of some
statistical arguments given by Maxwell [19] and Cattaneo [2]. Then, as co —» co,

, , x /V(0)Y/2 f( , 1 (<"{0) a'(0)V«(0)\-1*,! - - "2 Itw " W/VW))
1/2

(7.7)

These results are quite different from those obtained for the linearized theory with
k(0) > 0 in that now the wave speed and attenuation remain finite for arbitrarily large co.

(c) Plane temperature-rate waves. As has already been indicated, there can exist,
in the linearized theory with k(0) = 0, jump discontinuities in the "temperature-rate"
field d which propagate with a finite speed. Using a singular surface analysis (cf. Truesdell
and Toupin [21, Sec. C]) and assuming the wave to be plane, we find that the propagation
of such waves, in terms of our present study, is governed by19

Theorem 7.2. Consider a plane temperature-rate wave propagating into an infinite
heat conductor with *(0) = 0. Then, for t > 0, the speed U is a constant given by20

u = (k-^y/2
\a(0)/

and the amplitude a (a = [0])21 has the following dependence on t:22

19 Here the definition of an admissible process has been extended to include the functions g(-)
which are piecewise continuous.

20 Gurtin and Pipkin [17].
21 "[• ]" denotes the jump; Truesdell and Toupin [21].
22 Chen [4],
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a(t) = a(0) exp 1 fk^(0) _ «^(0)
2 V/(0) a(0)

Clearly, in view of the sufficient conditions for unique solutions of initial-boundary-
value problems and the assumption of k"(0) < 0, the wave speed is real and the ampli-
tude of the wave decays monotonically to zero as t —» ».

Our primary interest here is in the relationship between plane temperature-rate
waves and the plane progressive waves discussed earlier. Let us define the ultrasonic
speed ua and the ultrasonic attenuation £„ by

u„ = lim u(o>), £„ = lim£(a>). (7.8)

Then (7.7) implies that

Setting this result alongside Theorem 7.2, we arrive at

Theorem 7.3. Let U and a(t) be the speed and amplitude of a plane temperature-rate
wave which since t = 0 has been propagating into an infinite heat conductor with k(0) = 0.
Then, for t > 0 U = ua and

a(t) = o(0) exp (—w„£„f)

where u„ and £„ are the ultrasonic speed and attenuation of damped plane progressive
waves in the same body.
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