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ON HERSTEIN’S LIE MAP CONJECTURES, I

K. I. BEIDAR, M. BREŠAR, M. A. CHEBOTAR, AND W. S. MARTINDALE III

Abstract. We describe surjective Lie homomorphisms from Lie ideals of skew
elements of algebras with involution onto noncentral Lie ideals (factored by
their centers) of skew elements of prime algebras D with involution, provided
that char(D) 6= 2 and D is not PI of low degree. This solves the last remaining
open problem of Herstein on Lie isomorphisms module cases of PI rings of low
degree. A more general problem on maps preserving any polynomial is also
discussed.

1. Introduction

Let F be an associative commutative ring with 1 and B an associative F -algebra.
It is well–known that defining new products in B, the Lie product and the Jordan
product, by

[x, y] = xy − yx and x ◦ y = xy + yx,

B becomes a Lie and a Jordan algebra, respectively. A Lie (Jordan) subalgebra
of B is any F -submodule closed under the Lie (Jordan) product. A submod-
ule T of B satisfying a stronger condition [T ,B] ⊆ T is called a Lie ideal of
B. Given any subset R of B, we define the center Z(R) of R to be the set
{r ∈ R | [x, r] = 0 for all x ∈ R}. Next, we denote by [R,R] the F -submodule
of B generated by {[x, y] | x, y ∈ R}. Note that Z = Z(B) and [B,B] are Lie ideals
of B.

Now assume that B is an algebra with involution ∗. Let

S(B) = {x ∈ B | x∗ = x} and K = K(B) = {x ∈ B | x∗ = −x}
be the set of symmetric and skew elements in B, respectively. Clearly, K is a Lie
subalgebra and S(B) is a Jordan subalgebra of B. A Lie ideal of K is, of course, an
F -submodule T of K satisfying [T ,K] ⊆ T . For instance, [K,K] is a Lie ideal of K.

The study of the relationship between the associative and the Lie and Jordan
structure of an associative ring B was initiated in the 1950’s by Herstein (see, e.g.,
[38, 39]). Introducing elementary and clever new methods (which, incidentally, are
still reflected even in the present work) he obtained, in particular, rather definitive
results concerning the Lie and Jordan ideal structure in the case where B was a
simple ring (with or without involution), thereby extending classical results of Car-
tan and Killing on simple finite–dimensional complex Lie algebras. Some related
natural questions, however, remained unsolved, and among them, notably, all the
basic questions on Lie isomorphisms. Given Lie subalgebras T and U of associative
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algebras, one defines a Lie homomorphism of T into U to be an F -module map
α : T → U satisfying [x, y]α = [xα, yα] for all x, y ∈ T (we shall always write
Lie maps as exponents). For example, an isomorphism or a negative of an anti-
isomorphism of one algebra onto another is also a Lie isomorphism. One can ask
whether the converse is true in some special cases. That is, does every Lie isomor-
phism of certain Lie subalgebras of associative algebras arise (modulo maps whose
range is central) from (anti-)isomorphisms? So, in particular, this question asks
whether the algebras should be (anti-)isomorphic provided that some of their Lie
subalgebras are isomorphic as Lie algebras. At his 1961 AMS Hour Talk [38, pp.
528–529], Herstein conjectured that this should hold true for Lie isomorphisms of
B, [B,B], [B,B]/[B,B]∩Z and, in the case where B was a ring with involution, Lie
isomorphisms of K, [K,K], and [K,K]/[K,K]∩Z, for the case when B was, neglect-
ing some low dimensional counterexamples, an arbitrary simple ring. He also posed
similar problems for another Lie type map, namely, for Lie derivations. The cases of
[B,B]/[B,B]∩Z and [K,K]/[K,K]∩Z seem to be of special interest since these two
Lie rings are, except in some very special situations, simple [38, Theorems 4 and 10]
(we remark here that K can differ from [K,K] even when every element of Z is left
fixed by the involution [48]). Note that the presence of anti-isomorphisms can be
avoided in results on Lie isomorphisms of skew elements—namely, if β were a neg-
ative of an anti-isomorphism of a ring B with involution, then the map a 7→ −(a∗)β

would be a homomorphism which coincides on K with β.
The resolution of Herstein’s Lie map problems in the classical case when B =

Mn(F ), F a field, has been well–known for a long time (see, e.g., [43, Chapter
10]). In 1951 Hua [42] described Lie automorphisms of a simple Artinian ring
B = Mn(D), D a division ring, n ≥ 3. Later on Martindale, a student of Herstein,
together with some of his students considered Herstein’s problems in a series of
papers [41, 50, 51, 53, 54, 55, 56, 57, 67]. Basically, the problems have been solved
provided that the rings contain certain nontrivial idempotents. Also, the treatment
of the problems has been extended from simple to prime rings (we mention, as a
curiosity, that the utility of the concept of the extended centroid of a prime ring
was realized for the first time when treating Lie maps of prime rings). Lie map
problems have also been considered in operator algebras [2, 3, 4, 5, 36, 62, 63, 64]
and the techniques there also rest heavily on the presence of idempotents. The
question whether the results on Lie maps can be obtained in rings containing no
nontrivial idempotents has been open for a long time.

It seems appropriate at this point to say a few words about the analogous Jor-
dan map project. Generally speaking, the Jordan case is usually easier than the
Lie case; in Herstein’s words [38, p. 518]: “... in general, in considering such ques-
tions as we shall, be they about the appropriate ideal structure, homomorphisms,
derivatives, the Jordan situation is much easier to study than the corresponding
Lie one. One reason for this is that in the Lie case the center of R constantly gets
in our way, so much so, that many questions, completely answered for the Jordan
case are virtually untouched in their Lie analogs.” The definition of a Jordan homo-
morphism is analogous to that of a Lie homomorphism. Jordan homomorphisms of
an (associative) ring onto a prime (associative) ring were characterized already by
Herstein [37]. In 1967, Martindale described Jordan homomorphisms of a Jordan
ring of symmetric elements in a ring with involution, containing some nontrivial
orthogonal idempotents [52] (see also an extension of Jacobson [44]). Though the
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Jordan case is supposed to be easier, the proofs of the results replacing the condi-
tion on idempotents by more intrinsic conditions [58, 60] are quite involved and are
based on Zelmanov’s path–breaking work on Jordan algebras [71].

The first idempotent free result on Lie maps was obtained in 1993 by Brešar
[27]. Under some mild technical assumptions (which were removed somewhat later
[22, 33]), he described the form of a Lie isomorphism between arbitrary prime rings.
This was also the first paper based on applications of the theory of functional iden-
tities. The main idea of the proof can be easily described. Every Lie isomorphism
α of an associative ring B clearly satisfies [xα, (x2)α] = 0 for every x ∈ B. This
identity can be viewed, at least from the present point of view, as a rather simple
functional identity (see Section 2). Under suitable assumptions, one can obtain all
possible solutions of functional identities. Hence one obtains the form of (x2)α.
Knowing how α acts on squares, and hence on the Jordan product, and at the same
time knowing, by the very definition of the Lie map, how α acts on the Lie product,
it is then easy to describe the action of α on the initial associative product. The
same idea also works in the semiprime case [6]. In 1994, Beidar, Martindale and
Mikhalev described Lie isomorphisms of K = K(B), where B was a prime ring with
char(B) 6= 2, 3 and with involution of the first kind [17] (see also [18, Chapter 9]).
This proof is considerably more difficult, but its main idea is essentially the same:
every Lie isomorphism α of K gives rise to a functional identity [xα, (x3)α] = 0 for
all x ∈ K (here, the fact that the cube of a skew element is skew again was used).
The case of char(B) = 3 was investigated by Chebotar [35] who also obtained a
considerably shorter proof of the main result of [17]. A consideration of Lie isomor-
phisms of Lie ideals of B and K (in particular, [B,B] and [K,K]) is more entangled
since there is no such obvious way of how to arrive at appropriate functional identi-
ties (in particular, these Lie rings are not closed under any powers). Nevertheless,
functional identities can be produced in these cases as well.

Though in the Jordan case surjective homomorphisms were described some time
ago, in the case of Lie maps only the isomorphisms have been investigated. The
first results on surjective Lie maps were obtained recently by Beidar and Chebotar
[12] who described Lie homomorphisms of Lie ideals of algebras onto noncentral
Lie ideals of prime algebras (factored by their centers). As a crucial tool in this
investigation, in [10, 11] the useful concept of a d-free subset of a ring was introduced
which, in particular, allows for a unified approach to a variety of mapping problems
involving different subsets of rings. Very roughly speaking, a subset of a ring is
d-free if every appropriate functional identity in less than d variables has only
the “standard” (i.e., “obvious”) solution. In [10, 11, 12] many basic results were
proved for d-free subsets of rings. These results can be applied to rings, Lie ideals
of rings, skew elements of rings with involution, etc. as soon as the d-freeness of
these subsets has been established. Since the d-freeness of noncentral Lie ideals of
the skew elements of a prime ring with involution was proved in [9], we shall apply
a number of these basic results in the present paper, enabling us in particular
to prove our key result, Theorem 3.5. In a subsequent paper and part II of the
present paper, we shall characterize Lie derivations by reducing the problem to Lie
isomorphisms onto a d-free set, which further illustrates the usefulness of the d-free
concept. We remark that one can usually establish the d-freeness of appropriate
subsets of the ring in question unless the ring is PI of low degree. Therefore it will
turn out that in order to obtain complete solutions of Herstein’s Lie isomorphism
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problems classical structure theory (for the PI case) seem to be required along with
the d-free methods (for the non–PI case).

As indicated earlier there has been over the years a long series of papers settling
Herstein’s Lie map conjectures in a variety of special situations. The main goal
of the present paper is to give solutions to all Lie isomorphism problems in rings
with involution modulo cases when rings satisfy PI of low degree. In particular,
we settle the most difficult of his conjectures, the one involving Lie isomorphisms
between Lie rings of the form [K,K]/[K,K] ∩ Z, K the skew elements of a prime
ring with involution. In Part III of the present paper, using structure theory of PI
rings, we remove these restrictions on degree of PI in both Parts I and II of the
present paper and in [12], and thereby solve Herstein’s problem in full generality.

We mention here several recent papers [19, 20, 21, 23, 24, 46, 61, 65, 69, 70]
which are connected in some way with our present work.

The paper is organized as follows. In Section 2 we briefly survey basic concepts
and some results on functional identities, thereby providing a necessary tool for at-
tacking the Lie map problem. The theory of functional identities has been developed
recently and much of this development has been motivated by the Lie map problems;
we refer to [26, 28, 29, 31, 49] for some initial results and to [7, 8, 9, 10, 11, 16, 30, 34]
for the more advanced results. In Section 2 we shall basically present only some ex-
tractions from the recent papers [9, 10, 11]. The main reason for including Section
2 in the paper is to make the paper readable and as self-contained as possible.

The body of the paper is Section 3 which treats Lie maps with d-free range.
As a matter of fact, for reasons that become clear in Section 4 and for most of
Section 3 we consider not only Lie maps but maps α satisfying a somewhat more
general condition [x, y]α = λ[xα, yα], where λ is a nonzero central element. In
our most general result on Lie maps, Theorem 3.5, there is no restriction on the
nature of the rings involved, the only essential restriction being that the range
of the Lie homomorphism is d-free, specifically d = 9. The d-freeness condition
seems to be the “proper condition” when considering such problems, and the class
of rings satisfying this condition certainly also includes various nonprime rings.
Nevertheless, because of historic reasons we are primarily interested in prime (and
simple) rings (with involution). As an application of the d-free approach we shall
then obtain several results which settle Herstein’s Lie isomorphism conjectures for
these rings. We are presently going to state these results, the proofs of which are
given in Section 3. But first we have to set some notation in place.

In what follows, F is a commutative ring with 1. Given a nonempty subset
T of an F -algebra A, we denote by 〈T 〉 the subalgebra of A generated by T .
Next, by B we denote a prime F -algebra with maximal right (left) ring of quotients
Qmr = Qmr(B) (respectively Qml = Qml(B)) and Martindale extended centroid
C = C(B) (see [18, Chapter 2]). We let Q be either Qmr or Qml. It is well-known
that both Q and C are F -algebras and B is a subalgebra of Q. We recall that
an involution ∗ on B is said to be of the first kind if ∗ acts as the identity on C;
otherwise, ∗ is of the second kind.

Let x ∈ Q. By deg(x) we shall mean the degree of x over C (if x is algebraic over
C) or ∞ (if x is not algebraic over C). Given a nonempty subset R ⊆ Q, we set

deg(R) = sup{deg(x) | x ∈ R}.

If B is prime and deg(B) = n <∞, then it follows from results of the theory of rings
with polynomial identities [66, 68] that the ring B is isomorphic to a subring D of
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the ring of n×n matrices over C, the algebraic closure of C, such that DC = Mn(C).
This is also equivalent to the condition that BC is of dimension n2 over C, as well
as to the condition that B satisfies the standard polynomial identity of degree 2n.

The next theorem must be regarded as the principal result of this paper since it
constitutes the breakthrough by which all of Herstein’s Lie isomorphism problems
for simple and prime rings with involution can be solved (see [38, p. 529, problem
5]).

Theorem 1.1. Let A be an F-algebra with involution, let L be the skew elements
of A, and let S be a Lie ideal of L. Let B be a prime F-algebra with involution,
let K be the skew elements of B, let R be a noncentral Lie ideal of K, and set
R = R/R∩C. Further, let α : S → R be a surjective Lie homomorphism. Suppose
that deg(B) > 20 and char(B) 6= 2. Then there exists an algebra homomorphism
ψ : 〈S〉 → 〈R〉C+ C such that xψ = xα for all x ∈ S. Moreover, if the involution of
B is of the first kind, then 〈S〉ψ = 〈R〉.

In essence Theorem 1.1 reduces Lie isomorphism problems for prime rings with
involution to the case where the ring B is PI of “low” degree. This latter situation
is handled separately in [25, 56]. Combining Theorem 1.1 with results from [25, 56]
in Part III of the present paper we shall obtain the the ultimate result that all of
Herstein’s Lie isomorphism conjectures for prime rings with involution are finally
solved in full generality. Special cases of these conjectures, where, among other
assumptions, the existence of nontrivial idempotents was required, were considered
by Martindale [56] and Rosen [67], as well as, quite recently, by Ayupov and Azamov
[3, 4] who treated Lie isomorphisms of [K(B),K(B)], B being a real factor (and hence
a prime real von Neumann algebra). As a corollary to Theorem 1.1 and [17, 25, 35]
we have the following result which solves Herstein’s Lie isomorphism conjectures
for simple rings.

Theorem 1.2. Let A be a simple F-algebra with involution and with extended
centroid T , let L be the skew elements of A, let S = [L,L] and let S = S/(S∩Z(A)).
Next, let B be a simple F-algebra with involution and with extended centroid C, let
K be the skew elements of B, let R = [K,K], and let R = R/(R∩Z(B)). Further,
let α : S → R be an isomorphism of Lie algebras. Suppose that char(F) 6= 2 and
one of the following conditions is fulfilled:

(a) Both involutions are of the first kind and dimC(B) 6= 1, 4, 9, 16, 25, 64.
(b) Both involutions are of the second kind and dimC(B) > 4 (if char(F) 6= 3) or

dimC(B) > 9 (if char(F) = 3).
(c) dimC(B) > 400.

Then there exists an isomorphism φ : A → B of F-algebras such that xα = xφ for
all x ∈ S.

Theorem 1.3. Let B be a simple F-algebra with involution ∗, with centroid C,
and with skew elements K. Further, let R = [K,K], let R = R/(R ∩ Z(B)), let
AurF(R) and AutF (R) be the groups of automorphisms of the Lie algebras R and
R respectively, and let

H = {σ ∈ AutF(B) | (x∗)σ = (xσ)∗ for all x ∈ B}.
Suppose that char(F) 6= 2 and one of the following conditions is fulfilled:

(a) The involution ∗ is of the first kind and dimC(B) 6= 1, 4, 9, 16, 25, 64.
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(b) The involution ∗ is of the second kind and dimC(B) > 4 (if char(F) 6= 3) or
dimC(B) > 9 (if char(F) = 3).

Then H ∼= AutF (R) ∼= AutF (R).

The purpose of our next theorem is to show that in certain situations (that is,
those cases not covered in Theorem 1.1) Lie isomorphisms cannot exist in the first
place (except for several low-dimensional examples).

Theorem 1.4. Let B be a prime ring with involution ∗ with skew elements K and
with Martindale centroid C. Further, let R be a noncentral Lie ideal of R. Suppose
that char(B) 6= 2 and deg(B) > 20. Then the Lie ring R = R/(R ∩ C) is not a
homomorphic image of a Lie ideal of any ring.

The case R = K of the above theorem was treated in [12, Theorem 1.6]. Further,
one can describe a Lie (Jordan) homomorphism as a map preserving the polynomial
xy−yx (xy+yx, respectively). In Section 5 we consider a more general problem of
characterizing maps that preserve arbitrary polynomials. Some special cases were
considered already by Kaplansky [47] (the polynomial xyx), Jacobson and Rickart
[45] (the polynomial [[x, y], z]) and Herstein [38] (the polynomial xn). The approach
with functional identities has already been proved to be efficient in this problem
[13, 14, 27, 32]. In this paper we prove

Theorem 1.5. Let B be prime ring with char(B) 6= 2, with involution ∗ and with
extended centroid C. Let R be a noncentral Lie ideal of the Lie ring K(B), let F
be a subring of S(C) such that 1

2 ∈ F , FR = R and FB = B. Let A be an F-
algebra with involution, let S be a Lie ideal of the Lie F-algebra K(A), let 0 6=
f(x1, x2, . . . , xm) ∈ F〈X〉 be a multilinear polynomial in x1, x2, . . . , xm, m ≥ 2,
such that f(s1, s2, . . . , sm) ∈ S for all si ∈ S and let α : S → R be an epimorphism
of F-modules such that

f(s1, s2, . . . , sm)α = f(sα1 , s
α
2 , . . . , s

α
m) for all s1, s2, . . . , sm ∈ S.

Suppose that deg(B) > max{4m + 2, 20} and one of the following conditions is
fulfilled:

(a) f(x1, x2, . . . , xm) is a Lie polynomial;
(b) α is an isomorphism of F-modules and A is a prime ring with deg(A) >

max{2m+ 2, 8};
(c) [S,S] = S.

Then there exist ζ ∈ C, an F-linear map µ : 〈S〉 → C and a homomorphism of
F-algebras β : 〈S〉 → 〈R〉C + C such that ζm−1 = 1,

xα = ζxβ + µ(x) for all x ∈ S
and µ(f(s1, s2, . . . , sm)) = 0 for all si ∈ S. Moreover, if fxi , the partial derivative
of f at xi, is nonzero for some 1 ≤ i ≤ m, then µ = 0 and 〈S〉φ = 〈R〉.

As a corollary to Theorem 1.5 we will obtain a solution to Herstein’s problem
on additive automorphisms of K preserving the polynomial x2n+1 [38, Problem 1,
p. 528]:

Theorem 1.6. Let B be a prime F-algebra with involution and with skew elements
K, let C be the Martindale centroid of B and let m ≥ 3 be an odd integer. Further,
let A be an F-algebra with involution and with skew elements L and let α : L → K
be a surjective F-module map such that (xm)α = (xα)m for all x ∈ L. Suppose that
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char(B) 6= 2 and deg(B) > max{4m + 2, 20}. Then there exist a homomorphism
of F-algebras β : 〈L〉 → 〈K〉C + C, an F-linear map µ : 〈L〉 → C and an element
ζ ∈ C such that ζm−1 = 1 and xα = ζxβ + µ(x) for all x ∈ L. Furthermore, if
char(B) = 0 or char(B) = p > 0 and m is not a power of p, then µ = 0.

2. Functional identities and d-free sets

First we fix the notation. Throughout the section, F will be a commutative
ring with 1, Q will be an F -algebra with 1 and C will be its center. Later on we
shall be primarily interested in the case when Q is the maximal (right or left) ring
of quotients of a prime algebra B, and hence C is the Martindale centroid of B.
However, until further notice, Q may be an arbitrary algebra. By S we denote an
arbitrary set, and by R we denote a subset of Q. Let N ∗ be the set of all positive
integers and for n ∈ N ∗ we let Sn denote the nth Cartesian power of S.

Let m ∈ N ∗ and E : Rm−1 → Q, p : Rm−2 → Q be arbitrary maps. In the case
when m = 1 it should be understood that E is an element in Q and p = 0. Let
1 ≤ i < j ≤ m, and define Ei, pij , pji : Rm → Q by

Ei(xm) = E(x1, . . . , xi−1, xi+1, . . . , xm) and

pij(xm) = pji(xm) = p(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xm).

Here, xm stands for (x1, . . . , xm).
Now let I,J ⊆ {1, 2, . . . ,m}, and for each i ∈ I, j ∈ J , let Ei, Fj : Rm−1 → Q

be arbitrary maps. The basic functional identities are∑
i∈I

Eii(xm)xi +
∑
j∈J

xjF
j
j (xm) = 0 for all xm ∈ Rm,(1)

and a slightly more general one,∑
i∈I

Eii(xm)xi +
∑
j∈J

xjF
j
j (xm) ∈ C for all xm ∈ Rm.(2)

The goal in the theory of functional identities is to describe the form of the maps
appearing in the identity. A natural possibility when (1) (and hence also (2)) is
fulfilled is when there exist maps pij : Rm−2 → Q, i ∈ I, j ∈ J , i 6= j, λk : Rm−1 →
C, k ∈ I ∪ J , such that

Eii(xm) =
∑
j∈J ,
j 6=i

xjp
ij
ij(xm) + λii(xm),

F jj (xm) = −
∑
i∈I,
i6=j

pijij(xm)xi − λjj(xm) and

λk = 0 if k 6∈ I ∩ J ,

(3)

for all xm ∈ Rm, i ∈ I, j ∈ J . Indeed, one can readily check that (3) implies
(1). We shall refer to (3) as a standard solution of (1) (and of (2)). It should be
pointed out that the case when one of the sets I or J is empty is not excluded. The
sum over the empty set of indices should be simply read as zero. This means that,
for example, a standard solution of the functional identity

∑
i∈I E

i
i(xm)xi = 0 is

Ei = 0, i ∈ I.
It turns out that often a standard solution is also the only possible solution.

This is the reason for introducing the following fundamental concept [10].
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Definition 2.1. A nonempty subset R ⊆ Q is said to be d-free, where d ∈ N ∗, if
for all m ∈ N ∗ and I,J ⊆ {1, 2, . . . ,m} the following two conditions are satisfied:

(a) If max{|I|, |J |} ≤ d, (1) implies (3).
(b) If max{|I|, |J |}| ≤ d− 1, (2) implies (3).

Thus, in a loose manner one can say that d-free sets are those subsets R of Q
that any functional identity on R in “not too many” variables has only a standard
solution. Incidentally, it is easy to see that this standard solution is unique [10,
Remark 2.5].

The basic result justifying the introduction of the concept of d-free sets states
that a prime ring B with deg(B) ≥ d is a d-free subset of Q, where Q is any of the
rings Qmr(B) or Qml(B) (this is explicitly stated in [10], but essentially already
proved in [7] and [16]). For this paper, however, the following deeper result is
needed.

Theorem 2.2 ([9, Theorem 1.1]). Let B be a prime ring with involution and let K
be the set of skew elements in B. Let Q be either Qmr(B) or Qml(B). If char(B) 6= 2
and deg(B) ≥ 2d+ 3, then any noncentral Lie ideal R of K is a d-free subset of Q.

This theorem makes it possible for us to apply to noncentral Lie ideals of K all
the results on d-free subsets obtained in [10, 11]. We will now review some of those
results that will be needed in the following sections. The first one will be used
frequently.

Theorem 2.3 ([10, Theorem 2.8]). Let D ⊆ R ⊆ Q be nonempty subsets and d ∈
N ∗. Suppose that D is d-free. Then R is d-free also.

The concept of a functional identity can be viewed as a generalization of the
concept of a polynomial identity. Indeed, assuming that all the maps Ei and Fj
are “monomials” λxi1 . . . xim−1 , the functional identity (1) reduces to a polyno-
mial identity. However, the theory of functional identities can be considered, at
this point, more as a complement to that of polynomial identities, rather than
its extension. Namely, one can obtain definite results concerning functional iden-
tities on d-free sets, which are, in a way, in striking contrast to the sets sat-
isfying polynomial identities. Namely, assume that a nonzero multilinear poly-
nomial f(X1, . . . , Xm) ∈ C〈X〉, the free algebra over C on the set of noncom-
muting variables X = {X1, X2, . . . }, is a polynomial identity on a set R ⊆ Q.
That is, f(x1, . . . , xm) = 0 for all x1, . . . , xm ∈ R. But this can be written as∑
i∈I E

i
i(xm)xi = 0, where each Ei ∈ C〈X〉 is a multilinear polynomial in m − 1

variables. Thus we have arrived at a functional identity with a nonstandard solu-
tion, unless R satisfies a polynomial identity of a smaller degree. But in the latter
case we can repeat the argument just given and so, after a finite number of steps,
we certainly get a functional identity in ≤ m variables with a nonstandard solution.
For future reference we record this observation as

Remark 2.4. Let f(X1, . . . , Xm) ∈ C〈X〉 be a nonzero multilinear polynomial. If
R is a d-free subset of Q with d ≥ m, then f(X1, . . . , Xm) is not a polynomial
identity on R.

Moreover, from [11, Corollary 2.4] we deduce at once the following somewhat
less obvious fact.
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Remark 2.5. Let f(X1, . . . , Xm) ∈ C〈X〉 be a nonzero multilinear polynomial at
least one of whose coefficients is invertible and let a ∈ Q. If R is a d-free subset of
Q with d ≥ m − 1, then f(x1, . . . , xm−1, a) = 0 for all x1, . . . , xm−1 ∈ R implies
a ∈ C.

As a matter of fact, functional identities that will appear in subsequent sections
are not exactly of the same type as (1) and (2). They will involve expressions of
the form

π(xm) =
∑
i∈I

Eii(xm)xαi +
∑
j∈J

xαj F
j
j (xm),

where α is a map from an arbitrary set S into Q and Ei, Fj : Sm−1 → Q. Such
functional identities may look more complicated than (1) and (2), but fortunately
this is only apparently so. One defines standard solutions in this setting in a self–
explanatory way (just replace xi by xαi on appropriate places in (3)). Now assume
that the range of α, R = Sα, is a d-free subset of Q. Then [10, Theorem 2.6]
tells us that if max{|I|, |J |} ≤ d, then the functional identity π(xm) = 0 for all
xm ∈ Sm has only the standard solution. The same is true for the functional
identity π(xm) ∈ C for all xm ∈ Sm, provided that max{|I|, |J |}| ≤ d− 1.

When dealing with functional identities, the so–called quasi-polynomials natu-
rally get in our way. Let us give a definition in a somewhat loose manner (see
[11] for details). A map E : S2 → Q is said to be a multilinear quasi-polynomial
(with respect to a map α : S → Q) of degree 2 if there exist λ1, λ2 ∈ C and maps
µ1, µ2 : S → C, ν : S2 → C such that

E(x, y) = λ1x
αyα + λ2y

αxα + µ1(x)yα + µ2(y)xα + ν(x, y) for all x, y ∈ S,

and at least one of what we shall call the coeffients of E, that is, λ1, λ2, µ1, µ2, ν,
is nonzero (map or element). A multilinear quasi-polynomial of degree m would,
of course, involve summands such as λxα1 . . . x

α
m, µ(x1)xα2 . . . x

α
m, ν(x1, x2)xα3 . . . x

α
m

etc. Adapting the argument establishing Remark 2.4 one easily proves the following
statement (which in turn is a special case of [11, Theorem 1.1]).

Lemma 2.6. Let E : Sm → Q be a multilinear quasi-polynomial (with respect to
α) of degree ≤ m. If E(xm) = 0 for all xm ∈ Sm and R = Sα is an (m + 1)-free
subset of Q, then all the coefficients of E are zero.

Occasionally we shall have to use a variant of Lemma 2.6 for quasi-polynomials
which are not multilinear. Instead of giving a rigorous statement [11, Corollary
2.12] we rather explain what we have in mind by a simple example. Suppose that
λ(xα)2yαxα+µ(x, x)yαxα+ν(x, x, x, y) = 0 for all x, y ∈ S, where the coefficients µ
and ν are multi-additive maps into C and λ ∈ C. A complete linearization then gives
a “multilinear” version of this identity (consisting of 18 terms such as λxα1 xα2 yxα3 ,
µ(x1, x2)yαxα3 , ν(x1, x2, x3, y) etc.). Now, Lemma 2.6 tells us that if R = Sα is
5-free, then λ = 0, µ(x1, x2) +µ(x2, x1) = 0 and

∑
π∈S3

ν(xπ(1), xπ(2), xπ(3), y) = 0.
Consequently, λ = 2µ(x, x) = 6ν(x, x, x, y) = 0 for all x ∈ S.

Functional identities involving only one map deserve special attention. We shall
need the following result on such identities which is a special case of [11, Theorem
1.2].
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Theorem 2.7. Let S be an F-module, let α : S → Q be an F-module map and let
E : Sm−1 → Q be an F-multilinear map such that

m∑
i=1

λiE
i(xm)xαi + µix

α
i E

i(xm) ∈ C for all xm ∈ S,

where λi, µi ∈ C and at least one of them is invertible. If R = Sα is an (m+1)-free
subset of Q, then E is a multilinear quasi-polynomial of degree ≤ m and each of its
coefficient is F-multilinear.

3. Lie homomorphisms and d-freeness

Throughout this section, F will be a commutative ring with 1, Q will be an
F -algebra with 1 and with center C, and R will be a subset of Q. Further, we set
Q = Q/C and R = R/(R ∩ C). We identify R with (R + C)/C ⊆ Q and remark
that Q is the factor Lie algebra of Q by the Lie ideal C.

Our goal is to prove the main result of this section, Theorem 3.5. This will be
done in a series of steps. We begin by stating a result from [11].

Theorem 3.1 ([11, Theorem 2.11]). Let U be a Lie subalgebra of an F-algebra A,
let α : U → Q be an F-module map and let B : Um → Q, m ≥ 2, be any F-
multilinear map such that

(a)
∑n

i=1B(xi, . . . , xm, x1, . . . , xi−1) ∈ C for all x1, . . . , xm ∈ U ,
(b) B(xm−1, [u, v]) − λ[B(xm−1, u), vα] − λ[uα, B(xm−1, v)] ∈ C for all xm−1 ∈
Um−1 and u, v ∈ U ,

(c) [u, v]α − λ[uα, vα] ∈ C for all u, v ∈ U ,
where λ ∈ C is an invertible element. If R = Uα is a (2m + 1)-free subset of Q,
then there exist a multilinear quasi-polynomial q : Um−1 → Q (with respect to α) of
degree ≤ m− 1 and a map µ : Um → C such that B(xm) = [q(xm−1), xαm] + µ(xm)
for all xm ∈ Um. Moreover, µ and all the coefficients of q are F-multilinear.

The conditions of this theorem might appear somewhat strange, but actually
we shall arrive at them in the proof of the next lemma. This lemma reduces the
general case of the Lie homomorphism problem to the case when the domain of
the map is closed under the Jordan triple product xyz + zyx (using terms of the
classical situation, the case of [K,K] shall be reduced to the case of K).

Lemma 3.2. Let A be an F-algebra, D a Lie subalgebra of A such that xyz+zyx ∈
D for all x, y, z ∈ D and S a Lie ideal of D. Further, let R be a submodule of the
F-algebra Q and α : S → Q an F-module map such that Sα = R and

[x, y]α = λ[xα, yα] for all x, y ∈ S,

where λ ∈ C is some fixed invertible element. Suppose that R is a 9-free subset of
Q and C is a direct summand of the C-module Q. Then there exists a pair (U ; γ)
such that

(a) U is a Lie ideal of the Lie F-algebra D containing S,
(b) γ : U → Q is an F-module map,
(c) [x, y]γ = λ[xγ , yγ ] for all x, y ∈ U ,
(d) xγ = xα for all x ∈ S,
(e) xyz + zyx ∈ U for all x, y, z ∈ U .
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Proof. We begin with a simple observation. Let V be a submodule of Q containing
R. Then V is 9-free (and hence 2-free) by Theorem 2.3. Let c ∈ Z(V). Then
cx− xc = 0, x ∈ V , and so c ∈ C by Remark 2.5. Therefore Z(V) = C ∩ V .

Now consider the class Ω of all pairs (U ′; γ′) satisfying (a)–(d). Given (U ′; γ′),
(U ′′; γ′′) ∈ Ω, we shall write (U ′; γ′) ≥ (U ′′; γ′′) provided U ′ ⊇ U ′′ and xγ

′
= xγ

′′

for all x ∈ U ′′. By Zorn’s lemma the class Ω has a maximal element, say (U ; γ). It
remains to show that condition (e) is satisfied. To this end, we set U to be equal to
the F -submodule of A generated by the subset {x, xyz + zyx | x, y, z ∈ U}. Since
U ⊆ D, U ⊆ D also. Given t ∈ D and x, y, z ∈ U , we have

[xyz + zyx, t] = [x, t]yz + zy[x, t] + x[y, t]z + z[y, t]x+ xy[z, t] + [z, t]yx ∈ U ,

showing that U is a Lie ideal of D containing U (and so containing S). Now our goal
is to extend γ to an F -module map U → Q satisfying (c). Then the maximality of
(U ; γ) will imply that U = U and the proof will be completed.

Choose a C-submodule W of Q such that Q = W ⊕ C. Since F · 1 ⊆ C, both
C and W are F -submodules of Q. Clearly F -modules W and Q are isomorphic
and so we may assume, without loss of generality, that γ : U → W . Let π be the
canonical projection of the module Q onto W . Then

[x, y]γ = λ[xγ , yγ ]π for all x, y ∈ U .

Therefore
[x, y]γ = λ[xγ , yγ ] + ε(x, y) for all x, y ∈ U

where ε(x, y) ∈ C.
Since we do not know whether Uγ is 9-free, we do the following. Set A′ = A⊕C,

D′ = D ⊕ C ⊆ A′ and U ′ = U ⊕ C ⊆ D′. Clearly A′ is an F -algebra, D′ is a Lie
subalgebra of A′ such that xyz + zyx ∈ D′ for all x, y, z ∈ D′ and U ′ is a Lie ideal
of D′. We identify A and C with corresponding subalgebras of A′. Further, set
V = Uγ ⊕ C ⊆ Q. It follows from (d) that Uγ ⊇ R = Rπ and so V ⊇ R. By the
above observation Z(V) = C ∩ V = C.

Finally, we define maps γ′ : U ′ → V and ε′ : U ′ × U ′ → C by the rule

(x + a)γ
′

= xγ + a for all x ∈ U , a ∈ C and
ε′(x+ a, y + b) = ε(x, y) for all x, y ∈ U , a, b ∈ C.

Clearly xγ
′

= xγ for all x ∈ U , (U ′)γ′ = V and so (U ′)γ′ is a 9-free subset of Q.
We have

[x+ a, y + b]γ
′

= [x, y]γ = λ[xγ , yγ ]π = λ[xγ , yγ ] + ε(x, y)

= λ[(x + a)γ
′
, (y + b)γ

′
] + ε′(x+ a, y + b) for all x, y ∈ U , a, b ∈ C

and so

[u, v]γ
′

= λ[uγ
′
, vγ

′
]π = λ[uγ

′
, vγ

′
] + ε′(u, v) for all u, v ∈ U ′.(4)

Next, setting U ′′ = U + C ⊆ D′, we remark that F -submodule U ′′ is generated
by the subset {x, xyz + zyx | x, y, z ∈ U ′}. In particular, U ′′ ⊇ U ′. To complete
the proof, it is enough to construct an F -module map γ′′ : U ′′ → W such that
xγ
′′

= xγ for all x ∈ U and

[x, y]γ
′′

= λ[xγ
′′
, yγ

′′
]π for all x, y ∈ U ′′.(5)
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To this end, we define a map B : (U ′)4 → Q by the rule

B(x, y, z, t) = [xyz + zyx, t]γ
′

for all x, y, z, t ∈ U ′.
Since xyz + zyx ∈ D, [xyz + zyx, t] ∈ U ′ and so B is a well-defined F -multilinear
map. A straightforward computation shows that

[xyz + zyx, t] + [yzt+ tzy, x] + [ztx+ xtz, y] + [txy + yxt, z] = 0(6)

and whence

B(x, y, z, t) +B(y, z, t, x) +B(z, t, x, y) +B(t, x, y, z) = 0(7)

for all x, y, z, t ∈ U ′. It follows from (4) that

B(x, y, z, [u, v]) = [xyz + zyx, [u, v]]γ
′

= {[[xyz + zyx, u], v] + [u, [xyz + zyx, v]]}γ′

= λ[[xyz + zyx, u]γ
′
, vγ

′
]π + λ[uγ

′
, [xyz + zyx, v]γ

′
]π

= λ[B(x, y, z, u), vγ
′
]π + λ[uγ

′
, B(x, y, z, v)]π

and so

B(x, y, z, [u, v])− λ[B(x, y, z, u), vγ
′
]− λ[uγ

′
, B(x, y, z, v)] ∈ C(8)

for all x, y, z, u, v ∈ U ′. Since V is a 9-free subset of Q and (U ′)γ′ = V , it follows
from (4), (7) and (8) that all the conditions of Theorem 3.1 are met (with m = 4).
By Theorem 3.1 there exist a multilinear quasi-polynomial q(x, y, z) (with respect
to γ′) of degree ≤ 3, all of whose coefficients are F -multilinear maps, and an F -
multilinear map µ : (U ′)4 → C such that

B(x, y, z, t) = [q(x, y, z), tγ
′
] + µ(x, y, z, t) for all x, y, z, t ∈ U ′.(9)

We now define a map γ′′ : U ′′ →W by the rule(
x+

n∑
i=1

(xiyizi + ziyixi)

)γ′′
=

(
xγ
′
+ λ−1

n∑
i=1

q(xi, yi, zi)

)π
for all x, xi, yi, zi ∈ U ′, i = 1, 2, . . . , n. We claim that γ′′ is a well-defined F -module
map. Indeed, suppose that x+

∑n
i=1(xiyizi + ziyixi) = 0. Let t ∈ U ′. Then

0 =

[
x+

n∑
i=1

(xiyizi + ziyixi), t

]γ′
= [x, t]γ

′
+

n∑
i=1

B(xi, yi, zi, t)

=

[
λxγ

′
+

n∑
i=1

q(xi, yi, zi), tγ
′

]
+ ε′(x, t) +

n∑
i=1

µ(xi, yi, zi, t)

and so [a, tγ
′
] ∈ C for all t ∈ U ′, where a = xγ

′
+ λ−1

∑n
i=1 q(xi, yi, zi). Since

(U ′)γ′ = V , [a,V ] ⊆ C (forcing [[a,V ],V ] = 0) and whence a ∈ C (Remark 2.5).
Therefore aπ = 0 and so γ′′ is well-defined. As γ′ is an F -module map and all
the coefficients of q are F -multilinear maps, we infer that γ′′ is an F -module map
which proves our claim.

Finally, we claim that (5) is satisfied. Indeed, let u, v, w, x, y, z, t ∈ U ′. Let us
first show that [x, t]γ

′′
= λ[xγ

′′
, tγ
′′
]π. Clearly [x, t] ∈ U and so [x, t]γ

′
= [x, t]γ ∈ W .

Therefore
[x, t]γ

′′
= ([x, t]γ

′
)π = [x, t]γ

′
= λ[xγ

′
, tγ
′
]π
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by (4). Since [aπ, bπ] = [a, b] for all a, b ∈ Q and γ′′ = γ′π, we conclude that

[x, t]γ
′′

= λ[xγ
′
, tγ
′
]π = λ[xγ

′′
, tγ
′′
]π.

Next we show that [xyz+zyx, t]γ
′′

= [(xyz+zyx)γ
′′
, tγ
′′
]π. We have [xyz+zyx, t] ∈

U ′ because U ′ is a Lie ideal of D′ and so

[xyz + zyx, t]γ
′′

= ([xyz + zyx, t]γ
′
)π = ([q(x, y, z), tγ

′
] + µ(x, y, z, t))π

= λ[λ−1q(x, y, z), tγ
′
]π = λ[(xyz + zyx)γ

′′
, tγ
′′
]π.

Since the F -module U ′′ is generated by the subset {x, xyz + zyx | x, y, z ∈ U ′}, we
conclude that [s, t]γ

′′
= λ[sγ

′′
, tγ
′′
]π for all s ∈ U ′′. It remains to show that

[xyz + zyx, uvw + wvu]γ
′′

= λ[(xyz + zyx)γ
′′
, (uvw + wvu)γ

′′
]π.

Clearly

[xyz + zyx, uvw + wvu] ∈ U ′′, [xyz + zyx, t], [uvw + wvu, t] ∈ U ′

and so, by what we just proved, we have

λ[[xyz + zyx, uvw + wvu]γ
′′
, tγ
′′
]π = [[xyz + zyx, uvw + wvu], t]γ

′′

= ([[xyz + zyx, t], uvw + wvu] + [xyz + zyx, [uvw + wvu, t]])γ
′′

= λ[[xyz + zyx, t]γ
′′
, (uvw + wvu)γ

′′
]π

+λ[(xyz + zyx)γ
′′
, [uvw + wvu, t]γ

′′
]π

= λ2[[(xyz + zyx)γ
′′
, tγ
′′
]π, (uvw + wvu)γ

′′
]π

+λ2[(xyz + zyx)γ
′′
, [(uvw + wvu)γ

′′
, tγ
′′
]π]π

= λ2[[(xyz + zyx)γ
′′
, tγ
′′
], (uvw + wvu)γ

′′
]π

+λ2[(xyz + zyx)γ
′′
, [(uvw + wvu)γ

′′
, tγ
′′
]]π

= λ2[[(xyz + zyx)γ
′′
, (uvw + wvu)γ

′′
], tγ

′′
]π .

Setting

a = [xyz + zyx, uvw + wvu]γ
′′ − λ[(xyz + zyx)γ

′′
, (uvw + wvu)γ

′′
],

we see that [a, tγ
′′
]π = 0 for all t ∈ U ′. By Remark 2.5, a ∈ C and so aπ = 0.

Therefore

[xyz + zyx, uvw + wvu]γ
′′

= λ[(xyz + zyx)γ
′′
, (uvw + wvu)γ

′′
]π

because γ′′π = γ′′. Thus (5) is satisfied and the proof is thereby complete.

We continue with an elementary lemma whose proof is extracted from that of
[39, Theorem 2.3].

Lemma 3.3. Let A be an F-algebra and let U be a Lie subalgebra of A such that
xyz + zyx ∈ U for all x, y, z ∈ U . Suppose that 1

2 ∈ F . Then 〈U〉 = U + U ◦ U .

Proof. We proceed by induction on n ≥ 2 to show that x1x2 . . . xn ∈ U + U ◦ U for
all x1, x2, . . . , xn ∈ U . Let x1, x2 ∈ U . Then

x1x2 =
1
2

([x1, x2] + x1 ◦ x2) ∈ U + U ◦ U .

In the inductive case n > 2 we have that

[x1, x2]x3 . . . xn, x2[x1, x3]x4 . . . xn ∈ U + U ◦ U
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by the induction assumption and whence

(x1x2x3 − x2x3x1)x4 . . . xn = [x1, x2]x3 . . . xn + x2[x1, x3]x4 . . . xn ∈ U + U ◦ U .
By assumption x1x3x2 + x2x3x1 ∈ U . Therefore the induction assumption yields
that (x1x3x2 + x2x3x1)x4 . . . xn ∈ U + U ◦ U and so

x1(x2 ◦ x3)x4 . . . xn = (x1x2x3 − x2x3x1)x4 . . . xn

+ (x1x3x2 + x2x3x1)x4 . . . xn ∈ U + U ◦ U .
Thus

x1x2 . . . xn =
1
2
{x1(x2 ◦ x3)x4 . . . xn + x1[x2, x3]x4 . . . xn} ∈ U + U ◦ U .

The proof is now complete.

Proposition 3.4. Let A be an F-algebra and let S be a Lie subalgebra of A such
that S ∩ (S ◦ S) = 0 and xyz + zyx ∈ S for all x, y ∈ S. Further, let R be a
submodule of the F-algebra Q. Let ρ : S → Q be an F-module map with Sρ = R
and let λ ∈ C be an invertible element such that

[u, v]ρ = λ[uρ, vρ] for all u, v ∈ S.
Suppose that 1

2 ∈ F , C is a direct summand of the C-module Q and R is a 7-free
subset of Q. Then there exists a homomorphism of algebras φ : 〈S〉 → 〈R〉C + C
such that xρ = λ−1 xφ for all x ∈ S.

Proof. Let W ⊆ Q be a C-submodule such that Q =W ⊕C and let π : Q →W be
a canonical projection of modules. Since F ·1 ⊆ C, we conclude that both W and C
are F -submodules of Q and π is an F -module map. Clearly F -modules W and Q
are isomorphic and so we may assume, without loss of generality, that ρ : S → W
is an F -module map such that

[u, v]ρ = λ[uρ, vρ]π for all u, v ∈ S and Sρ = Rπ.
Set A′ = A ⊕ C, S′ = S ⊕ C and R′ = Rπ + C = Rπ ⊕ C. Clearly S′ is a Lie
subalgebra of the algebra A′ such that xyz + zyx ∈ S′ for all x, y, z ∈ S′ and R′
is an F -submodule of Q containing R. We identify A and C with corresponding
ideals of the algebra A′. Since R is 7-free, Theorem 2.3 yields that R′ is 7-free as
well. We now define a map α : S′ →R′ by the rule (u+ c)α = uρ + c for all u ∈ S,
c ∈ C. Clearly α is an epimorphism of F -modules and

[u+ a, v + b]α = [u, v]ρ = λ[uρ, vρ]π = λ[(u + a)α, (v + b)α]π

for all u, v ∈ S, a, b ∈ C. Therefore [x, y]α − λ[xα, yα] ∈ C for all x, y ∈ S′.
Setting ε(x, y) = [x, y]α − λ[xα, yα], x, y ∈ S′, we conclude that ε : (S′)2 → C is an
F -bilinear map such that

[x, y]α = λ[xα, yα] + ε(x, y) for all x, y ∈ S′.(10)

Define a map B : (S′)3 → Q by the rule

B(x, y, z) = λ−2(xyz + zyx)α − (xαyαzα + zαyαxα) for all x, y, z ∈ S′.
We first remark that B(x, y, z) is a symmetric map “modulo C”. Indeed, obviously
B(x, y, z) = B(z, y, x) for all x, y, z ∈ S′. Further,

B(x, y, z)−B(y, x, z) = λ−2[[x, y], z]α − [[xα, yα], zα] ∈ C
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which proves our remark. It now follows from both (6) and (10) that

[B(x, y, z), tα] + [B(y, z, t), xα] + [B(z, t, x), yα] + [B(t, x, y), zα] ∈ C
for all x, y, z ∈ S′. By Theorem 2.7, B(x, y, z) is a multilinear quasi-polynomial, so
that

B(x, y, z) = λ1x
αyαzα + λ2x

αzαyα + λ3y
αxαzα + λ4y

αzαxα

+λ5z
αxαyα + λ6z

αyαxα + ν1(x)yαzα + ν2(x)zαyα + ν3(y)xαzα

+ν4(y)zαxα + ν5(z)xαyα + ν6(z)yαxα + µ1(x, y)zα + µ2(x, z)yα

+µ3(y, z)xα + ω(x, y, z) for all x, y, z ∈ S′,
where λi ∈ C, νi : S′ → C are F -linear maps, µj : (S′)2 → C are F -bilinear maps
and ω : (S ′)3 → C is an F -trilinear map. Since B(x, y, z) = B(z, y, x), Lemma 2.6
implies that λ1 = λ6, λ2 = λ5, λ3 = λ4, ν1 = ν6, ν2 = ν5, ν3 = ν4, µ1(x, y) =
µ3(y, x), µ2(x, z) = µ2(z, x) and ω(x, y, z) = ω(z, y, x). As B(x, y, z)−B(y, x, z) ∈
C, we obtain that

λ1 = λ3, λ2 = λ4, λ5 = λ6, ν1 = ν3, ν2 = ν4, ν5 = ν6, µ1(x, y) = µ1(y, x)

and µ2(x, z) = µ3(x, z). Set a = λ1, ν = ν1, µ = µ1. We now have

B(x, y, z)
= a{xαyαzα + xαzαyα + yαxαzα + yαzαxα + zαxαyα + zαyαxα}
+ ν(x)(yαzα + zαyα) + ν(y)(xαzα + zαxα) + ν(z)(xαyα + yαxα)
+ µ(x, y)zα + µ(x, z)yα + µ(y, z)xα + ω(x, y, z)(11)

for all x, y, z ∈ S′. Recalling the definition of B and making use of (11), we get

(xyx)α = λ2(xαyαxα +
1
2
B(x, y, x))

= λ2{(1 + a)xαyαxα + a(xαxαyα + yαxαxα) + ν(x)(xαyα + yαxα)

+ ν(y)xαxα + µ(x, y)xα +
1
2
µ(x, x)yα +

1
2
ω(x, y, x)}(12)

for all x, y ∈ S′. Analogously

(xyz + zyx)α = λ2{(1 + a)(xαyαzα + zαyαxα)
+a(xαzαyα + zαxαyα + yαxαzα + yαzαxα) + ν(x)(zαyα + yαzα)
+ν(z)(xαyα + yαxα) + ν(y)(xαzα + zαxα) + µ(x, y)zα + µ(z, y)xα

+µ(x, z)yα + ω(x, y, z)} for all x, y, z ∈ S′.(13)

It follows from both (12) and (13) that

2(xyxyx)α = {(xyx)yx+ xy(xyx)}α

= λ2
{

(1 + a){xαyα(xyx)α + (xyx)αyαxα}
+a{xα(xyx)αyα + (xyx)αxαyα + yαxα(xyx)α + yα(xyx)αxα}
+ν(x){(xyx)αyα + yα(xyx)α}+ ν(xyx)(xαyα + yαxα)
+ν(y){xα(xyx)α + (xyx)αxα}+ µ(x, y)(xyx)α + µ(xyx, y)xα

+µ(x, xyx)yα + ω(x, y, xyx)
}

= λ2a{(xyx)αxαyα + yαxα(xyx)α}+ q1

= 2λ4a2yαxαxαxαyα + q′1(14)
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for all x, y ∈ S′, where both q1 and q′1 are quasi-polynomials which do not involve
the monomial yαxαxαxαyα.

On the other hand, taking into account (12) we now have that

(x(yxy)x)α = λ2
{

(1 + a)xα(yxy)αxα + a(xαxα) ◦ (yxy)α

+ ν(x)xα ◦ (yxy)α + ν(yxy)xαxα + µ(x, yxy)xα

+
1
2
µ(x, x)(yxy)α +

1
2
ω(x, yxy, x)

}
= q2 for all x, y ∈ S′,(15)

where q2 is a quasi-polynomial not involving the monomial yαxαxαxαyα. Compar-
ing (14) and (15) we get that the coefficient λ4a2 of yαxαxαxαyα is equal to 0 (see
Remark 2.4 and the comment that follows). Therefore a = 0.

We see that (12) can be now rewritten as

(xyx)α = λ2{xαyαxα + ν(x)xα ◦ yα + ν(y)xαxα + µ(x, y)xα

+
1
2
µ(x, x)yα +

1
2
ω(x, y, x)}(16)

for all x, y ∈ S′. Next, (15) now yields

{x(yxy)x}α

= λ2
{
xα(yxy)αxα + ν(x)xα ◦ (yxy)α + ν(yxy)xαxα

+ µ(x, yxy)xα +
1
2
µ(x, x)(yxy)α +

1
2
ω(x, yxy, x)

}
= λ2{xα(yxy)αxα + ν(x)xα ◦ (yxy)α}+ q3

= λ4{µ(x, y) + 2ν(x)ν(y)}xαyαxα + q′3 for all x, y ∈ S′,(17)

where both q3 and q′3 are quasi-polynomials which do not involve the monomial
xαyαxα. Analogously, it follows from (14) that

2(xyxyx)α = {(xyx)yx+ xy(xyx)}α

= λ2{xαyα(xyx)α + (xyx)αyαxα + ν(x)(xyx)α ◦ yα

+ ν(xyx)xα ◦ yα + ν(y)xα ◦ (xyx)α + µ(x, y)(xyx)α + µ(xyx, y)xα

+ µ(x, xyx)yα + ω(x, y, xyx)}
= λ2{xαyα(xyx)α + (xyx)αyαxα + ν(y)xα ◦ (xyx)α + µ(x, y)(xyx)α}

+ q4 = λ4{3µ(x, y) + 2ν(x)ν(y)}xαyαxα + q′4 for all x, y ∈ S′,(18)

where both q4 and q′4 are quasi-polynomials which do not involve the monomial
xαyαxα. Comparing (17) and (18) we conclude from Lemma 2.6 that the coefficients
of xαyαxα are equal, that is to say,

2λ4[µ(x, y) + 2ν(x)ν(y)] = λ4[3µ(x, y) + 2ν(x)ν(y)] for all x, y ∈ S′.

Therefore µ(x, y) = 2ν(x)ν(y) and (13) can be rewritten as

(xyz + zyx)α

= λ2{xαyαzα + zαyαxα + ν(x)zα ◦ yα + ν(z)xα ◦ yα + ν(y)xα ◦ zα

+2ν(x)ν(y)zα+2ν(z)ν(y)xα + 2ν(x)ν(z)yα + ω(x, y, z)}
(19)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON HERSTEIN’S LIE MAP CONJECTURES, I 4251

for all x, y, z ∈ S′. Define a map β : S′ →R′ by the rule xβ = xα + ν(x). We now
have

(xyz + zyx)β = λ2{xβyβzβ + zβyβxβ + 2τ(x, y, z)} for all x, y, z ∈ S′,(20)

for some F -multilinear map τ : (S′)3 → C. Clearly τ(x, y, z) = τ(z, y, x) for all
x, y, z ∈ S′. Taking z = x in (20), we get

(xyx)β = λ2{xβyβxβ + τ(x, y, x)} for all x, y ∈ S′.(21)

Our aim is to show that τ = 0. By (21) we have

(x2yx2)β = {x(xyx)x}β = λ2{xβ(xyx)βxβ + τ(x, xyx, x)}
= λ4{xβ(xβyβxβ + τ(x, y, x))xβ}+ λ2τ(x, xyx, x) and

{x(x2yx2)x}β = λ2xβ{λ4xβ(xβyβxβ + τ(x, y, x))xβ

+ λ2τ(x, xyx, x)}xβ + λ2τ(x, x2yx2, x)

= λ6(xβ)3yβ(xβ)3 + λ6τ(x, y, x)(xβ )4

+ λ4τ(x, xyx, x)(xβ )2 + λ2τ(x, x2yx2, x)(22)

for all x, y ∈ S′. On the other hand,

(x3yx3)β = λ2{(x3)βyβ(x3)β + τ(x3, y, x3)}
= λ6{((xβ)3 + τ(x, x, x))yβ((xβ)3 + τ(x, x, x))} + λ2τ(x3, y, x3)

= λ6(xβ)3yβ(xβ)3 + λ6τ(x, x, x)(xβ )3 ◦ yβ + λ6τ2(x, x, x)

+ λ2τ(x3, y, x3) for all x, y ∈ S′.(23)

Subtracting (22) from (23) we obtain

λ6τ(x, y, x)(xβ)4 − λ6τ(x, x, x)(xβ)3 ◦ yβ + λ4τ(x, xyx, x)(xβ )2

+λ2τ(x, x2yx2, x)− λ6τ2(x, x, x) − λ2τ(x3, y, x3) = 0(24)

for all x, y ∈ S′. Since R′ = (S′)α is 7-free, substituting of xα + ν(x) for xβ in
(24) we conclude that λ6τ(x, y, x)(xα)4 can be written as a quasi-polynomial not
involving (xα)4 and so τ(x, y, x) = 0 by Lemma 2.6. Since τ(x, y, z) = τ(z, y, x),
we now conclude that τ = 0.

Define a map γ : S′ →R′C by the rule xγ = λxβ . It now follows from (20) that

(xyz + zyx)γ = xγyγzγ + zγyγxγ for all x, y, z ∈ S′.(25)

We also have that

[x, y]γ − [xγ , yγ ] = λ[x, y]β − λ2[xβ , yβ ]

= λ[x, y]α + λν([x, y]) − λ2[xα, yα] = λε(x, y) + λν([x, y]) ∈ C

for all x, y ∈ S′. Setting θ(x, y) = [x, y]γ − [xγ , yγ ] for all x, y ∈ S′, we remark that
θ : (S ′)2 → C is a biadditive map and

[x, y]γ = [xγ , yγ ] + θ(x, y) for all x, y ∈ S′.(26)

Our aim is to show that θ = 0. Since

[xzx, y] = [x, y]zx+ x[y, z]x+ xz[x, y],
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we get from both (25) and (26)

[xγzγxγ , yγ ]+θ(xzx, y) = [xzx, y]γ = ([x, y]zx+ x[y, z]x+ xz[x, y])γ

= {[xγ , yγ ] + θ(x, y)}zγxγ + xγ{[yγ , zγ] + θ(y, z)}xγ

+ xγzγ{[xγ , yγ ] + θ(x, y)} for all x, y, z ∈ S′

and so

θ(x, y)zγxγ + θ(y, z)(xγ)2 + θ(x, y)xγzγ − θ(xzx, y) = 0 for all x, y, z ∈ S′.
Substituting λxα + λν(x) for xγ and making use of Lemma 2.6, we conclude that
θ = 0 and so γ is a Lie homomorphism.

Setting z = y in (25), we get

(y2 ◦ x)γ = (yγ)2 ◦ xγ for all x, y ∈ S′.(27)

We now remark that S′ ◦S′ = S ◦S+C because SC = 0 and C ◦C = C. It follows
from Lemma 3.3 that every element a of the algebra 〈S′〉 can be written in the form
a = b +

∑
d2
i + c for some b, di ∈ S, c ∈ C. We define a map φ : 〈S′〉 → 〈R′C〉 by

the rule
aφ = bγ +

∑
i

(dγi )2 + cγ , a ∈ 〈S〉.

Suppose that b+
∑

i d
2
i + c = 0. Since A ∩ C = 0 and b+

∑
i d

2
i ∈ A, we conclude

that b+
∑
i d

2
i = 0 = c. As S ∩ (S ◦ S) = 0, b = 0 =

∑
d2
i and so (27) implies that

0 =
{(∑

d2
i

)
◦ z
}γ

= e ◦ zγ for all z ∈ S′,

where e =
∑

(dγi )2. Substituting [u, v] for z, we conclude that

e ◦ [uγ , vγ ] = 0 for all u, v ∈ S′.
Recalling that wγ = λwα + λν(w) for all w ∈ S′, we get e ◦ [uα, vα] = 0 for all
u, v ∈ S′. Since (S′)α = R′, we see that e ◦ [x, y] = 0 for all x, y ∈ R′. As R′ is
7-free, Remark 2.5 implies that e ∈ C and so 2e[x, y] = 0 is a polynomial identity
on R′. It now follows from Remark 2.4 that e = 0 and so φ is a well-defined map
of F -modules.

Given x, y ∈ S′ we have xy = 1
2{(x+ y)2 − x2 − y2 + [x, y]} and so

(xy)φ =
1
2
{[(x+ y)2]φ − (x2)φ − (y2)φ + [x, y]φ}

=
1
2
{(xγ + yγ)2 − (xγ)2 − (yγ)2 + [xγ , yγ ]}

= xγyγ = xφyφ.(28)

The identity x2y = 1
2{x ◦ [x, y] + x2 ◦ y} together with (27) yields

(x2y)φ =
1
2
{(x ◦ [x, y])φ + (x2 ◦ y)γ} =

1
2
{xγ ◦ [xγ , yγ ] + (xγ)2 ◦ yγ}

= (xγ)2yγ = (x2)φyφ for all x, y ∈ S′.(29)

In view of Lemma 3.3, both (28) and (29) imply that

(ux)φ = uφxφ for all u ∈ 〈S′〉, x ∈ S′.(30)

Since the algebra 〈S′〉 is generated by S′, it follows from (30) that φ is a homo-
morphism of the algebra 〈S′〉 into 〈R′C〉. From the definition of φ we see that
xρ = λ−1 xφ ∈ Q for all x ∈ S. The proof is complete.
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We are now in a position to prove the main result of this section.

Theorem 3.5. Let F be a commutative ring with 1, 1
2 ∈ F , let A be an F-algebra,

let D be a Lie subalgebra of A such that D ∩ (D ◦ D) = 0 and xyz + zyx ∈ D for
all x, y, z ∈ D and let S be a Lie ideal of D. Further, let R be a submodule of an
F-algebra Q with unity and let C be the center of Q. Let R = R/(R ∩ C) be the
factor module of R by the submodule R ∩ C, let Q = Q/C be the factor algebra of
the Lie algebra Q by the Lie ideal C and let α : S → Q be an F-module map such
that Sα = R and

[x, y]α = λ[xα, yα] for all x, y ∈ S,
where λ ∈ C is some fixed invertible element. Suppose that R is a 9-free subset of Q
and C is a direct summand of the C-module Q. Then there exists a homomorphism
of F-algebras φ : 〈S〉 → 〈R〉C + C such that

xα = λ−1 xφ ∈ Q for all x ∈ S.

Moreover, if λ = 1, (RC) ∩ C = 0 and one of the following conditions is fulfilled :
(a) [S,S] = S;
(b) R ⊆ K ⊆ Q, where K is a C-submodule of Q such that xyz + zyx ∈ K for all

x, y, z ∈ K and {(K ◦ K) + C} ∩ K = 0,

then identifying R and R we have that xα = xφ for all x ∈ S and 〈S〉φ = 〈R〉.

Proof. Clearly all the assumptions of Lemma 3.2 are satisfied. Let (U ; γ) be as in
Lemma 3.2 and let R̂ be the preimage in Q of Uγ ⊆ Q. Clearly R̂ containsR and so
it is 9-free by Theorem 2.3. It is now clear that all the assumptions of Proposition 3.4
are fulfilled (with U , γ and R̂ for S, ρ and R). Let φ : 〈U〉 → 〈R̂〉C + C be as in
Proposition 3.4. Clearly xα = λ−1 xφ ∈ Q for all x ∈ S.

Finally, assume that λ = 1 and (RC) ∩ C = 0. Since R∩C = 0, we may assume,
without loss of generality, that α : S → R. We have [R,R] = [Sα,Sα] = [S,S]α ⊆
Sα and so R is a Lie subalgebra of Q. Setting η(x) = xα − xφ, x ∈ S, we see that
η : S → C is an F -linear map. Clearly xα = xφ + η(x), x ∈ S. To complete the
proof of the theorem it is enough to show that η = 0 because then Sφ = Sα = R
and so 〈S〉φ = 〈R〉.

First, assume that the condition (a) is satisfied. Given x, y ∈ S, we have

[xα, yα] = [x, y]α = [x, y]φ + η([x, y]) = [xφ, yφ] + η([x, y]) = [xα, yα] + η([x, y])

and so η([x, y]) = 0 for all x, y ∈ S. Since [S,S] = S, we get at once that η = 0.
Next, assume that the condition (b) is fulfilled. Given x, y, z ∈ S, we have

(xyz + zyx)α = (xyz + zyx)φ + η(xyz + zyx) = xφyφzφ + zφyφxφ + η(xyz + zyx).

Since (xyz + zyx)α, xαyαzα + zαyαxα ∈ K, substituting xα − η(x), yα − η(y) and
zα − η(z) for xφ, yφ and zφ respectively, we get that

η(x)(yα ◦ zα) + η(y)(xα ◦ zα)
+η(z)(xα ◦ yα) + σ(x, y, z) ∈ {(K ◦ K) + C} ∩ K = 0

for all x, y, z ∈ S, where σ : S3 → C is some map. Lemma 2.6 now yields that η = 0
and the proof is thereby complete.

Theorems 1.1, 1.2, 1.3 and 1.4 will be obtained as corollaries to Theorem 3.5.
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Proof of Theorem 1.1. By Theorem 2.2, R is a 9-free subset of Q. Clearly xyz +
zyx ∈ K(A) for all x, y, z ∈ K(A). Next, K(A) ◦ K(A) ⊆ S(A) and so (K(A) ◦
K(A)) ∩ K(A) ⊆ S(A) ∩ K(A) = 0. Further, recall that C is a field and so C is
a direct summand of the C-module Q. Finally, suppose that ∗ is an involution
of the first kind. Let H be a symmetric ring of quotients of A. It is well-known
that the involution ∗ can be uniquely extended to H (see [18, Chapter 2]). Clearly
K(A) ⊆ K(H) = K, CK ⊆ K and K ∩ (K ◦ K + C) ⊆ K ∩ S(H) = 0. In particular,
K(A)C ∩ C ⊆ K ∩ C = 0. The result now follows from Theorem 3.5.

If B is a simple ring with deg(B) = n < ∞, then it satisfies the standard
polynomial identity of degree 2n and so it is a finite dimensional algebra over Z(B)
by Kaplansky’s theorem. Moreover, dimZ(B)(B) ≤ n2.

Proof of Theorem 1.2. First assume that (c) is fulfilled. Since dimC(B) > 400,
deg(B) ≥ 20. Denote by π the canonical projection of Lie algebras S → L and set
β = πα. It follows from Theorem 1.1 that there exists a surjective homomorphism
φ : 〈S〉 → 〈R〉 of algebras such that xβ = xφ for all x ∈ S. That is to say, xα = xφ

for all x ∈ S. Since dimC(B) > 400, 〈R〉 = B by [39, Theorem 2.13]. Clearly B
does not satisfy St4, the standard identity of degree 4. Therefore 〈S〉 (and so A)
does not satisfy St4. It follows from Kaplansky’s theorem that dimT (A) > 4. But
then [39, Theorem 2.13] tells us that 〈S〉 = A. As A is a simple algebra and φ is a
surjective map, we conclude that φ is an isomorphism.

Next, assume that (a) is satisfied. By the above result we may also suppose that
dimC(B) ≤ 400. Replacing α with α−1 we reduce the proof to the case dimT (A) ≤
400. It is well-known that S = L and R = K (see, for example [38, p. 529]). If
char(F) 6= 3, the result follows from [17, Corollary]. The case char(F) = 3 follows
from [35, Theorem 1.1].

Finally, suppose that (b) is fulfilled. Then we again may suppose that dimC(B) ≤
400 and so the result follows from [25, Theorem 1.1]. The proof is now complete.

Proof of Theorem 1.3. Let φ ∈ AutF(B) with (x∗)φ = (xφ)∗ for all x ∈ B. Clearly
K(B)φ = K(B) and so Rφ = R. If φ|R = idR, then φ = idB because B = 〈R〉 by
[39, Theorem 2.13]. Therefore

AutF (R) ⊇ {α ∈ AutF (B) | (x∗)α = (xα)∗ for all x ∈ B}.

Further, suppose that ψ ∈ AutF (R) induces an identical automorphism on R.
Then xψ − x ∈ Z(B) for all x ∈ R. Therefore

[x, y]ψ = [xψ, yψ] = [x, y] for all x, y ∈ R.(31)

If dimC(B) > 16, then [39, Theorem 2.15] implies that [R,R] = R. In this case (31)
implies that xφ = x for all x ∈ R forcing ψ = idR. Now assume that dimC(B) ≤ 16.
Then it follows from our assumption that the involution is of the second kind and
either dimC(B) = 9, 16 and char(F) 6= 3, or dimC(B) = 16. In both cases [B,B] is a
simple Lie algebra. Let C be the algebraic closure of C and let T = {c ∈ C | c∗ = c}.
It is well-known that K(B)⊗T C ∼= B⊗C C as Lie algebras and so R = [K(B),K(B)]
is a simple Lie algebra. Therefore (31) implies that ψ = idR in this case as well. We
conclude that canonical homomorphisms G → AutF (R) and AutF(R)→ AutF(R)
are monomorphisms.
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Let α ∈ AutF (R). By Theorem 1.2 there exists an automorphism φ of the
algebra B such that

x α = xφ for all x ∈ R.
Therefore Rφ ⊆ R + Z(B). As [R,R] = R according to the above discussion, we
conclude that

Rφ = [Rφ,Rφ] ⊆ [R+ Z(B),R+ Z(B)] = R ⊆ K(B).

Hence (xyz+zyx)φ ∈ K(B) for all x, y, z ∈ R. Let U be an F -submodule generated
by {x, xyz + zyx | x, y, z ∈ R}. As we note at the beginning of the proof of
Lemma 3.2, U is a Lie ideal of K(B) containing R. Clearly Uφ ⊆ K(B). Continuing
in this way and applying Zorn’s lemma we get that there exists a Lie ideal V of K(B)
containing R such that xyz+ zyx ∈ V for all x, y, z ∈ V and Vφ ⊆ K(B). Therefore
(V ◦ V)φ ⊆ S(B). By Lemma 3.3, 〈V〉 = V + V ◦ V . As 〈R〉 = B and R ⊆ V ,
we conclude that B = V + V ◦ V and so V = K(B) and V ◦ V = S(B). It follows
that K(B)φ ⊆ K(B) and S(B)φ ⊆ S(B). Since φ is an automorphism, we have
K(B)φ = K(B) and S(B)φ = S(B). One can now easily check that (x∗)φ = (xφ)∗

for all x ∈ B. The proof is complete.

Proof of Theorem 1.4. Suppose to the contrary that R is a homomorphic image of
a Lie ideal U of a ring H. Let α : U → R be a surjective Lie map. Localizing
both rings H and B by the multiplicatively closed subset S = {1, 2, 4, . . . , 2n, . . . }
of the ring of integers Z, replacing H, U , B and R by S−1H, S−1U , S−1B and
S−1R respectively and setting F = S−1Z, we reduce the proof to the case when
both H and B are algebras over F , U is a Lie ideal of the algebra H, R is a
noncentral Lie ideal of K(B) and 1

2 ∈ F . Next, we set A = H ⊕ Hop, where Hop
is the opposite algebra of H, and S = {(x,−x) | x ∈ U}. Letting # denote the
exchange involution on A (i.e., (h1, h2)# = (h2, h1), h1, h2 ∈ H), we see that S
is a Lie ideal of K(A). We define a map β : S → R by the rule (x,−x)β = xα,
x ∈ U . Clearly β is a surjective Lie map. Since all the conditions of Theorem 1.1
are now met, we conclude that there exists a map φ : 〈S〉 → 〈R〉C + C of F -
algebras such that sβ = sφ + C ∈ Qmr(B)/C for all s ∈ S. It now follows that
R ⊆ Sφ + C and Sφ ⊆ R + C because R = Sβ . Consequently, [R,R] ⊆ [Sφ,Sφ]
and [Sφ,Sφ] ⊆ [R,R]. Therefore

[R,R] = [Sφ,Sφ] ⊆ Sφ.(32)

Since R is a noncentral Lie ideal of K(B), [R,R] is a nonzero Lie ideal of K(B). As
deg(B) > 20, [59, Theorems 3.4 and 5.6] implies that 〈[R,R]〉 contains a nonzero
ideal V of the algebra B. Since the subalgebra 〈[R,R]〉 is ∗-invariant, we may
assume that V∗ = V . Clearly

V ⊆ 〈[R,R]〉 ⊆ 〈S〉φ ⊆ Qs(B) = Qs(V)(33)

where Qs(B) is the symmetric ring of quotients of the algebra B (see [18, Chapter
2]). It now follows at once that the algebra 〈S〉φ is prime.

Set W1 = 〈S〉 ∩ (H, 0) and W2 = W#
1 . Clearly both W1 and W2 are ideals of

the algebra 〈S〉 and W1W2 = 0. Since 〈S〉φ is prime, either Wφ
1 = 0 or Wφ

2 = 0.
Say Wφ

2 = 0. Replacing H by 〈U〉 we may assume that H = 〈U〉 and so the
canonical projection π : A → (H, 0) maps 〈S〉 onto (H, 0). ClearlyW2 is the kernel
of π restricted to 〈S〉. Therefore 〈S〉/W2

∼= (H, 0). As U is a Lie ideal of H and
Sπ = (U , 0), we conclude that (S +W2)/W2 is a Lie ideal of 〈S〉/W2. Recalling
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that Wφ
2 = 0, we see that Sφ is a Lie ideal of 〈S〉φ. Taking into account (32), we

conclude that [R,R] = [Sφ,Sφ] is a Lie ideal of the algebra 〈S〉φ. In particular,
[[R,R],V ] ⊆ [R,R] by (33). As R ⊆ K(B) and [[R,R],S(V)] ⊆ S(B), we conclude
that [[R,R],S(V)] = 0. Recalling that V ⊆ 〈[R,R]〉, we get that S(V) ⊆ Z(V)
and whence deg(V) ≤ 2 (see [39, 40]). It follows at once that deg(B) ≤ 2 (see, for
example [1]), a contradiction. The proof is thereby complete.

4. Polynomial preservers

We first set some further notation in place. In what follows, Q is a ring with 1
and with center C, F is a subring of C containing 1, X = {x1, x2, . . . , xm, . . . } is
an infinite set and F〈X〉 is the free F -algebra on X with unity. Let d : B → B be
a derivation of an F -algebra B and let f(xm) ∈ F〈X〉 be a multilinear polynomial
in x1, x2, . . . , xm. Clearly

f(am)d =
m∑
i=1

f(a1, . . . , ai−1, a
d
i , ai+1, . . . , am)

for all am ∈ Bm. In particular,

[f(am), b] =
m∑
i=1

f(a1, . . . , ai−1, [ai, b], ai+1, . . . , am)(34)

for all am ∈ Bm, b ∈ B. Given 1 ≤ i ≤ m, we set

fxi = f(x1, . . . , xi−1, 1, xi+1, . . . , xm).

If G ⊆ F〈X〉 ⊆ C〈X〉, we put AnnC(G) = {c ∈ C | cg = 0 for all g ∈ G}. Finally,
a nonzero polynomial g ∈ F〈X〉 is called special if all its nonzero coefficients are
invertible in C.

Taking B(u, v) in [11, Theorem 2.9] to be equal to [u, v]α and making use of
(34), we immediately get the following result.

Theorem 4.1. Let f(xm) ∈ F〈X〉, m ≥ 2, be a special multilinear polynomial.
Further, let S be a subset of an F-algebra A such that f(sm) ∈ S for all sm ∈ Sm,
and let α : S → Q be an F-module map such that

f(s1, s2, . . . , sm)α = f(sα1 , s
α
2 , . . . , s

α
m) for all s1, . . . , sm ∈ S.

If R = Sα is a (2m)-free subset of an F-algebra Q, then there exist λ ∈ C and an
F-bilinear map ε : S ×S → C such that [u, v]α = λ[uα, vα] + ε(u, v) for all u, v ∈ S.
Furthermore, Im(ε) ⊆ AnnC({fxi | 1 ≤ i ≤ m}).

Proof of Theorem 1.5. Since deg(B) > max{4m+ 2, 20}, Theorem 2.2 tells us that
R is a 9-free as well as a 2m-free subset of Q = Qmr(B). Therefore all the as-
sumptions of Theorem 4.1 are fulfilled and so there exist λ ∈ C and a bilinear map
ε : S → C such that [x, y]α = λ[xα, yα] + ε(x, y) for all x, y ∈ S. We claim that
λ 6= 0. Assume to the contrary that λ = 0. Then [S,S]α ⊆ C. First, assume that
the condition (a) is satisfied. We now get at once that f(sα1 , s

α
2 , . . . , s

α
m) ∈ C for all

sm ∈ S. Since Sα = R, we conclude that [f(xm), xm+1] is a polynomial identity
on R, contradicting Remark 2.4.

Next, assume that (b) is fulfilled. By Theorem 2.2, S is both an m-free subset
of Qmr(A) and a 3-free subset. In particular, [[S,S],S] 6= 0 by Remark 2.4. Since
[x, y]α = ε(x, y) ∈ C for all x, y ∈ S, we conclude that ε 6= 0 because α is bijective.
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It follows at once from Theorem 4.1 that each fxi = 0. Take um ∈ Sm such that
u1 ∈ [S,S]. Then uα1 ∈ C and so

f(um)α = f(uα1 , u
α
2 , . . . , u

α
m) = uα1 fx1(uα2 , u

α
3 , . . . , u

α
m) = 0.(35)

Since α is bijective, we conclude that f(um) = 0 for all u2, u3, . . . , um ∈ S and so
u1 belongs to the extended centroid of A by Remark 2.5. Therefore [[S,S],S] = 0,
a contradiction.

Finally, assume that (c) is satisfied. Then Sα = [S,S]α ⊆ C. Again we conclude
that ε 6= 0 and so each fxi = 0. Therefore (35) together with surjectivity of α yields
that f(xm) is a polynomial identity on R, contradicting Remark 2.4.

Thus λ 6= 0 and so it is invertible in C because C is a field. We now see that
the composition of α with the canonical projection Q 7→ Q/C satisfies all the
assumptions of Theorem 3.5 and so there exists a homomorphism of F -algebras
β : 〈S〉 → 〈R〉C + C such that

xα − ζxβ ∈ C for all x ∈ S
where ζ = λ−1. Setting µ(x) = xα − ζxβ , x ∈ S, we see that µ : S → C is an
F -linear map such that xα = ζxβ + µ(x).

We claim that Sβ is an 2m-free subset of Q. Indeed,

Sβ ⊇ [S,S]β = [Sβ ,Sβ ] = ζ2[Sα,Sα] = ζ2[R,R].

Since R is 9-free, [[R,R],R] 6= 0 by Remark 2.4 and so [R,R] is a noncentral Lie
ideal of K(B). Therefore [R,R] is m-free by Theorem 2.2 and now Theorem 2.3
implies that Sβ is m-free as well.

We now have that

ζf(sm)β + µ(f(sm))(36)

= f(sm)α = f(sα1 , . . . , s
α
m) = f(ζsβ1 + µ(s1), . . . , ζsβm + µ(sm))

= ζmf(sm)β +
m∑
k=1

∑
1≤i1<...<ik≤m

ζm−kµ(si1) . . . µ(sik)fxi1 ...xik (sβm)

for all sm ∈ S. Recalling that Sβ is m-free, we conclude from Lemma 2.6 together
with (36) that in particular,

ζf(xm) = ζmf(xm) ∈ F〈X〉,
µ(si)fxi(s

β
m) = 0, i = 1, 2, . . . ,m, sm ∈ Sm,

µ(f(sm)) = 0, sm ∈ Sm,
and so ζm−1 = 1. Since Sβ does not satisfy any nonzero polynomial identities of
degree ≤ 2m by Remark 2.4, we see that either each fxi = 0 or µ = 0. The proof
is complete.

Proof of Theorem 1.6. Linearizing xm, we get( ∑
σ∈Sm

xσ(1)xσ(2) . . . xσ(m)

)α
=
∑
σ∈Sm

xασ(1)x
α
σ(2) . . . x

α
σ(m)

for all xn ∈ Am, where Sm is the symmetric group of degree m. By Theorem 1.5
there exist a homomorphism of F -algebras β : 〈L〉 → 〈K〉, an F -linear map µ :
〈L〉 → C and an element ζ ∈ C such that ζm−1 = 1 and

xα = ζxβ + µ(x) for all x ∈ L.
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Set f(xm) =
∑

σ∈Sm xσ(1)xσ(2) . . . xσ(m). If fx1 6= 0, then µ = 0 by Theorem 1.5.
If fx1 = 0, then char(B) = p > 0 and p divides m. Write m = pkn where p does
not divide n. Suppose that n > 1. Then we have

ζ(xβ)m + µ(xm) = (xm)α = (xα)m = [ζxβ + µ(x)]m = {[ζxβ + µ(x)]p
k

}n

=
n∑
i=0

(
n

i

)
ζip

k

(xβ)ip
k

µ(x)(n−i)pk(37)

for all x ∈ L. Since xα = ζxβ + µ(x) and ζ 6= 0, deg(xα) = deg(xβ) for all x ∈ L.
Recall that Lα = K. By [9, Lemma 2.1] deg(B) = deg(K) and so L contains an
element x with deg(xβ) = deg(xα) > m. It now follows from (37) that µ = 0. The
proof is now complete.
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[9] K.I. Beidar, M. Brešar, M.A. Chebotar and W.S. Martindale III, On functional identities in
prime rings with involution, II, Comm. Algebra, 28 (2000), 3169–3183. CMP 2000:14

[10] K.I. Beidar and M.A. Chebotar, On functional identities and d-free subsets of rings, Comm.
Algebra 28 (2000), 3925–3951. CMP 2000:15

[11] K.I. Beidar and M.A. Chebotar, On functional identities and d-free subsets of rings II, Comm.
Algebra 28 (2000), 3953–3972. CMP 2000:15

[12] K.I. Beidar and M.A. Chebotar, On surjective Lie homomorphisms onto Lie ideals of prime
rings, submitted.

[13] K.I. Beidar and M.A. Chebotar, On additive maps onto Lie ideals of prime rings preserving
a polynomial, submitted.

[14] K.I. Beidar and Y. Fong, On additive isomorphisms of prime rings preserving polynomials,
J. Algebra 217 (1999), 650–667. MR 2000k:16025

[15] K.I. Beidar, Y. Fong, P.-H. Lee and T.-L. Wong, On additive maps of prime rings satisfying
the Engel condition, Comm. Algebra 25 (1997), 3889–3902. MR 98i:16022

[16] K.I. Beidar and W.S. Martindale III, On functional identities in prime rings with involution,
J. Algebra 203 (1998), 491–532. MR 99f:16024

[17] K.I. Beidar, W.S. Martindale III and A.V. Mikhalev, Lie isomorphisms in prime rings with
involution, J. Algebra 169 (1994), 304–327. MR 95m:16021

[18] K.I. Beidar, W.S. Martindale III and A.V. Mikhalev, Rings with Generalized Identities, Mar-
cel Dekker, Inc., 1996. MR 97g:16035

[19] M.I. Berenguer and A.R. Villena, Continuity of Lie derivations on Banach algebras, Proc.
Edinburgh Math. Soc. 41 (1998), 625–630. MR 2000i:46040

[20] M.I. Berenguer and A.R. Villena, Continuity of Lie mappings of the skew elements of Banach
algebras with involution, Proc. Amer. Math. Soc. 126 (1998), 2717–2720. MR 98k:46083

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=39:4216
http://www.ams.org/mathscinet-getitem?mr=94j:46058
http://www.ams.org/mathscinet-getitem?mr=97h:46110
http://www.ams.org/mathscinet-getitem?mr=97a:46096
http://www.ams.org/mathscinet-getitem?mr=99g:46100
http://www.ams.org/mathscinet-getitem?mr=97j:16033
http://www.ams.org/mathscinet-getitem?mr=99f:16023
http://www.ams.org/mathscinet-getitem?mr=2000d:16033
http://www.ams.org/mathscinet-getitem?mr=2000k:16025
http://www.ams.org/mathscinet-getitem?mr=98i:16022
http://www.ams.org/mathscinet-getitem?mr=99f:16024
http://www.ams.org/mathscinet-getitem?mr=95m:16021
http://www.ams.org/mathscinet-getitem?mr=97g:16035
http://www.ams.org/mathscinet-getitem?mr=2000i:46040
http://www.ams.org/mathscinet-getitem?mr=98k:46083


ON HERSTEIN’S LIE MAP CONJECTURES, I 4259

[21] M.I. Berenguer and A.R. Villena, Continuity of Lie isomorphisms of Banach algebras, Bull.
London Math. Soc. 31 (1999), 6–10. MR 2000a:46071

[22] P.S. Blau, Lie Isomorphisms of Prime Rings Satisfying S4, PhD Thesis, Univ. of Mas-
sachusetts, 1996.

[23] P.S. Blau, Lie isomorphisms of non-GPI rings with involution, Comm. Algebra 27 (1999),
2345–2373. MR 2000d:16049

[24] P.S. Blau, Lie isomorphisms of prime rings satisfying S4, Southeast Asian Math. Bull.
[25] P.S. Blau and W.S. Martindale III, Lie isomorphisms in *-prime GPI rings with involution,

Taiwanese J. Math. 4 (2000), 215–252. CMP 2000:13
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