
Copyright 1997 IEEE. Published in the Proceedings of Micro-30, December 1-3, 1997 in Research Triangle Park, North Carolina. Per-
sonal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works, must be obtained from IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes lane / P. O.
Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

 On High-Bandwidth Data Cache Design for Multi-Issue
Processors

Abstract
Highly aggressive multi-issue processor designs of the
past few years and projections for the next decade require
that we redesign the operation of the cache memory sys-
tem. The number of instructions that must be processed
(including incorrectly predicted ones) will approach 16 or
more per cycle. Since memory operations account for
about a third of all instructions executed, these systems
will have to support multiple data references per cycle. In
this paper, we explore reference stream characteristics to
determine how best to meet the need for ever increasing
access rates. We identify limitations of existing multi-
ported cache designs and propose a new structure, the
Locality-Based Interleaved Cache (LBIC), to exploit the
characteristics of the data reference stream while
approaching the economy of traditional multi-bank cache
design. Experimental results show that the LBIC structure
is capable of outperforming current multi-ported
approaches.

1. Introduction
Improvements in microprocessor performance continue to
surpass the performance gains of their memory sub-
systems. Higher clock rates and increasing numbers of
instructions issued and executed in parallel account for
much of this improvement. By exploiting instruction level
parallelism (ILP), these processors are capable of issuing
multiple instructions per cycle, which places a greater
demand on the memory system to service multiple
requests per cycle. As microprocessor designers push for
more performance, the trend to aggressively exploit more
and more ILP will continue; targets of up to 16 instruc-
tions (i.e. an average of three basic blocks) per clock cycle
are already being explored [1]. With about a third of a pro-
gram’s instruction mix being memory references [2], an
average of 6 load/stores per cycle is necessary in order to
sustain a 16-wide issue rate. With such demands, current
single- and dual-ported cache implementations are clearly
inadequate. There is a need to explore low-cost techniques
for increasing the effective number of ports in order to
meet the need for sustainable cache bandwidth.

Currently, multiple cache ports are implementable in
one of four ways: either by conventional and costly ideal
multiporting, by time division multiplexing, by replicating
multiple single-port copies of the cache, or (with lower
performance and possibly lower cost) by interleaving the
cache through multiple independently-addressed banks.
Conceptually, ideal multi-porting requires that all p ports
of a p-ported cache be able to operate independently,
allowing up to p cache accesses per cycle to any addresses.
However, ideal multiporting is generally considered too
costly and impractical for commercial implementation for
anything larger than a register file. Current commercial
multiporting implementations therefore use one of the
remaining three techniques.

The time division multiplexed technique (virtual multi-
porting), employed in the IBM Power2 [14] and the new
DEC Alpha 21264 [6], achieves dual-porting by running
the cache SRAM at twice the speed of the processor clock.
As data access parallelism moves beyond 2, extending this
technique by running SRAMs p times as fast as the pro-
cessor will become infeasible as a multiporting solution.
Consequently, we do not explore this technique any further
in this paper.

The data cache implementation in the DEC Alpha
21164 [5] provides an example of multi-porting through
multiple copy replication. The 21164 implements a two-
ported cache by maintaining identical copies of the data
set in each cache. To keep both copies coherent, every
store operation must be sent to both cache ports simulta-
neously, thus reducing the effectiveness and scalability of
this approach relative to ideal multi-porting. Another
major cost of this approach is the die area necessary for
cache replication.

A 2-bank (interleaved) data cache is found, for exam-
ple, in the MIPS R10000 [4]. A simultaneously served pair
of data references must address different banks. With a
well balanced and well scheduled memory reference
stream, this approach can boost data access parallelism
and deliver high bandwidth. With the wrong memory ref-
erence stream, however, bank access conflicts can seri-
ously degrade the delivered performance toward single-
ported, single bank performance. Although dividing a

Jude A. Rivers, Gary S. Tyson, Edward S. Davidson
Advanced Computer Architecture Laboratory

The University of Michigan
{jrivers,tyson,davidson}@eecs.umich.edu

Todd M. Austin
MicroComputer Research Labs

Intel Corporation
taustin@ichips.intel.com

cache into banks can be economical, the cost of the cross-
bar between the load/store units and the cache ports grows
superlinearly as the banks (and ports) increase.

Even with high hit ratios, these multi-porting tech-
niques fall short of the ideal performance threshold due to
the need for broadcast writes in the replicated design, and
the existence of bank conflicts in the multi-bank approach.
In this study, we evaluate these implementations and their
scalability to ideal multiporting as data access parallelism
increases. Though each technique has significant costs and
drawbacks, we find that multi-banking holds the key to a
low cost cache memory design that can cope with increas-
ing degrees of instruction level parallelism. A look at the
memory reference stream reveals that a substantial number
of bank conflicts are caused by references to the same
cache line. In this paper, we propose and evaluate the
Locality-Based Interleaved Cache (LBIC), an enhanced
multi-bank design, that employs a single line multi-ported
buffer per bank to reduce bank conflicts. The LBIC, by
exploiting same line locality, scales well toward ideal mul-
tiporting with an implementation cost close to traditional
multi-banking.

In the next section, we describe the architectural
assumptions made in this study, the simulation environ-
ment, and the characteristics of the benchmarks used. In
Section 3, we examine the three multiple cache port
approaches: ideal multi-porting, replicated multi-porting
and multi-banking. Section 4 presents characteristics of
the memory reference stream, and the effects on multi-
banking performance. Our analysis in Sections 3 and 4
serve as the basis for the introduction of the Locality-
Based Interleaved Cache (LBIC) in Section 5. An evalua-
tion of the LBIC design is given in Section 6, and Section

7 concludes this work.

2. Methodology
Given the emerging trend toward aggressive ILP exploita-
tion through multiple instruction issue, we anticipate that
there will be an increasing burden on the data cache to ser-
vice ever more numerous requests per cycle. To capture
this hypothesis in our experiments, we model a dynamic
superscalar processor with a very high issue rate. Higher
issue rates demand even higher-bandwidth instruction sup-
ply and increased resources for instruction processing.
More resources for instruction processing basically entails
adding functional units (made possible by VLSI advances)
whereas high-bandwidth instruction supply requires
sophisticated branch prediction techniques, more complex
decode/issue logic, and high-bandwidth fetch strategies
(e.g. the Fill Unit [19][20] and the Trace Cache [3]), which
are relevant, but beyond the scope of this paper.

Modern branch predictors are already quite accurate
and more accurate branch predictors, capable of predicting
across multiple basic blocks, are expected in the near
future. Future processors are also bound to exploit more
parallelism through more aggressive speculation across
multiple basic blocks. These developments will place a far
greater demand on the data memory than current proces-
sors do. We must note that more accurate branch predic-
tion for dynamic superscalar processors has not decreased
the resource requirements needed for processor execution,
but has rather increased the useful work completed per
cycle.

2.1. Architectural Assumptions
Our processor architecture is an extended version of the
SimpleScalar [17] sim-outorder simulator which performs

Figure 1: The schematic structure of our simulated dynamic superscalar processor. Our focus is on the bandwidth
requirements of the data supply portion

Register
Update

Units

&

Load-Store

Integer

FP
Units

LD/ST

Data
Cache

In
st

ru
ct

io
n

 S
u

p
p

ly

Instruction Processing

Data Supply

Instruction
Fetch &
Decode

Instruction
Cache

Units

Units

Queue

L2 Cache

&

Main Memory

out-of-order issue, execution and completion on a deriva-
tive of the MIPS instruction set architecture. Figure 1 pro-
vides a schematic picture of the simulated processor.
Almost all recent (e.g. the Intel P6 [16], the MIPS R10000
[4]) and new architectures (e.g. the HP PA-8500 [15], the
DEC 21264 [6]) rely on out-of-order issue and/or out-of-
order execution for exploiting parallelism, and this trend is
likely to continue. In particular, these architectures are
using increasingly large register update units (or instruc-
tion windows), e.g. 56 entries in the HP-PA8500, and
enabling memory re-ordering techniques (e.g. allowing
loads to execute before stores) in exploiting parallelism
through dynamic execution ordering.

Since our study focuses on handling the bandwidth
requirements of the data supply portion of future multiple
issue processors, we designed a near perfect front end (i.e.
the instruction supply portion) to our processor simulator.
In addition, we provided adequate resources to the instruc-
tion processing phase so as to highlight the effect of band-
width in data supply. In particular, we assume a perfect
branch predictor and a considerable number of functional
resources. Table 1 details our chosen parameters and
architectural assumptions. Though a 64-way superscalar
processor appears unlikely to be implemented any time
soon, removing issue constraints, except for those required
by the semantics of the benchmark programs we study,
helps to extract the highest level of data access parallelism
that exists within program constructs and thereby high-
lights the effects of the cache.

Our simulated processor uses a register update unit
(RUU) [21] to keep track of instruction dependencies; and
a load/store queue (LSQ), an address reorder buffer that
prevents loads from bypassing stores to the same address.
Loads, with their effective addresses computed and depen-
dencies resolved, are sent from the LSQ to the cache at

issue time, while stores are actually written to the cache at
commit time. Loads to same address as an earlier store in
the LSQ can be serviced with zero latency by the corre-
sponding store.

Our memory subsystem consists of separate instruction
and data caches, a secondary data cache, and main mem-
ory. The primary instruction cache is perfect and responds
in a single cycle. The primary data cache is a nonblocking,
32K byte direct-mapped cache, with 32 byte lines and a
single cycle access time. The L2 cache is a 512 KByte
four-way set-associative cache with 64 byte lines and a
four cycle access time. Accesses from L1 to L2 are fully
pipelined, and a miss request can be sent every cycle, up to
64 pending requests. The main memory access latency is
just 10 cycles. As this study seeks to stress bandwidth
instead of latency to memory, our interest lies in exposing
the degree of data access parallelism that exists across var-
ious code constructs, rather than the effect of the memory
latency seen by misses to the cache.

2.2. The Instructions Per Cycle Metric
IPC, instructions per cycle, is a common metric of choice
for evaluating multi-issue processors and their extensions.
True IPC, as a measure, must evaluate three phases of
instruction level parallelism: the issue phase, the execution
phase and the completion phase.

Typically, IPC is taken as the number of instructions
that the processor completes per cycle. Such a metric,
however, fails to consider some of the activities and
resource requirements that occur at the front-end of the
processor. For example, at the issue phase, a speculative
processor may issue numerous instructions that access the
data cache, but are later discarded for mis-speculation. In
such instances, IPC as a measure of instructions completed
per cycle, fails to expose the data resource requirements
for the work done on the wrong path. This could lead to a

Fetch Mechanism fetches up to 64 instructions in program order per cycle

Instruction Cache perfect cache, 1 cycle hit latency

Branch Predictor perfect branch prediction

Issue Mechanism out-of-order issue of up to 64 operations per cycle, 1024 entry re-order buffer
(RUU), 512 entry load/store queue (LSQ), loads may execute when all prior
store addresses are known

Functional Units 64-integer ALU, 64-FP adders, 64-integer MULT/DIV, 64-FP MULT/DIV,
varying # of L/S units.

Functional Unit Latency
(total/issue)

integer ALU-1/1, integer MULT-3/1, integer DIV-12/12, FP adder-2/1, FP
MULT-4/1, FP DIV-12/12, load/store-1/1

Data Cache 32KB direct-mapped, write-back, write-allocate, 32 byte lines, 1/4 cycle hit/
miss latency, (varying # of ports), non-blocking, supports one outstanding
miss per physical register

Table 1: Baseline Processor/Memory Model

seemingly realistic argument that for an IPC of 3, assum-
ing that a third of an application’s instruction mix is mem-
ory load/stores, the memory system only needs to support
1 access per cycle. However, 2 or 3 accesses will appear in
some 3-instruction groups, and many instructions may be
executed speculatively, and later discarded. Hence, it may
take a peak rate of 2 or 3 memory operations per cycle to
achieve an IPC of 3.

It is valid, however, to use IPC as the metric for com-
parison among the various high-bandwidth organizations.
For our results, there is no speculation effect on IPC since
our processor does not speculate.

2.3. Benchmarks
We selected ten programs (5 integer and 5 floating point)
from the SPEC95 benchmark suite for this study. In choos-
ing benchmarks for analysis, we looked for programs with
varying memory requirements. To expose the extent of
data parallelism that exist across different code segments,
it is necessary to look at programs with large and small
data sets as well as programs with high and low reference
locality. In addition to exhibiting those characteristics,
programs from SPEC95 also stress the memory system
much more than their counterparts from the SPEC92 set.

As Table 2 shows, we simulated each benchmark either
to completion or to the first 1.5 billion instructions. We
believe that simulating samples or tiny portions of a pro-
gram is risky for a high-bandwidth data study. In particu-
lar, memory reference patterns can vary among different

phases of program execution, which is likely to result in
burst data accesses at some points during program execu-
tion. A sampled or a minimal partial simulation may fail to
capture such a trend and is therefore likely to present a dis-
torted picture of a program’s memory reference behavior
and its memory resource requirements.

Table 2 lists the memory characteristics of the bench-
marks. The store-to-load ratio column provides the avail-
able stores per each load reference. We also provide the
miss rates of the benchmarks for the 32KB direct-mapped
L1 cache used for this study.

3. Conventional Multi-Ported Solutions
Multi-banking and multi-porting by replication appear to
be the practical approximations to ideal multi-porting as
data accesses per cycle increase. Whereas the multi-bank
approach can work well for applications that lack locality
because of the statistically independent nature in which
memory references are presented to the cache, it could
hurt the performance of applications with good spatial
locality if the reference pattern is such that consecutive
references map to the same bank, especially where the
data layout is cache line interleaveda. For most current
single-ported multi-bank implementations, multiple
accesses to the same cache line may not proceed in paral-
lel. Replicated caches, on the other hand, do not scale to
the ideal performance because of the need for broadcast-
ing stores. In the next two subsections, we describe the
pros and cons of replicated and multi-bank design imple-
mentations, and attempt to explain their performance vari-
ations and how they scale to ideal multi-porting.

3.1. Multi-Ported Caches
Figure 2a illustrates a multi-ported cache. Each port is
provided with its own data path to every entry in the cache,
implemented either by replicating the entire single-ported
cache for each port and maintaining the same contents in
each copy, or by multi-porting the individual cache SRAM
cells (ideal multiporting). The ideal multiporting imple-
mentation appears to deliver the highest bandwidth. How-
ever, practical implementations of these designs suffer
from several drawbacks. One is the circuit complexity
resulting from increasing capacitance and resistance load
on each access path as the number of ports increases,
which can lead to longer access latency for ideal multi-
porting, and longer store time for replicated designs.
Another concerns the chip area overhead necessary for
replication and the many extra wires and additional com-

a. Line interleaved refers to banking the cache such that a cache line
resides completely in one bank and consecutive cache lines reside in
successive banks. Vector supercomputers are usually 8-byte word
interleaved, where a single memory block spreads across different
banks. Word interleaving is efficient for reducing bank conflicts but
costly due to the need for tag replication in each bank or multi-porting
the tag store to allow simultaneous access from all banks.

Program
Instr.
Count
(Mil.)

Mem
Instr.
(%)

Store-
to-Load
Ratio

L1
Miss
Rate

(32KB)

SPEC95 INT Benchmarks

Compress 35.69 37.4 0.81 0.0542

GCC 264.80 36.7 0.59 0.0240

Go 548.12 28.7 0.36 0.0271

Li 956.30 47.6 0.59 0.0084

Perl 1,500.00 43.7 0.69 0.0265

SPEC95 FP Benchmarks

Hydro2d 967.08 25.9 0.30 0.1010

Mgrid 1,500.00 36.8 0.04 0.0402

Su2cor 1,034.36 32.0 0.32 0.1307

Swim 796.53 29.5 0.28 0.0615

Wave5 1,500.00 31.6 0.39 0.1103

Table 2: The ten benchmarks and their memory
characteristics

parator logic needed to implement each port. Additionally,
implementation by replication also sacrifices some band-
width since store accesses must be sent simultaneously to
all cache copies to ensure coherence. Consequently, a store
cannot be sent to the cache in parallel with any other
access. Except for compress (worse) or mgrid (better),
about 1/4 to 1/3 of all memory operations are stores (see
Table 2). Therefore this restriction can be quite limiting.

In this section, we discuss the performance of both ideal
multi-porting and multi-porting by replication [5]. The
performance of ideal multi-porting is offered as a basis for
examining how many cache ports are adequate for various
applications, and also to assess the performance degrada-
tion of the other designs. Table 3 presents the IPC data for
ideal multi-porting (True), multi-porting by replication
(Repl.), and multi-banking (Bank) for each benchmark as
the number of ports increase from 1 to 16 in powers of 2.

As expected, multiple cache ports are very important for
processors with large issue widths. For our 32 KByte
direct-mapped cache, increasing the number of ideal cache
ports from one to two shows as high as 89% and 92% per-
formance improvements for the average SPECint and
SPECfp programs, respectively. Some individual pro-
grams exhibit higher performance gains: 96% for com-
press, 99% for swim, and 98% for li. From two to four
ports shows an average performance gain of 41% for SPE-
Cint and 50% for SPECfp. Eight ideal ports appear suffi-
cient for the SPECint benchmarks since increasing ports to
sixteen returns a meagre average 0.12% performance
improvement. For SPECfp, however, an increase from 8 to
16 ideal ports delivers about 4% improvement in perfor-
mance.

For multi-porting by replication, each port is connected
to its own 32 KByte direct-mapped cache. To maintain

. . .

. . .

addr

data

addr

addraddr

datadata

data

INTERCONNECT

CACHE
BANK

CACHE
BANK

Port #1 Port #N

#M#1

. . .
addraddr datadata

MULTI-PORTED

Port #1 Port #N

CACHE

a) b)
Figure 2: Conventional high-bandwidth cache memory organizations: a) True multi-ported, and b) Multi-bank (interleaved).

c) Effective address decomposition for multi-bank caches. We use the bank selector (bs) bits of the effective
address for selecting the appropriate bank.

lobslsTAG

Line Selector Bank Selector
Line Offset

effective address:

c)

Ports ---> 1 2 4 8 16

Programs ~ True Repl Bank True Repl Bank True Repl Bank True Repl Bank

Compress 2.66 5.22 4.08 3.95 7.41 5.15 5.12 7.83 5.55 5.86 7.83 5.68 5.96

Gcc 2.65 4.80 4.03 4.15 6.19 4.99 5.23 6.27 5.29 5.61 6.27 5.35 5.70

Go 3.44 5.62 5.32 4.80 6.82 6.53 5.87 7.13 6.95 6.45 7.17 7.02 6.67

Li 2.10 4.17 3.42 3.78 6.58 4.76 5.84 6.58 5.33 6.34 6.58 5.43 6.48

Perl 2.25 4.48 3.52 3.51 7.08 4.67 4.57 7.25 5.29 5.85 7.25 5.49 6.30

SPECint Ave. 2.55 4.80 3.98 3.99 6.79 5.14 5.28 6.97 5.62 6.01 6.98 5.73 6.20

Hydro2d 3.76 7.19 6.32 6.41 9.94 8.96 8.64 10.6 9.88 9.24 10.7 10.1 9.70

Mgrid 2.67 5.11 5.07 4.97 9.64 9.49 7.90 16.6 16.2 9.32 18.6 18.6 10.2

Su2cor 3.01 5.93 5.21 5.29 9.04 7.75 7.41 10.3 9.39 7.83 10.8 10.2 8.45

Swim 3.20 6.36 5.46 5.46 10.0 8.53 6.19 12.8 10.7 6.82 13.6 11.2 6.90

Wave5 3.28 6.01 5.26 5.58 7.26 6.76 6.28 7.53 7.30 6.55 7.56 7.42 6.74

SPECfp Ave. 3.14 6.04 5.43 5.50 9.05 8.18 7.16 10.8 10.0 7.78 11.2 10.5 8.16

Table 3: IPC for ideal multi-porting (True), multi-porting by replication (Repl), and multi-banking (Bank).

coherence, each store needs to be sent to all the caches
simultaneously. Clearly, the degradation from this con-
straint is evident from the Repl. IPC numbers in Table 3.
The performance improvement trend as cache ports
increase is evident, but fails to scale to ideal multi-porting.
For integer programs with high store-to-load ratios (like
compress .81; gcc .59; li .59; and perl .69), the non-scal-
ability with increasing cache ports can be significant; for
mgrid .04, it is insignificant and 16 port performance is
virtually indistinguishable from ideal.

3.2. Multi-Bank Caches
A multi-bank (or interleaved) cache, shown in Figure 2b,
employs a crossbar interconnection to distribute the mem-
ory reference stream among multiple cache banks. Each
bank of a multi-bank cache can independently service one
cache request per cycle, and each bank in this study has a
single port. As long as simultaneous accesses map to inde-
pendent banks, this technique delivers high bandwidth
access. This design has a lower latency and area require-
ment than the replicated cache, especially for large cache
sizes. While its crossbar interconnect adds significant cost
and latency to the access path, its smaller, single ported
banks are less costly and faster; thus a direct cost/latency
comparison is highly dependent on the implementation
technology and configuration. Using an omega network
rather than a crossbar would alter this tradeoff, increasing
latency, but reducing cost for larger configurations.

A bank selection function is necessary for mapping
memory reference addresses onto corresponding cache
banks. This function can affect the bandwidth delivered by
the multi-bank implementation since it influences the dis-
tribution of the accesses to the banks. An inefficient func-
tion may increase bank conflicts, reducing the delivered
bandwidth. Many bank selection functions have been pro-
posed and shown effective in the literature [10][11], espe-
cially for dealing with large multi-bank memories for
vector processors. Efficient functions must, however, be
weighed against implementation complexity and the possi-
bility of lengthening the cache access time. This therefore
renders accurate, but complex selection functions highly
unattractive for cache design. In our experiments, we use
bit selection [8] (see Figure 2c), a simple function which
uses a portion of the effective address as the bank number;
data layout in cache is thus line interleaved. As we see
shortly, the choice of a selection function may not be as
critical as we thought since much of the loss of bandwidth
due to same bank collisions map to the same cache line.

Table 3 reports the multi-bank IPC numbers for each
benchmark as the number of cache banks increase. We
assume a single cache port per bank, and do not add addi-
tional time for traversing the crossbar interconnect. Actual
multi-bank designs can be pipelined to hide some of the
interconnect latency. For these experiments, the number of

banks is limited to sixteen. While the data in Table 3 dem-
onstrates reasonable performance with increasing number
of banks (and cache ports) for the multi-banking approach,
the performance peaks at an average 6.202 IPC for the 16-
bank cache which significantly trails the 6.791 IPC of the
ideal 4-port cache for SPECint. Even with 16 banks, per-
formance remains lower than that of an ideal 4-port cache
(except for mgrid).

Compared to multi-porting by replication, however,
multi-bank performance should scale better with increas-
ing ports due to the data access serialization brought about
by stores in replicated caches. As the number of ports
increase, the performance of multi-banking overtakes
multi-porting by replication, particularly for store-inten-
sive programs like compress and gcc. For instance, a rep-
licated 8-port cache simulating compress achieves only
95% of an 8-bank cache performance. For programs like
mgrid and swim where this trend appears not to hold,
bank conflicts appear to be responsible for the multi-bank
performance degradation as we see in the next section.

Though bank conflicts do limit multi-bank perfor-
mance, the multi-bank approach appears to offer a better
cost/performance approximation to ideal multi-porting as
processor issue widths widen. In particular, as we
approach wider issue widths with large instruction win-
dows for superscalar designs, the memory accesses needed
per cycle are likely to spread across more than a single
cache line. Intuitively, a multi-bank design that places con-
secutive cache lines in different banks offers the possibil-
ity for parallel multiple cache accesses.

4. Characteristics of the Memory Reference
Stream

To understand why the performance of the multi-bank
cache significantly lags behind ideal multi-ported cache
performance, we must understand the nature of the mem-
ory reference stream as presented to the cache structure.
We explore how the nature of the memory reference
stream can promote bank conflicts, and techniques that can
help alleviate conflicts in multi-bank designs.

Figure 3 shows the likelihood of bank conflicts between
consecutive cache references in a four-bank cache. We col-
lected these statistics by assuming an infinite size four-
bank cache with 32 byte lines. These numbers are meant to
serve as an upper bound for distribution of accesses among
the banks. In a dynamic superscalar processor environ-
ment like the one we consider for this study, some of these
accesses will be satisfied within the LSQ, without ever
reaching the cache. Each column in the figure shows the
dynamic frequency distribution for one of the benchmarks,
while SPECint Ave. and SPECfp Ave. represent the aver-
age distribution of these SPEC integer and floating point
programs respectively. The columns are separated into 5

segments, the first two segments correspond to one bank
while the other three correspond to the other three banks in
the cache structure. The 2 lowest segments, B-same line
and B-diff line, show how frequently a reference’s immedi-
ate successor maps into the same bank, and which is more
likely to cause a conflict. The other three segments, (B + i)
mod 4 with i = 1, 2, 3, show how frequently the immediate
successor maps to each of the other three banks: the next
bank, the bank after that, etc.

For a uniform, independent reference stream distribu-
tion, the probability for each of the four segments would
be 0.25. However, most applications show a skewed prob-
ability toward same bank (i.e. B-same line plus B-diff line)
- averaging 49% across the integer benchmarks, 44%
across the floating point benchmarks, and 50% or more in
gcc, li, perl, and swim. This clearly limits the effective-
ness of the multi-bank approach. While bank conflicts can
be substantially reduced with a large number of word
interleaved memory banks (as is done in large vector pro-
cessors like the Hitachi S-3800 (512 banks) [22]), this
approach may not work well for caches for two reasons.
First, a large number of banks will result in larger and
slower interconnects, which could further lengthen the
time to access the cache. Second, word interleaving is
costly since the tag store would need to be replicated or
multi-ported. For line interleaved data layout, a cache line
of 8 words carries a single tag, but 8 copies are needed for
word interleaving. Increasing the number of banks without
word interleaving however, may not reduce bank conflicts
significantly. As we show below, our analysis suggests that
even with an infinite number of banks, a substantial frac-
tion of the bank conflicts we see in these programs could
remain since they are caused by items mapping to the
same cache line.

Due to the restrictions of the multi-bank model, consec-
utive references that access the same bank but different

lines cannot proceed in parallel, and need to be serialized.
A higher B-diff line probability, like 33.81% for swim and
24.73% for wave5, therefore indicates a greater difficulty
in improving multi-bank performance through bank con-
flict reduction, although increasing the number of banks
may help. Interestingly, the integer programs appear less
susceptible to same bank with different lines conflicts,
averaging only 12.85% in B-diff line probability, whereas
the floating point benchmarks have a 21.42% average B-
diff line probability. This behavior by the floating point
benchmarks is quite appropriate, given that our experiment
considers a cache line size of just 32 bytes (or 4 double-
words). Floating point programs, with non-unit strides,
will therefore tend to have consecutive references map to
different cache lines, even when both are in the same bank.

The B-same line probabilities demonstrate the inherent
spatial locality that exists in the benchmarks. For the SPE-
Cint benchmarks and hydro2d, more than half of the con-
secutive references that map to the same bank also map to
the same cache line, as evident from Figure 3. On average,
same line accounts for 35.4% of the SPECint references,
although only 21.8% of the SPECfp references. For pro-
grams like gcc, li and perl, more than 40% of all consecu-
tive references access the same line in the same cache
bank. This inherent spatial locality in program reference
patterns can be exploited to improve multi-bank delivered
bandwidth through access combining.

Access combining, a technique developed concurrently
by Wilson et. al. [7] and Austin and Sohi [8], attempts to
combine references to the same cache line into a single
request. Combining devotes additional cache resources to
areas in the design that can best exploit spatial locality.
Combining works as follows: Accessing stored data in a
conventional cache can be viewed as an indexing opera-
tion into a two dimensional matrix, using the cache line
selector and line offset fields of the effective address.
Combining incorporates additional logic in the load/store
queue (address reorder buffer), along with limited cache
line multi-porting, to improve access throughput. Ideal
multi-porting, we must recall, allows multiple requests to
be processed regardless of the relationship among their
addresses. For a multi-bank approach therefore, incorpo-
rating combining logic enables multiple references to the
same cache line to collapse into one request for a single
cache line, with multiple line offsets. This allows multiple
references to the same line while requiring only a single
multi-ported line buffer to be included in the bank imple-
mentation. When combining is implemented in each bank
of a multi-bank cache, the throughput can be increased
significantly. In a four-bank cache with two-port combin-
ing logic in each bank, up to eight references can be pro-
cessed in each cycle.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Co
mp

res
s

G
cc G
o L
i

Pe
rl

SP
EC

int
 Av

e.

H
yd

ro
2d

M
gr

id

Su
2c

or

S
w

im

W
av

e5

SP
EC

fp
Av

e.

P
er

ce
nt

 o
f

To
ta

l R
ef

er
en

ce
s

(B + 3) mod 4

(B + 2) mod 4

(B + 1) mod 4

B - diff line

B - same line

Figure 3: Consecutive memory reference mapping
analysis for an infinite 4-Bank Cache structure

5. The Locality-Based Interleaved Cache
(LBIC)

Our analysis in the previous section has shown how the
nature of program reference patterns contribute to bank
conflicts, and the corresponding effect that this has on
multi-bank cache performance. The use of access combin-
ing appears theoretically favorable for improving multi-
banking performance to levels closer to ideal multi-port-
ing. Another useful technique that helps reduce bank con-
flicts is memory re-ordering, as shown in [13]. Efficient
memory re-ordering ensures that independent references
can be assembled to provide enough accesses to as many
banks as possible in each cycle. Since our simulator does
memory re-ordering through a large LSQ, our IPC num-
bers in Section 3 already reflect that optimization, except
that the traditional multi-bank cache fails to benefit from
this. Access combining, as a technique, facilitates efficient
exploitation of spatial locality in a program’s data set. In
this section, we introduce a multi-bank cache design that
uses these two concepts for performance improvement.
The concept of memory re-ordering is already imple-
mented, as address re-order buffers or load/store queues,
in current dynamic superscalar processors [4]. Thus, cur-
rent processors already implement an optimization scheme
that can help multi-banking to scale well. In those proces-
sor designs, very little additional logic is necessary to per-
form access combining in the LSQ - the comparison

circuit already exists for determining whether a memory
conflict occurs.

5.1. The LBIC Structure
We propose the Locality-Based Interleaved Cache (LBIC)
for two reasons: to handle multiple data accesses per
cycle, and do so with lower implementation cost. There
are two design goals: assembling as many independent ref-
erences as possible through memory reference re-ordering,
and exploiting the spatial locality within an application’s
data through access combining. An LBIC structure thus
consists of a traditional multi-bank cache with a single line
multi-ported buffer on each bank.

An LBIC structure is described by the MxN configura-
tion, where M denotes the number of banks in the cache
structure, and N is the maximum number of ports to any
single cache line in a bank. The cache structure, consisting
of the M banks, remains the same as the traditional multi-
bank cache. Cache configuration parameters are flexible,
except that the data layout in the multi-bank design must
be cache line interleaved. This requirement is necessary as
a word interleaved or a sub-block interleaved layout neces-
sitates replicating or multiporting the tag storage. An N-
ported single line buffer is associated with each bank. This
line buffer is not meant to hide access latency but rather to
act as a distribution center for the simultaneous supply of
up to N accesses from one cache line. A total of N line off-
set requests to the same cache line in a bank can be han-

addrdata

INTERCONNECT

CACHE
BANK #3

addrdata

CACHE
BANK #4

addrdata

CACHE
BANK #2

addrdata

CACHE
BANK #1

Processor Core

Load/Store Queue
addr data
... ...

addr data
... ...

addr data
... ...

addr data
... ...

addr data
... ...

Bank Line Offset
store 0 12 0

load 1 10 4
load 1 10 8
store 0 12 12

Ref
addr:

ls1
ls2
ls3

lo1
lo2
lo3
....

Combined Line

Selector

Cache Bank M

Line i

addr:

combined operations

Figure 4: a) A schematic diagram of a 4xN locality-based interleaved cache (4xN LBIC), 4 banks each with an N ported
buffer, b) Basic combining logic for a single bank in an LBIC design, c) A data access pattern for performance
comparison.

c)

b)

a)

dled simultaneously. There are several low cost techniques
for implementing a multi-ported single line buffer. One
approach is to employ the technique used in multi-porting
a register file. This approach is a well understood problem
with true multi-porting solutions that do not lie in the pro-
cessor’s critical path. Figure 4a illustrates a schematic dia-
gram of an MxN LBIC structure, where M = 4. With four
banks and an N-ported single line buffer per bank, the 4xN
LBIC can potentially process up to 4N data cache accesses
in parallel per cycle.

5.2. LBIC Implementation Issues
An LBIC implementation requires a memory reorder
buffer or a LSQ. The main control mechanism of the LBIC
design resides in the LSQ, and performance of the scheme
depends on the depth of the LSQ. Deeper LSQs will help
to minimize possible performance degradation due to
insufficient data requests for combining.

LSQs in current processors use comparison circuits for
dynamic memory disambiguation. To implement the LBIC
combining scheme, this logic can be extended so that
when a load/store (leading) request is launched, the bank
and line selector bits of its effective address are simulta-
neously compared with pending ready load/store requests
in the LSQ. Alternatively, to reduce the compare circuitry
and to ensure a fast compare time, items inserted in the
LSQ can be sorted out into the respective bank queues as
their effective addresses become known. With this
approach, the line selector bits of the leading request are
compared with the ready LSQ entries mapping to the same
bank. When the leading request hits in the cache, the cache
line is gated into the multi-ported line buffer of that bank.
Up to N-1 matching requests (in addition to the leading
request) may send their line offsets in parallel to that bank.
The load request offsets select data from the N-ported
buffer.

Unlike the replicated cache structure where store
requests can cause serialization of accesses, the LBIC
relies on a store queue in each bank, as some current
multi-bank implementations do [18], for handling multiple
stores or any combination of matching stores and loads per
cycle. The store queue in each bank is assumed to be a
structure that can hold up to some number of words of
store data. The store queue uses idle cycles, as used in the
HP PA8000 implementation [18], to perform stores to the
data cache. With such a structure, when a cache line selec-
tor pulls a cache line into the line buffer, the matching load
offsets select their data from the buffer and the matching
store offsets deposit their data in the store queue simulta-
neously. This approach even allows a load followed by a
store to the same memory location to be accepted in the
same cycle. A matching load closely following a store is
satisfied in the LSQ, and does not even reach the cache
structure.

Figure 4b illustrates the basic operation of the LBIC
combining logic for three requests mapping to Line i in
Bank M. In this example, the three requests logically com-
bine into a single cache line operation. The line selector,
ls1, of the leading request is sent to Bank M to gate the
data in Line i into the line offset buffer. Simultaneously,
the other two load/store requests compare their ls fields
with ls1 and since they match, the three line offsets (lo1,
lo2, lo3) are sent in parallel to select their data from the
buffer (for load requests). Matching store requests, if any,
simply deposit their data into the store queue accompany-
ing Bank M.

The LBIC control, in this preliminary study, does not
prioritize with regard to which LSQ accesses are issued in
a cycle. Instead, it relies on the LSQ memory scheduling
logic and attempts to combine accesses with the leading
request at the head of the LSQ. One possible enhancement
for further improving the LBIC’s performance is to add
some selecting LSQ logic that attempts to find the largest
group of combinable ready accesses in the LSQ. Larger
access groups can therefore be given priority over smaller
groups. Furthermore, the smaller groups may grow larger
by the time they are selected. Special priority may be
given to critical requests that may cause processor stalls.
We settled on the leading request because we believe it is
fair and simple. The sorting logic for the enhancement
above may be costly.

The LBIC combining scheme should have no adverse
impact on the cache access latency, beyond that of tradi-
tional multi-banking. In addition, area costs are limited to
the multi-ported line buffer per bank, the necessary hit sig-
nal gates, and multiplexors necessary for selecting appro-
priate data from the line buffers. In addition, with any
heavily multi-ported cache design, there is an increase in
the required number of buses necessary for transferring
data between the cache structure and the processor.

6. Effectiveness of the LBIC
Theoretically, the performance of the LBIC scheme should
scale well towards ideal multi-porting since the scheme
has the ability to both exploit independent random refer-
ences and extract the spatial locality that exists at specific
points within an application’s data set. In addition, the
LBIC suffers less of the traditional multi-bank conflict
problems, and no store coherence problems as in multi-
porting by replication. For some reference patterns, the
LBIC approach is a natural choice for providing high
bandwidth.

Consider the references in Figure 4c to be ready entries
in a LSQ. Whereas a 2-way multi-bank cache will require
two cycles to execute these load/stores (assuming that the
items hit in the cache), a multi-ported cache by replication
will use three cycles (one cycle per store, plus one for the

two loads). A 2x2 LBIC, however, will be able to handle
all four requests in a single cycle.

To evaluate the effectiveness of the LBIC design,
Table 4 presents IPC numbers for six MxN LBIC configu-
rations. For performance evaluation, we compare an MxN
LBIC against M-port ideal, M-port replicated, and 2M-
bank cache. A quick comparison with Table 3 reveals that
the LBIC configurations are either as good as or superior
to the comparable multi-ported structures in the table.
With the exception of compress, the 2x2 LBIC outper-
forms the 2-port ideal cache. The 2x2 LBIC also performs
better than the 2-port replicated cache, and the 4-bank
cache. It must be noted that a large 2-port replicated cache
costs about twice the 2x2 LBIC in die area. While the 4x4
LBIC, on average, achieves within only 90% of the 4-port
ideal cache performance on SPECint, the 4-port ideal
cache is fully outperformed when it comes to SPECfp and
can only achieve 64% of the 4x4 LBIC’s performance on
mgrid, for example. The 4x4 LBIC also performs slightly
better than the 8-bank cache for SPECint (6.102 IPC aver-
age for the former compared to 6.005 for the latter) and far
better for SPECfp (9.7361 IPC average as opposed to
7.782).

The effectiveness of access combining in the LBIC is
particularly apparent from the SPECfp IPC averages in
Table 4. For the MxN configuration, keeping M fixed and
increasing N from 2 to 4 yields an average IPC improve-
ment of 10.3%. On the other hand, when N is fixed and M
is increased from 2 to 4 or from 4 to 8, only an 8.5% aver-
age improvement is seen for N = 2 and 6.5% for N = 4.
This clearly shows that the SPECfp programs benefit more
from combining than from interleaving. Though our ear-
lier analysis in Section 4 showed the SPECint programs to

have high consecutive reference locality in same bank and
same line, it appears that the constraints in their program
semantics limit the gains from combining. The SPECint
programs benefit more from doubling M than from dou-
bling N.

7. Related Work
With increasing focus on high ILP exploitation, more stud-
ies are now dealing with cache bandwidth issues. In the
first major study in this area [2], Sohi and Franklin present
evaluations to show the relevance of using non-blocking
caches to increase bandwidth for superscalar processors.
They propose different configurations, combinations and
implementations of multi-ported and multi-bank caches as
solutions for high bandwidth, but do not provide any eval-
uations for these designs.

Motivated by multi-porting cost, in die area and access
latency, Wilson et al. [7] provide a comprehensive evalua-
tion of several buffering techniques for improving the
bandwidth of a single cache port, and Austin and Sohi [8]
explore many designs in detail for achieving high band-
width for TLB devices. These studies concurrently devel-
oped access combining, a technique that we extend in our
design of the LBIC structure.

Finally, Juan et. al. present results of their work on high
bandwidth data caches for superscalar processors in [9].
While they provide much breadth, touching on several
designs, our focus has been on more depth in designing the
LBIC structure, which is capable of handling multiple
accesses per cycle with performance close to ideal multi-
porting and economy of cost near traditional multi-bank-
ing.

Programs 2x2 2x4 4x2 4x4 8x2 8x4

Compress 4.608 4.741 5.521 5.567 5.985 5.991

Gcc 5.256 5.510 5.680 5.716 5.765 5.775

Go 5.849 6.151 6.528 6.640 6.800 6.844

Li 5.805 6.437 6.505 6.515 6.526 6.529

Perl 4.715 5.087 5.905 6.221 6.687 6.722

SPECint Ave. 5.194 5.513 6.000 6.102 6.326 6.344

Hydro2d 9.168 10.215 9.953 10.355 10.163 10.391

Mgrid 8.537 11.292 11.851 15.026 14.301 16.582

Su2cor 7.645 8.287 8.395 8.832 8.955 10.110

Swim 8.283 10.181 8.867 10.366 9.104 10.412

Wave5 6.780 6.993 6.995 7.106 7.082 7.213

SPECfp Ave. 7.977 9.118 8.933 9.736 9.415 10.201

Table 4: IPC for six MxN LBIC configurations.

8. Conclusions
As the trend toward exploiting higher levels of parallelism
through multiple instruction issue continues, more and
more demand will be placed on the data cache memory.
With increasing numbers of data items needed from the
cache per cycle, the current single- and dual-ported cache
implementations threaten to become a major bottleneck
for future processors. There is a need therefore for cost-
effective cache designs that can handle multiple data
accesses simultaneously. In this study, we have explored
the performance and limitations of the two commercially-
implemented ways of achieving multi-ported caches:
multi-porting by replication and multi-banking.

Whereas the multi-banking technique suffers substan-
tial performance degradation due to bank conflicts, multi-
porting by replication is die area limited and does not scale
well to ideal multi-porting performance due to the need for
broadcast stores for coherence. Interestingly, analysis of
the memory reference stream reveals that a substantial
portion of all conflicts in a multi-bank cache are caused by
consecutive references that map into the same cache line
of the same cache bank.

Our proposed Locality-Based Interleaved Cache
(LBIC) is built on traditional multi-banking and employs
limited multi-porting to a single-line buffer per bank to
exploit same cache line spatial locality. Our detailed exe-
cution driven-simulations suggest that the LBIC approach
is a good choice for handling multiple accesses. In particu-
lar, the LBIC design scales better toward ideal multi-port-
ing performance than either of the currently available
implementations, and is competitively cost-effective. Fur-
thermore, the memory scheduling logic of the load/store
queue can be enhanced to further increase the bandwidth
delivered by the LBIC.

9. Acknowledgments
The authors at the University of Michigan are grateful to
the Intel Corporation for its support through the Intel
Technology for Education 2000 grant. Jude Rivers is
funded by a University of Michigan Graduate Fellowship.
This work was also supported in part by a gift from the
IBM Corporation.

Bibliography
[1] Y. N. Patt, S. J. Patel, M. Evers, D. H. Friendly, and

J. Stark, “One Billion Transistors, One Uniproces-
sor, One Chip,” IEEE Computer, 30(9):51--57, Sep-
tember 1997.

[2] G. S. Sohi and M. Franklin, “High-Bandwidth Data
Memory Systems for Superscalar Processors,” Pro-
ceedings of ASPLOS-IV, pp. 53--62, April 1991.

[3] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace
Cache: A Low Latency Approach to High Band-
width Instruction Fetching,” Proceedings of

MICRO-29, pp. 24--34, December 1996.
[4] K. Yeager et. al., “R10000 Superscalar Micropro-

cessor,” Hot Chips VII, 1995.
[5] Digital Equipment Corporation, Maynard, MA.

Alpha Architecture Handbook, 1994.
[6] Digital Equipment Corporation, Maynard, MA.

Alpha Architecture Handbook, 1996.
[7] K. M. Wilson, K. Olukotun, and M. Rosenblum,

“Increasing Cache Port Efficiency for Dynamic
Superscalar Microprocessors,” Proceedings of
ISCA-23, pp. 147--157, May 1996.

[8] T. M. Austin and G. S. Sohi, “High-Bandwidth
Address Translation for Multiple-Issue Processors,”
Proceedings of ISCA-23, May 1996.

[9] T. Juan, J. J. Navarro, and O. Temam, “Data Caches
for Superscalar Processors,” Proceedings of ICS,
July 1997.

[10] W. Oed and O. Lange, “On the Effective Bandwidth
of Interleaved Memories in Vector Systems,” IEEE
Transactions on Computers, C-34(10):949--957,
October 1985.

[11] B. R. Rau, “Pseudo-Random Interleaved Memory,”
Proceedings of ISCA-18, June 1991.

[12] J. E. Smith, “Decoupled Access/Execute Computer
Architectures,” Proceedings of ISCA-9, June 1982.

[13] G. S. Tyson, Evaluation of a Scalable Decoupled
Microprocessor Design, Ph.D. Dissertation, Univer-
sity of California at Davis, January 1997.

[14] Microprocessor Report, Vol. 7, No. 13. IBM Regains
Performance Lead with Power2, October 1993.

[15] G. Lesartre and D. Hunt, “PA-8500: The Continuing
Evolution of the PA-8000 Family,” Proceedings of
COMPCON’97, March 1997.

[16] Microprocessor Report, Vol. 9, No. 17. Intel Boosts
Pentium Pro to 200 MHz, November 1995.

[17] D. Burger and T. M. Austin, “Evaluating Future
Microprocessors: the SimpleScalar Tool Set,” Tech.
Report #1342, University of Wisconsin, June 1997.

[18] D. Hunt, “Advanced Performance Features of the
64-bit PA-8000,” Proceedings of COMPCON’95,
pp. 123--128, March 1995.

[19] S. W. Melvin, M. C. Shebanow, and Y. N. Patt,
“Hardware Support for Large Atomic Units in
Dynamically Scheduled Machines,” Proceedings of
MICRO-21, pp. 60--66, December 1988.

[20] M. Franklin and M. Smotherman, “A Fill-Unit
Approach to Multiple Instruction Issue,” Proceed-
ings of MICRO-27, pp. 162--171, November 1994.

[21] G. S. Sohi, “Instruction Issue Logic for High-Per-
formance, Interruptible, Multiple Functional Unit,
Pipelined Computers,” IEEE Transactions on Com-
puters, 39(3):349--359, March 1990.

[22] K. Kitai, T. Isobe, T. Sakakibara, S. Yazawa, Y.
Tamaki, T. Tanaka, and K. Ishii, “Distributed Stor-
age Control Unit for the Hitachi S3800 Multivector
Supercomputer,” Proceeding of ICS, pp. 1--10, July
1994.

