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ON HIGH-DIMENSIONAL MISSPECIFIED MIXED MODEL
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We study behavior of the restricted maximum likelihood (REML) es-
timator under a misspecified linear mixed model (LMM) that has received
much attention in recent genome-wide association studies. The asymptotic
analysis establishes consistency of the REML estimator of the variance of the
errors in the LMM, and convergence in probability of the REML estimator
of the variance of the random effects in the LMM to a certain limit, which is
equal to the true variance of the random effects multiplied by the limiting pro-
portion of the nonzero random effects present in the LMM. The asymptotic
results also establish convergence rate (in probability) of the REML estima-
tors as well as a result regarding convergence of the asymptotic conditional
variance of the REML estimator. The asymptotic results are fully supported
by the results of empirical studies, which include extensive simulation studies
that compare the performance of the REML estimator (under the misspeci-
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fied LMM) with other existing methods, and real data applications (only one
example is presented) that have important genetic implications.

1. Introduction. Genome-wide association study (GWAS), which typically
refers to examination of associations between up to millions of genetic variants in
the genome and certain traits of interest among unrelated individuals, has been very
successful for detecting genetic variants that affect complex human traits/diseases
in the past eight years. According to the web resource of GWAS catalog [Hindorff
et al. (2009); http://www.genome.gov/gwastudies], as of October 2013, more than
11,000 single-nucleotide polymorphisms (SNPs) have been reported to be asso-
ciated with at least one trait/disease at the genome-wide significance level (p-
value ≤ 5 × 10−8), many of which have been validated/replicated in further stud-
ies. However, these significantly associated SNPs only account for a small portion
of the genetic factors underlying complex human traits/diseases [Manolio et al.
(2009)]. For example, human height is a highly heritable trait with an estimated
heritability of around 80%, that is, 80% of the height variation in the population
can be attributed to genetic factors [Visscher, Hill and Wray (2008)]. Based on
large-scale GWAS, about 180 genetic loci have been reported to be significantly
associated with human height [Allen et al. (2010)]. However, these loci together
can explain only about 5–10% of variation of human height [Allen et al. (2010),
Manolio et al. (2009), Visscher (2008)]. This “gap” between the total genetic vari-
ation and the variation that can be explained by the identified genetic loci is univer-
sal among many complex human traits/diseases and is referred to as the “missing
heritability” [Maher (2008), Manolio (2010), Manolio et al. (2009)].

One possible explanation for the missing heritability is that many SNPs jointly
affect the phenotype, while the effect of each SNP is too weak to be detected
at the genome-wide significance level. To address this issue, Yang et al. (2010)
used a linear mixed model (LMM)-based approach to estimate the total amount
of human height variance that can be explained by all common SNPs assayed in
GWAS. They showed that 45% of the human height variance can be explained by
those SNPs, providing compelling evidence for this explanation: A large propor-
tion of the heritability is not “missing,” but rather hidden among many weak-effect
SNPs. These SNPs may require a much larger sample size to be detected. The
LMM-based approach was also applied to analyze many other complex human
traits/diseases [e.g., metabolic syndrome traits, Vattikuti, Guo and Chow (2012);
and psychiatric disorders, Lee et al. (2012), Cross-Disorder Group of Psychiatric
Genomics Consortium (2013)] and similar results have been observed.

Statistically, the heritability estimation based on the GWAS data can be casted
as the problem of variance component estimation in high-dimensional regression,
where the response vector is the phenotypic values and the design matrix is the
standardized genotype matrix (to be detailed below). One needs to estimate the
residual variance and the variance that can be attributed to all of the variables in

http://www.genome.gov/gwastudies
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the design matrix. In a typical GWAS data set, although there may be many weak-
effect SNPs [e.g., ∼ 103, Stahl et al. (2012)] that are associated with the phenotype,
they are still only a small portion of the total number SNPs (e.g., 105 ∼ 106). In
other words, using a statistical term, the true underlying model is sparse. However,
the LMM-based approach used by Yang et al. assumes that the effects of all the
SNPs are nonzero. It follows that the assumed LMM is misspecified. In spite of the
huge impact of its results in the genetics community, the misspecified LMM-based
approach has not yet been rigorously justified. In this paper, we provide theoreti-
cal justification of the misspecified LMM in high-dimensional variance component
estimation by investigating the asymptotics of the restricted maximum likelihood
[REML; e.g., Jiang (2007)] estimator as both the sample size and the dimension
of the vector of random effects tend to infinity. The results of our theoretical study
imply consistency of the REML estimators of some of the important genetic quan-
tities, such as the heritability, in spite of the model misspecification. We also study
convergence rate and asymptotic variance property of the REML estimator. The
theoretical results are fully supported by the results of our empirical studies. Our
study not only provides theoretical support for the recent discoveries in human
genetics made by the LMM but also, for the first time, introduces the notion of
misspecified mixed model analysis (MMMA) and its asymptotic properties.

In addition to the significant impact of variance estimation in the genetic com-
munity, the problem of estimating the residual variance in the high-dimensional
setting has drawn much attention recently. First, the problem is interesting in its
own right, as addressed in some recent papers [Fan, Guo and Hao (2012), Reid,
Tibshirani and Friedman (2013)]. Second, the significance tests for the estimated
coefficients in sparse regression [Javanmard and Montanari (2013), Lockhart et al.
(2013)] require an estimator of the residual variance. Our results open another door
for the variance estimation in high-dimensional regression.

1.1. Misspecified LMM and REML estimation. Consider a LMM that can be
expressed as

y = Xβ + Z̃α + ε,(1)

where y is an n × 1 vector of observations; X is a n × q matrix of known covari-
ates; β is a q × 1 vector of unknown regression coefficients (the fixed effects);
Z̃ = p−1/2Z, where Z is an n×p matrix whose entries are random variables. Fur-
thermore, α is a p × 1 vector of random effects that is distributed as N(0, σ 2

αIp),
Ip being the p-dimensional identity matrix, and ε is an n × 1 vector of errors that
is distributed as N(0, σ 2

ε In), and α, ε and Z are independent. See Section 6 for
discussion regarding the normality assumption about the random effects and er-
rors. The estimation of σ 2

ε is among the main interests. Without loss of generality,
assume that X is full rank.

The LMM (1) is what we call assumed model. In reality, however, only a sub-
set of the random effects are nonzero. More specifically, we have α = {α′

(1),0′}′,
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where α(1) is the vector of the first m components of α (1 ≤ m ≤ p), and 0 is
the (p − m) × 1 vector of zeros. Correspondingly, we have Z̃ = [Z̃(1)Z̃(2)], where
Z̃(j) = p−1/2Z(j), j = 1,2, Z(1) is n × m, and Z(2) is n × (p − m). Therefore, the
true LMM can be expressed as

y = Xβ + Z̃(1)α(1) + ε.(2)

With respect to the true model (2), the assumed model (1) is misspecified. We
shall call the latter a misspecified LMM or mis-LMM. However, this may not
be known to the investigator, who would proceed with the standard mixed model
analysis [e.g., Jiang (2007), Chapter 1] to obtain estimates of the model parame-
ters, based on (1). This is what we referred to as MMMA. In this paper, we will
be focusing on REML method [e.g., Jiang (2007), Section 1.3.2]. Furthermore,
following Jiang (1996), we consider estimation of σ 2

ε and the ratio γ = σ 2
α/σ 2

ε .
According to Jiang [(2007), Section 1.3.2], the REML estimator of γ , denoted
by γ̂ , is the solution to the equation

y′Pγ Z̃Z̃′Pγ y

tr(Pγ Z̃Z̃′)
= y′P 2

γ y

tr(Pγ )
,(3)

where Pγ = V −1
γ − V −1

γ X(X′V −1
γ X)−1X′V −1

γ with Vγ = In + γ Z̃Z̃′. Equa-
tion (3) is combined with another REML equation, which can be expressed as

σ 2
ε = y′P 2

γ y

tr(Pγ )
,(4)

to obtain the REML estimator of σ 2
ε , namely, σ̂ 2

ε = y′P 2
γ̂
y/ tr(Pγ̂ ).

In the context of mixed effects models, asymptotic behavior of the REML esti-
mators is well established [Cressie and Lahiri (1993), Das (1979), Jiang (1996),
Richardson and Welsh (1994)]. Note that the standard LMM is a conditional
model, on the X and Z; hence, in particular, the matrix Z is nonrandom. How-
ever, this difference is relatively trivial. A more important difference is, as noted,
that the LMM (1) is misspecified. Nevertheless, what appears to be striking is that
the estimator σ̂ 2

ε is, still, consistent. On the other hand, the estimator γ̂ converges
in probability to a constant limit, although the limit may not be the true γ . In spite
of the inconsistency of γ̂ , when it comes to estimating some important quantities
of genetic interest, such as the heritability (see below), REML still provides the
right answer. Before presenting any theoretical results, we first illustrate with a
numerical example that also highlights the practical relevance of our theoretical
study.

1.2. A numerical illustration. In GWAS, SNPs are high-density bi-allelic ge-
netic markers. Loosely speaking, each SNP can be considered as a binomial ran-
dom variable with two trials and the probability of “success” is defined as “allele
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frequency” in genetics. Accordingly, the genotype for each SNP can be coded as ei-
ther 0, 1 or 2. In our simulation, we first simulate the allele frequencies for p SNPs,
{f1, f2, . . . , fp}, from the Uniform[0.05,0.5] distribution, where fj is the allele
frequency of the j th SNP. We then simulate the genotype matrix U ∈ {0,1,2}n×p ,
with rows corresponding to the sample/individual and columns corresponding to
the SNP. Specifically, for the j th SNP, the genotype value of each individual is
sampled from {0,1,2} according to probabilities (1 − fj )

2, 2fj (1 − fj ), and f 2
j ,

respectively. After that, each column of U is standardized to have zero mean
and unit variance, and the standardized genotype matrix is denoted as Z. Let
Z̃ = p−1/2Z. In Yang et al. (2010), an LMM was used to describe the relation-
ship between a phenotypic vector y and the standardized genotype matrix Z̃:

y = 1nμ + Z̃α + ε, α ∼ N
(
0, σ 2

αIp

)
, ε ∼ N

(
0, σ 2

ε In

)
,(5)

where 1n is the n × 1 vector of 1’s, μ is an intercept, α is the vector of random
effects, In is the n × n identity matrix, and ε is the vector of errors. An important
quantity in genetics is “heritability,” defined as the proportion of phenotypic vari-
ance explained by all genetic factors. For convenience, we assume that all of the
genetic factors have been captured by the SNPs in GWAS. Under this assumption,
the heritability can be characterized via the variance components in model (5):

h2 = σ 2
α

σ 2
α + σ 2

ε

.(6)

Note that the definition of heritability by (6) assumes that αj ∼ N(0, σ 2
α ) for all

j ∈ {1,2, . . . , p}. However, in reality, only a subset of the SNPs is associated with
the phenotype. A correct model therefore is

y = 1nμ + Z̃(1)α(1) + ε, α(1) ∼ N
(
0, σ 2

αIm

)
, ε ∼ N

(
0, σ 2

ε In

)
,(7)

where m is the total number of SNPs that are associated with the phenotype, α(1)

is the subvector of α corresponding to the nonzero components that are associated
with the SNPs, and Z̃(1) = p−1/2Z(1), Z(1) being the submatrix of Z corresponding
to the associated SNPs. In this case, the heritability should instead be given by

h2
true = (m/p)σ 2

α

(m/p)σ 2
α + σ 2

ε

.(8)

In practice, it is impossible to identify all of the m SNPs due to the limited sample
size. Therefore, we follow model (7) while simulating the phenotypic values, but
pretend that we do not know which SNPs are associated with the phenotype. This
means that we simply use all the SNPs in Z to estimate the variance components,
σ 2

α and σ 2
ε in model (5). The estimated heritability is then obtained as

ĥ2 = σ̂ 2
α

σ̂ 2
α + σ̂ 2

ε

.(9)
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FIG. 1. Heritability–REML provide right answer despite model misspecification.

In this illustrative simulation, we fixed n = 2000, p = 20,000, σ 2
ε = 0.4 and varied

m from 10 to 20,000. We also set the variance component σ 2
α = 0.6p/m so that the

proportion of phenotypic variance explained by genetic factors h2
true = 0.6, based

on (8). We repeated the simulation 100 times. As shown in Figure 1, there is almost
no bias in the estimated h2 regardless of the underlying true model, whether it is
sparse (i.e., m/p is close to zero) or dense (i.e., m/p is close to one). This sug-
gests that the REML works well in providing unbiased estimator of the heritability
despite the model misspecification.

1.3. Outline of theoretical results. Throughout this paper, we assume that q ,
the dimension of β , is fixed, while n, p and m increase. For the simplicity of
illustration, let us first assume that n,p,m → ∞ such that

n

p
−→ τ,

m

p
−→ ω,(10)

where 0 < τ,ω ≤ 1 are constants. Note that τ is the limiting ratio of the sample
size and the number of random effects, while ω is the limiting proportion of the
nonzero random effects. First consider the case where the entries of Z are i.i.d.
The point is that the more realistic case where the entries of Z are standardized
(see below) can be handled by utilizing the results for the i.i.d. case, and some
inequalities on the difference, or perturbation (see below), between the two cases.

Suppose that the true variance components, σ 2
α , σ 2

ε are positive, and (10) holds.
Then, (i) with probability tending to one, there is a REML estimator, γ̂ , such that

γ̂
P−→ ωγ0, where γ0 is the true γ ; (ii) σ̂ 2

ε

P−→ σ 2
ε0, where σ̂ 2

ε is the REML esti-
mator given by (4) with γ = γ̂ , as in (i), and σ 2

ε0 is the true σ 2
ε .

As far as the consistency is concerned, condition (10) can be relaxed to

lim inf
(

m ∧ n

p

)
> 0, lim sup

(
m ∨ n

p

)
≤ 1,(11)
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so that, with probability tending to one, that there exist REML estimators, γ̂ , σ̂ 2
ε ,

such that (i) σ̂ 2
ε

P−→ σ 2
ε0, in other words, the REML estimator of σ 2

ε is consistent;

and (ii) the adjusted REML estimator of γ is consistent, that is, (p/m)γ̂
P−→ γ0.

Note. The latest asymptotic result may explain what has been observed in Fig-
ure 1. Note that the estimated heritability, (9), can be written as

ĥ2 = (m/p)(p/m)γ̂

1 + (m/p)(p/m)γ̂
.(12)

On the other hand, the true heritability, (8), can be written as

h2
true = (m/p)γ0

1 + (m/p)γ0
.(13)

Because (p/m)γ̂ converges in probability to γ0, when we replace the (p/m)γ̂ in
(12) by γ0, the resulting first-order approximation of (12) is exactly (13). It should
also be noted that condition (11) requires that the limiting lower bound be positive.
This may explain why the bias for m = 10 in Figure 1 is much more significant
compared to other cases, because the ratio m/p in this case, 10/20,000 = 0.0005,
is fairly close to zero.

As mentioned, the asymptotic results can be extended to the case where the de-
sign matrix, Z, for the random effects is standardized. Let U = (uik)1≤i≤n,1≤k≤p

whose entries are i.i.d. Define Z = (zik)1≤i≤n,1≤k≤p , where zik = (uik − ūk)/sk

with ūk = n−1 ∑n
i=1 uik and s2

k = (n − 1)
∑n

i=1(uik − ūk)
2. In other words, the

new Z matrix has the sample mean equal to 0 and sample variance equal to 1 for
each column. We then define Z̃ = p−1Z, and proceed as in (1). Also, as noted, in
GWAS, the entries of U are generated from a discrete distribution which assigns
the probabilities θ2,2θ(1−θ), (1−θ)2 to the values 0,1,2, where θ is prespecified
so that θ ∈ (0.05,0.5); however, there is also interest in the case where the entries
of U are normal. Under the discrete distribution, it makes no difference if we stan-
dardize the discrete distribution so that is has mean 0 and variance 1, so, without
loss of generality, the entries of U are uik = (dik − μ)/σ , where dij has the above
discrete distribution, μ = E(dik) = 2(1 − θ), and σ 2 = var(uik) = 2θ(1 − θ).

Both the Gaussian and discrete cases can be treated under the framework of
the following broader class of distributions [e.g., Hsu, Kakade and Zhang (2012)].
Let ξ1, . . . , ξn be random variables. We say ξ = (ξi)1≤i≤n is sub-Gaussian if there
exists σ > 0 such that for all λ ∈ Rn we have E(eλ′ξ ) ≤ e|λ|2σ 2/2. The asymptotic
results regarding the MMMA are extended to the sub-Gaussian class.

In addition to the consistency results, we also study convergence rate and
asymptotic variance property of the REML estimator under the mis-LMM. The
results provide further insights into the asymptotic behavior of these estimators.
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2. Preliminaries. A key component for our proofs is the following celebrated
result in random matrix theory [e.g., Paul and Aue (2014)]. Let Z be an n × p

matrix whose entries are i.i.d., complex-valued random variables with mean 0 and
variance 1, where n → ∞ as p → ∞ such that n/p → τ , as in (10). We are
interested in the asymptotic behavior of the empirical spectral distribution (ESD)
of S = p−1ZZ′, defined as

FS(x) = 1

n

n∑
k=1

1(λk≤x), x ∈ R,

where λ1, . . . , λn are the eigenvalues of S.

LEMMA 2.1 (Marčenko–Pastur law). Suppose (10) holds. Then, as p → ∞,
the ESD of S converges almost surely (a.s.) in distribution to the Marčenko–Pastur
(M–P) law, Fτ , whose p.d.f. is given by

ϕτ (x) = 1

2πτx

√{
b+(τ ) − x

}{
x − b−(τ )

}
,

if b−(τ ) ≤ x ≤ b+(τ ), and ϕτ (x) = 0 elsewhere, where b±(τ ) = (1 ± √
τ)2.

A result that is frequently referred to is the following corollary of Lemma 2.1,
which is a consequence of convergence in distribution [e.g., Jiang (2010), page 45].

COROLLARY 2.1. Under the assumptions of Lemma 2.1, we have, for any
positive integer l, n−1 tr(Sl)

a.s.−→ ∫ b+(τ )

b−(τ ) xlϕτ (x) dx as p → ∞.

The next result is regarding the extreme eigenvalues of S [e.g., Bai (1999), The-
orem 2.16]. Let λmin(S) [resp., λmax(S)] denote the smallest (largest) eigenvalues
of S.

LEMMA 2.2. Suppose that, in addition to the assumptions of Lemma 2.1, the
fourth moment of the entries of Z are finite. Then we have, as p → ∞, λmin(S)

a.s.−→
b−(τ ) and λmax(S)

a.s.−→ b+(τ ).

Let ξ1, . . . , ξn be random variables. We say ξ = (ξi)1≤i≤n is sub-Gaussian if
there exists σ > 0 such that for all λ ∈ R

n we have E(eλ′ξ ) ≤ e|λ|2σ 2/2. The Gaus-
sian distribution, of course, is a member of the sub-Gaussian class. The following
is a restatement of Lemma 5.5 of Vershynin (2012).

LEMMA 2.3. A random variable ξ is sub-Gaussian if any of the following
equivalent conditions hold:

(I) E(eξ2/K2
1 ) < ∞ for some 0 < K1 < ∞;



HIGH-DIMENSIONAL MMMA IN GWAS 2135

(II) {E(|ξ |q)}1/q ≤ K2
√

q for all q ≥ 1, for some 0 < K2 < ∞.
If, moreover, E(ξ) = 0, then the following is equivalent to (I) and (II):
(III) E(etξ ) ≤ et2K2

3 for all t ∈ R, for some 0 < K3 < ∞.

Define the sub-Gaussian norm of a random variable ξ as

‖ξ‖ψ2 ≡ sup
q≥1

{
q−1/2(

E|ξ |q)1/q}
.(14)

Clearly, by (II) of Lemma 2.3, ξ is a sub-Gaussian random variable if and only if
|ξ |ψ2 < ∞. One of the useful characteristics of sub-Gaussianity is that it is pre-
served under linear combinations. Specifically, we have the following result.

LEMMA 2.4 [Vershynin (2012), Lemma 5.9]. Suppose that X1, . . . ,Xn are
independent sub-Gaussian random variables, and b1, . . . , bn ∈ R are nonrandom.
Then

∑n
i=1 biXi is sub-Gaussian and, for some C > 0, we have

∥∥∥∥∥
n∑

i=1

biXi

∥∥∥∥∥
2

ψ2

≤ C

n∑
i=1

b2
i ‖Xi‖2

ψ2
.

Lemma 2.4 follows easily from the equivalent characterizations in Lemma 2.3,
specifically, by using the moment generating function. The following simple corol-
lary is very useful for our applications.

COROLLARY 2.2. Let X1, . . . ,Xn be independent with max1≤i≤n ‖Xi‖ψ2 ≤
K < ∞. Then

∑n
i=1 biXi is sub-Gaussian and, for some C > 0, we have

∥∥∥∥∥
n∑

i=1

biXi

∥∥∥∥∥
2

ψ2

≤ CK2

(
n∑

i=1

b2
i

)
.

The following result, due to Rudelson and Vershynin (2013), is a concentra-
tion inequality for quadratic forms involving a random vector with independent
sub-Gaussian components. It is referred to as Hanson–Wright inequality. For any
matrix Q of real entries, the spectral norm of Q is defined as ‖Q‖ = λ

1/2
max(Q

′Q)

and the Euclidean norm is defined as ‖Q‖2 = √
tr(Q′Q).

PROPOSITION 2.1. Let ξ = (ξ1, . . . , ξn)
′, where the ξi ’s are independent ran-

dom variables satisfying E(ξi) = 0 and max1≤i≤n ‖ξi‖ψ2 ≤ K < ∞. Let Q be an
n × n matrix. Then, for some constant c > 0, we have, for any t > 0,

P
{∣∣ξ ′Qξ −E

(
ξ ′Qξ

)∣∣ > t
} ≤ 2 exp

{
−c min

(
t2

K4‖Q‖2
2

,
t

K2‖Q‖
)}

.
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In the settings that we are interested in, we have E(ξ2
i ) = 1 for all i and so

E(ξ ′Qξ) reduces to tr(Q).
The next result, well known in random matrix theory [e.g., Bai and Silverstein

(2010); Sections A.5, A.6], is regarding perturbation of the ESD.

LEMMA 2.5. For any n × p matrices A,B we have:

(i) ‖FAA′ − FBB ′‖ ≤ n−1 rank(A − B), where for a real-valued function g on
R, ‖g‖ = supx∈R |g(x)|;

(ii) L4(FAA′
,FBB ′

) ≤ 2n−2(‖A‖2
2 +‖B‖2

2)‖A−B‖2
2, where the Levy distance

between two distributions, F and G on R, is defined as L(F,G) = inf{ε > 0 :
F(x − ε) − ε ≤ G(x) ≤ F(x + ε) + ε}.

The following result is implied by Lemma 2 of Bai and Yin (1993).

LEMMA 2.6. Suppose that Xij , i, j = 1,2, . . . are i.i.d. with E(X2
11) < ∞.

Then, we have max1≤j≤n |X̄j −E(X11)| a.s.−→ 0, where X̄j = n−1 ∑n
i=1 Xij .

Lemmas 2.5 and 2.6 are used to study the asymptotic ESD of symmetric ran-
dom matrices involving the standardized design matrix. Note that the standardized
design matrix can be expressed as Z = (U − ū⊗1n)D

−1
s , where ū = (ū1, . . . , ūp),

and Ds = diag(s1, . . . , sp) (where ⊗ denotes the Kronecker product). Let A be the
matrix associated with the REML estimation (see the beginning of the proof of
Theorem 3.1 below). Consider � = p−1ζ ζ ′, where ζ = A′Z and A is n × (n − q)

satisfying A′X = 0 and A′A = In−q . The following corollary is proved in Sec-
tion 7.

COROLLARY 2.3. Under the assumptions of Lemma 2.1, the ESD of � con-
verges a.s. in distribution to the M–P law. Furthermore, under the assumptions of
Lemma 2.2, λmin(�) and λmax(�) converge a.s. b−(τ ) and b+(τ ), respectively.

3. Main theoretical results. First, we state a result regarding the consistency
of the misspecified REML estimator of σ 2

ε , σ̂ 2
ε , and convergence in probability

of the misspecified REML estimator of γ , γ̂ . Throughout this section, the design
matrix, Z, is assumed to be standardized, as described near the end of Section 1,
where the entries of U are i.i.d. sub-Gaussian.

THEOREM 3.1. Suppose that the true σ 2
α , σ 2

ε are positive, and (10) holds.
Then:

(i) With probability tending to one, there is a REML estimator, γ̂ , such that

γ̂
P−→ ωγ0, where γ0 is the true γ .

(ii) σ̂ 2
ε

P−→ σ 2
ε0, where σ̂ 2

ε is (4) with γ = γ̂ , as in (i), and σ 2
ε0 is the true σ 2

ε .
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REMARK 3.1. It is interesting to note that the limit of γ̂ in (i) depends on ω,
but not τ . More specifically, the limit is equal to the true γ multiplied by ω, the
limiting proportion of the nonzero random effects [see the remark below (10)]. The
result seems totally intuitive.

REMARK 3.2. On the other hand, part (ii) of Theorem 3.1 states that the
REML estimator of σ 2

ε is consistent in spite of the model misspecification.

As far as the consistency of σ̂ 2
ε is concerned, condition (10) can be relaxed. We

state this as a corollary of Theorem 3.1.

COROLLARY 3.1. Suppose that, in Theorem 3.1, condition (10) is weakened
to (11). Then, with probability tending to one, there are REML estimators, γ̂ , σ̂ 2

ε ,
such that:

(i) σ̂ 2
ε

P−→ σ 2
ε0, in other words, the REML estimator of σ 2

ε is consistent;

(ii) The adjusted REML estimator of γ is consistent, that is, (p/m)γ̂
P−→ γ0.

Another consequence of Theorem 3.1 may be regarded as an extension of the
well-known result on consistency of the REML estimator [e.g., Jiang (1996)],
which is based on conditioning on Z.

COROLLARY 3.2. Suppose that m = p, that is, the LMM is correctly speci-
fied. Then, as n,p → ∞ such that (11) holds with m∧ n and m∨ n replaced by n,

there are REML estimators γ̂ and σ̂ 2
ε such that γ̂

P−→ γ0 and σ̂ 2
ε

P−→ σ 2
ε0; in other

words, the REML estimators are consistent without conditioning on Z.

Given the consistency of σ̂ε , more precise asymptotic behavior of the latter is
of interest. As noted, the estimation of σ 2

ε is also of main practical interest. The
following result establishes convergence rate of the REML estimator of σ 2

ε as well
as that of the adjusted REML estimator of γ .

In order to describe this result, we need to introduce certain functions. Define

hk,l(γ ) =
∫

xl

(1 + γ x)k
ϕτ (x) dx,(15)

where ϕτ denotes the p.d.f. of the Marčenko–Pastur law with the parameter τ ∈
(0,1]. For ease of reference, we also define,

f1(γ ) = h2,1(γ ), f2(γ ) = h2,0(γ ),
(16)

g1(γ ) = h1,1(γ ), g2(γ ) = h1,0(γ ).
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THEOREM 3.2. Suppose that in the assumptions of Theorem 3.1, condition
(10) is strengthened to

√
n

∣∣∣∣ np − τ

∣∣∣∣ → 0,
√

n

∣∣∣∣mp − ω

∣∣∣∣ → 0,(17)

and U has independent sub-Gaussian entries with zero mean, unit variance and

bounded sub-Gaussian norm, αi
i.i.d.∼ N(0, σ 2

α0), while εi
i.i.d.∼ N(0, σ 2

ε0). Then,
with γ∗ := ωγ0, we have

√
n(γ̂ − γ∗) �⇒ N

(
0,2�1(γ∗, τ,ω)

)
,(18)

√
n
(
σ̂ 2

ε − σ 2
ε0

) �⇒ N
(
0,2σ 4

ε0�2(γ∗, τ,ω)
)
,(19)

where �⇒ denotes convergence in distribution, �1(γ∗, τ,ω) equals

γ 2∗
(

f2(γ∗)
g2(γ∗)

− f2(γ∗)
g2(γ∗)

)−2

×
[
H2,2;1,1(γ∗, τ,ω)

(h1,1(γ∗))2 − 2
H2,2;1,0(γ∗, τ,ω)

h1,1(γ∗)h1,0(γ∗)
+ H2,2;0,0(γ∗, τ,ω)

(h1,0(γ∗))2

]
,

and �2(γ∗, τ,ω) equals

H2,2;1,1(γ∗, τ,ω)

(h1,0(γ∗))2 + 2ρ∗
(

H3,2;2,1(γ∗, τ,ω)

h1,0(γ∗)h1,1(γ∗)
− H2,2;1,1(γ∗, τ,ω)

(h1,0(γ∗))2

)

+ ρ2∗
(

H3,3;2,2(γ∗, τ,ω)

(h1,1(γ∗))2 + H2,2;1,1(γ∗, τ,ω)

(h1,0(γ∗))2 − 2
H3,2;2,1(γ∗, τ,ω)

h1,0(γ∗)h1,1(γ∗)

)
,

with fj (γ ) and gj (γ ) as in (16), Hk,l;s,t (γ, τ,ω) is given in Proposition 3.1, and

ρ∗ = γ∗(h2,1(γ∗)/h1,0(γ∗) − 2h3,2(γ∗)/h1,0(γ∗))
(h2,0(γ∗)/h1,0(γ∗) − h2,1(γ∗)/h1,1(γ∗))

.

REMARK 3.3. We can weaken the conditions of Gaussianity of εi’s and αi’s
in Theorem 3.2 to that they have finite fourth moment, and that E(ε4

i ) = 3σ 4
ε0 while

E(α4
i ) = 3σ 4

α0.

The following result gives the form of the functions Hk,l;s,t (γ, τ,ω). The de-
tailed descriptions are cumbersome, and hence parts of the constituent functions
are defined in the supplementary material [Jiang et al. (2016)].

PROPOSITION 3.1. Under the conditions of Theorem 3.2, for integers k, l, s, t

such that 1 ≤ k, l ≤ 3 and 0 ≤ s < k, 0 ≤ t < l, and for any γ > 0, we have

1

n̄
tr

(
�−k

γ Ū s�1,0�
−l
γ Ū t�1,0

) P−→ Hk,l;s,t (γ, τ,ω),(20)
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where
P−→ denotes convergence in probability, and

Hk,l;s,t (γ, τ,ω) = H
(1)
k,l;s,t (γ, τ ) + 2(ωγ0)H

(2)
k,l;s,t (γ, τ )

(21)
+ (ωγ0)

2H
(3)
k,l;s,t (γ, τ ) + τ

ω
(ωγ0)

2H
(4)
k,l;s,t (γ, τ ),

where

H
(1)
k,l;s,t (γ, τ ) = hk+l,s+t (γ ),

H
(2)
k,l;s,t (γ, τ ) = (−1)s+t

γ s+t

s+t∑
j=0

(−1)j
(

s + t

j

)
ηk+l−j (γ, τ ),

H
(3)
k,l;s,t (γ, τ ) = (−1)s+t

γ s+t

s∑
j1=0

t∑
j2=0

(−1)j1+j2

(
s

j1

)(
t

j2

)
κk−j1,l−j2(γ, τ ),

H
(4)
k,l;s,t (γ, τ ) = (−1)s+t

γ s+t

s∑
j1=0

t∑
j2=0

(−1)j1+j2

(
s

j1

)(
t

j2

)
ηk−j1(γ, τ )ηl−j2(γ, τ )

= (−1)s+t

γ s+t

(
s∑

j1=0

(−1)j1

(
s

j1

)
ηk−j1(γ, τ )

)

×
(

t∑
j2=0

(−1)j2

(
t

j2

)
ηl−j2(γ, τ )

)
,

where the functions κk,l(γ, τ ) and ηk(γ, τ ) are as defined in (S.3) and (S.4) in the
supplementary material [Jiang et al. (2016)].

The proofs of the theorems are given in Section 7.

REMARK 3.4. Note that in the description of the function Hk,l;s,t (γ ∗, τ,ω),
only the last term involves ω and this term is proportional to τ/ω. All of the other
parameter, or function of parameters, that are involved in the asymptotic variances,
namely, σ 2

ε0 and γ∗ = ωγ0, can be consistently estimated. At least for one partic-
ular case of important practical interest, the dependence on ω in the asymptotic
variances is negligible; in other words, the term that depends on ω is of lower or-
der than the leading term, which only involves σ 2

ε0 and γ∗. This important case is
when n/p → 0, or τ = 0; in other words, the total number of SNPs, p, is much
larger than the sample size, n. This is, indeed, a very practical situation in GWAS.
In such a case, inference can be made by estimating the asymptotic variance. An-
other result of practical interest is that, if there is information about a lower bound
for ω, then an upper bound of the asymptotic variance can be easily obtained, and
the result holds regardless of the ratio n/p (→ 0 or otherwise). Such an upper
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bound is useful in obtaining, for example, conservative confidence intervals for
the parameters of interest.

REMARK 3.5. Although, throughout this paper, we have assumed that the di-
mension of β , q , is fixed (see the beginning of Section 1.3), the proofs show that
the results of Theorems 3.1 and 3.2 remain valid as long as q = o(

√
n). Another

consequence of the latter condition is following. Throughout this paper, the matrix
of covariates, X in (1), is considered fixed. This is equivalent to the assumption that
X and Z,ε are independent. However, as long as q = o(

√
n), the independence of

X and Z is asymptotically ignorable in that the results of Theorems 3.1 and 3.2
continue to hold even if X is not independent with Z. This is because the REML
procedure depends on X only through the matrix A, which has the property that
A′X = 0 and A′A = In−q . Furthermore, as argued near the end of the proof of The-
orem 3.1 (see Section 7.3), what is actually at play is the matrix AA′ = In − PX ,
and PX has rank q = o(

√
n). It turns out that, under the latter condition, PX is

ignorable in all of our asymptotic arguments; in other words, one can replace AA′
by In and the results do not change.

4. More simulation studies. To demonstrate our theoretical results numeri-
cally, we carry out more comprehensive simulation study following the same pro-
cedures as described in Section 1.2. The h2 was also set at 0.6 (σ 2

e = 0.4 and
γ = 1.5). We fix the ratio τ = n/p = 0.1 and varied ω = m/p from 0.001 to 1.
We examine the performance of the REML, under the mis-LMM, in estimating γ

and σ 2
e as n varies from 1000 to 5000. The performance of the adjusted REML

estimator of γ for ω = 0.01 is shown in Figure 2. It appears that the adjusted

FIG. 2. Adjusted REML estimation of γ for different n and p (ω = 0.01).
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FIG. 3. Comparison of estimators of σ 2
ε with refitted C.V. and scaled lasso for different m

(ω = 0.01).

REML always gives nearly unbiased estimate of γ , confirming our observations in
Section 1.2 and theoretical results, namely, part (ii) of Corollary 3.1. More impor-
tantly, as both n and p increase (with n/p fixed at 0.1), the standard deviation of
the estimate decreases.

As noted, several other methods for high dimensional variance estimation have
been proposed recently. As a comparison, we examine the performances of two of
these methods, refitted cross validation (c.v.) [Fan, Guo and Hao (2012)] and scaled
lasso [Sun and Zhang (2012)], in estimating σ 2

e under the misspecified LMM.
The results for n = 2000, p = 20,000 are shown in Figure 3. Again, the REML
estimator appears to be unbiased regardless of the value of m. On the other hand,
the competing methods tend to have much larger bias, especially when m is large.
This is not surprising because the competing methods are largely based on the
sparsity assumption that m is relatively small compared to p. Indeed, when m =
20, the biases and standard deviations of the competing methods are quite small.
In the latter case, the competing method may outperform the REML in terms of
mean squared error (MSE). However, the REML performs well consistently across
a much broader range of m, as demonstrated by Figure 3.

5. Real data example. LMM is nowadays commonly used in the genetics
community for heritability estimation of complex traits [Visscher et al. (2012)], in-
cluding anthropometric traits [Yang et al. (2010)], metabolic syndrome traits [Vat-
tikuti, Guo and Chow (2012)], and psychiatric disorders [Cross-Disorder Group
of the Psychiatric Genomics Consortium (2013), Lee et al. (2012), Yang et al.
(2016)]. Here, we provide a real data example by using LMM to estimate heri-
tability of body mass index (BMI). We downloaded COGA and SAGE datasets
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from dbGaP [accession number: phs000125.v1.p1 (COGA) and phs000092.v1.p1
(SAGE)].

First, we remove the duplicated samples in COGA and SAGE. Second, we re-
move samples without height and weight information because BMI is of our in-
terest here. Third, we exclude relatives because these samples can inflate the heri-
tability estimation [Yang et al. (2010)]. As a result, a total of n = 2294 individuals
from European ancestry remain after these steps. To avoid artifacts from geno-
typing in our estimation, we apply stringent quality control for the genotype data
from these individuals. Specifically, we remove SNPs with a missing rate >0.01.
We test for Hardy–Weinberg equilibrium and exclude SNPs with p-value <0.001.
SNPs with minor allele frequency (MAF) < 5% are also removed to focus on the
analysis of common variants. After these quality control steps, p = 728,000 SNPs
remain for analysis.

After sample and genotype cleaning, we apply the LMM approach to estimate
the heritability of BMI. Specifically, we normalize the genotype matrix such that
it has zero (sample) mean and unit (sample) variance, for each column, denoted
as Z. We then use Z̃ = p−1/2Z as the design matrix for the random effects. As
for the matrix X for the fixed effects, we include, in addition to the intercept,
the first ten principal component scores computed from Z̃Z̃′, known as the ge-
netic similarity matrix, to account for the influence of population stratification. It
should be noted that, strictly speaking, the X matrix here is not independent with
Z. However, by Remark 3.5, this dependence does not affect our asymptotic re-
sults, as long as q = o(

√
n). For the current data,

√
n is about 48 and q is 11, so

the condition may be considered satisfied. Another note, from a practical point of
view, is regarding the normalization of the genotype matrix so that each SNP had
zero mean and unit variance. This is according to the common practice of LMM
application to GWAS [Yang et al. (2010); Yang et al. (2011)]. Although heritabil-
ity is not originally defined on the normalized genotypes, heritability estimation
based on normalized genotype data explicitly assumes that the genetic variants
with lower allele frequencies tend to have larger effect sizes. Speed et al. (2012)
carefully examined heritability estimation under this assumption and their results
suggested that this assumption could give the most stable heritability estimation in
the presence of a misspecified distribution of effect sizes. As part of the results,
we obtain the REML estimates as σ̂ 2

α = 6.119 with a standard error (s.e.) of 4.292,
and σ̂ 2

ε = 25.149 with a s.e. of 4.287, which results in the estimated heritability of
ĥ2 = 19.6% [see (9)] with a s.e. of 13.6%.

As a comparison, we use the refitted c.v. method to estimate the residual vari-
ance (see Section 4). Specifically, we randomly partition the data into two-groups
(with equal sample sizes). We use the first half of the data to select the top
K = �n/ log(n)� = 296 SNPs, and then estimate the residual variance associated
with the second half of the data based on those selected SNPs. We repeat the ran-
dom partitioning 50 times and the estimated residual variance almost equals to
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the sample phenotype variance. The result given by the refitted cross-validation
method may suggest that genetics has little contribution to the phenotype, which
could further lead to the phenomenon of “missing heritability.” However, the re-
sults given by LMM suggest that genetic factors can explain a substantial propor-
tion of phenotypic variance. More importantly, the heritability of BMI estimated
by LMM (about 16.5%–22.9%) has been replicated based on several independent
datasets [Yang et al. (2011), Zaitlen et al. (2013)].

6. Discussion. The LMM that is used for GWAS in this paper is relatively
simple. Of course, there are aspects of the model that can be improved from prac-
tical points of view. For example, the i.i.d. assumption about the random effects,
α, may not be met in cases where the SNPs are dense, in which case it may not
be unrealistic to expect that the markers are in linkage equilibrium. If there is only
one marker in each region having impacts on the phenotype of interest, one may
be able to “thin” the SNPs to a reduced set so that there is less dependency among
the markers, which does not practically affect the estimate of the overall genetic
contribution to trait variations. In this case, the theoretical framework established
in this paper would still stand valid, and the estimates would be reasonable.

A real challenging situation is when there are multiple markers in a region hav-
ing impacts on the phenotypes and these markers are in linkage disequilibrium.
From a regression perspective with the objective of estimating regression coeffi-
cients, the presence of colinearity of these markers will make the effect size es-
timates questionable. From a variance component point of view, the presence of
linkage disequilibrium among these “true” markers as well as makers in the region
with “null” effects will make it very challenging to estimate the variance contri-
butions from the region. So, even if the random effects are i.i.d., the colinearity in
the design matrix with a mix of “true” and “null” variables may raise issues to sta-
tistical inference, even in standard regression analysis. Some methods have been
proposed to address potential issues due to linkage disequilibrium [e.g., Speed et
al. (2012)], and these methods and their refinement may lead to more unbiased es-
timates. Therefore, regardless of the i.i.d. assumption, linkage disequilibrium will
pose potential challenges in estimating the variance explained by genetic factors,
and the “optimal” solution will depend on an appropriate model that can truly cap-
ture how different markers contribute to the phenotypes. While this should become
more clear in the future, we do not yet have the knowledge to do so.

Similarly, homoscedasticity implied by the i.i.d. assumption may be too strong
in some cases. Again, the real challenge is that the “true” underlying genetic model
that affects our traits is largely unknown. In assessing associations between traits
of multiple rare variants from the same region, many methods have been proposed
to weigh in the allele frequencies differently [e.g., Madsen and Browning (2009)].
However, the relative performance of different weighting schemes still needs to
be comprehensively evaluated by empirical data; it is likely that there will not
be an universal rule on this issue. We take the approach analyzed in this paper
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as a first step to address this very complex problem. In this regard, George Box
is often quoted as once famously saying that “essentially, all models are wrong,
but some are useful” [Box (1979)]. It is true that the model we have in hand is not
perfect; yet, it has been found useful in many GWAS studies, as noted in Section 1.
A main purpose of this paper is to give answer to why the seemingly simple LMM
works, in spite of some misspecification. We are confident that, as more knowledge
becomes available, a more appropriate, and possibly complex model will emerge,
and prove to be practically more efficient than the current model. When the time
is right, a related asymptotic theory will be established.

In some cases, the number of nonzero random effects, m, may be of interest,
so a related question is whether one can “consistently” estimate m. As explained
in the Introduction, it is reasonable to assume that many SNPs jointly affect the
phenotype. In other words, the number m is large. More precisely, we assume that
the number of SNPs that have effects is a fraction of p, the total number of SNPs.
Therefore, it would make more sense to consider estimation of the ratio ω = m/p.
However, as it turns out, this estimation problem is ill-posed under the true LMM
considered in this paper. There have been studies on estimating the proportion of
nonzero means in high-dimensional problems. See, for example, Cai, Jin and Low
(2007), Jin and Cai (2007), Jin (2008). However, none of these existing results
applies to our case. Furthermore, our own investigation shows that the ratio ω is,
in fact, asymptotically nonidentifiable, under the true LMM.

To explain why this is necessarily the case, first note that the result of our paper
showed that, at least to the first order approximation, the behavior of the REML
estimators, depends on two quadratic forms of y, which are the differences be-
tween the two sides of equations (3) and (4), and their partial derivatives (with
respect to the parameters) evaluated at the true parameters. Note that the matrices
involved in the quadratic forms depending on Z, which asymptotically follows the
random matrix theory. In other words, the asymptotic behavior of REML depends
on the local behavior of these two quadratic forms. In our paper, we showed that,
at least to the first-order approximation (which is all that matters so far as consis-
tency is concerned), the local behaviors of those two quadratic forms depend only
on σ 2

ε and ωσ 2
α . Note that the second quantity depends on ω and σ 2

α through their,
product, but not separately. In fact, this is how we proved (see the next section),
and why we can prove, consistency of REML estimators for exactly these two
functions of the parameters and not something else. This means that, in particular,
asymptotically, one cannot identify the parameters ω and σ 2

α separately using the
REML method (under the true LMM).

One may argue that REML is just one method of estimation; perhaps, some-
where, there is different method that can consistently estimate ω? The fact is,
although there are alternative methods, the REML is widely considered the best
method of variance components estimation in LMM [e.g., Jiang (1996, 1997,
2007), Sections 1.3.2, 1.8.3 and the reference therein]. Typically, consistency prop-
erty of one good estimator reveals (asymptotic) identifiability of functions of pa-
rameters that is universal, regardless of the method of estimation.
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To further support our argument, let us consider an alternative method of esti-
mation. One of the earlier methods of estimation in LMM is the method of mo-
ments (or ANOVA estimation; for example, Jiang [(2007), Section 1.5.1]). Jiang
(2003) proposed an extension called empirical method of moments (EMM) to es-
timate higher moments of the random effects in LMM. For the most part, EMM
is the same as the method of moments (MM) except that some of the parame-
ters in the MM equation are replaced by consistent estimators obtained using other
method(s). Consider a special case where the entries of Z are independent N(0,1).
We then let Z̃ = p−1/2Z, etc., as in Section 1.1. Let A be a symmetric n×n matrix
satisfying AX = 0. It can be shown that

E

{
y′Ay

tr(A)

}
= σ 2

ε + ωσ 2
α ,(22)

where ω = m/p is the proportion that we wish to estimate. Note that, in (22), the
expectation is unconditional, that is, with respect to α, ε and Z. Next, let a be an
n × 1 vector such that a′X = 0. By Lemma 2.1 of Jiang (2007), it can be shown
that

E

(
a′y
|a|

)4

= 3
{
σ 4

ε + 2ωσ 2
ασ 2

ε + ωσ 4
α

(
ω + 2

p

)}
.(23)

Again, the expectation in (23) is unconditional. We now specify the choices of A

and a in (22), (23). Let A = PX⊥ = In − PX , where PX = X(X′X)−1X′. Note
that tr(PX⊥) = rank(PX⊥) = n − q , where q = rank(X). Let a1, . . . , an−q be an
orthonormal base of L(X)⊥, the linear space that is orthogonal to L(X), the linear
space spanned by the columns of X. From (22), we have

E

(
y′PX⊥y

n − q

)
= σ 2

ε + ωσ 2
α ;(24)

and, from (23), we have

E
(
a′
ky

)4 = 3
{
σ 4

ε + 2ωσ 2
ασ 2

ε + ωσ 4
α

(
ω + 2

p

)}
, 1 ≤ k ≤ n − q.(25)

It follows, by taking average over k = 1, . . . , n − q in (25), that

E

{
1

n − q

n−q∑
k=1

(
a′
ky

)4
}

= 3
{
σ 4

ε + 2ωσ 2
ασ 2

ε + ωσ 4
α

(
ω + 2

p

)}
.(26)

If σ 2
ε were known, one would use the MM by removing the expectation signs on

the left sides of (24) and (26), leading to the MM equations. Namely, let M2 =
y′PX⊥y/(n − q) and M4 = (n − q)−1 ∑n−q

k=1 (a′
ky)4. Then the MM equations are{

M2 = σ 2
ε + ωσ 2

α ;
M4 = 3

[
σ 4

ε + 2ωσ 2
ασ 2

ε + ωσ 4
α

{
ω + (2/p)

}]
.

(27)
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The equation system leads to the solution

ω = 2(M2 − σ 2
ε )2

p{(M4/3) − M2
2 } .(28)

Again, if σ 2
ε were known, (28) would be the MM estimator of ω. Now, because σ 2

ε

is not known, we replace it in (28) by its REML estimator, σ̂ 2
ε , which is proved to

be consistent (Theorem 3.1). The result is the EMM estimator of ω, given by

ω̂ = 2(M2 − σ̂ 2
ε )2

p{(M4/3) − M2
2 } .(29)

At first, the estimator ω̂ seems to have a neat closed-form expression, but it is not
well-behaved (we have empirical results to support this claim). Why? The reason
is simple: The moment equations, (24) and (26), asymptotically depend only on
σ 2

ε and ωσ 2
α . This is obviously true for (24). As for (26), note that the right-hand

side can be written as

3
{
σ 4

ε + 2
(
ωσ 2

α

)
σ 2

ε + (
ωσ 2

α

)2} + 6

p

(
ωσ 2

α

)
ω−1.(30)

In a way, the expression does have a little bit dependency on ω through ω−1, in
addition to σ 2

ε and ωσ 2
α , but the dependency on ω−1 is to the order of O(p−1);

in contrast, the rest of the terms in (30) are all O(1). Thus, as p → ∞, the de-
pendency on ω will disappear, and these equations depend only on σ 2

ε and ωσ 2
α .

In fact, this is, again, the very reason why we can consistently estimate these two
functions of parameters, but not something else.

To play the devil’s advocate, let us take another look at (29), note that the nu-
merator converges in probability to 2(ωσ 2

α )2. Thus, one would love to see that the
denominator converges, in probability, to 2ωσ 4

α , because that is the mean of the
denominator, but the convergence does not take place. In fact, it can be shown that

M4

3
− M2

2 =
(

2

p

)
ωσ 4

α + O
(
p−1/2)

.

So, when multiplied by p, the denominator of (29) is equal to

2ωσ 4
α + O

(
p1/2)

.(31)

Because the second term in (31) is of higher order than the first term, the conver-
gence in probability is not going to happen.

The definition of LMM in Section 1 assumes that the random effects, α, and
errors, ε, are normal. Such an assumption may not hold in some applications.
Note that the normality assumption for the random effects and errors is needed
for the REML estimators to be the “real” REML estimators because, without the
normality assumption, one does not have an analytic expression for the likelihood
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function. All of the standard packages for LMM are built on this analytic expres-
sion. Thus, without the normality assumption, all of the standard packages are not
computing the real REML estimators; instead, they compute something else. Then
some related question are: (i) What is this something else? and (ii) whether it is
something useful. Of course, one could still try to work on the non-Gaussian like-
lihood, even if it does not have an analytic form, and likely to be messy, but such
an approach is rarely of interest in practice. Thus, we may focus on questions (i)
and (ii).

The answer to (i) is that, without the normality, the REML estimators obtained
under the normality are called Gaussian REML estimators. They are a special case
of quasi-likelihood estimators [e.g., Heyde (1997)]. As for (ii), in fact, Gaussian
REML estimators are used almost all the time, in practice, even although one
can rarely be sure about the normality of the random effects and errors. Such a
practice is justified, in particular, by a series of papers published in the 1990s
[Jiang (1996, 1997)], in which the author showed that, even without the normal-
ity assumption, the Gaussian REML estimators of the variance components are
still consistent and asymptotically normal, provided that the random effects and
errors are i.i.d., with zero means and finite fourth moments. This is, of course,
part of the standard LMM theory, which assumes that the Z matrix is nonran-
dom.

In a way, our case goes beyond the standard LMM theory by assuming that Z is
not only random but also high-dimensional. Thus, we have to check our proofs to
make sure that our main results indeed go through without the normality assump-
tion, with the understanding that we are considering the Gaussian REML estima-
tors in such a case. After checking the proofs, we are assured of such a conclusion.
Note that the conditional distribution of y given Z, which is where the normality
of α and ε plays a role, is only used in a relatively minor early part of the proof for
both Theorems 3.1 and 3.2, that is, to show that the difference between a quadratic
form, say, y′By, and its conditional expectation given Z goes to zero in probabil-
ity. The majority part of each proof then deals with E(y′By|Z) using the random

matrix theory. To show that y′By −E(y′By|Z)
P−→ 0, by Chebyshev’s inequality,

one needs to deal with var(y′By) when y is non-Gaussian. We then refer to the
following result which is derived from Lemma 2.1 of Jiang (1997).

LEMMA 6.1. Let ξi,1 ≤ i ≤ n be i.i.d. with E(ξi) = 0, E(ξ2
i ) = 1, and

E(ξ4
i ) < ∞. Then, with ξ = (ξi)1≤i≤n and A being any constant symmetric ma-

trix, we have

var
(
ξ ′Aξ

) ≤
[
2 ∨ max

1≤i≤n

{
var

(
ξ2
i

)}]
tr

(
A2)

.(32)

Note that, if the ξi’s are normal, the left-hand side of (32) is equal to 2 tr(A2).
Furthermore, any case of var(y′By|Z) can be reduced to that Lemma 6.1 is deal-
ing with, and only upper bounds are needed. The implication is that, to come up
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with the same results needed for the proof without the normality assumption, all
one needs is the finiteness of the fourth moments of the random effects and er-
rors.

Regarding the numerical stability of the solution to equation (3), Jiang (2000)
proved that, under situations much more general than the LMM considered in
this paper, the solution to the REML equation is guaranteed to have kth mo-
ment for any positive integer k. Thus, from a theoretical point of view, the so-
lution to equation (3) is guaranteed stable. Furthermore, according to our empiri-
cal experience based on a huge number of simulation studies and real-data anal-
yses, the numerical procedure to solve the REML equation almost always con-
verges.

7. Proofs.

7.1. Proof of Corollary 2.3. Note that ζ = (M − L)D−1
s , where M = A′U

and L = A′ū ⊗ 1n, and that M is (n − q) × p whose entries are independent
sub-Gaussian, with mean 0, variance 1, and A′A = In−q . Furthermore, write
M̃ = M/

√
p and L̃ = L/

√
p. By Lemma 2.1, the ESD of M̃M̃ ′ converges

a.s. in distribution to the M–P law. On the other hand, write B̃ = M̃ − L̃ and
note that rank(L̃) ≤ rank(ū ⊗ 1n) = 1. Thus, by (i) of Lemma 2.5, we have
‖F B̃B̃ ′ − FM̃M̃ ′‖ ≤ (n − q)−1; hence, the ESD of B̃B̃ ′ converges a.s. in distri-
bution to the M–P law, and λmin(B̃B̃ ′) and λmax(B̃B̃ ′) converge a.s. to b−(τ ) and
b+(τ ), respectively.

Next, write Ã = (M̃ − L̃)D−1
s . By (ii) of Lemma 2.5, we have L4(F ÃÃ′

,

F B̃B̃ ′
) ≤ 2(n − q)−2(‖Ã‖2

2 + ‖B̃‖2
2)‖Ã − B̃‖2

2. Note that ‖B̃‖2
2 = tr(B̃B̃ ′) =

tr(M̃M̃ ′) − 2 tr(L̃M̃ ′) + tr(L̃L̃′). By Lemma 2.1, we have tr(M̃M̃ ′) =
tr(p−1MM ′) = (n − q)Oa.s.(1), where Oa.s.(1) denotes a term that is bounded
almost surely. We have

∣∣tr(L̃M̃ ′)∣∣ = 1

n

∣∣tr{(1′
np

−1UU ′ ⊗ 1n

)(
AA′)}∣∣

= 1

n

∣∣tr(1′
np

−1UU ′AA′ ⊗ 1n

)∣∣
= 1

n

∣∣1′
np

−1UU ′AA′1n

∣∣
≤ 1

n

√
1′
n

(
p−1UU ′)21n

√
1′
n

(
AA′)21n

≤ λmax
(
p−1UU ′)λmax

(
AA′)

= λmax
(
p−1UU ′),
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which is Oa.s.(1) by Lemma 2.2, and tr(L̃L̃′) ≤ λmax(p
−1UU ′) = Oa.s.(1). It

follows that ‖B̃‖2
2 = (n − q)Oa.s.(1). Also, we have ‖Ã‖2

2 = tr(B̃D−2
s B̃ ′) ≤

λmax(D
−2
s )‖B̃‖2

2 = ‖B̃‖2
2/min1≤j≤p s2

j . By Lemma 2.6, we have max1≤j≤p |s2
j −

1| a.s.−→ 0; hence, we have (min1≤j≤p s2
j )−1 = Oa.s.(1). It follows that ‖Ã‖2

2 =
(n − q)Oa.s.(1). Finally, we have ‖Ã − B̃‖2

2 = tr{B̃(Ip − D−1
s )2B̃ ′} ≤ λmax{(Ip −

D−1
s )2}‖B̃‖2

2, and

λmax
{(

Ip − D−1
s

)2} ≤ (max1≤j≤p |s2
j − 1|)2

(min1≤j≤p s2
j + min1≤j≤p sj )2

(33)
= oa.s.(1).

It follows that ‖Ã − B̃‖2
2 = (n − q)oa.s.(1). Thus, we have L4(F ÃÃ′

,F B̃B̃ ′
) =

oa.s.(1), hence the ESD of ÃÃ′ converges a.s. in distribution to the M–P law.
Note that ÃÃ′ = B̃B̃ ′ + � with � = B̃(D−2

s − Ip)B̃; hence, λmax(ÃÃ′) ≥
λmax(B̃B̃ ′) − ‖�‖ and λmax(ÃÃ′) ≤ λmax(B̃B̃ ′) + ‖�‖ [e.g., Jiang (2010),
page 167; also using the fact that λmax(M) ≤ ‖M‖ and λmin(M) ≥ −‖M‖ for
any symmetric matrix M]. Similarly, we have λmin(ÃÃ′) ≥ λmin(B̃B̃ ′) − ‖�‖ and
λmin(ÃÃ′) ≤ λmin(B̃B̃ ′) + ‖�‖. It remains to show that ‖�‖ a.s.−→ 0, but this fol-
lows from

‖�‖ ≤ ‖B̃‖2∥∥D−2
s − Ip

∥∥ ≤ max1≤j≤p |s2
j − 1|

min1≤j≤p s2
j

λmax
(
B̃B̃ ′) a.s.−→ 0.

7.2. Notation. Some notation will be used throughout the next two subsec-
tions. Most of these have been introduced before; we summarize below for conve-
nience. Recall that A is an n × (n − q) matrix with A′X = 0 and A′A = In−q .
We write Z = [Z(1) Z(2)], where Z(1) is n × m and Z(2) is n × (p − m),
Z̃ = p−1/2Z, and Z̃(j) = p−1/2Z(j), j = 1,2. Also, we have ỹ = y − Xβ =
Z̃(1)α(1) + ε so that ỹ|Z ∼ N(0, σ 2

ε0V1,0), where V1,0 = In + γ0Z̃(1)Z̃
′
(1); sim-

ilarly, �1,0 = A′V1,0A = In−q + γ0A
′Z̃(1)Z̃

′
(1)A. Moreover, let ζ = A′Z; Ū =

p−1ζ ζ ′ = ζ̃ ζ̃ ′ with ζ̃ = p−1/2ζ ; Vγ = In + γ Z̃Z̃′ = In + (γ /p)ZZ′; Pγ =
A�−1

γ A′ = V −1
γ − V −1

γ X(X′V −1
γ X)−1X′V −1

γ with � = �γ = In−q + γ Ū [e.g.,

Jiang (2007), page 13]; G = Gγ = −(∂/∂γ )�−1
γ = �−1

γ Ū�−1
γ . Define b1(γ ) =

tr(�−1
γ Ū�−1

γ �1,0), b2(γ ) = tr(�−2
γ �1,0), c1(γ ) = tr(�−1

γ Ū), c2(γ ) = tr(�−1
γ ),

s(γ ) = y′P 2
γ y/ tr(Pγ ) = ỹP 2

γ ỹ/ tr(Pγ ), and �(γ ) = y′Bγ y = ỹ′Bγ ỹ with

B = Bγ = Pγ Z̃Z̃′Pγ

tr(Pγ Z̃Z̃′)
− P 2

γ

tr(Pγ )
.

We shall also write γ∗ = ωγ0.
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7.3. Proof of Theorem 3.1. Our approach is to first consider a simplified ver-
sion of Theorem 3.1, in which the entries of Z are i.i.d. N(0,1), and then extend
the proof by explaining how to relax the restriction.

Part (i). First consider the asymptotic behavior of γ̂ . For any fixed γ > 0, write
� = �(γ ) and B = Bγ for notational simplicity. Note that ζ is (n−q)×p, whose
entries are independent N(0,1). Straight calculation, and Corollary 2.1, show that
tr(Pγ ) = tr(�−1) = OP(n), and tr(Pγ Z̃Z̃′) = tr(�−1Ū ) = OP(n).

Next, write � = E(�|Z)+�−E(�|Z) = �1 +�2. By the normal theory [e.g.,
Jiang (2007), page 238], it can be shown that var(�|Z) = 2σ 2

ε0 tr(DV1,0DV1,0),
where D = A(C1 − C2)A

′ with C1 = �−1Ū�−1/c1, c1 = tr(�−1Ū ), C2 =
�−2/c2, and c2 = tr(�−1). By Corollary 2.1, we have cj = OP(n), j = 1,2. On
the other hand, we have tr(DV1,0DV1,0) = tr[{(C1 −C2)�1,0}2] = tr{(C1�1,0)

2}−
2 tr(C1�1,0C2�1,0) + tr{(C2�1,0)

2};
tr

{
(C1�1,0)

2} ≤ c−2
1 tr

{(
�−1Ū�−1�0

)2} = OP
(
n−1)

,

by Corollary 2.1, where �0 is � with γ replaced by γ0;

tr
{
(C2�1,0)

2} ≤ c−2
2 tr

{(
�−1�0�

−1)2} = OP
(
n−1)

and

tr(C1�1,0C2�1,0) = (c1c2)
−1 tr

(
�−1Ū�−1�1,0�

−2�1,0
) = OP

(
n−1)

.

It follows that var(�|Z) = OP(n−1), hence, for any δ > 0, we have P{|� −
E(�|Z)| > δ|Z} ≤ δ−2 var(�|Z)

P−→ 0, as n → ∞. Thus, by the dominated
convergence theorem, we have P{|� − E(�|Z)| > δ} → 0, ∀δ > 0, implying
�2 = oP(1).

Next, we have �1 = E(�|Z) = σ 2
ε0(b1/c1 − b2/c2), b1 = tr(�−1Ū�−1�1,0),

b2 = tr(�−2�1,0), and c1, c2 are defined earlier. By Lemma 2.1, we have

c1

n − q
= 1

n − q

n−q∑
k=1

λk

1 + γ λk

a.s.−→
∫ b+(τ )

b−(τ )

xfτ (x)

1 + γ x
dx,(34)

where λk,1 ≤ k ≤ n − q are the eigenvalues of Ū . Similarly, we have

c2

n − q
= 1

n − q

n−q∑
k=1

1

1 + γ λk

a.s.−→
∫ b+(τ )

b−(τ )

fτ (x)

1 + γ x
dx.(35)

Also, we have b1 = tr(�−1Ū�−1) + γ0 tr{�−1Ū�−1Ū(1)}, and

tr(�−1Ū�−1)

n − q
= 1

n − q

n−q∑
k=1

λk

(1 + γ λk)2
a.s.−→

∫ b+(τ )

b−(τ )

xfτ (x)

(1 + γ x)2 dx.(36)

On the other hand, note that tr{�−1Ū�−1Ū(1)} = p−1 ∑m
k=1 ζ ′

kGζk , where ζk is
the kth column of ζ , and G = �−1Ū�−1. Write � = �−k + (γ /p)ζkζ

′
k , where

�−k = In−q + (γ /p)
∑

l �=k ζlζ
′
l . Using a matrix identity [e.g., Sen and Srivastava
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(1990), page 275], we have �−1 = �−1
−k − (γ /p){1 + (γ /p)uk}−1�−1

−k ζkζ
′
k�

−1
−k ,

where uk = ζ ′
k�

−1
−k ζk . Thus, after some tedious derivation, we have the expression

ζ ′
kGζk = u2

k + vk

p{1 + (γ /p)uk}2 ,(37)

where vk = ζ ′
k�

−1
−kU−k�

−1
−k ζk and U−k = ∑

l �=k ζlζ
′
l . Note that ζk is independent

with �−k . Thus, by Proposition 2.1, we have, for any 1 ≤ k ≤ m and t > 0,

P
{∣∣uk − tr

(
�−1

−k

)∣∣ > t |�−k

}
(38)

≤ 2 exp
{
−c min

(
t2

K4‖�−1
−k‖2

2

,
t

K2‖�−1
−k‖

)}
,

where c and K are some positive constants. If we let

t = tm,k = K2 max
(√

2 log(m)

c

∥∥�−1
−k

∥∥
2,

2 log(m)

c

∥∥�−1
−k

∥∥)
,

then, it is seen that the min in (38) is ≥ 2 log(m)/c. It follows that P{t−1
m,k|uk −

tr(�−1
−k )| > 1|�−k} ≤ 2/m2,1 ≤ k ≤ m; hence,

P

{
max

1≤k≤m
t−1
m,k

∣∣uk − tr
(
�−1

−k

)∣∣ > 1
}

≤ 2

m
.(39)

On the other hand, we have ‖�−1
−k‖ ≤ 1, and ‖�−1

−k‖2 ≤ √
tr(�−2) + 8 =

OP(
√

n), by Corollary 2.1. It follows by (10) that

max
1≤k≤m

∣∣uk − tr
(
�−1

−k

)∣∣ = OP(
√

n logn).(40)

Similarly, write Vk = �−1
−kU−k�

−1
−k . By a similar argument, it can be shown that

max
1≤k≤m

∣∣vk − tr(Vk)
∣∣ = OP(n

√
n logn).(41)

Also, by an earlier expansion, it can be shown that

∣∣tr(�−1
−k

) − tr
(
�−1)∣∣ = (γ /p)ζ ′

k�
−2
−k ζk

1 + (γ /p)uk

≤ 1.(42)

It follows, by (40) and (42), that

max
1≤k≤m

∣∣uk − tr
(
�−1)∣∣ = OP(

√
n logn).(43)

Furthermore, by the same expansion, and (42), it can be shown that∣∣tr(Vk) − tr
(
�−1U�−1)∣∣ ≤ 8pλmax(Ū) + (1 + 2

√
2)uk ≤ OP(n),(44)
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where the OP does not depend on k. It follows, by (41) and (44), that

max
1≤k≤m

∣∣vk − p tr
(
�−1Ū�−1)∣∣ = OP(n

√
n logn).(45)

By (37), (43) and (45), it can be shown that a1 − OP(
√

logn/n) < ζ ′
kGζk/(n −

q) < a1 + OP(
√

logn/n), where the OP’s do not depend on k, and

a1 =
{

1 + γ

(
n − q

p

)
tr(�−1)

n − q

}−2

×
[(

n − q

p

){
tr(�−1)

n − q

}2

+ tr(�−1Ū�−1)

n − q

]
.

It then follows, by Lemma 2.1, that tr{�−1Ū�−1Ū(1)}/(n − q)
P−→ ωd1, where

d1 =
{

1 + γ τ

∫ b+(τ )

b−(τ )

ϕτ (x)

1 + γ x
dx

}−2

×
[
τ

{∫ b+(τ )

b−(τ )

ϕτ (x)

1 + γ x
dx

}2

+
∫ b+(τ )

b−(τ )

xϕτ (x)

(1 + γ x)2 dx

]
.

Therefore, we have b1/c1
P−→ (f1 + γ0ωd1)/g1.

By a similar argument, we have b2/c2
P−→ (f2 + γ0ωd2)/g2, where

d2 =
{

1 + γ τ

∫ b+(τ )

b−(τ )

ϕτ (x)

1 + γ x
dx

}−2 ∫ b+(τ )

b−(τ )

ϕτ (x)

(1 + γ x)2 dx.

We have proved that �1 converges in probability to a constant limit. The next
thing we do is to determine the limit, in a different way. This is because the ex-
pression of the limit given above involving the d’s is a bit complicated, from
which it is not easy to make a conclusion. To this end, it is easy to show that
0 ≤ bj/cj ≤ (γ0/γ ) ∨ 1, j = 1,2. Thus, by the dominated convergence theorem,
E(bj /cj ) converges to the same limit as bj/cj , j = 1,2. On the other hand, it can
be shown that

E

(
b1

c1

)
= E

{
tr(G)

c1

}
+ γ0

(
m

p

)
E

{
tr(GŪ)

c1

}
,(46)

E

(
b2

c2

)
= E

{
tr(�−2)

c2

}
+ γ0

(
m

p

)
E

{
tr(�−2Ū )

c2

}
.(47)

Furthermore, it is easy to show that 0 ≤ tr(G)/c1 ≤ 1, 0 ≤ tr(GŪ)/c1 ≤ γ −1, 0 ≤
tr(�−2)/c2 ≤ 1, and 0 ≤ tr(�−2Ū )/c2 ≤ γ −1. Thus, by Lemma 2.1 and, again,
the dominated convergence theorem, the right-hand sides of (46) and (47) con-
verge to the limit l1, l2, respectively, where lj = uj +γ0ωwj ,uj = fj/gj , j = 1,2,

w1 = ∫ b+(τ )

b−(τ ) {x2ϕτ (x)/(1+γ x)2}dx/g1, and w2 = f1/g2. Thus, with a little bit of
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algebra, it follows that the limit of �1 is σ 2
ε0{(γ∗/γ )−1}(u2 −u1), and u2 −u1 > 0

by a well-known inequality [e.g., Jiang (2010), pages 147–148].
Finally, recall that � = �(γ ). Thus, in conclusion, we have shown that �(γ )

converges in probability to a constant limit, which is > 0, = 0, or < 0 depending
on whether γ is < γ∗, = γ∗, or > γ∗. This proves (i).

Part (ii). Write ξ = A′ỹ. We have

s′(γ ) = tr(G)ξ ′�−2ξ

{tr(�−1)}2 − 2
ξ ′G�−1ξ

tr(�−1)
.

It is easy to show that E(ξ ′ξ) ≤ σ 2
ε0(1 + γ0)(n − q). Thus, we have 0 ≤ ξ ′�−2ξ ≤

ξ ′ξ = OP(n − q), 0 ≤ ξ ′G�−1ξ ≤ λmax(Ū )ξ ′ξ = OP(n − q), by Lemma 2.2,
and tr(G) ≤ λmax(Ū)(n − q)OP(n − q). Furthermore, for any 0 < γ ≤ 2γ0,
we have (n − q)−1 tr(�−1) ≥ (n − q)−1 tr{(In−q + 2γ0Ū )−1} a.s.−→ ∫ b+(τ )

b−(τ ) {1 +
2γ0x}−1fτ (x) dx > 0, by Lemma 2.1. Note that the OP’s here do not depend on γ .
It follows that sup0<γ≤2γ0

|s′(γ )| = OP(1). Therefore, by the Taylor expansion,
we have σ̂ 2

ε = s(γ∗) + s′(γ̃ )(γ̂ − γ∗) = s(γ∗) + oP(1), by part (i) of Theorem 3.1,
where γ̃ lies between γ∗ and γ̂ .

Next, by the proof of part (i), it is easy to show that, with γ = γ∗, we have

s(γ ) = σ 2
ε0(b2/c2)+OP(n−1/2), and b2/c2

P−→ l2, where l2 is defined in the proof
of part (i) with γ = γ∗. It follows that l2 = u2 + γw2 = (f2 + γf1)/g2 = 1. This
proves part (ii).

We have proved the theorem under the assumption that the entries of Z are
independent N(0,1). We now explain how the result can be extended under more
general conditions. The first extension is to the case where the entries of Z are i.i.d.
sub-Gaussian. The only place in the proof where the normality was used was in the
early going of part (i), where the normality of Z implied that the entries of ζ = A′Z
are also independent N(0,1). However, the way A is involved is always through
AA′ = PX⊥ = I − PX , where PX = X(X′X)−1X′, and PX has rank q , which is
fixed (see the beginning of Section 1.3). It turns out that PX is negligible in the
sense that, after replacing AA′ by I , the (n × n) identity matrix, the difference
does not affect the order of the approximation in every single place throughout the
proof. Furthermore, when A is replaced by I , the entries of ζ are clearly i.i.d., and
the rest of the proof applies without any change to the case where the entries of Z

are independent sub-Gaussian. This extends the result to the latter case.
The next extension is to the case of standardized design matrix. Using the pre-

liminary results, namely, Lemmas 2.5, 2.6 and Corollary 2.3, it can be shown that,
the difference induced by the standardization is negligible in the same sense.

All the extensions have been verified, step-by-step, throughout the proof to
make sure that the results of Theorem 3.1 remain valid for the case where Z is the
standardized design matrix as described in Section 1.3 (also above Corollary 2.3),
where the entries of U are i.i.d. sub-Gaussian. The detailed verifications, which
are tedious, are omitted.
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7.4. Proof of Theorem 3.2. Recall that γ̂ solves equation (3), and σ̂ 2
ε is given

by the right-hand side of (4) with γ = γ̂ . It follows that �(γ̂ ) = 0 and σ̂ 2
ε = s(γ̂ ).

Theorem 3.1 has established that γ̂
P−→ γ∗. Because �(γ̂ ) = 0, by the Taylor

series expansion, and some algebra, we have

γ̂ − γ∗ = − �(γ∗)
�′(γ∗)

+ OP
(∣∣�(γ∗)

∣∣2)
.(48)

Here, we also use the fact that �′(γ∗) converges in probability to a nonzero quan-
tity. Indeed, from the proof of Theorem 3.1, it can be checked that �′(γ ) converges
in probability, for every fixed γ , to �′∞(γ ), where

�∞(γ ) = σ 2
ε0

(
γ∗
γ

− 1
){

f2(γ )

g2(γ )
− f1(γ )

g1(γ )

}
,

and the difference within the {· · ·} is positive. It follows that

�′∞(γ∗) = −σ 2
ε0

γ∗

{
f2(γ∗)
g2(γ∗)

− f1(γ∗)
g1(γ∗)

}
< 0.(49)

Next, a Taylor series expansion of s(γ ) yields σ̂ 2
ε = s(γ∗) + s′(γ∗)(γ̂ − γ∗) +

O(|γ̂ − γ∗|2), which, combined with (48), leads to the expansion

σ̂ 2
ε = s(γ∗) − s′(γ∗)

�′(γ∗)
�(γ∗) + OP

(∣∣�(γ∗)
∣∣2)

.(50)

Write s(γ ) = s1(γ ) + s2(γ ), where s1(γ ) = E{s(γ )|Z} and s2(γ ) = s(γ ) −
s1(γ ). It was shown in the proof of Theorem 3.1 that s1(γ ) = σ 2

ε0{b2(γ )/c2(γ )}.
Also, we have the expression s2(γ ) = w̃′Dγ w̃ − tr(Dγ ), where

Dγ = σ 2
ε0

�
1/2
1,0 �−1

γ Ū�−1
γ �

1/2
1,0

tr(�−1
γ )

and w̃ = �
−1/2
1,0 A′ỹ
σε0

.

Note that w̃|Z ∼ N(0, In−q). Also recall [from the proof of Theorem 3.1, part (i)]
that �(γ ) = �1(γ ) + �2(γ ) with �1(γ ) = σ 2

ε0
∑2

j=1(−1)j−1bj (γ )/cj (γ ), and,

similarly, �2(γ ) = w̃′Fγ w̃ − tr(Fγ ), where Fγ = σ 2
ε0�

1/2
1,0 Hγ �

1/2
1,0 with

Hγ = �−1
γ Ū�−1

γ Ū�−1
γ

tr(�−1
γ Ū)

− �−1
γ Ū�−1

γ

tr(�−1
γ )

.

As in the proof of Theorem 3.1, part (ii), write ξ = A′ỹ, and observe that

s′(γ ) = tr(�−1
γ Ū�−1

γ )ξ ′�−2
γ ξ

{tr(�−1
γ )}2

− 2ξ ′�−1
γ Ū�−2

γ Ū�−1
γ ξ

tr(�−1
γ )

.

We have E(ξ ′�−2
γ ξ |Z) = σ 2

ε0 tr(�−2
γ �1,0), and

E
(
ξ ′�−1

γ Ū�−2
γ Ū�−1

γ ξ |Z) = σ 2
ε0 tr

(
�−1

γ Ū�−2
γ Ū�−1

γ �1,0
)
.
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With these, using similar derivations to the proof of Theorem 3.1, we conclude that

s′(γ )
P−→ s′∞(γ )

= σ 2
ε0

[
h2,1(γ ){h2,0(γ ) + γ∗h2,1(γ )}

{h1,0(γ )}2(51)

− 2{h4,2(γ ) + γ∗h4,3(γ )}
h1,0(γ )

]

[see (15) for notation], so that, using the fact that hk,l(γ ) + γ hk,l+1(γ ) =
hk−1,l(γ ), we have

s′(γ∗) = σ 2
ε0

(
h2,1(γ∗)

{h1,0(γ∗)}2 − 2h3,2(γ∗)
h1,0(γ∗)

)
.

Thus, going back to (50), we can write

σ̂ 2
ε − σ 2

ε0

= s2(γ∗) − s′∞(γ∗)
�′∞(γ∗)

�2(γ∗)

+ σ 2
ε0

{
b2(γ∗)
c2(γ∗)

− 1
}

− σ 2
ε0

s′∞(γ∗)
�′∞(γ∗)

{
b1(γ∗)
c1(γ∗)

− b2(γ∗)
c2(γ∗)

}
(52)

− s′(γ∗) − s′∞(γ∗)
�′∞(γ∗)

�(γ∗) + {�′(γ∗) − �′∞(γ∗)}s′(γ∗)
�′(γ∗)�′∞(γ∗)

�(γ∗)

+ OP
(∣∣�(γ∗)

∣∣2)
.

We shall argue that all of the terms on the right-hand side of (52) except those in the
first line are oP(n−1/2), while

√
n times the term in the first line on the right-hand

side of (52) converges weakly to a normal distribution with zero mean.
Once we establish that

�(γ∗) = OP
(
n−1/2)

,(53)

then since s′(γ∗)− s′∞(γ∗) = oP(1) and �′(γ∗)−�′∞(γ∗) = oP(1), it immediately
follows that the terms on the last two lines of (52) are oP(n−1/2).

In order to establish (53), we need the following lemma.

LEMMA 7.1. Suppose that (10) holds and let � = p−1ZZ′ and �̃γ = In +
γ� . Then we have

tr
(
�−k

γ Ū l) = tr
(
�̃−k

γ �l) + OP(1) ∀k ≥ 1, l ≥ 0.(54)

The proof of Lemma 7.1, which is omitted, follows closely the note regarding
AA′ near the end of the proof of Theorem 3.1. The advantage of this lemma is that,
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because the entries of Z are independent sub-Gaussian with mean 0, unit variance,
and bounded fourth moments, the behavior of the trace on the right-hand side
of (54) is well studied. Indeed, we can use Theorem 9.10 of Bai and Silverstein
(2010) on the asymptotic behavior of linear spectral statistics to claim that, for all
k ≥ 1, l ≥ 0, we have∣∣∣∣1

n
tr

(
�̃−k

γ �l) −
∫

xl

(1 + γ x)k
ϕn/p(x) dx

∣∣∣∣ = OP
(
n−1)

.(55)

Equation (55), combined with (17), (15) and (54), imply that for all k ≥ 1, l ≥ 0,
we have ∣∣∣∣1

n
tr

(
�−k

γ Ū l) − hk,l(γ )

∣∣∣∣ = OP
(
n−1)

.(56)

We have the following result describing the asymptotic behavior of the ratios
bj (γ )/cj (γ ), j = 0,1.

PROPOSITION 7.1. Under the assumptions of Theorem 3.2, for any γ > 0, for
j = 1,2,

bj (γ )

cj (γ )
− bj,∞(γ )

cj,∞(γ )
= oP

(
n−1/2)

.

Proof of Proposition 7.1 is given in the supplementary material [Jiang et al.
(2016)].

Observe that

b1,∞(γ∗) = h2,1(γ∗) + γ∗
{
1 + τγ∗h1,0(γ∗)

}−2{
τh2

1,0(γ∗) + h2,1(γ∗)
}
,

b2,∞(γ∗) = h2,0(γ∗) + γ∗
{
1 + τγ∗h1,0(γ∗)

}−2
h2,0(γ∗),

c1,∞(γ∗) = h1,1(γ∗) and c2,∞(γ∗) = h1,0(γ∗).

Also, by the proof of Theorem 3.1, part (ii), we have b2,∞(γ∗)/c2,∞(γ∗) = 1.

Moreover, �1(γ∗)
P−→ 0, implying b1,∞(γ∗)/c1,∞(γ∗)− b2,∞(γ∗)/c2,∞(γ∗) = 0.

In conjunction with Proposition 7.1, this shows that the terms in the second line
of the right-hand side of (52) are oP(n−1/2). Thus, �1(γ∗) = oP(n−1/2). On the
other hand, it is seen from the proof of Theorem 3.1 that �2(γ∗) = OP(n−1/2).
Therefore, (52) holds.

Next, by the expressions of s2(γ ), �2(γ ), we can write the first line of the right-
hand side of (52) as Q = w̃′Mw̃ − tr(M), where M = Dγ∗ − {s′∞(γ∗)/�′∞(γ∗)}×
Fγ∗ . We have [e.g., Jiang (2007), page 238] E(Q|Z) = 0 and var(Q|Z) = 2 tr(M2).
From the definitions of Dγ and Fγ , the following expressions can be derived:

tr(D2
γ )

σ 4
ε0

= tr(�−1
γ Ū�−1

γ �1,0�
−1
γ Ū�−1

γ �1,0)

{tr(�−1
γ )}2

,(57)
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tr(F 2
γ )

σ 4
ε0

= tr(�−1
γ Ū�−1

γ Ū�−1
γ �1,0�

−1
γ Ū�−1

γ Ū�−1
γ �1,0)

{tr(�−1
γ Ū )}2

+ tr(�−1
γ Ū�−1

γ �1,0�
−1
γ Ū�−1

γ �1,0)

{tr(�−1
γ )}2

(58)

− 2
tr(�−1

γ Ū�−1
γ Ū�−1

γ �1,0�
−1
γ Ū�−1

γ �1,0)

tr(�−1
γ ) tr(�−1

γ Ū)
,

tr(Dγ Fγ )

σ 4
ε0

= tr(�−1
γ Ū�−1

γ Ū�−1
γ �1,0�

−1
γ Ū�−1

γ �1,0)

tr(�−1
γ ) tr(�−1

γ Ū)
(59)

− tr(�−1
γ Ū�−1

γ �1,0�
−1
γ Ū�−1

γ �1,0)

{tr(�−1
γ )}2

.

When multiplied by n, each of the term above is bounded, and by Proposition 3.1,
converges to a limit. Notice that ρ∗ = −s′∞(γ∗)/�′∞(γ∗). Consequently, by mak-
ing use of the symmetry of the matrix M and the fact that w̃|M ∼ N(0, In−q), it is
easily seen that conditionally on Z, Q = s2(γ∗) + ρ∗�2(γ∗) is a weighted sum of
n−q independent χ2

1 −1 random variables, where the weights are the eigenvalues
of M . Thus, by a standard approach, such as using characteristic functions, or a
martingale central limit theorem, it is easily seen that

√
nQ converges in distribu-

tion to the normal distribution given in (19).
We would like to point out that if αi’s and εi’s are non-Gaussian, but satisfy the

conditions of Remark 3.3, then this is the only step where the proof differs. Specif-
ically, in this case the asymptotic normality of

√
nQ may be obtained by making

use of a central limit theorem for random quadratic forms [see, e.g., Theorem 7.2
of Bai and Yao (2008)].

Note that (53) also ensures γ̂ − γ∗ = OP(n−1/2) by virtue of (48), the con-
vergence of �′(γ∗) to �′∞(γ∗), and (49). Moreover, from this representation of
γ̂ − γ∗, and the decomposition of �(γ ) in the beginning of the proof of Theo-
rem 3.1, as well as the expression for var(�(γ )|Z), using an argument similar to
that used in proving asymptotic normality of σ̂ 2

ε , we obtain (18). This completes
the proof of Theorem 3.2.
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