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Abstract

We show how the high order finite element spaces of differential forms
due to Raviart-Thomas-Nédelec-Hiptmair fit into the framework of finite
element systems, in an elaboration of the finite element exterior calculus
of Arnold-Falk-Winther. Based on observations by Bossavit, we provide
new low order degrees of freedom. As an alternative to existing choices
of bases, we provide canonical resolutions in terms of scalar polynomials
and Whitney forms.
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1 Introduction

Mixed finite elements, adapted to the fundamental differential operators gradi-
ent, curl and divergence, were introduced in [38] for R2 and [34] for R3. They
have developed into a powerful tool for simulating a wide range of partial dif-
ferential equations modelling for instance fluid flow and electromagnetic waves
[13][39][33]. As pointed out in [10][11], lowest order mixed finite elements corre-
spond to constructs in algebraic topology known as Whitney forms [43]. In [42]
they are actually attributed to de Rham (see also the footnote p. 139 in [43]).
Their initial purpose was to relate the de Rham sequence of smooth differen-
tial forms to simplicial cochain sequences, and prove de Rham’s theorem, that
these sequences have isomorphic cohomology groups. Eigenvalue convergence
for corresponding discretizations of the Hodge Laplacian has also been proved
[28], prefiguring some of the results obtained in a finite element context, for
which we refer to [9][24]. Mixed finite elements extending Whitney forms to
high order – that is, higher degree polynomials – and Nédélec elements to any
space dimension, were presented in [30][31]. Giving a lead role to differential
complexes in numerical analysis by developing the interplay between differen-
tial topology and finite element methods, has given rise to the subject of finite
element exterior calculus, programmed in [3] and most recently reviewed in [7].

We refer to the high order spaces of [30] as trimmed polynomial differential
forms, since for a given degree, some of the top degree polynomials are (care-
fully) removed from the space. These spaces are naturally spanned by products
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of polynomials with Whitney forms, but this is not a tensor product, as we
explain later. Nevertheless, as remarked in [16]1, they have a filtering by poly-
nomial degree compatible with the wedge product, the corresponding de Rham
theorem (concerning cohomology groups) follows from the existence of partic-
ular degrees of freedom, and eigenvalue convergence for the Hodge Laplacian
follows from composing the resulting interpolators with a local smoothing opera-
tor. In [5] the construction of [30] was reworked in terms of the Koszul complex,
emphasizing the fundamental duality, through degrees of freedom, between the
there denominated P−r Λk and PrΛk spaces, which correspond to Nédélec’s first
[34] and second [35] family. It was also placed in a general framework of dis-
cretizations of Hilbert complexes by subcomplexes, which has applications to
other situations, such as elasticity.

A powerful tool for the convergence analysis of discretizations of such com-
plexes is commuting projections which are stable in appropriate norms. Such
projections have been constructed for the de Rham complex of differential forms
equipped with the L2 metric, [40][16][5][23][22]. One recovers in particular, in
this degree of generality, convergence for the eigenvalues of discretizations of the
Hodge Laplacian. For a discussion of the existence of commuting projections,
see [24]. In [22], the techniques are extended to include Lp estimates, with
applications to discrete Sobolev injections and translation estimates.

A notion of finite element system (FES) has also been developed, see [17][18]
and especially [22](§5). It is a general theory, abstracting the good properties of
known mixed finite elements, but allowing for cellular decompositions of space
and non-polynomial differential forms. In precisely determined circumstances,
they provide good subcomplexes of the de Rham complex. This framework can
be used to construct dual finite elements [14][17], minimal ones [19], tensor-
products [18][22] and upwinded variants [21].

That trimmed polynomial differential forms fit nicely into the framework
of FESs can be deduced directly from results in [30][5]. However the general
theorems of FESs allows one to streamline the proofs. Our first task in the
present work is to spell this out. For this purpose, we provide some new results
both on FESs and on trimmed polynomial differential forms. In particular,
we rely on a general way of checking an extension property of element systems
(Proposition 2.2), and give a new result on the duality between P−r Λk0 and PrΛk
(Propositions 3.5).

Taking the cue from [37], we provide new degrees of freedom (dofs) which,
for k-forms, consist in integrating on some ”small” k-simplexes, and which, for
scalar polynomials, result in the Lagrange basis. These degrees of freedom are
overdetermining (Proposition 3.14). We also provide a general way to deduce
unisolvent degrees of freedom from overdetermining ones, in such a way that
the associated interpolator commutes.

As already mentioned, trimmed polynomial differential forms can be gener-
ated by taking products of polynomials and Whitney forms. Canonical bases of
scalar polynomials in barycentric coordinates (such as the Lagrange and Bern-
stein bases) and the canonical basis of Whitney forms provide canonical span-
ning families. However these are not free, and in this sense the product is not a
tensor product (see Remark 3.1). Many recipes for extracting a basis have been

1The preprint, available on the arXiv, contained a number of results excluded from the
version published by Numer. Math., but of importance to the present paper.
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proposed. In [6], bases are proposed for differential forms in arbitrary space
dimension, and these have been used for implementations [32]. See also the
references in [6][37] for previous constructions in the case of space dimension
two and three. We mention in particular [2][29][41].

However, it seems impossible to get a canonical basis: they all depend on
the numbering of vertices. Typically, some members are just removed from the
natural spanning families. In this paper we take a different approach, providing
a systematic treatment of the linear relations in canonical spanning families, in
terms of resolutions. Thus we provide canonical resolutions of P−r Λk and P−r Λk0 ,
in which all the spaces have a canonical basis (Propositions 3.19 and 3.23).

Finally we provide some details on how to compute with canonical spanning
families. We construct a parametrized family of bases of polynomials on a
simplex, which contains the Lagrange and the Bernstein basis as special cases.
We compute scalar products of differential forms from the data consisting of
edge lengths in the mesh. We also provide a formula for computing wedge
products. Finally we make some remarks on tensor products.

The paper is organized as follows. In §2 we introduce the notion of FES,
and discuss conditions under which it is compatible in the sense, for instance, of
admitting a commuting interpolator. In §3 we show how trimmed polynomial
differential forms fit into that framework. In particular we prove compatibil-
ity. We also introduce a notion of ”small” degrees of freedom, and construct
canonical resolutions equipped with canonical bases. In §4 we provide explicit
formulas for a number of operations in barycentric coordinates.

2 Abstract framework

2.1 Glossary

The abstract framework of Finite Element Systems involves a number of con-
cepts that are either new or given a more precise meaning than usual. The
following list with references is provided for the convenience of the reader:

• cell, cellular complex: Definition 2.1.

• subcomplex, subcell, C(T ): Equation (1) and above.

• boundary of a cell: Equation (2).

• T k: Equation (4).

• relative orientation, o(T ′, T ): after Equation (2).

• cochains, coboundary: after Equation (4).

• element system: Definition 2.2.

• Ek(T ): Equation (11).

• element systems: extension property, local exactness and compatibility:
Definition 2.3.

• Ek0 (T ): Definition 2.3.
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• system of degrees of freedom, sysdof: Definition 2.4.

• unisolvence of a sysdof: Equation (19).

• interpolator: Definition 2.5.

• harmonic degrees of freedom, harmonic interpolator: Equations (27,28).

2.2 Discrete and differential geometry

Definition 2.1. A cell in a metric space S is a subset either reduced to a
singleton, or for which there is a Lipschitz isomorphism (a bijection which is
Lipschitz in both directions) to the closed unit ball in Rk (k ∈ N, k 6= 0). The
uniquely determined k ∈ N is called the dimension of the cell. The interior
and the boundary of a cell are those inherited from the corresponding unit ball
(they do not depend on the choice of Lipschitz isomorphism). By convention, a
singleton has dimension 0 and has empty boundary.

A cellular complex for a metric space S is a collection T of cells in S, such
that the following conditions hold:

• Distinct cells in T have disjoint interiors.

• The boundary of any cell in T is a union of cells in T .

• The union of all cells in T is S.

A cellular subcomplex of T is a subset of T which is a cellular complex (for
a subspace of S). A subcell of a cell T is an element T ′ of T included in T . We
write T ′ C T describe this situation. For T ∈ T its subcells consitute a cellular
subcomplex denoted C(T ). Thus, with our notations:

C (T ) = {T ′ : T ′ C T}. (1)

The boundary of a cell is denoted ∂T and considered equipped with the cellular
subcomplex:

∂T = {T ′ ∈ C(T ) : T ′ 6= T}. (2)

In the following we suppose that each cell T ∈ T of dimension at least 1 has
been oriented (as a manifold). The relative orientation of two cells T and T ′

in T , also called the incidence number, is denoted o(T, T ′). It is non-zero only
when T ′ is in the boundary of T and has codimension 1, in which case its value
is ±1, depending on whether T ′ is outward oriented compared with T . This
definition guarantees that the following Stokes theorem holds. For any smooth
enough k-form u on the (k + 1)-cell T , we have:∫

T

du =
∑
T ′CT

o(T, T ′)

∫
T ′
u. (3)

When the cell T has dimension 1, the relative orientation o(T, T ′) of its vertices,
is defined so that the one dimensional Stokes theorem holds, integration on a
point being function evaluation.

We let T k denote the subset of T consisting of cells of dimension k:

T k = {T ∈ T : dimT = k}. (4)
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For each k, maps c : T k → R are called k-cochains, and they constitute a
vector space denoted Ck(T ). The coboundary operator δ : Ck(T )→ Ck+1(T ) is
defined by:

(δc)T =
∑

T ′∈T k+1

o(T, T ′)cT ′ . (5)

The adjoint of δ is the boundary operator, denoted δ′. We have δδ = 0 so that
the family C•(T ) is a complex, called the cochain complex and represented by:

0 // C0(T )
δ // C1(T )

δ // · · · (6)

When S is a smooth manifold we denote by Ωk(S) the space of smooth
differential k-forms on S. For each k we denote by ρk : Ωk(S) → Ck(T ) the de
Rham map, which is defined by:

ρk : u 7→ (

∫
T

u)T∈T k . (7)

As an application of Stokes theorem on the cells of dimension k+ 1, in the form
(3), the following diagram commutes:

Ωk(S)
d //

ρk

��

Ωk+1(S)

ρk+1

��
Ck(T )

δ // Ck+1(T )

(8)

A celebrated theorem of de Rham states that the above morphism of complexes
induces isomorphisms on cohomology groups. Whitney forms, which will be
introduced later, provide a tool for proving this [42][43].

2.3 Finite element systems

If T is a cell in a cellular complex T , we denote by Ek(T ) the set of k-forms on
T with the following property: for any T ′ ∈ T included in T , its pullback to T ′

is in L2(T ′) and has its exterior derivative in L2(T ′).

Definition 2.2. Suppose T is a cellular complex. An element system on T ,
is a family of closed subspaces Ek(T ) ⊆ Ek(T ), one for each k ∈ N and each
T ∈ T , subject to the following requirements:

• The exterior derivative should induce maps:

d : Ek(T )→ Ek+1(T ). (9)

• If T ′ ⊆ T are two cells in T and iTT ′ : T ′ → T denotes the canonical
injection, then pullback by iTT ′ should induce a map:

i?TT ′ : Ek(T )→ Ek(T ′). (10)

For instance the spaces Ek(T ) constitute an element system. A finite element
system is one in which all the spaces are finite dimensional.
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We define Ek(T ) as follows :

Ek(T ) = {u ∈
⊕
T∈T

Ek(T ) : ∀T, T ′ ∈ T T ′ ⊆ T ⇒ uT |T ′ = uT ′}. (11)

In this definition uT |T ′ denotes the pullback of uT to T ′ by the inclusion map.
In terms of category theory this is an inverse limit.

Elements of Ek(T ) may be regarded as differential forms defined piece-wise,
which are continuous across interfaces between cells, in the sense of equal pull-
backs to the interface. In R3 one-forms and two-forms correspond to vector
fields, and then the continuity holds for tangential and normal components re-
spectively.

This definition will also be applied to cellular subcomplexes of T , such as
the boundary ∂T of any given cell T ∈ T . In particular this is the meaning
given to Ek(∂T ) in the following definition.

Definition 2.3. Consider now the following two conditions on an element sys-
tem E on a cellular complex T :

• Extensions. For each T ∈ T and k ∈ N, the restriction operator(pullback
to the boundary) Ek(T ) → Ek(∂T ) is onto. The kernel of this map is
denoted Ek0 (T ).

• Local exactness. The following sequence is exact for each T ∈ T :

0 // R // E0(T )
d // E1(T )

d // · · · d // EdimT (T ) // 0.

(12)
The second arrow sends an element of R to the constant function on T
taking this value.

We will say that an element system admits extensions if the first condition holds,
is locally exact if the second condition holds and is compatible if both hold.

The following result strengthens Proposition 3.1 in [17] by an ”only if” (see
also Proposition 5.14 in [22]).

Proposition 2.1. Let E be a FES on a cellular complex T . Then:

• We have:
dimEk(T ) ≤

∑
T∈T

dimEk0 (T ). (13)

• Equality holds in (13) if and only if E admits extensions for k-forms on
each T ∈ T .

Proof. We denote by T [m] the m-skeleton of T , namely the cellular subcomplex
consisting of cells of dimension at most m. Thus:

T [m] = T 0 ∪ . . . ∪ T m. (14)

(i) Consider the complex:

0 //⊕
T∈Tm Ek0 (T ) // Ek(T [m]) // Ek(T [m−1]) // 0, (15)
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where the second arrow is inclusion, and the third is restriction.
We get:

dimEk(T [m]) ≤
∑
T∈T m

dimEk0 (T ) + dimEk(T [m−1]). (16)

From this, (13) follows.
(ii) If E admits extensions for k-forms, (15) is an exact sequence, so that

equality holds in (16). Hence equality holds in (13).
(iii) Suppose equality holds in (13).
We claim first that for all m-skeletons of T :

dimEk(T [m]) =
∑

T∈T [m]

dimEk0 (T ).

Indeed, if the claim is true for m, then we deduce from (16):

dimEk(T [m−1]) ≥
∑

T∈T [m]

dimEk0 (T )−
∑
T∈Tm

dimEk0 (T ) =
∑

T∈T [m−1]

dimEk0 (T ).

Equality follows, and from this the claim must also be true for m− 1.
This proves the claim for all m, by a downward induction.
By dimension count, it then follows that each sequence (15) is exact.
Now consider a cell T and u ∈ Ek(∂T ). Define u on k-cells in T . Extend it

to (k + 1)-cells using exactness of (15) for m = k + 1. Continue extending u,
increasing m by one at each step. Whenever u was already defined on a cell,
just keep the old value. This gives an extension of u in Ek(T ), hence also in
Ek(T ).

The following is a useful way of checking the extension property, abstracting
the technique of proof of Proposition 3.3 in [16](preprint). See also the related
notion of consistent extension operators of [6] (in particular Theorem 4.3).

Proposition 2.2. Suppose that E is an element system and that U ∈ T . Sup-
pose that, for each cell V ∈ ∂U , each element v of Ek0 (V ) can be extended to
an element u = eV (v) of Ek(U) in such a way that (u|V = v and) for each cell
V ′ ∈ ∂U with the same dimension as V , but different from V , we have u|V ′ = 0.
Then Ek admits extensions on U .

Proof. Pick v ∈ Ek(∂U). Define uk−1 = 0 ∈ Ek(U).
Pick l ≥ k − 1 and suppose that we have a ul ∈ Ek(U) such that v − ul|∂U

is 0 on all l-dimensional cells in ∂U . Put wl = v − ul|∂U . For each (l + 1)-
dimensional cell V in ∂U , extend wl|V to an element eV (wl|V ) ∈ Ek(U), such
that:

(eV (wl|V ))|V = wl|V ,
(eV (wl|V ))|V ′ = 0 for V ′ 6= V, dimV ′ = dimV = l + 1.

Then put:

ul+1 = ul +
∑

V : dimV=l+1

eV (wl|V ).

Then v − ul+1|∂U is 0 on all (l + 1)-dimensional cells in ∂U .
We may repeat until l + 1 = dimU and then ul+1 is the required extension

of v.
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Recall Proposition 5.17 in [22]:

Proposition 2.3. For an element system with extensions the exactness of (12)
on each T ∈ T is equivalent to the combination of the following two conditions:

• For each T ∈ T , E0(T ) contains the constant functions.

• For each T ∈ T , the following sequence (with boundary condition) is exact:

0 // E0
0(T ) // E1

0(T ) // · · · // EdimT (T ) // R // 0.

(17)
The second to last arrow is integration.

Recall the definition of Ek(T ) given at the beginning of this section.

Proposition 2.4. The spaces Ek(T ) constitute a compatible element system.

Proof. The Bogovskii integral operator [25] can be used to prove the exactness
of the sequences (17) on reference balls. Then the result is transported to cells
by the chosen Lipschitz isomorphism.

The extension property follows from the fact that any form on ∂T which is
L2 with exterior derivative in L2 can be extended to a form on T with similar
regularity. Then, starting with a form in Ek(∂T ), one obtains an extension
which is trivially in Ek(T ).

2.4 Degrees of freedom and interpolators

The following is a formalization of the notion of dofs, with particular emphasis
on their geometric location.

Definition 2.4. Given a cellular complex T , a system of degrees of freedom
(sysdof) is a choice, for each k and T , of a subspace Fk(T ) of Ek(T )?,

We remark that if we have cells T ′ ⊆ T elements of Ek(T ′)? can be considered
as elements of Ek(T )?, by pullback.

Any k-form u in Ek(T ) then gives a linear form 〈·, u〉 on Fk(T ). We put:

Φk(T )u = 〈·, u|T ′〉T ′∈T ∈
⊕
T ′CT

Fk(T ′)?. (18)

We say that a system of degrees of freedom is unisolvent on E if, for any
T ∈ T , Φk(T ) provides an isomorphism:

Φk(T ) : Ek(T )→
⊕
T ′CT

Fk(T ′)?. (19)

This notion can be expressed informally by saying that elements of Ek(T ) are
uniquely determined by (the values) the degrees of freedom (take on them). We
stress that just as we, in general do not dispose of a canonical basis for the
spaces constituting our element systems, we de not have a canonical basis for
the spaces constituting the sysdofs.

The following strengthens Proposition 5.35 (and parts of 5.37) in [22]. See
also how, in [5], Lemma 4.7 and Theorem 4.9 lead to Theorem 4.10.
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Proposition 2.5. Suppose that E is a finite element system and that F is a
system of degrees of freedom. The following statements are equivalent:

• F is unisolvent on E.

• E has the extension property and for each cell T ∈ T , the map Ek0 (T )→
Fk(T )? is an isomorphism.

• For each cell T ∈ T , the map Ek0 (T )→ Fk(T )? is injective and

dimEk(T ) =
∑
T ′CT

dimFk(T ′). (20)

Proof. (i) Suppose the first condition holds. Then if u ∈ Ek(∂T ) we can extend
it to T by imposing 0 as degree of freedom on T ′ = T in (19). So E has the
extension property.

We also get injectivity of the map:

Ek0 (T )→ Fk(T )?. (21)

Moreover any element of the right hand side provides an element u ∈ Ek(T )
with degree of freedom 0 on the cells of boundary. By unisolvence on the
boundary cells we get u ∈ Ek0 (T ). This shows that (21) is bijective. So the
second condition holds.

(ii) If the second condition holds, the third follows from Proposition 2.1.
(iii) Suppose the third condition holds. Then Φk(T ) defined in (19) is injec-

tive between spaces of the same dimension, therefore Φk(T ) is an isomorphism
and the first condition holds.

Definition 2.5. For a finite element system E, an interpolator is a collection
of projection operators Ik(T ) : Ek(T )→ Ek(T ), one for each k ∈ N and T ∈ T ,
which commute with restrictions to sub-cells. That is, whenever T ′ C T the
following diagrams, in which horizontal maps are pullbacks, should commute:

Ek(T ) //

Ik(T )

��

Ek(T ′)

Ik(T ′)

��
Ek(T ) // Ek(T ′)

(22)

One can then denote it simply with I• and extend it unambiguously to any
sub-complex T ′ of T . Any unisolvent system of degrees of freedom defines an
interpolator by requiring, for each T ∈ T :

Φk(T )Ik(T )u = Φk(T )u. (23)

We will refer to it as the interpolator associated with the system of degrees of
freedom.

The following is Proposition 5.37 in [22].

Proposition 2.6. The following statements are equivalent:

• E admits extensions,
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• E has a unisolvent system of degrees of freedom,

• E can be equipped with an interpolator.

In practice one is interested in commuting interpolators. The following result
reproduces Proposition 5.41 in [22].

Proposition 2.7. If E is compatible and F a unisolvent system of degrees of
freedom, the associated interpolator commutes with the exterior derivative if and
only if:

∀l ∈ Fk(T ) l ◦ d ∈
⊕
T ′CT

Fk(T ′). (24)

Suppose that F is a system of degrees of freedom on T such that (24) holds.

Then we have a well defined map d̂ : l 7→ l ◦ d from Fk(T ) to Fk−1(T ), with:

Fk(T ) =
⊕
T∈T
Fk(T ) ⊆ Ek(T )?. (25)

Denote by δ its adjoint, which maps from Fk−1(T )? to Fk(T )?. The following
diagram commutes:

Ek−1(T )
d //

Φk−1

��

Ek(T )

Φk

��
Fk−1(T )?

δ // Fk(T )?

(26)

Equip each Ek(T ) with a continuous scalar product a, for instance the L2

product on forms. For a given finite element system E, define spaces Fk(T ) as
follows. For k = dimT :

Fk(T ) = {a(·, v) : v ∈ dEk−1
0 (T )} ⊕ {R

∫
·}, (27)

and for k < dimT :

Fk(T ) = {a(·, v) : v ∈ dEk−1
0 (T )} ⊕ {a(d·, v) : v ∈ dEk0 (T )}. (28)

This is the natural generalization, to the adopted setting, of projection based
interpolation, as defined in [26][27]. We call these the harmonic degrees of
freedom, and the associated interpolator is called the harmonic interpolator.

Remark 2.1. Comparing with [41][6] we notice that these degrees of freedom
provide a geometric decomposition of E•(T ), in which the exterior derivative
remains local, except for the second term in (27) which corresponds to the
coboundary operator in C•(T ).

Proposition 2.8. The following statements are equivalent:

• E is compatible,

• On E, the associated harmonic degrees of freedom are unisolvent,

• E has a unisolvent system of degrees of freedom, with property (24),

• E can be equipped with a commuting interpolator.
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Proof. (i) If E is compatible, the sequences (17) are exact, hence the harmonic
degrees of freedom are unisolvent according to the second characterization in
Proposition 2.5. So the first condition implies the second.

(ii) Harmonic degrees of freedom satisfy (24), so the second condition implies
the third.

(iii) Unisolvent degrees of freedom with property (24) provide a commuting
interpolator according to Proposition 2.7. So the third condition implies the
fourth.

(iv) Suppose E has a commuting interpolator. Recall Proposition 2.4. The
commuting interpolator can be used to deduce compatibility of E from the
compatibility of E. So the fourth condition implies the first.

2.5 Handling spanning families with resolutions

High order finite element spaces of differential forms (which will be defined in the
next sections) seem to lack natural choices of bases. But they do have natural
spanning families. We wish to show how one can compute with these natural
families, which requires a systematic handling of the linear relations that occur
in them.

A caricature of our point is the following. Define:

V = {x ∈ Rn :
∑
i

xi = 0}. (29)

Suppose we want to do linear algebra computations in V . Instead of making
an arbitrary choice of basis for V , we compute in the canonical spanning family
ei, (1 ≤ i ≤ n) defined by:

ei = (0, . . . , 0, 1, 0, . . . , 0)− 1

n
(1, . . . , 1), (30)

where the first occurence of 1 is in position i. We have to keep in mind that we
have the relation: ∑

i

ei = 0. (31)

This is the only one. We may summarize this by writing an exact sequence:

0 // R // Rn // V // 0, (32)

where the second arrow maps 1 to (1, . . . , 1), and the third arrow maps the
canonical basis to (ei). Any element v of V can be written:

v =
∑
i

viei, (33)

and the vi ∈ R are unique if we impose the condition:∑
i

vi = 0. (34)

Consider now the more general case where V is some finite dimensional
vector space (we have in mind the spaces constituting a FES). A spanning
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family (ei)i∈I of V corresponds to a surjective linear map ε : RI → V , namely
the map sending the canonical basis of RI to the given spanning family. We
say that we have eliminated the redundancies in the spanning family if we have
identified a matrix (Cji) for (j, i) ∈ J × I, with independent rows, such that for
each v ∈ V there is a unique u ∈ RI verifying:

v =
∑
i∈I

uiei, (35)

and ∑
i∈I

Cjiui = 0, ∀j ∈ J. (36)

Suppose we have a matrix (Bij) for (i, j) ∈ I × J , whose columns constitute
a basis of ker ε ⊆ RI indexed by J . This means that we have an exact sequence:

0 // RJ B // RI ε // V // 0. (37)

Any elimination of redundancies in the spanning family (ei)i∈I is then equivalent
to a choice of a matrix C such that CB is invertible, since its rows must represent
linear forms on RI whose restrictions to ker ε constitute a basis of (ker ε)?.

The advantage of this approach is that, for the examples we have in mind,
there are spanning families (ei)i∈I which are natural. In particular, defining
matrices for various linear operators with respect to such families is relatively
easy. We then supply information pertaining to the natural spanning family,
which will let the software construct the matrices B and C. This information
will be canonical in a sense, and we let the non-canonical choices implicit in B
and C be handled by the software.

To determine a kernel matrix B as above we rely on a more general notion,
namely resolutions. A finite resolution of a finite dimensional vector space
V is a sequence W0, . . . ,Wn of finite dimensional vector spaces, equipped with
operators e : W0 → V and fi : Wi →Wi−1 such that we have an exact sequence:

0 // Wn
fn // . . .

f2 // W1
f1 // W0

e // V // 0. (38)

In the context of finite elements, it can occur that one has a space V without
a particular natural basis, but with a finite resolution as above, where each space
Wi has a natural basis (note that there can be several natural bases). Choosing
one natural basis for each Wi, say indexed by a set Ii, we get a new resolution:

0 // RIn Fn // . . .
F2 // RI1 F1 // RI0 ε // V // 0. (39)

In particular, one has a spanning family (ei)i∈I , with I = I0, for V , such that
the columns of the matrix F1 span the linear relations. Determining a basis of
the columns of F1 is a problem of linear algebra that is easily handed over to
the computer.

Thus, for the finite element systems E we will consider, we shall provide
canonical resolutions of the spaces Ek(T ) and Ek0 (T ).

By Proposition 2.5, unisolvent degrees of freedom provide an isomorphism:

Ek(T )→
⊕
T∈T
Fk(T )?. (40)
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and also, one, for each T ∈ T :

Ek0 (T )→ Fk(T )?. (41)

They combine to an isomorphism:⊕
T∈T

Ek0 (T )→ Ek(T ). (42)

In particular if we have spanning families for the Ek0 (T ) where we have control of
linear relations as above, we get spanning families for Ek(T ) with good control
of the linear relations. Locally the isomorphism (42) induces isomorphisms:⊕

T ′CT

Ek0 (T ′)→ Ek(T ). (43)

This map can be expressed in the canonical spanning families we provide for
Ek(T ) and Ek0 (T ′).

The maps (42)(43) provide geometric decompositions of Ek(T ) and Ek(T ).
As in [6], one might construct them directly from some variant of Proposition
2.2, instead of going via degrees of freedom.

Scalar products such as those appearing in mass and stiffness matrices are
first expressed in the canonical spanning families of Ek(T ), when T is a cell of
maximal dimension in T . Then they are expressed in the spanning families of
Ek0 (T ′), simply by composing with the matrix of the geometric decomposition.

With canonical spanning families thus implemented, we can let the com-
puter determine a basis that optimizes some stability estimate. The best imple-
mentation could also involve Lagrange multipliers, as suggested by the above
caricature. The exact form this should take, is beyond the scope of this paper.
Our point is to provide a clean framework in which such juggling can be carried
out by the computer, rather than to supply a particular choice of basis ready
for implementation (such a basis, as far as we can see, would necessarily be
non-canonical).

3 Trimmed polynomial differential forms

3.1 Definitions

We now turn to the application of the above framework to a specific example.
Let T be a simplicial complex, spanning the domain S. The set of k-

dimensional simplices in T is denoted T k. We suppose that the simplices are
oriented. Recall that for k ≥ 1, if T is a k-simplex and T ′ is a (k − 1)-face of
T , we denote by o(T, T ′) their relative orientations. In this section a simplex is
identified with a set of vertices (rather than their convex hull).

Following [42][43], Whitney forms on T can be defined as follows.
For any vertex i ∈ T 0, λi is the corresponding barycentric coordinate map,

namely the continuous piecewise affine map taking the value 1 at vertex i and
0 at the other vertices.

For a k ≥ 1, let T ∈ T k be a k-simplex and let i : [k]→ T be an enumeration
of the vertices compatible with the orientation of T , in the sense for instance
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that (dλi(1), . . . ,dλi(k)) is an oriented basis of the cotangent space. One puts:

λT = k!

k∑
j=0

(−1)jλi(j)dλi(0) ∧ . . . d̂λi(j) . . . ∧ dλi(k). (44)

The widehat means that the quantity which lies underneath is omitted in the
concerned expression. We remark that:

dλT = (k + 1)! dλi(0) ∧ . . . ∧ dλi(k). (45)

We denote by S[k] the set of permutations of [k]. The sign of a permutation
σ is denoted s(σ).

The following result corresponds to Proposition 1 in [12].

Proposition 3.1. Pick k ≥ 1 and let T be a k-simplex. We have:

λT =
∑
i∈T

o(T, T \ i)λidλT\i. (46)

Proof. We let i : [k]→ T be an enumeration of the vertices compatible with the
orientation of T . For j ∈ [k], let σj ∈ S[k] be the following cyclic permutation:

σj : (0, 1, . . . , j, j + 1, . . . k) 7→ (j, 0, . . . , j − 1, j + 1, . . . k). (47)

We denote by tj the terms in (44):

tj =(−1)jλi(j)dλi(0) ∧ . . . d̂λi(j) . . . ∧ dλi(k) (48)

=s(σj)λi(σj(0))dλi(σj(1)) ∧ . . . ∧ dλi(σj(k)). (49)

We also let ij : [k − 1] → T \ i(j) be an enumeration compatible with the
orientation of T \ i(j). We let (j, ij) : [k]→ T denote the enumeration:

(0, . . . , k) 7→ (i(j), ij(0), ij(1), . . . ij(k − 1)). (50)

We remark that the map (j, ij)
−1 ◦ i ◦ σj is a permutation of [k], sending 0 to

0, so that i ◦ σj(0) = i(j).
In the expression for tj we may apply the inverse of this permutation to the

indices to get:

tj = s((j, ij)
−1 ◦ i)λi(j)dλij(0) ∧ . . . ∧ dλij(k−1). (51)

From this, identity (46) follows.

We can also write:

λT =
∑

σ∈S[k]

s(σ)λi(σ(0))dλi(σ(1)) ∧ . . . ∧ dλi(σ(k)). (52)

Proposition 3.2. Let T be a k-simplex. Then, we have:

λT |T = k! dλi(1) ∧ . . . ∧ dλi(k), (53)

and: ∫
T

λT = 1. (54)

For any other k-simplex T ′ ∈ T we have λT |T ′ = 0.
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Proof. We first claim that on T we have:

s(σ)dλi(σ(1)) ∧ . . . ∧ dλi(σ(k))|T = dλi(1) ∧ . . . ∧ dλi(k)|T .

Indeed, if σ(0) = 0, the identity is clear. If σ(0) = j for some j ∈ {1, . . . , k}, we
let τ be the permutation exchanging 0 and j and put σ′ = τ ◦ σ. We note that
σ′(0) = 0. Consider the expression:

a = s(σ)dλi(σ(1)) ∧ . . . ∧ dλi(σ(k))|T .

At the position where σ(l) = 0, we may replace dλi(0) by −dλi(j). We get:

a = −s(σ)dλi(σ(1)) ∧ . . . ∧ dλi(j) ∧ . . . ∧ dλi(σ(k))|T ,
= s(σ′)dλi(σ′(1)) ∧ . . . ∧ dλi(σ′(k))|T ,
= dλi(1) ∧ . . . ∧ dλi(k)|T .

We deduce:

λT |T = k! (
∑
j∈T

λj)dλi(1) ∧ . . . ∧ dλi(k),

= k! dλi(1) ∧ . . . ∧ dλi(k).

Thus we have obtained (53). For any other k-simplex T ′ one of the barycentric
coordinates attached to T is 0 on T ′, so λT |T ′ = 0.

By Stokes theorem and an induction reasoning on dimension, we get:∫
T

λT =

∫
T

o(T, T \ i(0))dλT\i(0) =

∫
T\i(0)

λT\i(0) = 1.

This concludes the proof.

Because of Proposition 3.2, the Whitney forms are linearly independent over
R. However they are not independent over the ring of polynomials, because of
the following identities (see Proposition 2 in [12] or Proposition 3.5 in [37] for
dimension 3, Equation (6.5) in [6]).

Proposition 3.3. Let T be a (k + 1)-simplex. We have the following relation
among Whitney k-forms: ∑

i∈T
o(T, T \ i)λiλT\i = 0.

Proof. Let a denote the left hand side. We use (46) on each T \ i, to get:

a =
∑

i,j∈T :i 6=j

o(T, T \ i)o(T \ i, T \ {i, j})λiλjdλT\{i,j}.

Here, the contributions of (i, j) and (j, i) cancel two by two, since δδ = 0.
Therefore a = 0.

Then we define the space of Whitney (or Weil . . . ) forms:

Wk(T ) = span{λT : T ∈ T k}. (55)

Similarly, when U is a simplex in T , we denote by Wk(U) the space of Whitney
forms restricted to U .

The following result is in [43].
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Proposition 3.4. The exterior derivative maps Wk(T ) to Wk+1(T ) and:

dλT =
∑
i

o(T ∪ i, T )λT∪i. (56)

Following [38][34] (for vector fields in R2 and R3 respectively) and [30][5] (for
differential forms) we now define higher order finite element spaces of differential
forms. We adopt the notations of [5]. Thus for any simplex T , PrΛk(T ) denotes
the space of k-forms on T which are polynomials of degree r. One has:

dimPrΛk(T ) =

(
n+ r

r

)(
n

k

)
. (57)

On a vector space U we denote the Koszul operator by κ. It is the contraction
of differential forms on U by the identity on U , considered as a vector field. Thus,
if u is a (k + 1)-form on U , κu is the k-form on U defined by:

(κu)x(ξ1, . . . , ξk) = ux(x, ξ1, . . . , ξk). (58)

Instead of the Koszul operator ([5]) one can use the Poincaré operator ([30])
associated with the canonical homotopy from the identity to the null-map.

Define, for any simplex T and any integer r ≥ 1:

P−r Λk(T ) = {u ∈ PrΛk(T ) : κu ∈ PrΛk−1(T )}. (59)

For wellposedness one should check that these spaces are independent of the
choice of origin in T that provides a vector space structure to the affine space
of T . As pointed out in [10], for r = 1, one recovers Whitney forms:

P−1 Λk(T ) = Wk(T ). (60)

For fixed r, the spaces P−r Λk(T ) constitute a finite element system which
we call the trimmed polynomial finite element system of order r. Moreover the
use of the Koszul operator guarantees the sequence exactness (12). The Koszul
complex also gives the following dimension count, for a simplex T of dimension
n (see [5] equation (3.15)):

dimP−r Λk(T ) =

(
r + k − 1

k

)(
n+ r

n− k

)
. (61)

The identity (60) can be deduced from this fact.
What remains to be proved, to guarantee that one has a compatible finite

element system, is the extension property. We could deduce this from the ex-
istence of degrees of freedom, proved in [30][5]. However the previous general
theorems on finite element systems suggest another organization of the argu-
ments. We also rely heavily on a new tool, namely Proposition 3.5. Notice that
a much weaker positivity result appeared in the proof of Lemma 4.6 in [5].

3.2 Compatibility and unisolvence

For the trimmed polynomial differential forms of order r on simplexes (i.e.
P−r Λk(T )), the standard system of degrees of freedom is defined as follows.
Letting n be the dimension of T we put:

Fk(T ) = {u 7→
∫
T
v ∧ u : v ∈ Pr−n+k−1Λn−k(T )}. (62)

16



We will now show that this sysdof is unisolvent on the trimmed polynomial FE
system of order r, that this element system is compatible, and that its elements
are naturally expressed as polynomial multiples of Whitney forms. These three
facts, stated in Theorem 3.9 and Proposition 3.10, are intimately connected (at
least we have not managed to disentangle them). They should be considered
known, but the way we obtain them can in some aspects be considered new.

The characterizations (71) and (72) are detailed in particular in [6]. Here we
obtain them by explicit use of the general tools of FES, such as Proposition 2.2.
We also notice that a streamlined proof of unisolvence appears in [4]. We both
check that the third characterization of unisolvence provided in Proposition 2.5
holds. The main difference is that we rely on Proposition 3.5 instead of Lemma
3.4 in [4] (which corresponds to Lemma 4.11 in [5], see also Lemma 10 in [30]).

A positivity result. We work first on a fixed oriented simplex U of dimension
n, whose sub-simplexes are all oriented. If T is a sub-simplex of U , T̂ denotes
the opposite simplex in U . Recall that λT is the Whitney form associated with
simplex T , given its orientation.

We denote by µT the scalar function obtained as the product of the barycen-
tric coordinates associated with the vertices of T̂ :

µT = Πi∈T̂λi.

Consider a k-simplex T . Choose an orientation preserving enumeration of its
vertices i : [k] → T , and complete it to an enumeration i : [n] → U , respecting

the orientation of T̂ . We have, on U :

λT ∧ dλT̂ = k!(n− k)!
∑
j∈[k]

(−1)jλijdλi0 ∧ . . . d̂λij . . . ∧ dλik ∧ . . . ∧ dλin ,

= k!(n− k)!
∑
j∈[k]

λijdλi1 ∧ . . . ∧ dλik ∧ . . . ∧ dλin .

Let s(T ) be equal to 1, if i agrees with the orientation of U , and −1 if not. Thus

s(T ) depends only on the orientations of T , T̂ and U . We get:

λT ∧ dλT̂ = s(T )

(
n

k

)−1

(
∑
i∈T

λi)λU .

For any x ∈ U define a real matrix D(x), indexed by the k-dimensional sub
simplices T, S of U , by:

DTS(x)λU =

(
n

k

)
s(T )µTλT ∧ dλŜ .

The diagonal is positive.

Proposition 3.5. For any x ∈ U , the matrix D(x) is symmetric and weakly
diagonally dominant.

Proof. The diagonal terms are of the form:

DTT (x) = µT
∑
i∈T

λi.
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Off diagonal terms DTS(x) can be non zero only for dim(T \S) = 1. Consider
this case and put T \ S = i. We have:

λT ∧ dλŜ = (n− k)o(T, T ∩ S)o(Ŝ, T̂ ∪ S)λidλT∩S ∧ dλi ∧ dλ
T̂∪S .

But we also have, by definition of s(S) :

λU = s(S)
n!

k!(n− k − 1)!
o(S, T ∩ S)o(Ŝ, T̂ ∪ S)dλT∩S ∧ dλi ∧ dλ

T̂∪S .

so that:

λT ∧ dλŜ = s(S)

(
n

k

)−1

o(T, T ∩ S)o(S, S ∩ T )λiλU .

It follows that:

DTS(x) = s(T )s(S)o(T, T ∩ S)o(S, S ∩ T )µTλi.

This shows that D(x) is weakly diagonally dominant by rows.
Since also µTλi = µT∪S , the matrix D(x) is symmetric.

We use this result in the following form.

Corollary 3.6. For each x, the matrix D(x) is symmetric positive semi-definite.

Proposition 3.7. Suppose that we have attached to each k-simplex T in U , a
scalar function uT on U . The following are equivalent:∑

T

uTµTλT = 0, (63)∫
U

(
∑
T

uTµTλT ) ∧ (
∑
S

s(S)uSdλŜ) = 0, (64)∑
S

s(S)uSdλŜ = 0. (65)

Here the summation indices S and T run over the k-dimensional sub-simplices
of U .

Proof. (i) The first condition implies the second.
(ii) Suppose the second condition holds. Since the matrix D(x) is semi

positive at each x, we get that the integrand is 0 point-wise. Therefore for each
T we have the point-wise equality:

µTλT ∧ (
∑
S

s(S)uSdλŜ) = 0, (66)

so that :

λT ∧ (
∑
S

s(S)uSdλŜ) = 0, (67)

Since constant differential forms are in the span of the Whitney forms λT , the
third condition holds.

(iii) The reverse implications follow from similar arguments.
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Compatibility and unisolvence. The following result is Theorem 4.13 in
[5], and we follow the proof of Theorem 4.9 of that paper.

Lemma 3.8. Let 0 ≤ k ≤ n and r ≥ 1. Then,

dimP−r Λk(U) =
∑
VCU

dimPr−dimV+k−1ΛdimV−k(V ). (68)

Proof. Let a be the left hand side and b the right hand side of the claimed
equality. We write:

b =

n∑
l=0

(
n+ 1

l + 1

)(
r + k − 1

l

)(
l

k

)
=
n+ 1

r + k

(
n

k

) n∑
l=0

(
r + k

l + 1

)(
n− k
n− l

)
, (69)

=
n+ 1

r + k

(
n

k

)(
n+ r

1 + n

)
=

(
r + k − 1

k

)(
n+ r

n− k

)
= a. (70)

The first equality is (57) whereas the last is (61). From the first to the second
line we used the binomial identity:∑

j

(
m

p− j

)(
n

q + j

)
=

(
m+ n

p+ q

)
.

The other identities come from elementary manipulations with factorials.

We adopt the notation:

P−r Λk0(U) = {u ∈ P−r Λk(U) : u|∂U = 0}.

Theorem 3.9. Let r ≥ 1. Then, spaces P−r Λk(U) define a compatible finite
element system on T . One has:

P−r Λk(U) = Pr−1(U)Wk(U), (71)

and, for n = dimU :

P−r Λk0(U) = span{uµTλT : u ∈ Pr−n+k−1(U), T ∈ C(U)k}. (72)

Here C(U)k denotes the set of k-dimensional subcells of U and the dependence
of µT on U is implicit.

Proof. By induction on the dimension of maximal simplices of T .
Suppose that the proposition has been proved for simplicial complexes of di-

mension (n−1). Let U be a simplex of dimension n. Due to the characterization
(72) applied to each V ∈ ∂U we may define linear extension operators:

eV : P−r Λk0(V )→ Pr−1(U)Wk(U),

such that:
(eV v)|V ′ = 0 for V ′ 6= V, dimV ′ = dimV.

The proof of Proposition 2.2 then shows that the restriction operator

ρ :
∑
V ∈∂U

eV P−r Λk0(V )→ P−r Λk(∂U), (73)
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is onto. In particular the restriction P−r Λk(U) → P−r Λk(∂U) is onto, so that
the extension property holds for U .

Moreover the sum in (73) is direct and the operator ρ is injective: If u is
written

u =
∑
V ∈∂U

eV vV ,

and is mapped to 0 by ρ, then vV = 0 on k-dimensional cells V ∈ ∂U , therefore
also on (k + 1)-dimensional ones, etc.

Let K denote the right hand side in (72) and consider the direct sum:

W = K ⊕
⊕
V ∈∂U

eV P−r Λk0(V ),

W is a subspace of Pr−1(U)Wk(U), which in turn is a subspace of P−r Λk(U).
By Proposition 3.7 applied to each subsimplex of U and Lemma 3.8 we have:

dimW = dimK +
∑
V ∈∂U

dimP−r Λk0(V ),

=
∑
VCU

dimPr−dimV+k−1ΛdimV−k(V ),

= dimP−r Λk(U).

Therefore:
W = Pr−1(U)Wk(U) = P−r Λk(U).

So (71) holds and (72) follows, using the injectivity of ρ.

Proposition 3.10. The degrees of freedom (62) are unisolvent and define a
commuting interpolator.

Proof. The characterization (72) and Proposition 3.7 show that the integrated
wedge product defines an invertible bilinear form on:

P−r Λk0(U)× Pr−n+k−1Λn−k(U). (74)

Proposition 2.5 and Lemma 3.8 then gives unisolvence.
Commutation follows from Proposition 2.7.

Now we can interpret Proposition 3.7 as saying that linear relations in nat-
ural spanning families for high order Whitney forms and for their degrees of
freedom, correspond to one another.

3.3 Low order degrees of freedom.

We have already defined two choices of systems of degrees of freedom for trimmed
polynomial differential forms. The canonical one, defined in (62), and the har-
monic one, defined in (27, 28). We now provide a third possibility. These are
overdetermining, and we first show how one can deduce a unisolvent sysdof from
an overdetermining one.
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General construction. Suppose E is a compatible finite element system and
that F is a system of degrees of freedom such that Ek0 (T )→ Fk(T )? is injective
for each T and k. This means that an element of Ek(T ) is over-determined by
the degrees of freedom.

We suppose that FdimT (T ) contains the integral. We also suppose that
d? : l 7→ l ◦ d makes the following sequences exact:

0 // R // FdimT (C(T )) // . . . // F0(C(T )) // 0. (75)

The first non trivial arrow is inclusion of the integral.
Define spaces Fk0 (T ) to consist of the forms in Fk(C(T )) whose restriction

to Ek0 (T ) are zero. We get exact sequences:

0 // Fk0 (T ) // Fk(C(T )) // Ek0 (T )? // 0. (76)

The second arrow is inclusion and the third arrow is restriction. We can organize
everything in a diagram, with exact rows and columns:

0

��

0

��

0

��
0 //

��

FdimT
0 (T ) //

��

. . . //

��

F0
0 (T ) //

��

0

0 // R //

��

FdimT (C(T )) //

��

. . . //

��

F0(C(T )) //

��

0

0 // R //

��

EdimT
0 (T )? //

��

. . . //

��

E0
0(T )? //

��

0

0 0 0 0

(77)

The horizontal arrows are almost all d?.
According to Proposition 3.11 below it is possible to choose a supplementary

Gk(T ) of Fk0 (T ) in Fk(C(T )) in such a way that d? maps Gk(T ) to Gk−1(T ). It
provides a unisolvent system of degrees of freedom with commuting interpolator.

Proposition 3.11. Suppose we have a commuting diagram with exact rows and
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columns:
0

��

0

��

0

��
0 // A0 //

f0

��

. . . //

��

An //

fn

��

0

0 // B0 //

g0

��

. . . //

��

Bn //

gn

��

0

0 // C0 //

��

. . . //

��

Cn //

��

0

0 0 0

(78)

Then one can choose a subspace Dk of Bk for each k, such that:

Bk = fkAk ⊕Dk, (79)

and the differential of B• maps Dk to Dk+1. Then g• induces an isomorphism
of complexes D• → C•.

Proof. Choose a scalar product ak on Bk, denote orthogonality with respect to
ak by ⊥k and define Dk by:

Dk = {u ∈ Bk : u ⊥k dfk−1Ak−1 and du ⊥k+1 dfkAk}. (80)

This provides one possible choice for Dk.

Small degrees of freedom. Fix r ≥ 1. For E, take trimmed polynomials
of order r, that is Ek(T ) = P−r Λk(T ). For F take degrees of freedom deduced
from its principal lattice of order r, Σr(T ) as follows. Let Σkr (T ) be the so-called
small k-simplexes in T , whose vertices are points in Σr(T ), and which are 1/r-
homothetic to a k-face of T . Following [37] we consider integration on elements
of Σkr (T ) as degrees of freedom for k-forms, and let Fk(T ) be the space they
span. We want to show that these degrees of freedom are over-determining on
E.

The proof is based on two lemmas. In the following, Πk
T denotes the in-

terpolation operator onto Whitney k-forms, of lowest order, determined by the
simplex T . Moreover τξ denotes translation by a factor ξ:

(τξu)(x) = u(x− ξ). (81)

Lemma 3.12. Let V be an oriented n-dimensional vector space. Let U be an
n-simplex in V . Let u be a polynomial n-form on V such that:

∀ξ ∈ V
∫
U

τξu = 0. (82)

Then u = 0.

Proof. Granted.
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Lemma 3.13. Let V be an oriented n-dimensional vector space. Let U be a
n-simplex in V . Let u be a k-form on V which is polynomial. If Πk

Uτξu = 0 for
all ξ ∈ V , then u = 0.

Proof. For each k-face T of U we have
∫
T
τξu = 0 for all ξ ∈ V tangent to T .

By Lemma 3.12 we get that u pulled back to the tangent space of T is 0. Since
this holds for all translates of T , it follows that the pullback of u to any affine
k-dimensional subspace of V which is parallel to a k-face of U , is 0. It follows
that for any simplex T ′ obtained from T by a translation and a scaling, we have
Πk
T ′u = 0. At any point x ∈ V we may choose T ′ in a sequence shrinking to x

and deduce u(x) = 0. Therefore u = 0.

Proposition 3.14. Let V be an oriented n-dimensional vector space. Let U be
a n-simplex in V . If u ∈ P−r Λk(U) satisfies

∫
T
u = 0 for all T ∈ Σkr (U) then

u = 0.

Proof. We may suppose r > 1, since the case r = 1 is standard degrees of
freedom for Whitney forms.

For k = dimV we do the following. Remark that u is polynomial of degree
r − 1. Choose T ∈ Σkr (U) such that the other elements of Σkr (U) are obtained
as translated by vectors ξ ∈ Σr−1(W ) of some n-simplex W . Since the map:

ξ 7→
∫
T

τξu, (83)

is a polynomial of degree r − 1, which is zero at the points in Σr−1(W ), it is
zero everywhere. By Lemma 3.12 we have that u = 0.

Then we do a descending induction on k. Pick then k < dimV and u ∈
P−r Λk(U) such that

∫
T
u = 0 for all T ∈ Σkr (U). We suppose that the proposition

has been proved for elements in P−r Λk+1(U).
Remark that du ∈ P−r Λk+1(U) and that for any T ∈ Σk+1

r (U), we have∫
T

du = 0 by Stokes theorem applied on small simplices. By the induction hy-

pothesis we deduce du = 0. Therefore u ∈ dP−r Λk−1(U) is actually a polynomial
of degree r− 1. For each small n-dimensional simplex S in U , (i.e. S ∈ Σnr (U))
we have Πk

Su = 0. Now we consider these S to be translated of one of them,
say S0, by factors ξ. We have that Πk

S0
(τξu) is a polynomial of degree r − 1 in

ξ, which is 0 on a regular lattice of weight r − 1 (Σr−1 of some n-dimensional
simplex, see Figure 1), hence it is identically 0. By Lemma 3.13, u = 0.

The construction given in the proof of Proposition 3.11 depends on a choice
of scalar product for each Fk(T ). The scalar product which makes the canonical
basis of Fk(T ) orthonormal provides a possible choice.

Computation of small degrees of freedom. Let U be an n-simplex, and
T an k-face of U . We suppose we have fixed an enumeration of T of the form
x : [k]→ T , which is compatible with the orientation of T . We provide a formula
for the small degrees of a form λαλT , with α ∈ Σr−1[k] and λα = λα0

0 . . . λαk

k .
Let T ′ be an oriented k-simplex included in U . We compute:∫

T ′
λαλT , (84)

extending Proposition 2.3 of [36] to arbitrary dimension. Let x′ : [k] → T ′ be
an enumeration of the vertices of T ′ compatible with its orientation.
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Figure 1: A triangle, with the principal lattice of order 3, and the lattice of
order 2 based on barycenters of small triangles.

Proposition 3.15. The form λT |T ′ is constant and:∫
T ′
λT = det[λx(i)(x

′(j))], (85)

where the matrix on the right is indexed by [k]× [k].

Proof. That λT is constant on T ′ follows from the fact that the restriction
belongs to P−1 Λk(T ′).

Denote by M the matrix on the right hand side of the equality to prove.
Let λ′x′(i) denote the barycentric coordinate map on T ′ attached to vertex x′(i).
Given our enumerations, we may denote more simply the coordinate maps at-
tached to T , by λi (defined on U) and those attached to T ′, by λ′i (defined on
T ′).

We have, on T ′:

λi =
∑
j

Mijλ
′
j . (86)

We insert this in the expression:

λT =
∑

σ∈S[k]

s(σ)λσ(0)dλσ(1) ∧ . . . ∧ dλσ(k), (87)

and get:∑
σ∈S[k]

s(σ)
∑

σ′(0),...,σ′(k)∈[k]

Mσ(0)σ′(0) · · ·Mσ(k)σ′(k)λ
′
σ′(0)dλ

′
σ′(1) ∧ . . . ∧ dλ′σ′(k). (88)

Recall from the proof of Proposition 3.2 that, when σ′ is a permutation of [k],
we have, on T ′:

dλ′σ′(1) ∧ . . . ∧ dλ′σ′(k) = s(σ′)dλ′1 ∧ . . . ∧ dλ′k. (89)
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Moreover this form has integral 1/k!. If σ′ is not a permutation, we may write
σ′(i) = σ′(j) for i 6= j, and let τ be the permutation exchanging i and j. Then
the terms corresponding to the permutations σ and τ ◦ σ cancel.

Therefore:∫
T ′
λT =

1

(k + 1)!

∑
σ,σ′∈S[k]

s(σ)s(σ′)Mσ(0)σ′(0) · · ·Mσ(k)σ′(k), (90)

=
∑

σ∈S[k]

s(σ)Mσ(0)0 · · ·Mσ(k)k. (91)

This proves the proposition.

To complete the computation of (84), insert the expression (86) in the ex-
pression for λα. One obtains a weighted sum of terms of the form (λ′)βλT for
which one can use:∫

T ′
(λ′)βλT =

β0! . . . βk!k!

(β0 + . . .+ βk + k)!

∫
T ′
λT . (92)

Volumetric interpretation of small degrees of freedom. Following [36],
we may prove that small dofs for first order polynomial Whitney k-forms can
be interpreted as volumes of suitable simplices. More precisely, given a k-face
of a n-simplex U , we have that∫

T ′
λT = ± vol((U \ T ) ∪ T ′)/ vol(U),

for all k-simplices T ′ contained in U . The sign ± depends on whether the
orientations of T ′ and T agree or not. Here (U \ T ) ∪ T ′ denotes the n-simplex
whose vertices are those of U \ T together with those of T ′. The key argument
of the proof is the recursive formula defining Whitney k-forms starting from
Whitney (k − 1)-forms, Proposition 3.1.

A similar interpretation is possible for dofs associated to high order Whitney
k-forms. Given two k-simplices T, T ′ ⊂ Rn in a n-simplex U and two multi-
indices α, α′ ∈ Σr−1[n] we have∫

{α′,T ′}
λαλT =

∫
{α′,T ′}

λT

∫
{α′,T ′}

λα/ vol{α′, T ′}

We have denoted by {α′, T ′}, the small k-simplex in Σkr (T ) obtained as follows.
Let B be the lattice of barycenters of elements in Σnr (T ), which is indexed by
Σr−1[n]. In Figure 1 the case r = 3 is represented, with the vertices of Σr(T )
as black bullets and the vertices of B as small squares. Then {α′, T ′} occupies,
in the small n-simplex with barycenter in B determined by α′, the analogous
position as T ′ in T .

The quantities vol[({α′, T ′}) ∨ (U \ T )] and thus the coefficients of the
square matrix A{α,T},{α′,T ′} = 〈λα λT , {α′, T ′}〉, can be evaluated relying on
the Cayley-Menger determinant, which allows for computing, in any dimension
n ≥ 1, the volume of a n-simplex from the lengths of its sides.

Let us consider a n-simplex T with vertices v0, . . . , vn and denote by `ij
the Euclidean distance between vi and vj . Let us then define the [n]× [n] ma-

trix D with entries Dij = `2ij , i, j ∈ [n], and the augmented matrix D̃ obtained
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from D by adding the vector v = [0, 1, 1, ..., 1] as first row and v> as first column.

Proposition 3.16. (Cayley-Menger) The volume |T | of the n-simplex T , n ≥ 1,
verifies the identity:

|T |2 =
(−1)n+1

2n (n!)2
det(D̃). (93)

Proof. See [8].

3.4 Resolutions of trimmed polynomial differential forms

With boundary condition: P−r Λk0. Consider a simplex U of dimension n
all of whose sub-simplices have been oriented. We will frequently identify a
k-simplex T with the cochain in Ck taking the value 1 at T and 0 at other
simplices. Also, for a cochain u, and a simplex T , uT denotes the value of u at
T .

For any subsimplex T of U the opposite subsimplex in U is denoted T̂ .
Define a sign s(T ) = ±1 as follows. Take an orientation compatible enumeration

[k]→ T and an orientation compatible enumeration [l]→ T̂ , with l+k+ 1 = n.
This gives an enumeration [n]→ U , and we compare with the orientation of U
to define s(T ). We write:

s :

{
Ck(U) → Cd−k−1(U),

T 7→ s(T )T̂ .
. (94)

We denote by δ′ : Ck+1 → Ck the boundary operator, whose matrix is the
transpose of the matrix of the coboundary operator δ : Ck → Ck+1.

Proposition 3.17. For the cochains attached to U we have a commuting dia-
gram with exact rows

0 // R //

s
��

C0 δ //

s
��

. . .

s

��

δ // Cd−1 δ //

s

��

Cd //

s

��

0

0 // Cd δ′ // Cd−1 δ′ // . . .
δ′ // C0 δ′ // R // 0

(95)

Proof. The identity:
s(T )o(T, T ′) = s(T ′)o(T̂ ′, T̂ ), (96)

gives commutation. Exactness for the cochain complex attached to a single
simplex is standard.

We let Λk(U) denote the space of constant k-forms on U , which is spanned
by the forms dλT , for (k − 1)-dimensional faces T of U . For any vector space
Q of functions on U we put:

QΛk(U) = span{uv : u ∈ Q, v ∈ Λk(U)}. (97)

It is a tensor product in the sense that a free family in Q and a free family in
Λk(U), will have products which constitute a free family in QΛk(U).
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Remark 3.1. Notice that, from a notational point of view, P−r Λk(U) does not
come from such a construction. There is no space of scalar polynomials P−r
that can be used in the above definition (97) to obtain P−r Λk(U). Moreover,
the characterization as a product (see (71)):

P−r Λk(U) = Pr−1(U)Wk(U), (98)

is not a tensor product. Indeed, Proposition 3.3 shows that there are free families
in Pr−1(U) and in Wk(U), whose product are not free.

We denote by σ the surjection:

σ :

{
Q⊗ Ck → QΛk+1(U),
u⊗ T 7→ udλT .

(99)

Proposition 3.18. For any vector space Q of functions on U we have resolu-
tions:

· · · Q ⊗ Ck−2 δ // Q⊗ Ck−1 δ // Q⊗ Ck σ // QΛk+1 // 0. (100)

Proof. Consider:

· · · Ck−2 δ // Ck−1 δ // Ck σ // Λk+1 // 0. (101)

We claim that it is an exact sequence. Since C• is exact and σ surjective, we
only need to check the situation at Ck. We have:

σu =
∑
T

uTdλT = d(
∑
T

uTλT ) =
∑
T ′

(δu)T ′λT ′ . (102)

Hence σδ = 0 and σu = 0 iff δu = 0, iff u = δv. This proves the claim.
Taking the tensor product withQ proves the proposition. Indeed the product

QΛk+1(U) is a tensor product, which can be written Q⊗ Λk+1(U).

We denote by σ′ the surjection:

σ′ :

{
Pq ⊗ Ck → P−r Λk0(U),
u⊗ T 7→ uµTλT .

, (103)

where q = r − n+ k − 1.

Proposition 3.19. We have resolutions:

· · · Pq ⊗ Ck+2 δ′ // Pq ⊗ Ck+1 δ′ // Pq ⊗ Ck
σ′ // P−r Λk0 // 0. (104)

Proof. Use Proposition 3.7 to construct a map PqΛn−k → P−r Λk0 . Then use
Propositions 3.17, 3.18.

Without boundary condition: P−r Λk. We define:

τ :

{
Pr−1 ⊗ Ck → Pr ⊗ Ck−1,

u⊗ T 7→
∑
i∈T o(T, T \ i)λiu⊗ T \ i.

(105)

and:

β :

{
Pr−1 ⊗ Ck → P−r Λk−1,

u⊗ T 7→ uλT .
(106)
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Lemma 3.20. We have sequences:

Pr−2 ⊗ Ck+1 τ // Pr−1 ⊗ Ck
τ // Pr ⊗ Ck−1 , (107)

and:

Pr−2 ⊗ Ck+1 τ // Pr−1 ⊗ Ck
β // P−r Λk . (108)

Proof. (i) Let T be a (k+ 1)-simplex and T ′ a (k− 1)-face of T . The two other
vertices of T are denoted i and j. The component of ττ(u⊗ T ) on T ′ is

(o(T, T \ i)o(T \ i, T ′) + o(T, T \ j)o(T \ j, T ′))λiλju = 0. (109)

Hence ττ = 0.
(ii) Let T be a simplex. According to Proposition 3.3 we have∑

i∈T
o(T, T \ i)λiλT\i = 0, (110)

Hence βτ = 0.

The following key observation was made by Bossavit, when comparing the
dimension of the space of trimmed polynomial differential forms, with the num-
ber of ”small” degrees of freedom that determine them (as in Proposition 3.14).
A geometric interpretation of this identity, following [37], will be given in the
next paragraph.

Lemma 3.21.

dimP−r Λk = dimPr−1 ⊗ Ck − dimP−r−1Λk+1. (111)

Proof. In view of (61) the identity to prove is:(
r + k − 1

k + 1

)(
n+ r − 1

n− k − 1

)
+

(
r + k − 1

k

)(
n+ r

n− k

)
=

(
n+ r − 1

r − 1

)(
n+ 1

k + 1

)
.

This follows from an elementary computation with factorials.

The following proposition provides an interpretation of the above dimension
count in terms of an exact sequence.

Proposition 3.22. There is a unique map α such that the following diagram
commutes:

Pr−2 ⊗ Ck+1

β

��

τ

''
0 // P−r−1Λk+1 α // Pr−1 ⊗ Ck

β // P−r Λk // 0.

(112)

It makes the lower row into an exact sequence.
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Proof. We can regard these two assertions as attached to the couple (r, k).
Assume that the assertion has been proved for (r − 1, k + 1).
(i) The vertical map β is onto. Pick u ∈ Pr−2 ⊗ Ck+1 such that βu = 0.

We want to show that τu = 0. But we may write, by the induction hypothesis
u = αv. Moreover v = βw. Then τu = ττw = 0. This shows existence and
uniqueness of α.

(ii). We know that β is onto. Since βτ = 0 we have βα = 0, so we have
a sequence. We now prove injectivity of α. Pick u ∈ P−r−1Λk+1 and suppose
αu = 0. Write

u = βv with v =
∑
T

vT ⊗ T. (113)

We know that τv = αβv = αu = 0. We have:

βv =
∑
T

vTλT , (114)

=
∑
T

∑
i∈T

vT o(T, T \ i)λidλT\i. (115)

In this sum we recognize, in front of dλT\i, the component of τv on T \ i, which
is 0. Hence u = βv = 0.

The only remaining point to check now is exactness of the sequence. This
follows from Lemma 3.21.

Proposition 3.23. We have a resolution:

· · · Pr−3 ⊗ Ck+2 τ // Pr−2 ⊗ Ck+1 τ // Pr−1 ⊗ Ck
β // P−r Λk // 0.

(116)

Proof. In view of Lemma 3.20 we have a sequence, so that only exactness needs
to be proved.

(i) We first prove exactness of the composition βτ . Suppose βu = 0. Then
we can write u = αv and v = βw. This gives u = τw.

(ii) Next we prove exactness of the composition ττ . Suppose τu = 0. Then
αβu = 0, so βu = 0 by injectivity of α. Therefore we can write u = αv.
Moreover v = βw. Then u = τw.

Recall that in [6] the essential ingredient to deduce bases from spanning
families of highorder Whitney forms is Lemma 4.2 of [5]. We state this result
in the next proposition and show how it can be deduced from Proposition 3.23.

Proposition 3.24. Let U be a simplex, in which we choose a distinguished
vertex O. The Whitney forms on U pertaining to subsimplices of U containing
O are linearly independent over the ring of polynomials on U .

Proof. Suppose we have polynomials uT for each k-face T of U , such that uT = 0
if T does not contain O. Suppose that:∑

T

uTλT = 0. (117)

According to Proposition 3.23 this can happen iff for each (k − 1)-face T ′ of U
we have: ∑

T

o(T, T ′)λT\T ′uT = 0. (118)

29



Figure 2: A 2-simplex and the principal lattice of order r = 3 (left), the small
edges (center), and the fragmented configuration (right).

But when T ′ does not contain O, there is only one term contributing to this
sum, namely T = T ′ ∪ O. Then uT = 0. Since all T containing O arise in this
way we are done.

Geometric interpretation of Lemma 3.21. This identity has been firstly
observed geometrically by Bossavit, already before the preparation of [37]. In-
deed, to determine the dimension of the space P−r Λk(T ) attached to an n-
simplex T , we may proceed as follows.

Let us start with n = 2 and consider the n-simplex T together with the
principal lattice of degree r > 1 (see Figure 2). Connecting the points of this
lattice by lines parallel to the sides of T , one obtains a partition of T consisting
of n-simplexes homothetic to T (the “small” n-simplexes, as they have been
called in [37]) and other shapes (the so-called “holes” in [37]).

In Figure 2 (center) the holes are the reversed triangles such as the one
represented with a thick boundary. Apply a fragmentation operation, cutting
T along the lines, keep the small n-simplexes and eliminate all the holes (Fig.
2 right).

The value of dimPr−1⊗Ck corresponds to the cardinality of the set of small
k-simplices in the fragmented configuration. For r = 3, in Figure 2 (right), we
have 18 nodes, 18 small edges and 6 small triangles. The value of dimP−r−1Λk+1

is the number of relations between k-simplices when we wish to connect the
small n-simplices of the fragmented configuration in a lattice structure as in
Figure 2 (center). For r = 3, we need to impose 8 conditions among nodes and
3 conditions among edges (one condition for each reversed triangle, as explained
in [37]). The value of dimP−r Λk is dimPr−1 ⊗ Ck, (that is the number of k-
simplices in the fragmented configuration), minus dimP−r−1Λk+1, that is the
number of relations (see Proposition 3.5 in [37]) among small k-simplices.

These dimension counts are tabulated in Table 1.

A similar counting can be performed for n = 3 (see Figure 3). Let us consider
the n-simplex T together with the principal lattice of degree r > 1 (In Figure 3,

30



r k dimPr−1 ⊗ Ck dimP−r−1Λk+1 dimP−r Λk

1 0 3 0 3
1 3 0 3
2 1 0 1

2 0 9 3 6
1 9 1 8

2 3 0 3

3 0 18 8 10
1 18 3 15
2 6 0 6

4 0 30 15 15
1 30 6 24
2 10 0 10

... ... ... ... ...

Table 1: n = 2 in a n-simplex T .

r = 3). Connecting the points of this lattice by planes parallel to the faces of T ,
one obtains a partition of T including n-simplexes homothetic to T (the “small”
n-simplexes) and other objects (the “holes”) that can only be octahedra and
reversed tetrahedra, e.g., the objects with thick boundary in Fig. 3 (center).

Apply a fragmentation operation cutting T along the planes, keep the small
n-simplexes and eliminate all the holes (Figure 3, right). Again, the value of
dimPr−1 ⊗ Ck corresponds to the cardinality of the set of small k-simplices in
the fragmented configuration.

For r = 3, in Figure 3 right, we have 40 nodes, 60 small edges, 40 small
faces and 10 small tetrahedra. The value of dimP−r−1Λk+1 is the number of
relations between k-simplices when we wish to connect the small n-simplices of
the fragmented configuration in a lattice structure as in Figure 3 center. For
r = 3, we need to impose 20 conditions among nodes, 15 conditions among
edges (12 conditions, one for each reversed triangle on the faces of T , plus 3
conditions, instead of 4, for the faces of the central reversed tetrahedron), 4
conditions among faces (one for each octahedron). The value of dimP−r Λk is
equal to dimPr−1⊗Ck, that is the number of k-simplices in the fragmented con-
figuration, minus dimP−r−1Λk+1 , that is the number of relations among small
k-simplices, as given in Table 2.

4 Various computations

In this section we present some computations with trimmed polynomial differen-
tial forms, expressed as polynomial multiples of Whitney forms. We first provide
a parametrized family of bases for polynomials on simplices, which contains the
Bernstein and the Lagrange basis as special cases, and allows for de Casteljau
type evaluations. Then we show how to compute scalar products of trimmed
polynomial differential forms, from the edge lengths of simplices. Finally we
provide a formula for wedge products.
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Figure 3: A 3-simplex and the principal lattice of order r = 3 (left), the small
edges (center) and the fragmented configuration of small tetrahedra (right).

r k dimPr−1 ⊗ Ck dimP−r−1Λk+1 dimP−r Λk

1 0 4 0 4
1 6 0 6
2 4 0 4
3 1 0 1

2 0 16 6 10
1 24 4 20

2 16 1 15

3 4 0 4

3 0 40 20 20
1 60 15 45
2 40 4 36
3 10 0 10

4 0 80 45 35
1 120 36 84
2 80 10 70
3 20 0 20

... ... ... ... ...

Table 2: n = 3 in a n-simplex T
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4.1 Polynomials on a simplex

Let T be a simplex of dimension k, with vertices enumerated by a map [k]→ T .
The barycentric coordinates are then denoted λ0, . . . , λk. For any integer r ≥ 1,
let Σr[k] be the set of multi-indices α : [k]→ N with weight |α| = α0 +. . .+αk =
r. It corresponds to the so-called principal lattice of order r of T , consisting of
the points in |T | with barycentric coordinates α/r, α ∈ Σr[k].

The Bernstein basis of Pr(T ) is indexed by Σr[k]. For α ∈ Σr[k] the attached
basis function is:

Bα =
r!

α0! . . . αk!
λα0

0 . . . λαk

k . (119)

The following is a recipe for finding alternative bases of Pr(T ) indexed by
Σr[k]. Fixing r, choose, for each i ∈ [k] and j ∈ [r], a polynomial βi[j] on R of
degree j. Given such a family β, define, on T , for each α ∈ Σr[k] the polynomial
of degree r:

Cα = β0[α0](λ0) . . . βk[αk](λk). (120)

Specializing further the construction, we choose for each i ∈ [k], points ti[j] in
R for 0 ≤ j < r and define βj as follows. We put βi[0] = 1 and for 0 < j ≤ r
define the polynomial function:

βi[j] : t 7→ (t− ti[0]) . . . (t− ti[j − 1]), (121)

We then consider the family Cα for α ∈ Σr[k]. We remark that, up to scalar
factors:

• the Bernstein basis corresponds to defining βi[j] with ti[j] = 0,

• the Lagrange basis corresponds to defining βi[j] with ti[j] = j/r.

We impose that for all multi-indices α such that |α| < r we have:∑
i∈[k]

ti[αi] 6= 1. (122)

This is trivially the case for Bernstein polynomials. More generally, if ti[j] ≤ j/r
we get, whenever |α| < r: ∑

i∈[k]

ti[αi] ≤ |α|/r < 1.

In particular, the Lagrange basis also satisfies (122).

Remark 4.1. If condition (122) does not hold, define a multi-index a with |a| < r,
such that

∑
i ti[ai] = 1. Let x ∈ T be the point with barycentric coordi-

nates ti[ai]. For all α ∈ Σr[k] there is an i ∈ [k] such that ai < αi and then
βi[αi](ti[ai]) = 0 so that Cα(x) = 0. Hence all elements in the span of the Cα,
annihilate x. In particular the span does not contain the constant polynomials.

Proposition 4.1. Suppose condition (122) holds. Then the family Cα, α ∈
Σr[k] is a basis for Pr(T ).
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Proof. Let Qr be the span of Cα with α ∈ Σr[k].
Given r, we suppose the proposition holds for r − 1. We first show that Qr

contains Pr−1(T ).
For any u ∈ Pr−1(T ), choose coefficients cα for α ∈ Σr−1[k] so that:∑

α

cαC
α = u.

We regard t ∈ R[t] as a polynomial. We denote by 1i ∈ Σ1[k] the tuple with
value 1 at position i, and value 0 elsewhere. We write:

Cα+1i = Cα(t− ti[αi])(λi) = Cα(λi − ti[αi]), (123)

therefore: ∑
i∈[k]

Cα+1i = Cα(1−
∑
i∈[k]

ti[αi]).

For each α ∈ Σr−1[k], put:

dα = (1−
∑
i∈[k]

ti[αi])
−1.

Then we have: ∑
i∈[k]

∑
α∈Σr−1[k]

cαdαC
α+1i =

∑
α∈Σr−1[k]

cαC
α = u.

This shows that Qr contains Pr−1(T ).
Next we remark that for any u ∈ Pr−1(T ), written as above, and any i ∈ [k]:

λiu =
∑
α

cαC
α(t− ti[αi])(λi) +

∑
α

cαti[αi]C
α.

Therefore Qr also contains λiu.
This proves that Qr equals Pr(T ). Dimension count then shows that the Cα

with α ∈ Σr[k] constitute a basis.

The de Casteljau algorithm is an important algorithm to evaluate Bernstein
polynomials. It has received attention recently in finite element contexts [32][1].
It can be extended to the above bases as follows. We keep notations of the
above proof. We first rescale Cα as in the Bernstein basis:

C̃α =
r!

α0! . . . αk!
Cα. (124)

Since:
r!

α0! . . . αk!
=

∑
i : αi≥1

(r − 1)!

α0! . . . (αi − 1)! . . . αk!
, (125)

we deduce, using (123):

C̃α(x) =
∑

i : αi≥1

C̃α−1i(x)(λi(x)− ti[αi − 1]). (126)
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Therefore, given coefficients (cα) for α ∈ Σr[k] and a point x, we can determine
coefficients (cα) for α ∈ Σr−1[k] such that:∑

|α|=r

cαC̃
α(x) =

∑
|α|=r−1

cαC̃
α(x), (127)

by putting, for α ∈ Σr−1[k]:

cα =
∑
i

(λi(x)− ti[αi])cα+1i
. (128)

Repeting the procedure for decreasing r, we end up with just one coefficient
c0, and this is the value of (127). This provides a stable way of evaluating
polynomials expressed in these bases.

4.2 Computation of scalar products

Let V be a finite dimensional real vector space. A scalar product on V is a
bilinear form g on V which is symmetric and positive definite. Suppose that
we have a spanning family (ei)i∈I , identified with a surjection ε : RI → V . We
suppose that we know the numbers:

Gij = g(ei, ej). (129)

By linear algebra techniques one can construct an I × J matrix B with inde-
pendent columns, spanning the kernel of G, which is also the kernel of ε. Then
we have an exact sequence:

0 // RJ B // RI ε // V // 0. (130)

This provides an alternative to the computation with resolutions used previously
in this paper. It is also of independent interest to compute scalar products of
differential forms, since variational formulations of PDEs make them appear.

The scalar product g induces a scalar product on V ? by requiring that u 7→
g(u, ·) is an isometry. In other words if l, l′ ∈ V ? are represented as l = g(u, ·)
and l′ = g(u′, ·) then we define g(l, l′) = g(u, u′). There is a unique scalar
product on multi-linear forms such that:

g(u1 ⊗ · · · ⊗ uk, v1 ⊗ · · · ⊗ vk) = g(u1, v1) · · · g(uk, vk).

If we restrict this scalar product to alternating forms we notice:

g(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk) = k!
∑
σ

s(σ)g(u1, vσ1
) · · · g(uk, vσk

).

Actually one scales this scalar product and defines:

g(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk) = det[g(ui, vj)]ij .

With this scaling, if (ei)1≤i≤n is an orthonormal basis of V ?, then the family:

ei1 ∧ · · · ∧ eik for 1 ≤ i1 < · · · < ik ≤ n,
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indexed by subsets of {1, · · · , n} of cardinality k, is orthonormal in Lka(V ).
Let T be a simplex of dimension k. Denote the barycentric coordinates by

λi. Recall the formula:∫
T

λα0
0 · · ·λ

αk

k =
α0! · · ·αk!k!

(α0 + · · ·+ αk + k)!
volT. (131)

It follows that scalar products of polynomial differential forms on T , can be
determined from the knowledge the edge lengths of T , using two intermediate
results:

• The volume of T , as given by the Cayler Menger determinant.

• The scalar products of dλi · dλj .

For the Cayley Menger determinant see Proposition 3.16. Here we consentrate
on dλi · dλj .

The tangent space of T is denoted V and the vertices of T are denoted xi.
We denote:

yji = xj − xi.

We have, for j 6= i:
dλi(yji) = −1,

and, when i 6∈ {j, k}:
dλi(yjk) = 0.

As developed in Regge calculus [15][20], for a constant metric g on T there is a
unique symmetric matrix [gij ] such that:

g = −1

2

∑
i 6=j

gijdλi ⊗ dλj .

The edge lengths are then given by:

|yji|2 = yji · yji = g(yji, yji) = gij .

For each i we determine a vector zi such that:

∀ξ ∈ V dλi(ξ) = g(zi, ξ).

We write:
zi =

∑
j 6=i

zjiyji,

and determine the scalar coefficients zji by:

∀k 6= i g(zi, yki) = dλi(yki) = −1.

In other words:
∀k 6= i

∑
j 6=i

zjig(yji, yki) = −1.

This is a linear system for the vector (zji), with matrix coefficients associated
with j 6= i, k 6= i given by:

g(yji, yki) = gji + gki − gjk,
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a formula which can be obtained from:

|yjk|2 = |yji|2 + |yki|2 − 2yji · yki,

and:

yji · yki = −1

2

∑
j′ 6=k′

gj′k′dλj′(yji)⊗ dλk′(yki),

= −1

2
gjk. (132)

With these notations one obtains:

dλi · dλj = dλj(zi) = zji.

4.3 Computation of wedge products

The following is extracted from the preprint of [16]. The proof provides a
formula for the wedge product in barycentric coordinates.

Proposition 4.2. For each k, l and p, q the wedge of forms provides a map:

∧ : P−r Λk × P−q Λl → P−r+qΛk+l. (133)

Proof. We prove that ∧ : Wk ×Wl → P1W
k+l, with Wk defined in (60), from

which the proposition follows immediately.
Let (ui) be some family of functions indexed by consecutive integers. For

any set of consecutive integers k < · · · < l we put:

δu[k···l] = duk ∧ · · · ∧ dul. (134)

This notation will also be used when one index is missing in the set {k, · · · , l},
e.g.:

δu[k···̂i···l] = duk ∧ · · · (̂dui) · · · ∧ dul. (135)

We also put:

u[k···l] =

l∑
i=k

(−1)i−kuiδu[k···̂i···l], (136)

a notation which is extended straightforwardly to the case of one missing index.
We will prove, by induction on k, that:

u[0···k−1] ∧ u[k···k+l] = (−1)k−1
k−1∑
i=0

(−1)iuiu[0···̂i···k+l]. (137)

It is evidently true for k = 1 and, if it is true for a given k ≥ 1, we can make
the following computations. We remark that:

u[−1···k−1] ∧ u[k···k+l] = (u−1δu[0···k−1] − δu−1 ∧ u[0···k−1]) ∧ u[k···k+l]. (138)

Concerning the first term on the right hand side, we see that:

u−1δu[0···k−1] ∧ u[k···l] = (−1)ku−1(u[0···k+l] −
k−1∑
i=0

uiδu[0···̂i···k+l]). (139)
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For the second term we remark that (by the induction hypothesis):

δu−1 ∧ u[0···k−1] ∧ u[k···k+l] (140)

= (−1)k−1δu−1 ∧
k−1∑
i=0

(−1)iuiu[0···̂i···k+l] (141)

= (−1)k−1
k−1∑
i=0

(−1)iui(−u[−1···̂i···k+l] + u−1δu[0···̂i···k+l]) (142)

Now the last term in (139) cancels with the last term in (142) and we are left
with:

u[−1···k−1] ∧ u[k···k+l] = (−1)k(u−1u[0···k+l] −
k−1∑
i=0

(−1)iuiu[−1···̂i···k+l]). (143)

This completes the induction and hence the proof.
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[35] J.-C. Nédélec. A new family of mixed finite elements in R3. Numer. Math.,
50(1):57–81, 1986.

[36] F. Rapetti. Weights computation for simplicial Whitney forms of degree
one. C. R. Math. Acad. Sci. Paris, 341(8):519–523, 2005.

40



[37] F. Rapetti and A. Bossavit. Whitney forms of higher degree. SIAM J.
Numer. Anal., 47(3):2369–2386, 2009.

[38] P.-A. Raviart and J. M. Thomas. A mixed finite element method for 2nd
order elliptic problems. In Mathematical aspects of finite element methods
(Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pages
292–315. Lecture Notes in Math., Vol. 606. Springer, Berlin, 1977.

[39] J. E. Roberts and J.-M. Thomas. Mixed and hybrid methods. In Handbook
of numerical analysis, Vol. II, Handb. Numer. Anal., II, pages 523–639.
North-Holland, Amsterdam, 1991.
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