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Strong stability preserving (SSP) high order time discretizations were developed
for solution of semi-discrete method of lines approximations of hyperbolic par-
tial differential equations. These high order time discretization methods pre-
serve the strong stability properties–in any norm or seminorm—of the spatial
discretization coupled with first order Euler time stepping. This paper describes
the development of SSP methods and the recently developed theory which con-
nects the timestep restriction on SSP methods with the theory of monotonic-
ity and contractivity. Optimal explicit SSP Runge–Kutta methods for nonlinear
problems and for linear problems as well as implicit Runge–Kutta methods and
multi step methods will be collected.
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1. INTRODUCTION TO SSP METHODS

In the use of numerical methods for approximating solutions of PDEs
we typically rely on linear stability theory to guarantee convergence. The
celebrated Lax equivalence theorem (see [34] Theorem 1.5.1) states that
for a linear method consistent with a linear problem, stability is neces-
sary and sufficient for convergence. Strang [33] extended this result, and
showed that for nonlinear problems if an approximation is consistent and
its linearized version is L2 stable, then for sufficiently smooth problems
this approximation is convergent. However, solutions of hyperbolic partial
differential equations (PDEs) are frequently discontinuous. In this case,
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the conditions of Strang’s theorem are not fulfilled, and linear stabil-
ity theory no longer guarantees convergence. Consequently, a tremendous
amount of effort has been placed on the development of high order spatial
discretizations which, when coupled with the forward Euler time stepping
method, have the desired nonlinear stability properties for approximating
the discontinuous solutions of hyperbolic PDEs.

When solving time dependent PDEs such as the hyperbolic conserva-
tion law of the form ut + f (u)x = 0, the spatial derivative f (u)x is dis-
cretized by a carefully chosen nonlinearly stable finite difference or finite
element approximation, [e.g. 3, 11, 18, 21, 23, 35, 36] to obtain a semi-
discrete method of lines scheme. If the spatial discretization to f (u)x is
denoted −L(u), and we let u represent the vector of values in space, the
PDE above becomes an ordinary differential equation (ODE) system in
time ut = L(u), which can be solved by an ODE solver. The discretiza-
tion L is chosen so that the stability properties of the spatial discretiza-
tion are guaranteed when used with the first order forward Euler method
as the ODE solver for a sufficiently small time step dictated by the CFL
condition.

However, for actual computation higher order time discretizations are
usually needed, and there is no guarantee that the nonlinearly stable spa-
tial discretization would necessarily produce stable results when coupled
with a linearly stable higher order time discretization. In fact, numerical
evidence [7, 8] shows that oscillations may occur when using a linearly
stable, high-order method, which does not preserve the stability proper-
ties of forward Euler, even if the same spatial discretization is TVD when
combined with the first-order forward Euler time-discretization. This is a
compelling reason to develop and use time discretization methods which
preserve the stability properties of forward Euler.

Strong stability preserving (SSP) time discretization methods were
developed to address the need for nonlinear stability properties in the time
discretization, as well as the spatial discretization, of hyperbolic PDEs.
The idea behind SSP methods is to assume that the first order forward
Euler time discretization of the method of lines ODE is strongly stable
under a certain norm, when the time step ∆t is suitably restricted, and
then try to find a higher order time discretization (Runge–Kutta or multi
step) that maintains strong stability for the same norm, perhaps under a
different time step restriction. The class of high order SSP time discret-
ization methods for the semi-discrete method of lines approximations of
PDEs was developed in [28, 29] and called TVD (Total Variation Dimin-
ishing) time discretizations. This class of methods was further studied in
[6, 7, 14, 25–27, 30, 31]. These methods preserve the stability properties
of forward Euler in any norm or semi norm. In fact, since the stability
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arguments are based on convex decompositions of high-order methods in
terms of the first-order Euler method, any convex function (such as the
cell entropy stability property of high order schemes studied in [22, 24]
will be preserved by SSP high-order time discretizations.

Over the last few years, increasingly sophisticated mathematical and
numerical techniques have been used to develop new and optimal SSP
methods. The goal of this paper is to describe the Shu–Osher SSP the-
ory and the recent developments, both numerical and theoretical, in this
field, and to collect the main results and the most useful, in terms of
computational cost, SSP methods. The paper is organized as follows: The
SSP theory and Shu–Osher representation of explicit Runge–Kutta meth-
ods is described in Sec. 2, as well as the results on order barriers and opti-
mal methods for linear problems and nonlinear problems, and low storage
RK methods. The results for explicit SSP multi step methods appear in
Sec. 3, and for implicit SSP RK and multi step methods in Sec. 4. Finally,
the theory linking the CFL coefficient for SSP methods and the radius of
absolute monotonicity is described in Sec. 5. The study of SSP generalized
linear methods (Runge–Kutta and multi step hybrids) which appear in [8]
will not be reviewed here, as the resulting methods are less computation-
ally efficient than either the Runge–Kutta or the multi step methods.

2. EXPLICIT SSP RUNGE–KUTTA METHODS

In this section we review the SSP theory for explicit Runge–Kutta methods
which approximate the solution of the ODE

ut =L(u), (2.1)

which arises from the discretization of the spatial derivative in the PDE

ut +f (u)x =0, (2.2)

where the spatial discretization L(u) is chosen so that

un+1 =un +∆tL(un), (2.3)

satisfies the strong stability requirement ||un+1||� ||un|| in some norm || · ||,
under the CFL condition

∆t �∆tFE. (2.4)
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In [29], a general m stage Runge–Kutta (RK) method for is written in the
form:

u(0) = un,

u(i) =
i−1∑

k=0

(
αi,ku

(k) +∆tβi,kL(u(k))
)

, αi,k �0, i =1, ... ,m, (2.5)

un+1 = u(m).

Consistency requires that
∑i−1

k=0 αi,k =1.
When βi,k is negative, βi,kL(u(k)) is replaced by βi,kL̃(u(k)), where L̃

approximates the same spatial derivative(s) as L, but the strong stabil-
ity property ‖un+1‖� ‖un‖, holds for the first order Euler scheme, solved
backward in time, i.e.,

un+1 =un −∆tL̃(un) (2.6)

This can be achieved, for hyperbolic conservation laws, by solving the neg-
ative in time version of (2.2),

ut −f (u)x =0.

Numerically, the only difference is the change of upwind direction. Clearly,
L̃ can be computed with the same cost as that of computing L. Thus, if
αi,k �0, all the intermediate stages in (2.5), u(i), are simply convex combi-
nations of backward in time Euler and forward Euler operators, with ∆t

replaced by |βi,k|/αi,k∆t . Therefore, any norm, semi-norm or convex func-
tion property satisfied by the backward in time and forward in time Euler
methods will be preserved by the RK method.

Theorem 2.1. ([29] Section 2). If the forward Euler method com-
bined with the spatial discretization L in (2.3) is strongly stable under the
CFL restriction (2.4), i.e.

‖un +∆tL(un)‖�‖un‖,
and if Euler’s method solved backward in time in combination with the
spatial discretization L̃ in (2.6) is also strongly stable under the CFL
restriction (2.4), i.e.

‖un −∆tL̃(un)‖�‖un‖,
then the RK method (2.5) is SSP ‖un+1‖ � ‖un‖, under the CFL
restriction,
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∆t � c∆tFE, c=min
i,k

αi,k

|βi,k| , (2.7)

provided βi,kL is replaced by βi,kL̃ whenever βi,k is negative.

The research in the field of SSP methods centers around the search for
high order SSP methods where the CFL coefficient c in the timestep
restriction (2.7) is as large as possible. Many optimal methods have been
found for the class of problems, where all the βi,ks are nonnegative. These
methods include the case where there are more stages than required for the
order, in order to maximize the CFL coefficient. Although the additional
stages increase the computational cost, this is usually more than offset by
the larger stepsize that may be taken.

It would seem that if both L(u(k)) and L̃(u(k)) must be computed for
the same k, the computational cost as well as storage requirement for this
k is doubled. For this reason, negative βi,k were avoided whenever possi-
ble in [6–8, 25, 32]. However, since, as shown in Proposition 3.3 of [7] and
Theorem 4.1 in [25], it is not always possible to avoid negative βi,k, recent
studies (e.g. [10, 26, 27]) have considered efficient ways of implementing
negative βi,k. First, inclusion of negative βi,k, even when not absolutely
necessary, may raise the CFL coefficient enough to compensate for the
additional computational cost incurred by L̃. Second, since L̃ is, numer-
ically, the downwind version of L, it is possible to compute both L and L̃

without doubling the computational cost. For example, for the fifth order
weighted ENO scheme, computing both L and L̃ for a scalar conservation
law using an efficient algorithm will increase the number of floating point
operations by only 29% over the cost of computing only L[10]. Finally, if
L and L̃ do not appear for the same k, then neither the computational
cost nor the storage requirement is increased.

2.1. Optimal SSP Runge–Kutta Methods for Nonlinear Problems

Since SSP methods were developed for use with hyperbolic conserva-
tion laws, most of the research to date has been in the derivation of SSP
methods for nonlinear spatial discretizations. This is necessary because
high order stable schemes for hyperbolic PDEs with discontinuous solu-
tions are nonlinear even when the underlying PDE is linear.

In Sec. 2 of [29], optimal explicit SSPRK schemes up to third order
were found with CFL coefficient c=1. In the following, (m, p) denotes an
m-stage pth order method:
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SSPRK (2, 2): If we require βi,k � 0, then an optimal second order SSP
RK method (2.5) is given by

u(1) = un +∆tL(un)

un+1 = 1
2
un + 1

2
u(1) + 1

2
∆tL(u(1))

with a CFL coefficient c=1 in (2.7).
SSPRK (3, 3): If we require βi,k � 0, An optimal third order SSP RK
method (2.5) is given by

u(1) = un +∆tL(un)

u(2) = 3
4
un + 1

4
u(1) + 1

4
∆tL(u(1))

un+1 = 1
3
un + 2

3
u(2) + 2

3
∆tL(u(2)),

with a CFL coefficient c=1 in (2.7).
Although both these methods have CFL coefficient c = 1, which per-

mits a time step of the same size as forward Euler would permit, it is clear
that the computational cost is double and triple (respectively) that of the
forward Euler. Thus, we find is useful to define the effective CFL as ceff =
c/l, where l is the number of computations of L and L̃ required per time
step. In the case of SSP(2, 2) and SSP(3, 3) the effective CFL is ceff =1/2
and ceff =1/3, respectively. Of course, while in this case the increase in the
order of the method makes this additional computational cost acceptable,
the notion of the effective CFL is useful when comparing two methods of
the same order.

SSPRK(3, 3) is widely known as the Shu–Osher method, and is prob-
ably the most commonly used SSP RK method. Although this method is
only third order accurate, it is most popular because of its simplicity, its
classical linear stability properties, and because finding a fourth order SSP
RK method proved difficult. In [7] (Proposition 3.3) it was proved that all
four stage, fourth order RK methods with positive CFL coefficient c in
(2.7) must have at least one negative βi,k. Thus, we must contend with the
appearance of L̃ or additional stages. Spiteri and Ruuth ([31, 32]) devel-
oped fourth order methods with m=5, 6, 7 and 8 stages. The most popu-
lar fourth order method is the m=5 stage method with nonnegative βi,ks:
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SSPRK(5,4): ([27] Table 4.3, [17, 31]) The 5 stage fourth order SSPRK
developed by Ruuth and Spiteri

u(1) = un +0.391752226571890∆tL(un),

u(2) = 0.444370493651235un +0.555629506348765u(1)

+0.368410593050371∆tL(u(1)),

u(3) = 0.620101851488403un +0.379898148511597u(2)

+0.251891774271694∆tL(u(2)),

u(4) = 0.178079954393132un +0.821920045606868u(3)

0.544974750228521∆tL(u(3)),

un+1 = 0.517231671970585u(2)

+0.096059710526147u(3) +0.063692468666290∆tL(u(3)).

+0.386708617503269u(4) +0.226007483236906∆tL(u(4))

is SSP with CFL coefficient c = 1.508, and effective CFL ceff = 0.377,
which means that this method is more efficient, as well as higher order,
than the popular SSP(3,3). In Sec. 3.2 of [27] the optimality of this scheme
was guaranteed using an approach based on global optimization.

Ruuth and Spiteri ([25] Proposition 4.1) also proved that any SSPRK
with nonzero CFL of order p > 4 will have negative βi,k. It therefore
becomes necessary to include L̃ in any method of order 5 or above. Ruuth
and Spiteri explore efficient fifth order schemes in [26]. These methods will
probably become increasingly popular as the need for higher order meth-
ods arises, and as ways of computing L̃ more efficiently are found.

2.2. Low Storage Methods for Nonlinear Problems

Storage is usually an important consideration for large scale scientific
computing in three space dimensions. Therefore low storage RK methods
([1, 15, 37]), which only require 2 or 3 storage units per ODE variable,
may be desirable. In [7, 8, 26, 27], some SSP low storage RK methods
were studied. In [27], Ruuth presents many low storage schemes result-
ing from intensive global optimization routines. Some of these methods
are guaranteed optimal, others are the best found in extensive numeri-
cal searches. Ruuth considered Williamson schemes [37] which require two
units of storage per step and Van Der Houwen and Wray (described in
[15]) schemes requiring two or three registers of storage. Negative βi,ks are
allowed in these methods, as long as all the negative coefficients are associ-
ated with the same superscript, so that for each Uk either L or L̃ appears,
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but not both, and so the low storage property is not destroyed. The inter-
ested reader is referred to [27], where ten low storage methods, of order
p = 3 and p = 4 and stages m = 3,4,5 are given. One such very useful
method is:
Method LS(5, 3) ([27] Sec. 4.) The m = 5, p = 3 Williamson low storage
method

U(0) = un,

dU(1) = ∆tL(U(0)),

U(1) = U(0) +0.713497331193829dU(0),

dU(2) = −4.344339134485095dU(1) +∆tL(U(1)),

U(2) = U(1) +0.133505249805329dU(1),

dU(3) = ∆tL(U(2)),

U(3) = U(2) +0.713497331193929dU(2),

dU(4) = −3.770024161386381dU(3) +∆tL(U(3)),

U(4) = U(3) +0.149579395628565dU(3),

dU(5) = −3.046347284573284dU(4) +∆tL(U(4)),

U(5) = U(4) +0.384471116121269dU(4),

un+1 = U(5)

is numerically optimal, with CFL coefficient c = 1.4 and no L̃ computa-
tions. This method may be used instead of SSP(3, 3) with almost the same
computational cost: SSP(3, 3) has ceff = 1/3 and the low storage method
LS(5,3) has ceff =0.28. This increase in cost is reasonable when storage is
a critical need.

2.3. Optimal Methods for Linear Constant Coefficient Problems

Although SSP methods were created to provide nonlinearly stable
time discretizations for nonlinearly stable spatial discretizations of hyper-
bolic PDEs, they have proven useful for linear problems as well. In [20],
the authors used the energy method to analyze the stability of RK meth-
ods for ODEs resulting from coercive approximations such as those in [9].
Using this method it can be proven, for example, that the fourth order
RK method preserved the desired stability property with a CFL number
of c=1/31. However, when this method was analyzed using the SSP ideas,
it became clear that the CFL number was, in fact c=1. Thus, linear SSP
RK methods became useful from the point of view of stability analysis.
Once the class of linear SSP RK methods was developed, it gained popu-
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larity because of the guarantee of provable stability. This section describes
some of the main results in this field:

Consider the ODE (2.1), where L is a linear constant coefficient oper-
ator which can be written as a finite dimensional matrix, so that we
denote L(u)=Lu. In this case SSP RK methods may be found with higher
CFL coefficients than in the nonlinear case or the linear variable coeffi-
cient case L(t, u) = L(t)u. If we increase the number of stages m with-
out increasing the order p, we obtain SSP RK methods with higher CFL
coefficients. In [25] and in [6], it was shown that the family of m-stage,
pth order SSP RK methods (2.5) with nonnegative coefficients αi,k and
βi,k has CFL coefficient c at most c = m − p + 1. However, this CFL
coefficient is only a barrier, and is not generally obtainable. In Table I
we quote Kraaijevanger’s results [16], which were used by Higueras ([12]
Table IV) for determining the optimal CFL coefficient of a m stage, lin-
ear pth order SSP RK method; furthermore, we include the corresponding
effective CFL. These results were derived, as will be explained in Sec. 5,
using the connections between contractivity theory and the radius of abso-
lute monotonicity. Of course, bounds on the linear case apply also to the
nonlinear case, which is far more restrictive.

SSP RK methods which obtain these barriers were considered in [6,
8, 25]. We list the results for SSP RK methods for linear constant coeffi-
cient problems:
SSPRK linear (m, m): ([8] Proposition 3.2) The class of m stage schemes
given by:

u(i) = u(i−1) +∆tLu(i−1), i =1, ... ,m−1,

u(m) =
m−2∑

k=0

αm,ku
(k) +αm,m−1

(
u(m−1) +∆tLu(m−1)

)
,

where α1,0 =1 and

αm,k = 1
k
αm−1,k−1, k =1, ... ,m−2,

αm,m−1 = 1
m!

, αm,0 =1−
m−1∑

k=1

αm,k

is an m-order linear RK method which is SSP with CFL coefficient c=1,
which is optimal among all m stage, p = m order SSPRK methods with
nonnegative coefficients. The effective CFL is ceff =1/m. Table II includes
the coefficients of these methods up to order 8.
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Table I. Optimal CFL Coefficients c, and the Corresponding Effective CFL ceff , of SSP
Linear (m,p) Runge–Kutta Methods

p 1 2 3 4 5 6 7 8 9 10
m

1 c 1
2 c 2 1
3 c 3 2 1
4 c 4 3 2 1
5 c 5 4 2.6506 2 1
6 c 6 5 3.5184 2.6506 2 1
7 c 7 6 4.2879 3.5184 2.6506 2 1
8 c 8 7 5.1071 4.2879 3.3733 2.6506 2 1
9 c 9 8 6 5.1071 4.1000 3.3733 2.6506 2 1

10 c 10 9 6.7853 6 4.8308 4.1000 3.3733 2.6506 2 1

1 ceff 1
2 ceff 1 0.5
3 ceff 1 0.6666 0.3333
4 ceff 1 0.75 0.5 0.25
5 ceff 1 0.8 0.5301 0.4 0.2
6 ceff 1 0.8333 0.5864 0.4417 0.3333 0.1666
7 ceff 1 0.8571 0.6125 0.5026 0.3786 0.2857 0.1428
8 ceff 1 0.875 0.6383 0.5359 0.4216 0.3313 0.25 0.125
9 ceff 1 0.8888 0.6666 0.5674 0.4555 0.3748 0.2945 0.2222 0.11 11

10 ceff 1 0.9 0.67853 0.6 0.48308 0.41000 0.33733 0.26506 0.2 0.1

Table II. Coefficients αm,j of SSP Linear (m, m), with CFL Coefficient c=1

Order m αm,0 αm,1 αm,2 αm,3 αm,4 αm,5 αm,6 αm,7

1 1
2 1

2
1
2

3 1
3

1
2

1
6

4 3
8

1
3

1
4

1
24

5 11
30

3
8

1
6

1
12

1
120

6 53
144

11
30

3
16

1
18

1
48

1
720

7 103
280

53
144

11
60

3
48

1
72

1
240

1
5040

8 2119
5760

103
280

53
288

11
180

1
64

1
360

1
1440

1
40320
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SSPRK linear (m, 1): ([6] Proposition 2.2) The m stage, first order SSP
RK method given by

u(0) = un,

u(i) =
(

1+ ∆t

m
L

)
u(i−1), i =1, ...,m,

un+1 = u(m)

has CFL coefficient c = m, which is optimal among in the class of m

stage, order p=1 methods with nonnegative coefficients. This allows for a
larger timestep but the computational cost increases correspondingly. This
is reflected by the fact that the effective CFL is ceff =1, which is equiva-
lent to the forward Euler method.
SSPRK linear (m, 2): ([6] method 1) The m stage, second order SSP meth-
ods:

u(0) = un

u(i) =
(

1+ ∆t

m−1
L

)
u(i−1), i =1, ... ,m−1,

um = 1
m

u(0) + m−1
m

(
1+ ∆t

m−1
L

)
u(m−1),

un+1 = u(m).

have an optimal CFL coefficient c =m− 1 among all methods with non-
negative coefficients. Although these methods were designed for linear
problems, they methods are also nonlinearly second order [31]. Each such
method uses m stages to attain the order usually obtained by a 2-stage
method, but has CFL coefficient c =m− 1, thus the effective CFL coeffi-
cient here is ceff =m−1/m.
SSPRK linear (m, m-1): ([6] method 2) The m stage, order p = m − 1
method:

u(0) = un,

u(i) = u(i−1) + 1
2
∆tLu(i−1), i =1, ... ,m−1,

u(m) =
m−2∑

k=0

αm,ku
(k) +αm,m−1

(
u(m−1) + 1

2
∆tLu(m−1)

)
,

un+1 = u(m),
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Table III. Coefficients αm,j of SSP Linear (m, m-1), Which Have CFL Number c=2

Stages m αm,0 αm,1 αm,2 αm,3 αm,4 αm,5 αm,6 αm,7 αm,8 αm,9

2 0 1

3 1
3 0 2

3

4 0 2
3 0 1

3

5 1
5 0 2

3 0 2
15

6 1
9

2
5 0 4

9 0 2
45

7 1
7

2
9

2
5 0 2

9 0 4
315

8 2
15

2
7

2
9

4
15 0 4

45 0 1
315

9 11
81

4
15

2
7

4
27

2
15 0 4

135 0 2
2835

10 71
525

22
81

4
15

4
21

2
27

4
75 0 8

945 0 2
14175

where the coefficients are given by:

α2,0 = 0 α2,1 =1,

αm,k = 2
k
αm−1,k−1, k =1, ...,m−2,

αm,m−1 = 2
m

αm−1,m−2, αm,0 =1−
m−1∑

k=1

αm,k

is SSP with optimal (for methods with nonnegative coefficients) CFL
coefficient c=2. Table III includes the coefficients of these methods up to
order 10. The effective CFL for these methods is ceff =2/m.
It is possible to extend these results to the case of a constant linear oper-
ator with a time dependent forcing term [6, 30]. This is a case which
arises in linear PDEs with time dependent boundary conditions such as
Maxwell’s equations which arise in computational electromagnetics (see
[2]), and can be written as:

ut =Lu+f (t), (2.8)

where u= [ui ] is a vector, L= [Li,j ] is a constant matrix and f (t)= [fi(t)]
is a vector of functions of t . If the functions f (t) can be written in a suit-
able way, then Eq. (2.8) can be converted to a linear constant-coefficient
ODE. f (t) is written, or approximated, as:
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fi(t)=
n∑

j=0

ai
j qj (t)= [Aq(t)]i ,

where A= [Ai,j ] = [ai
j ] is a constant matrix and q(t)= [qj (t)] are a set of

functions which have the property that q ′(t) = Dq(t), where D is a con-
stant matrix. Once the approximation to f (t) is obtained, the ODE (2.8)
can be converted into the linear, constant coefficient ODE

yt =My(t), (2.9)

where

y(t)=
(

q(t)

u(t)

)
and M =

(
D 0
A L

)

Thus, an equation of the form (2.8) can be approximated (or given
exactly) by a linear constant coefficient ODE, and the SSP RK methods
derived in this section can be applied.

2.4. The Need for the SSP Property in the Intermediate Stages

In practice, one of the major stability requirements on the RK
method is that it be SSP for the internal stages. This means that it is
not sufficient for ||un+1|| � ||un||, but that each intermediate calculation
u(i) for i = 1, . . . ,m must also satisfy ||u(i)|| � ||u(i−1)||. This condition is
frequently necessary in the approximation of the solution of hyperbolic
PDEs. For example, in the numerical solution of the Euler equations of
gas dynamics, it is imperative that negative pressure or density will be
avoided even in the intermediate stages. This can be guaranteed if the
intermediate stages are SSP. Since the proof of Theorem 2.1 relies on con-
vexity arguments, which are satisfied at the intermediate stages as well,
SSP RK methods have also intermediate stage SSP properties.

The following numerical example demonstrates how even for a sim-
ple, linear problem with a linear method, the SSP property is needed to
ensure that the intermediate stage does not develop oscillations. Consider
the differential equation ut − ux = 0 on the domain 0 � x � 1 with a step
function initial condition

u(0, x)=
{

0 if x ≤ 1
2 ,

1 if x > 1
2 .
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Fig. 1. First order one sided spatial discretization. Intermediate stage solution u(1)

after 10 time steps. Left: SSP time discretization; right: nonSSP time discretization.

The spatial discretization is achieved by the first order one sided difference

ut =L(u)= u(t, xj+1)−u(t, xj )

∆x
,

where the notation xj indicated the jth spatial grid point. Note that this
spatial discretization is linear.

Figure 1 shows that using the second order SSP RK spatial discreti-
zation SSPRK(2, 2), we obtain a solution with no osillations even in the
intermediate stages. However, the second order nonSSP RK

u(1) = un −20∆tL(un),

u(2) = un + 41
40∆tL(un)− 1

40∆tL(u(1))

gives us a large undershoot at the intermediate stage.
It is clear, then, that the SSP guarantee of provable stability is neces-

sary even for the intermediate stages, and is given with no additional cost
by the methods constructed in this section.

3. MULTI STEP METHODS

Explicit SSP multi step methods:

un+1 =
m∑

i=1

(
αiu

n+1−i +∆tβiL(un+1−i )
)

, αi �0. (3.1)

are conveniently easy to manipulate into convex combinations of forward
Euler steps. Just as in the Shu-Osher representation of RK schemes, since
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∑
αi =1, it follows that un+1 is given by a convex combination of forward

Euler solvers, with suitably scaled ∆t ’s, and so it becomes clear that the
SSP property will apply to such multi step methods:

Theorem 3.1. [28]. If the forward Euler method combined with the
spatial discretization L in (2.3) is strongly stable under the CFL restric-
tion (2.4), ‖un +∆tL(un)‖�‖un‖, and if Euler’s method solved backward
in time in combination with the spatial discretization L̃ in (2.6) is also
strongly stable under the CFL restriction (2.4), ‖un − ∆tL̃(un)‖ � ‖un‖,
then the multi-step method (3.1) is SSP ‖un+1‖ � ‖un‖, under the CFL
restriction

∆t � c∆tFE, c=min
i

αi

|βi | ,

provided βiL(·) is replaced by βiL̃(·) whenever βi is negative.

For SSP multi step schemes, it was shown ([8]) that for m�2, there is no
m step, m-th order SSP method with all nonnegative βi , and there is no
m step SSP method of order (m+1). Thus, the ideas that came up in the
context of SSPRK methods, namely increasing the number of stages and
considering the downwind operator L̃ are both of relevance in the context
of SSP multi step methods.

Table IV contains two optimal second order methods ([8] pp 105–
106), the two step method (scheme 1) and the three step method (scheme
2), both of which have c=1/2. Note that because of the negative β in the
scheme 1, scheme 2 is actually more efficient. This is because at each time
level, L and L̃ have to be computed for scheme 1, but only L has to be
computed for scheme 2. Although not provably optimal, scheme 3 (four
step, second order) is still more efficient, with a CFL coefficient c = 2/3,
but only one computation per time step.

Of the third order methods (schemes 4–6 in Table IV) the four step
method (scheme 4) is optimal with CFL coefficient c = 1/3 ([8] p. 106).
However, adding steps increases the CFL number, without requiring addi-
tional computation, only additional storage. Schemes 5 and 6, though not
proven optimal, increase the CFL to c=1/2 and c=0.567, respectively.

Unfortunately, the fourth (schemes 7–9) and fifth order (schemes 10–11)
methods typically have very small CFL coefficients which preclude their use.
These schemes are not proven optimal, either theoretically or numerically,
but are the best ones found to date.

The restrictive CFL coefficients are the inevitable result of requiring
the SSP property to hold for arbitrary starting values. An illustration of
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Table IV. Coefficients of SSP Multi Step Methods with Order r and m Steps. The Methods
Marked with an * Were Proven Optimal in [8]

# steps order CFL αi βi

m r c

1* 2 2 1
2

4
5 , 1

5
8
5 ,− 2

5

2* 3 2 1
2

3
4 ,0, 1

4
3
2 ,0,0

3 4 2 2
3

8
9 ,0,0, 1

9
4
3 ,0,0,0

4 4 3 1
3

16
27 ,0,0, 11

27
16
9 ,0,0, 4

9

5 5 3 1
2

25
32 ,0,0,0, 7

32
25
16 ,0,0,0, 5

16

6* 6 3 0.567 108
125 ,0,0,0,0, 17

125
36
25 ,0,0,0,0, 6

25

7 4 4 0.159 1989
5000 , 2893

10000 , 517
2000 , 34

625
601613
240000 ,− 1167

640 , 130301
80000 ,− 82211

240000

8 6 4 0.245 747
1280 ,0,0,0, 81

256 , 1
10

237
128 ,0,0,0, 165

128 ,− 3
8

9 5 4 0.021 1557
32000 , 1

32000 , 1
120 , 2063

48000 , 9
10

5323561
2304000 , 2659

2304000 , 904987
2304000 , 1567579

768000 ,0

10 5 5 0.085 1
4 , 13

50 , 8
25 , 7

50 , 3
100

52031
18000 ,− 26617

9000 , 1412
375 ,− 14407

9000 , 6161
18000

11 6 5 0.130 7
20 , 3

10 , 4
15 ,0, 7

120 , 1
40

291201
108000 ,− 198401

86400 , 88063
43200 ,0,− 17969

43200 , 73061
432000

the difficulty is given in [14]: Consider the simple example of the well-
known BDF2 method applied to the problem u′(t)=0:

u2 = 4
3u1 − 1

3u0.

Clearly, this method is not SSP (α2 is negative!). In other words, it is not
always possible to obtain ||u2||� ||u0|| whenever ||u1||� ||u0||. However, it
is also clear that the only relevant choice for this problem is u1 =u0, and
in this case we do obtain (trivially) ||u2||� ||u0||. Using this idea, Hunds-
dorfer, Ruuth, and Spiteri [14] examined the required stepsize for several
multi step methods with particular starting procedures. These multi step
methods do not satisfy the SSP conditions, however, with suitable starting
procedures they, too, can be shown to be SSP. This creative approach to
SSP multi step methods demonstrates that the SSP criteria may sometimes
be relaxed or replaced by other conditions on the method.

4. IMPLICIT SSP METHODS

Implicit methods are desirable as they typically eliminate the step-size
restriction associated with stability analysis. In [8] we presented examples
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of spatial discretizations which possess strong stability properties for
implicit Euler. In fact, it was shown in [12, 14], that any spatial discret-
ization L, which is strongly stable in some norm for the explicit forward
Euler method under a certain time restriction will also be strongly stable,
in the same norm, for the implicit Euler method, without a time restric-
tion.

In [8], a compelling numerical example demonstrated that a nonSSP
implicit method can destroy the nonoscillatory property of the implicit-
Euler method for a linear wave equation, despite the use of a nonoscilla-
tory spatial discretization. The goal in this section is to present the efforts
which have been made to design higher order implicit methods which
share the strong stability properties of implicit-Euler, without any restric-
tion on the time step ∆t . Unfortunately, this goal cannot be realized. For
both RK and multi step methods it has been proved that any higher order
SSP method, even for linear constant coefficient problems, will have some
time-step restriction.

4.1. Diagonally Implicit Runge–Kutta Methods

A diagonally implicit RK method for (2.1) can be written in the form

u(0) = un,

u(i) =
i−1∑

k=0

αi,ku
(k) +∆tβiL(u(i)), αi,k �0, i =1, ... ,m, (4.1)

un+1 = u(m).

This form has only a single implicit L term for each stage and no explicit
forward Euler terms. This is to avoid time step restrictions for strong sta-
bility properties of explicit schemes. However, since explicit L terms are
contained indirectly beginning at the second stage from u of the previous
stages, we do not lose generality in writing the schemes as the form in
(4.1) except for the absence of the L(u(0)) terms in all stages.

The assumption that the first order explicit Euler discretization is
strongly stable under some timestep restriction implies that the implicit
Euler discretization

un+1 =un +∆tL(un+1)

is unconditionally strongly stable, ‖un+1‖ � ‖un‖ [14]. If so, then (4.1)
would be unconditionally strongly stable under the same norm provided
βi > 0 for all i. If βi becomes negative, (4.1) would still be uncondition-
ally strongly stable (under the same norm) as long as βiL is replaced by
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βiL̃ whenever the coefficient βi < 0, where L̃ approximates the same spa-
tial derivative(s) as L, but is unconditionally strongly stable under implicit
Euler, backward in time:

un+1 =un −∆tL̃(un+1).

As before, from the numerical standpoint the difference is the change of
upwind direction.

In [8] it was shown that if (4.1) is at least second order accurate, then
αi,k cannot be all nonnegative. This statement holds even if L is linear.
This result rules out the existence of SSP implicit RK schemes (4.1) of
order higher than one, even for the linear constant coefficient problem.

If the explicit Euler terms are included in (4.1), the methods obtained
with nonnegative coefficients would be SSP Runge-Kutta methods, but
only under restrictions on ∆t similar to explicit methods. It is unclear
whether there exist such methods with a CFL coefficient large enough to
offset the cost of solving the implicit problem to obtain u(i)—to date none
have been found. This is an open area, and implicit RK methods with
large CFL coefficient (c≈10) would be of great interest.

4.2. Implicit Multi-Step Methods

Implicit SSP multi step methods can be written in the form

un+1 =
m∑

i=1

αiu
n+1−i +∆tβ0L(un+1), αi �0, (4.2)

which would be unconditionally SSP provided that β0 > 0. If β0 is neg-
ative, (4.2) would still be unconditionally strongly stable under the same
norm if L is replaced by L̃. Notice that (just as in the case of implicit
RK methods) we have only a single implicit L term and no explicit L

terms. This is to avoid time step restrictions for norm properties of explicit
schemes. If explicit L terms are included, we would be able to obtain SSP
multi step methods under restrictions on ∆t similar to explicit methods.
Unfortunately, there are no SSP implicit multi step schemes (4.2) of order
higher than one [8]. This being the case, it makes sense to consider implicit
m-step methods of the more general form:

un+1 =
m∑

i=1

αiu
n+1−i +∆t

m∑

i=0

βiL(un+1−i ), αi �0.

Although the inclusion of the explicit L terms implies that this
method can only be SSP with a stepsize restriction, the hope is that this
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stepsize restriction will not be severe, and that the larger stepsize will
compensate for the additional computational work in solving the implicit
problem.

In [14], Hundsdorfer, Ruuth and Spiteri explain that it follows from
Lenferink’s results on contractivity for linear systems [19] that, in general,
any two step method of order p>1 would have CFL coefficient no greater
than c = 2. Of course, this provides a bound on the results for nonlin-
ear problems as well. It is interesting to note that this bound is actu-
ally obtained, for example, by the Crank–Nicholson method. This second
order method requires only one implicit computation and has CFL c = 2
while the explicit RK method SSPRK(2, 2) requires only two, with a CFL
of c=1. Thus, SSP(2, 2) requires four explicit computations while Crank–
Nicholson requires one implicit computation for the same time step. How-
ever, the cost of solving the implicit problem is normally not offset by the
cost of four explicit computations. Clearly, then, the bound of c = 2 for
second order implicit multi step methods is quite restrictive, and indicates
that the use of implicit schemes is not computationally efficient.

Encouraged by their results in explicit multi step methods with suit-
able starting procedures, Hundsdorfer, Ruuth and Spiteri considered the
case of implicit two step methods with different starting procedures (such
as implicit Euler). However, their results show that even with suitable
starting procedures, the stepsize restrictions for the implicit multi step
methods are hardly better than those of explicit methods. Thus, implicit
SSP multi step methods feature stepsize restrictions that are too severe to
make the use of these methods feasible.

5. MONOTONICITY AND CONTRACTIVITY RESULTS APPLIED
TO SSP METHODS

The class of SSP methods, which are based on the idea of decompos-
ing time discretizations into convex combinations of forward Euler steps,
was created by the hyperbolic PDE community to fill the need for stabil-
ity criteria that did not rely on the linearity of the underlying problem or
impose a smoothness assumption on the solution. It was a response to the
fact that established RK theory did not provide a way to guarantee that
the stability of Euler’s method, when applied to an ODE resulting from
a spatial discretization of a nonlinear discontinuous problem, will be pre-
served by a higher order time discretization method. An important and
interesting shift has occured over the last few years, as experts in the field
of RK methods have examined the class of SSP methods and the CFL
number associated with each method and found this theory to be well con-
nected to a large wealth of knowledge in established RK theory. This new
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connection, which will allow for future development and analysis of new
SSP time discretizations, is described in this section.

Recently, several important papers by Ferracina and Spijker ([4, 5])
and Higueras ([12, 13]) have established the connection between the the-
ory of absolute monotonicity and SSP, and provided practical methods to
determine optimal schemes. These paper use Kraaijevanger’s ([16, 17]) the-
ory, which gave optimal step size restrictions for contractivity in terms of
the radius of absolute stability, and explores order barriers for nonnegative
radius of absolute monotonicity.

The RK methods are most commonly written not in the representa-
tion used above (2.5) but in the Butcher form

u(i) = un +∆t

m∑

j=1

aijL(u(j)) (1� i �m),

(5.1)

un+1 = un +∆t

m∑

j=1

bjL(u(j)).

The notation A= (aij ) and b = (bj ), allows any RK method given in the
Butcher form to be referred to as (A, b). Notice that this method may
be fully implicit. Correspondingly, we can generalize the Shu–Osher rep-
resentation to include the implicit terms, and to allow an easy conversion
between the Shu–Osher representation and the Butcher representation [4]:

u(i) =
⎛

⎝1−
m∑

j=1

λij

⎞

⎠un +
m∑

j=1

(
λiju

(j) +∆tµijL(u(j))
)

(1� i �m)

(5.2)

un+1 =
⎛

⎝1−
m∑

j=1

λm+1,j

⎞

⎠un +
m∑

j=1

(
λm+1,j u

(j) +∆tµm+1,jL(u(j))
)

.

Clearly, then, if

L=
(L0

L1

)
,

where L0 = (λij ) for 1� i, j �m, and L1 = (λm+1,j ) for 1� j �m, and

M=
(M0

M1

)
,

where M0 = (µij ) for 1� i, j �m, and M1 = (µm+1,j ) for 1≤ j ≤m.
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To convert between the Shu–Osher representation and the Butcher array,
we use

M0 =A−L0A M1 =bT −L1A,

(where I −L0 is invertible). Note that although any Shu–Osher representa-
tion will have a unique Butcher representation, the Butcher representation
may have many Shu–Osher representations.

In the following, we deal only with irreducible RK methods—these are
m stage RK methods which are not equivalent, nor do they reduce to,
methods which are of fewer stages. Given an irreducible RK scheme writ-
ten in the Butcher array form, the radius of absolute monotonicity R(A,b)

of a method (A, b) can be shown to be the optimal CFL coefficient c for
all SSPRK schemes (α,β) equivalent to (A, b) [5, 12, 13]. Furthermore,
there is an explicit construction of an SSPRK scheme with such an opti-
mal CFL coefficient [5, 13].
First, we need Kraaijevanger’s conditions

I − ξA is invertible

A(I − ξA)−1 � 0,

(I − ξA)−T b � 0,

(I − ξA)−1e � 0,

1+ ξbT (I − ξA)−1e � 0,

where −T means the transpose of the inverse, and e is the column vector
whose components are all equal to 1.

Definition. For a RK method written in Butcher form, if all the com-
ponents of A and b are nonnegative, i.e. A � 0 and b � 0, the radius of
absolute monotonicity, R(A,b) is defined as

R(A,b) = sup{r : r �0 and conditions 5.3 hold for all ξ with −r � ξ �0}.

If A�0 or b�0 are violated, we define R(A,b)=0.
Based on Kraaijevanger’s ([17]) theory, an algorithm to calculate R(A,b)

for any explicit RK method (A, b) is given in [4]. The connection between
R(A,b) and the CFL coefficient c, as well as the construction of the opti-
mal Shu–Osher representation is given by [4, 5, 12 ,13], and presented in
the following theorem.

Theorem 5.2. ([5] Sec. 3 and [13] Sec. 2). Given a RK method
defined by an irreducible coefficient scheme in Butcher form (A, b) with
radius of absolute monotonicity R(A,b) > 0, any equivalent SSP RK



126 Gottlieb

method (in Shu–Osher representation) will be have CFL coefficient c �
R(A,b). Moreover, a SSP RK method (L,M) can be obtained with CFL
coefficient c(L,M)=R(A,b), (for 0�R(A,b)<∞), by the choice L:

L0 = γA(I +γA)−1,

L1 = γ bT (I +γA)−1, (5.3)

γ = R(A,b)

and if R(A,b)=∞ we use:

L0 = I −γP

L1 = bT P (5.4)

γ = (max
i

pii)
−1, where P = (pij )=A−1.

As we see here, if a method (A, b) with nonnegative A and b has radius
of absolute monotonicity R(A,b)�0, we can easily find the optimal Shu–
Osher representation for an SSP method with CFL coefficient c=R(A,b).
Given an RK method in the form (A, b) with A� 0 and b � 0 with opti-
mal R(A,b) among all methods in its class, this theorem can be used to
obtain the Shu–Osher representation of the optimal SSPRK method.

However, many methods do not have nonnegative A and b and some
methods that do, have also R(A,b)= 0. In such cases, the theorem above
does not allow us to construct optimal methods. However, Higueras ([13]
Sec. 3) has extended this theory to include the case where some elements
of A or b may be negative, by considering perturbed RK methods. This
is equivalent, in the Shu–Osher representation, to considering L̃. These
results allow the extension of monotonicity and contractivity theory for
RK methods to the theory of SSP RK methods.
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