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On High Precision Methods for Computing Integrals

Involving Bessel Functions

By Bruno Gabutti

Abstract.   The technique of Bakhvalov and Vasil'eva for evaluating Fourier integrals

is generalized to integrals involving exponential and Bessel functions.

1. Introduction.  In some problems of high energy nuclear physics (see Glauber

[5]) one has to evaluate integrals of the form

(1) /(«) = J" e-x2J0(aix)f(x2)x dx,

where to is a positive parameter.

For large values of co it is straightforward to verify that the integrand function

is strongly oscillating; standard methods (for instance Gauss-Laguerre quadrature) and

a nonstandard method (see Steen, Byrne and Gelbard [12]) which do not take this

into account are inadequate.

Subdividing the interval (1) into subintervals where ends are zeros of JQ(c¿x)

results in having to sum a large number of terms having alternate signs.   Even when

Longman's technique (see [8]) is used we found it impossible to obtain high accuracy.

Such a situation is very similar to the one that we meet in the calculation of

integrals of the form

(2) f " g(x)e¡"x dx.
j a

Linz [7] suggests a method which, using the Abel transform, reduces the calcula-

tion of (1) to a sequence of calculation of integrals of type (2) with g(x) = e~x /(*)*.

In recent years many efficient methods for the computation of (2) have been

developed; we mention Bakhvalov and Vasil'eva [1], Lyness [9], Piessens and Haege-

mans [11], Patterson [10].

In this paper we suggest a method which is an adaptation of the Bakhvalov and

Vasil'eva method to the integral (1).  It will appear that our formulas are more manage-

able than the one we would have obtained by arranging the integral (1) in the form (2).

2. The Method.  We consider the expansion in Laguerre polynomials of the func-

tion f(x2) in the interval [0, °°)

(3> f(x2)~ Z bkLk(x2)
k=0
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1050 BRUNO GABUTTI

with

(4) bk=   foe->Lk(y)f(y)dy.

Since (see Gradshteyn and Ryzhik [6, 7.421.2])

(s) /o-e-Vo(ü»)£í(^*=£I^i(f)"

we can express /(to) in the form

(6) /(co)- £   bkVk,
fc = 0

where

p-u>2/4     /, ,\2fc

Formula (6) requires the coefficients bk. In some easy cases analytic expressions

for bk axe known.

In general, one has to approximate bk by bkN+l\ the approximation to (4)

obtained using the (TV + l)-point Gauss-Laguerre quadrature formula:   we define an

approximation to /(to) by

(8) /<">(«) = Z  bkN^Vk.
k = 0

where IN(<A) is an approximation value of /(to).

In cases in which one requires the value of /(to) for many different values of to,

the same values of bkN^ may be used in each calculation.

For the coefficients Vk it is convenient to utilize the simple recurrence formulas

(9) Vk_x= — Vk;      A: = 0,1.*w,
to

(10) Vk + x=^Vk;      k = k„ + l,kw+2,...,N,

with

di) K = [t-}
([*] denotes the integer part of *).   Vk   , the starting value for (9)-( 10), may be

calculated using Stirling's formula in (7).  This gives an estimate

(12) Vk-!--,
"        (27T)1/2tO

which can be improved simply by using a larger number of terms in asymptotic expan-

sion of k\ ; for example

(13>    Vk« ~ (2ny/2
,   ,      1             1           139           571to   1 H-r--h R

3to2       18co4     81 Oto6      9720CO8

where

(14) W<co-10.
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INTEGRALS INVOLVING BESSEL FUNCTIONS 1051

Therefore, the values of Vk axe affected by the propagation of the truncation

error inherent at (13).  Such an error (which can be reduced by using more terms in

the asymptotic expansion of k\) can be easily controlled. When to is so small that the

requested accuracy is not attained (co < 12 in our numerical experience) it is conve-

nient to use (9) with

(15) V0 = Ke-"2.

When co « 1 the drawbacks described in the introduction are tolerable and the

integral can be immediately calculated using any standard method.

3. Error Analysis.   Formula (6) supplies the same approximation of the integral

(1) given by (TV + l)-point interpolator Gaussian quadrature formulas; both (6) and

(8) are exact whenever f(y) is a polynomial of degree less than or equal to TV.   The

approximation error in (6) will be, therefore, formally given by

(16) EN+X = (-DN+1f0 e-x\(cox)f^+l\^(x))LN+x(x)x dx,

where f(*) is an unknown function and is bounded by

(17) \EN + X\<MN + X Jo  \e-x\(ux)xLN+i(x)\dx,

where MN+X is the max of absolute value of the (TV + l)th derivative of fiy) in

[0, oo).

Bound (17) is theoretically important because it allows us to state that \EN+X\

is bounded when the (TV + l)th derivative (if it exists) of fiy) is bounded but, for

practical purposes, is unlikely to be useful.

When fiy) is an analytic function a more detailed analysis of the error can be

carried out using the residue method suggested by Barrett [3].

In practice, when fiy) is any function known only at a number of discrete

points or in terms of a complicated analytic expression, we adopt a convergence test

for (6) of the type suggested by Clenshaw and Curtis [4] ; this requires

(18)    h'
bkVk

/(fc)(co)
,h

"k+l*k+l

/<fc+i)(co)r

bk+2*k+2
< EPS;    k = k^,k^ + l

/(fc + 2)(to)|

where EPS is the requested precision and 0 < h < 1 is a coefficient which is deter-

mined empirically.  (In our numerical experiments we found values of h satisfying

1/8 < h < 1/9 to be adequate.)

As far as the error (bk - bkN+i^) is concerned there exists a bound of the

same form (17).  The case in which fiy) is known only at a number of discrete values

of y, the convergence of bkN+1^ to bk has been analyzed by Balàzs and Turan [2].

In practice we calculate approximation to bk using standard techniques, namely,

subdividing the interval in the following way:

bk = f~ e-yLkiy)fiy)dy = ^e-yLk(y)f(y)dy

+ e~a ¡" c~yLk(y + a) f(y +a)dy=ck+dk.
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1052 BRUNO GABUTTI

When a is sufficiently large, then dk is negligible with respect to ck and ck can

be calculated using the Gauss-Legendre formula in (0, a). Further subdivision of the

same nature may be used if necessary.

4. Scaling to Enhance Convergence. The effect of rescaling the whole problem

can be computationally advantageous.  Let

* = at,

where a is a scaling factor; the integral (1) may be written in the form

(19) fa(co) = a2 f~ e't2J0(coat)g(a2t2)tdt,

where

g(a2t2) = e^-a^t2f(a2t2).

Using for (19), the procedure of Section 2 we see that for fixed co the rate of

convergence of summation (6) depends also on a as the following example illustrates:

(20) /(co) =    C°° e~x J0(cox)x sin x2 dx.

In Table 1 the number of terms TV required to obtain at least 12 correct signifi-

cant figures for (20) with co = 6 are listed for several values of a.  All calculations were

performed in double precision arithmetic on an IBM 360/75 computer (about 15 sig-

nificant decimal digits).

Table 1

a      0.33    0.47    0.57    0.67    0.82    1.0    1.2    1.5

TV      37        34      32       31       31       34     41     54

We observe that the optimum value of a (a — 0.7) is approximately the one for

which the Laguerre expansion of e^x~a >*   sin(a2f2) becomes divergent. Unfortunately,

we do not know how to estimate this optimum value a priori.   One empirical but

expensive way is to compare values of /a(co) for various values of a.

5. Scaling to Avoid Loss of Numerical Significance.  The method outlined in

Section 2 proved to be efficient.  From (9)—(10) we see that the terms Vk, k = 0,

1, ... , are increasing for 0 < k < A;    and decreasing for k > kw ; and, in practice, the

behavior of the coefficients \bkVk\ usually follows the same pattern.  Therefore, the

number of terms TV required in (6) increases monotonically with co; for A: > k   , the sum-

mation (6) is quickly convergent.

In spite of this, in some cases the computation of (6) must be carried out care-

fully.  This is because the size of terms bkVk at first increases and then decreases (like,

for example, the size of individual terms in the convergent series for sin * when * =

10).  Thus, using finite length arithmetic, the attainable accuracy is limited to

2~m\bMVM\, where \bMVM\ is the largest term in the series and 2~m is the machine
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accuracy parameter.  (On machines using base 2 arithmetic, this is the word length of

the mantissa in floating-point representation of a number in the machine.)

Such a situation is illustrated by example (20):   when co = 20, the true value of

/(co) is 0.59-10"22.  We find the first term bQV0 =" 10~43.   The terms increase in

magnitude, the largest being \bMVM\ = 0.32-10-14 with M = 80.  Thereafter, the

size of the terms decrease.

Although one can go on calculating individual terms, one knows at this stage

that there is no point in going beyond the stage at which \bM'VM'\ — 10_1S,0.32*

10-14 = 0.32* 10-29 and that when this is done the relative accuracy cannot exceed

10~7.  In fact, stopping the summation (8) after TV terms so that the convergence test

(18) with EPS = 10"12, h = 1/8 is attained, the term bNVN with TV = 165 is of size

10~34; but this information is of no use.  These numbers are listed in the first line of

Table 2.

The situation illustrated in this example may be improved by introducing a suit-

able scaling parameter a. Now we consider a using a criterion different than the one

used in Section 4; instead of choosing a to enhance the convergence rate, one chooses

a sufficiently large to hold \bMVM\ less than 2m EPS\I(œ)\.  The required accuracy for

example (20) with co = 20 is obtained as we see in Table 2.

Table 2

M M Wi TV

Relative

accuracy

of numer-

ical results

1.0

1.2

1.4

1.6

0.93-10" 44

0.50-10~63

< io-78

< 10"78

72

109

151

209

0.32-10"14

0.46-10"18

0.44-10" 20

0.28-lO"2'

152

200

>266

>333

0.28-10~29

0.37-10-32

<0.24-10~34

< 0.17-10-34

165

207

266

333

0.58-10"34

0.30-10"34

0.24-10"34

0.17-10~34

0.7-10"7

0.9-10"11

0.3-10-'2

0.1-10"11

bMVM is the largest term in series.

bM-VM' is the first term less than l0~i5bMVM.

bNVN is the first term which satisfies criterion (18) with EPS = 10-12, h = 1/8.

6. Some Numerical Examples.   Up to this point, the same example has been

used simply to facilitate the detailed description of the scaling procedure.  While the

full generality of the technique is not known, we have used it with varying success in

the following problems:

Example 1.  We consider two simple cases for which formula (6) is exact with a

finite number TV in terms

(23)

(24)

f(x2)

f(x2)

1.

.12

Here we have found scaling neither necessary nor useful. This is clearly evidenced

in Table 3 where, assuming co = 4, the number of terms TV required to satisfy the
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1054 BRUNO GABUTTI

0.50

0.71

0.87

1.00

1.12

1.32

1.50

Table 3

(Example (23)

N

26

22

17

3"

16

24

29

Relative accu-

racy of numer-

ical results

0.1-10"13

0.2-10"14

0.4-10~15

0.

0.1-10"14

0.3-10"14

0.3-10-'3

Example (24)

N

33

29

23

9*

22

29

34

Relative accu-

racy of numer-

ical results

0.6-10"13

0.1-10-"

0.2-10-"

0.4-10"15

0.2-10-"

0.3-10"11

0.6-10"12

(*) The exact result is of course obtained with A' = 1 and

TV = 7, respectively.   However, two further iterations were re-

quired to satisfy convergence criterion (18) in each case.

convergence test (18) with EPS = 10~12, h = 1/8 and the relative accuracy of the

result obtained are listed for several values of a.

Example 2. We consider four different behaviors of/(x2) for* —► °°, namely:

exponential decreasing, exponential increasing, rational decreasing, rational increasing.

Let co = 6 and

(25)

(26)

(27)

(28)

f(x2) = e-x2l2x*-l,

f(x2)

f(x2)

ex2l*x6,

-2/5

/(*2)=*28/5.

In all these cases the method has been effective and the scaling procedure has

been useful in accelerating the convergence of (8) (as in the example in Section 4), but

the accuracy of numerical results has been unaffected by the scaling.  In Table 4 the

dependence of TV and of the relative accuracy of the numerical solution from a is

shown; in (18) we set EPS = 10-7 only because we could not establish a more accu-

rate result independently. We notice that the advantage obtained with the introduction

of the scaling parameter can be considerable; for instance, in example (25) TV, the num-

ber of terms required in summation (8), is only 30% of the corresponding value required

to obtain the same accuracy without scaling.

Example 3.  In the two following cases our method does not work well unless

the appropriate scaling is used:

(29)

(30)

f(x2) = e0Sx¿,

/(x2) = eo.85,2)
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Table 4

Exampie (25) Example (26) Example (27) Example (28)

A'

Relative

accuracy

of numerical

results

TV

Relative

accuracy

of numerical

results

TV

Relative

accuracy

of numerical

results

TV

Relative

accuracy

of numerical

results

0.47

0.67

0.82

0.88

1.00

1.11

1.29

1.49

30

22

6

16

22

27

35

44

0.1-10"8

0.4-10-9

0.9-10~'4

0.6-10~9

0.4-10-8

0.4-10-8

0.9-10"8

o.i-io-8

52

44

37

33

28

17

22

35

0.8-10"7

0.7-10-9

0.3-10-9

0.1-10-6

0.3-10"-7

0.2-10~7

0.1-10"7

0.2-10-7

31

24

23

25

29

33

40

47

0.1-10"7

0.2-10"7

0.1-10"7

0.1-10"7

0.1-10"7

o.i-io-7

0.1-10"8

0.5-10-8

40

32

24

21

24

28

35

43

0.1-10-6

0.1-10"6

0.1-10-6

0.1-10"6

0.1-10"6

0.1-10"6

0.1-10-6

0.1-10-6

with co = 4.  Taking EPS =10   12 in (18), with no scaling we could obtain for (29)

only three significant correct decimal digits, since \b0VQ\ — 0.046, \bMVM\ — 0.40-105

withM = 17, l/J^-^.l-0.36-10-10 withM' = 60, I^F^I^O.79-10-21 with

TV = 77. The case (30) is very intractable. With no scaling the method yields no

rIV-0.36-108

0.14-10-19 with

meaningful result; more precisely, we have \bQV0\ — 0.061, \bMr¡

7 with M' = 74,  \bNVN\with M =23, \bM>VM'\^ 0.12-10

TV = 94 and /(JV)(co) = - 0.12 • • • 10-7, while the exact solution is /(co) = 0.87

10      .  In both cases (29) and (30) by using a scaling factor we can obtain 12

significant correct decimal digits; this happens when ja = 1.87 giving \b0V0\ —

0.59-10~6, I^Kj^l^O.38-10-4 with M = 7, Ift^.^l =* 0.16-10"19 with M' =

0.65-10-22 with N = 40, for (29) and a = 2.40 giving \b0V0\ -37, \bNVN

0.59-10-10, IV^I^O.49-10"9 with M = 4, \b„-VM.\ <* 0.16- lO-24 withTlf =JM' M

30, I^K^I^O.16-10-24 with TV 30 for (30).

The numerical examples in this section indicate that the method, used in conjunc-

tion with the scaling technique, has some generality and may even be used successfully

in cases when the Laguerre expansion on which it is based diverges.

Unfortunately, we know of no prescription for choosing the scaling parameter a,

except by intelligently applied trial and error. This problem is similar to that of deter-

mining an optimum step size in numerical differentiation.

7.  Concluding Remarks.  In this paper we have described in some detail the

application of the Bakhvalov and Vasil'eva method to evaluate numerically integrals of

the form

/(co) =   f°° e-*2J0(wx)f(x2)xdx

for moderate and large values of co.  The method is based on an expansion of f(x2) in

terms of Laguerre polynomials.  In cases when this expansion converges reasonably

rapidly the method is easy to use and is effective.
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However, when this is not the case, the method is difficult to use and in unmod-

ified form may produce meaningless results.   In Sections 4—6 we have described a way

of modifying the problem using a scaling parameter a.  This may be used either to

reduce the number of terms required in the expansion thus reducing the cost, or to

remove an unpleasant numerical characteristic which can occur and result in consider-

able loss of numerical significance.  Unfortunately, we have no general prescription for

choosing the scaling parameter.

However, we have shown that the scope of the unmodified method may be

significantly widened using scaling.

Remark.   The method expounded upon can be easily generalized to the evalua-

tion of

(31) /„(co)=   C e-x2Jv(ux)f(x2)xv+1dx,      v>-l.
J o

Let

k = 0

Using the procedure of Section 2 we find

k = 0

with

k     IXi» + *+l)\2/

and

*?> = f~ e-yyvlSvXy)fiy)dy.

The computation of bk"^ is performed in the standard way, and formulas for Uk

similar to (9)—(10) can be derived.

We remark that Linz's method [7] generalized to (23) applies only for integer v.
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