
On Higher-Order Description Logics

Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati

Dipartimento di Informatica e Sistemistica
SAPIENZA Universit̀a di Roma

www.dis.uniroma1.it/ ∼lastname

Abstract. We investigate an extension of Description Logics with higher-order
capabilities, based on Henkin-style semantics. Our study starts from the observa-
tion that the various possibilities of adding higher-order constructs to a DL form
a spectrum of increasing expressive power, including domain metamodeling, i.e.,
using concepts and roles as predicate arguments, and full metamodeling, pro-
viding the ability of using the language constructors and operators as predicate
arguments, in the style of RDF. We argue that higher-order features of the for-
mer type are sufficiently rich and powerful for the modeling requirements arising
in many relevant situations, and therefore we carry out an investigation of the
computational complexity of reasoning in DLs extended with such features. In
particular, we show that adding domain metamodeling capabilities to expressive
DLs has no impact on the complexity of the various reasoning tasks.

1 Introduction

Metamodeling allows one to treat concepts and properties as first-order citizens, and
to see them as individuals whose properties can be asserted and reasoned upon. This
feature is important in all applications where the need arises of modeling and reasoning
about meta-concepts, i.e., concepts whose instances are themselves concepts, and meta-
properties, i.e., relationships between meta-concepts.

It is well-known that in logic, and in Description Logics (DLs) in particular, higher-
order constructs are needed for a correct representation of concepts and properties at
the meta-level. However, the issue of devising suitable extensions to DLs for represent-
ing and reasoning about meta-level elements is largely unexplored. Recent research on
this subject shows that there is a spectrum in the modeling capabilities of DLs. Four
points in this spectrum represent specific notable cases, which we call domain model-
ing, metaquerying, domain metamodeling, and full metamodeling, respectively.

Domain modeling.In domain modeling, the language only focuses on the ability of
specifying the domain of interest in terms of individuals, concepts and roles, and is
therefore “first-order”. This is the simplest case of the spectrum, with no higher-order
feature, and is actually the one addressed in most of the research on DLs.

Metaquerying.This is the case where the knowledge base does not contain any axiom
regarding meta-concepts or meta-roles, but the query language allows for using meta-
concepts, so that concepts and roles in the knowledge base can match the variables in
the query, and may thus be returned as answers to the query [1]. Note that this mech-
anism allows to express queries that are beyond first-order logic. For instance, asking

for the least common subsumers of two concepts, or for the most specific concept for
an individual, can be done by means of suitable meta queries.

Domain metamodeling.This is the case where the language allows for using concepts
and roles as predicate arguments, so that one can assert properties of concepts and roles,
as if they were individuals. Note that domain metamodeling includes metaquerying as a
special case. It is our opinion that higher-order features of this kind are sufficiently rich
and powerful for the modeling requirements arising in many relevant situations. One of
the most popular approaches to domain metamodeling, and one that is closely related to
DLs, is HiLog [7]. HiLog is a logic with a higher-order syntax, thus allowing predicates
to appear as arguments in atomic formulae, but with a Henkin-style semantics, which
implies that the expressive power of the language actually remains within the first-order
realm.

Full metamodeling.This is the most general case, where the modeling language allows
not only for using concepts and roles as predicate arguments, but also for refining and
extending the properties of the language operators, and to reason upon such properties.
RDF and RDFS, which are again based on a Henkin semantics, are popular languages
enabling this kind of metamodeling. Both languages allow for stating axioms not only
on domain (meta-)elements, but also on the so-called built-in vocabulary (i.e., operators
such asrdf:type) of the language.

In this paper1, we investigate an extension of DLs with higher-order capabilities. We
are especially interested in those features that allow us both to model and to query indi-
viduals, concepts, roles, meta-concepts and meta-roles with no limitations. Therefore,
the extension that we study is geared towards domain metamodeling (thus including
metaquerying), for which we provide the following specific contributions.

First, we present syntax and semantics of an extension of DLs with domain meta-
modeling features (see Section 2). In particular, we show how, starting from any DLL,
one can define its higher-order version, calledHi(L). From the syntax point of view,
our approach stems from two ideas. On one hand, every modeling element can be seen
simultaneously as an individual, as a concept, and as a role. On the other hand, since
concepts in DLs are denoted not only by names, but also by complex expressions, every
complex expression is a modeling element in our language. From the semantic point of
view, we adopt a Henkin semantics, as in HiLog and RDF(S).

Second, we carry out an investigation of the computational complexity of reasoning
in DLs extended with higher-order features. By reasoning we mean not only logical im-
plication, but also answering unions of conjunctive queries with metaquerying abilities.
We show that adding domain metamodeling capabilities to expressive DLs, in particular
toSHIQ [3], has no impact on the complexity of the various reasoning tasks, including
conjunctive query answering (see Section 4).

The idea of representing concepts and properties at the meta-level is an old one
in Knowledge Representation and Computer Science. Semantic networks and early
Frame-based systems incorporated specific mechanisms for representing concepts
whose instances are themselves concepts [10, 2]. Conceptual modeling languages pro-
posed in the 70’s, such as TAXIS [12], provided both the notion of meta-class, and
suitable facilities for describing properties of operators on meta-classes. The notion of

1 For the sake of brevity, proofs are omitted in this version.

meta-class is also present in virtually all object-oriented languages, including modern
programming languages (see, e.g., the Java classClass).

As we said before, the issue of extending DLs with higher-order constructs has been
addressed only by few research papers. In [4], probably the first paper on this subject,
the notion of “reification of concepts” is proposed as a means to express meta-level
classes, but the paper does not address neither the issue of meta-roles, nor the issue
of query answering. A more recent paper is [8], where metamodeling capabilities are
added to a DL of theDL-Lite family.

Our work has connections with recent investigations on full metamodeling, in par-
ticular on RDF, RDFS, and OWL Full. In [11], the author addresses the issue of de-
cidability of reasoning on meta-properties in different fragments of OWL Full. It is
shown that, although going from domain to full metamodeling easily leads to undecid-
ability, reasoning in some fragments of OWL Full is decidable. Differently from the
present paper, the focus of [11] is neither on the tractability frontier, nor on conjunctive
query answering. Finally, reasoning (but not query answering) with metamodeling is
also studied in [14], where the language OWL FA is proposed, which introduces a stra-
tum number in class constructors and axioms to indicate the strata they belong to, and
suitable contraints impose that TBox axioms are stated on classes of the same stratum,
while ABox axioms can only involve elements of two consecutive strata.

The rest of the paper is organized as follows. In Section 2, we describe syntax and
semantics ofHi(L), by referring, in particular, to the higher-order DLHi(SHIQ). As
we said above,Hi(L) denotes the higher-order version of the Description LogicL. In
Section 3 we present our technique for satisfiability inHi(SHIQ), and in Section 4
we address query answering in the same DL. Both in Section 3 and in Section 4 we
also characterize the computational complexity of the presented algorithms. We end the
paper in Section 5, by pointing out future directions of our reseearch.

2 Higher-order Description Logics

In this section, we present our approach to higher-order DLs, by showing how, starting
from a DLL, one can define its higher-order version, calledHi(L). During the presen-
tation, we will also refer to a specific DL, namelySHIQ. Therefore, we will describe
in detail the higher-order DLHi(SHIQ).

Before delving intoHi(L), we present some preliminary definitions. Every tradi-
tional DL L is characterized by a setOP(L) of operators, used to form concept and
role expressions, and a set ofMP(L) of meta-predicates, used to form assertions. Each
operator and each meta-predicate have an associated arity. If symbolS has arityn, then
we often writeS/n to denote such symbol and its arity. ForSHIQ, we have

OP(SHIQ)= {Inv/1, And/2, Not/1} ∪ {AtLeastQn/2 | n ∈ N}
MP(SHIQ)= {InstC/2, InstR/3, IsaC/2, IsaR/2,Tran/1}.

We assume that the reader is familiar withSHIQ. Therefore, the intuitive meaning
of all the above symbols should be clear. The formal specification of their semantics
will be given shortly.

Syntax. We assume the existence of two disjoint, countably infinite alphabets:S, the
set ofnames, andV, the set ofvariables. The buidling blocks of aHi(L) knowledge
base are assertions, which in turn are based on expressions. We define the set ofexpres-
sions, denoted byEL(S), over the alphabetS for Hi(L) inductively as follows:

– if E ∈ S thenE ∈ EL(S);
– if C/n ∈ OP(L) andE1, . . . , En ∈ EL(S) thenC(E1, . . . , En) ∈ EL(S).

Example 1.If the namesCourse,Teaches,Full belong to the alphabetS, then the fol-
lowing is aHi(SHIQ) expression:

And(Course,Not(AtLeastQ2(Inv(Teaches)),Full)))

which intuitively denotes the concept representing the set of courses that are taught by
at most one full professor.

A Hi(L) assertionoverEL(S) is a statement of the formM(E1, . . . , En) where
M ∈ MP(L), n ≥ 0 is the arity ofM , and for every1 ≤ i ≤ n, Ei ∈ EL(S). A Hi(L)
knowledge base (KB)is a set of assertions overEL(S).

Thus, an assertion is simply an application of a meta-predicate to a set of expres-
sions. Intuitively, an assertion is an axiom that predicate over a set of individuals, con-
cepts or roles.

Example 2.Suppose that the alphabetS contains all names mentioned in Example
1, plus GradCourse,UniversityConcept ,ObsoleteConcept , John, and DefinedBy .
Then the following areHi(SHIQ) assertions:

IsaC(GradCourse,And(Course,Not(AtLeastQ2(Inv(Teaches)),Full))))
InstC(And(Course,Not(AtLeastQ2(Inv(Teaches)),Full))),UniversityConcept)

InstR(UniversityConcept , John,DefinedBy)
InstR(Not(ObsoleteConcept), John,DefinedBy)

The first assertion states that every graduate course is taught by at most one
full professor. The intended meaning of the second assertion is that the concept
And(Course,Not(AtLeastQ2(Inv(Teaches)),Full))) is an instance of the concept
UniversityConcept (which is therefore a meta-concept). Finally, the intended mean-
ing of the third and the fourth assertions is that the conceptsUniversityConcept and
Not(ObsoleteConcept) have been introduced in the knowledge base byJohn.

Next, we introduce the notion of query, which in turn relies on the notion of “atom”.
Intuitively, an atom is constituted by a meta-predicate applied to a set of arguments,
where each argument is either an expression or a variable. More formally, we define the
setτ(S,V) of termsoverS andV to beEL(S)∪V. Terms of the formEL(S) are called
ground. We define anatomto be constituted by the application of a meta-predicate in
MP(L) to a set of terms, and we call an atomground if no variable occurs in it. Note
that a ground atom has the same form of an assertion. An atom whose meta-predicate

1. for eachd1 ∈ ∆, if d = InvIo(d1) thendIr = (dIr
1)−1;

2. for eachd1, d2 ∈ ∆, if d = AndIo(d1, d2) thendIc = dIc
1 ∩ dIc

2 ;
3. for eachd1 ∈ ∆, if d = NotIo(d1) thendIc = ∆− dIc

1 ;
4. for eachd1, d2 ∈ ∆ and for eachn ∈ N, if d = AtLeastQn(d1, d2)

thendIc = {e | ∃e1, . . . , en s.t.ei 6= ej for i 6= j, and
(∀i s.t.1 ≤ i ≤ n, 〈e, ei〉 ∈ dIr

1 andei ∈ dIc
2).

Fig. 1. Semantic conditions on interpretations forSHIQ predicate expressions.

is IsaC or IsaR is called anISA-atom, while we call instance-atoman atom whose
meta-predicate isInstC or InstR.

A higher-order conjunctive query (HCQ)of arity n is an expression of the form

q(x1, . . . , xn) ← a1, . . . , am

whereq, called the query predicate, is a symbol that does not belong toS ∪V, everyxi

belongs toV, everyai is a (possibly non-ground) atom, and all variablesx1, . . . , xn oc-
cur in someaj . The variablesx1, . . . , xn are called thefree variables(or distinguished
variables) of the query, while the other variables occurring ina1, . . . , am are calledex-
istential variables. A higher-order union of conjunctive queries (HUCQ)of arity n is a
set of HCQs of arityn with the same query predicate. A HCQ/HUCQ is calledBoolean
if it has no free variable.

Example 3.Referring to the alphabet mentioned in Example 2, the following is a HCQ:

q(x) ← InstC(x, y), InstR(y, John,DefinedBy)

Intuitively, the query asks for the instances of all the concepts in the
knowledge base defined by John. In our case, the answer will be simply
{GradCourse,Not(AtLeastQ2(Inv(Teaches)),Full)))}.
Example 4.Consider now the case where we want to ask for the instances of all the
conceptsy such that the expressionNot(y) is a concept in the knowledge base defined
by John. The natural formulation of this query would be:

q(x) ← InstC(x, y), InstR(Not(y), John,DefinedBy)

However, according to our syntax for queries, variables cannot appear as arguments
within terms, and therefore the above isnot a query inHi(SHIQ). We discuss this
kind of queries further in the conclusions.

Semantics. The semantics ofHi(L) is based on the notion of interpretation structure.
An interpretation structureis a tripleΣ = 〈∆, Ic, Ir〉 where: (i) ∆ is a non-empty
(possibly countably infinite) set; (ii) Ic is a function that maps eachd ∈ ∆ into a subset
of ∆; and (iii) Ir is a function that maps eachd ∈ ∆ into a subset of∆ ×∆. In other

words,Σ treats every element of∆ simultaneously as: (i) an individual; (ii) a unary
relation, i.e., a concept, throughIc; and (iii) a binary relation, i.e., a role, throughIr.

An interpretationover Σ is a pairI = 〈Σ, Io〉, whereΣ = 〈∆, Ic, Ir〉 is an
interpretation structure, andIo is a function that maps: (i) each element ofS to a
single domain object of∆; and (ii) each elementC/n ∈ OP(L) to ann-ary func-
tion CIo : ∆n → ∆ that satisfies the conditions characterizing the operatorC/n. In
particular, the conditions for the operators inOP(SHIQ) are described in Figure 1.
We extendIo to expressions inEL(S) inductively as follows: ifC/n ∈ OP(L), then
(C(E1, . . . , En))Io = CIo(EIo

1 , . . . , EIo
n).

To interpret non-ground terms, we need assignments over interpretations. Anas-
signmentµ over〈Σ, Io〉 is a functionµ : V → ∆.

We are now ready to describe how to interpret terms inHi(L). Given an inter-
pretationI = 〈Σ, Io〉 and an assignmentµ over I, we define the function(·)Io,µ :
τ(S,V) → ∆ as follows:

– if t ∈ S thentIo,µ = tIo ;
– if t ∈ V thentIo,µ = µ(t);
– if t is of the formC(t1, . . . , tn), thentIo,µ = CIo(tIo,µ

1 , . . . , tIo,µ
n).

Satisfaction of an assertion with respect to an interpretationI and an assignment
µ overI is defined based on the semantics of the meta-predicates inMP(L). For the
meta-predicates used inSHIQ, satisfaction inI, µ is defined as follows:

– I, µ |= InstC(E1, E2) if EIo,µ
1 ∈ (EIo,µ

2)Ic ;
– I, µ |= InstR(E1, E2, E3) if 〈EIo,µ

1 , EIo,µ
2 〉 ∈ (EIo,µ

3)Ir ;
– I, µ |= IsaC(E1, E2) if (EIo,µ

1)Ic ⊆ (EIo,µ
2)Ic ;

– I, µ |= IsaR(E1, E2) if (EIo,µ
1)Ir ⊆ (EIo,µ

2)Ir ;
– I, µ |= Tran(E) if (EIo,µ)Ir is a transitive relation.

A Hi(L) KB H is satisfied byI if all the assertions inH are satisfied byI.2 As
usual, the interpretationsI satisfyingH are called themodelsof H. A Hi(L) KB H is
satisfiableif it has at least one model.

Let I be an interpretation andµ an assignment overI. A Boolean HCQq of the
form q ← a1, . . . , an is satisfiedin I, µ if every assertionai is satisfied inI, µ. A
Boolean HUCQQ is satisfiedin I, µ if there exists a Boolean HCQq ∈ Q that is
satisfied inI, µ. A Boolean HUCQQ is satisfied in an interpretationI, writtenI |= Q,
if there exists an assignmentµ overI such thatQ is satisifed inI, µ. Given a Boolean
HUCQ Q and aHi(L) KB H, we say thatQ is logically implied by H (denoted by
H |= Q) if for each modelI of H there exists an assignmentµ such thatQ is satisfied
by I, µ.

Given a non-Boolean HUCQq of the formq(t1, . . . , tn) ← a1, . . . , am, a ground-
ing substitution ofq is a substitutionθ such thatt1θ, . . . , tnθ are ground terms. We
call t1θ, . . . , tnθ a grounding tuple. The set ofcertain answersto q in H is the set of
grounding tuplest1θ, . . . , tnθ that make the Boolean queryqθ ← a1θ, . . . , anθ logi-
cally implied byH. Notice that, in general, the set of certain answers may be infinite
even if the KB is finite. Therefore, it is of interest to define suitable notions of safeness,

2 We do not need to mention assignments here, since all assertions inH are ground.

which guarantee that the set of answers is bounded. This issue, however, is beyond the
scope of the present paper.

Indeed, in this paper, we focus on Boolean queries only, so as to address the com-
putation of certain answers as a decision problem. Also, in our analysis, we measure
the computational complexity in three different ways: with respect to the size of the
whole KB (KB complexity), with respect to the size of the part of the KB formed by the
assertions involving only the meta-predicatesInstC/2, InstR/3 (instance complexity),
and with respect to the size of the KB and the query together (combined complexity).

3 Satisfiability in Hi(SHIQ)

In this section we study the computational characterization of KB satisfiability in the
higher-order DLHi(SHIQ). Query answering in the same DL is addressed in the next
section.

We start by defining a translationΠ from Hi(SHIQ) to SHIQ. First, we define
three injective functions

νO : ESHIQ(S) → So, νC : ESHIQ(S) → Sc, νR : ESHIQ(S) → Sr

whereSo, Sc andSr are three mutually disjoint alphabets of names, each one disjoint
from S. Then, we inductively define two functionsτC andτR as follows:

– if S ∈ S, thenτC(S) = νC(S) andτR(S) = νR(S);
– τC(Not(E)) = Not(τC(E));
– τC(And(E1, E2)) = And(τC(E1), τC(E2));
– τC(AtLeastQn(E1, E2)) = AtLeastQn(τR(E1), τC(E2));
– τR(Inv(E)) = Inv(τR(E)).

Now, letExpr(H) denote the set of ground expressions occurring inH (notice that
every subexpression of an expression occurring inH also belongs toExpr(H)). Then,
given aHi(SHIQ) KB H, we inductively define theSHIQ KB Π (H) as follows:

1. if Not(E) ∈ Expr(H), thenνC(Not(E)) ≡ τC(Not(E)) ∈ Π (H);
2. if Inv(E) ∈ Expr(H), thenνR(Inv(E)) ≡ τR(Inv(E)) ∈ Π (H);
3. if And(E1, E2) ∈ Expr(H), then νC(And(E1, E2)) ≡ τC(And(E1, E2)) ∈

Π (H);
4. if AtLeastQn(E1, E2) ∈ Expr(H), then νC(AtLeastQn(E1, E2)) ≡

τC(AtLeastQn(E1, E2)) ∈ Π (H);
5. if InstC(E1, E2) ∈ H, thenνC(E1)(νO(E2)) ∈ Π (H);
6. if InstR(E1, E2, E3) ∈ H, thenνR(E1)(νO(E2), νO(E3)) ∈ Π (H);
7. if IsaC(E1, E2) ∈ H, thenνC(E1) v νC(E2) ∈ Π (H);
8. if IsaR(E1, E2) ∈ H, thenνR(E1) v νR(E2) ∈ Π (H);
9. if Tran(E) ∈ H, thenTran(νR(E)) ∈ Π (H).

Informally, the above translation, when applied to aHi(SHIQ) DL H, provides a
SHIQ KB Π (H) in which for every ground termE occurring inH (notice thatE may
be a subterm of another term occurring inH) there exists a concept nameνC(E) (and a
role nameνR(E)) that is defined, through the use of the functionτC (respectively,τR)
as equivalent to the termE seen as a concept (respectively, role) expression.

Based on the above translation, we get the first of our main results, namely a reduc-
tion of KB satisfiability inHi(SHIQ) to KB satisfiability inSHIQ.

Theorem 1. A Hi(SHIQ) KBH is satisfiable iff theSHIQ KB Π (H) is satisfiable.

Proof (sketch).One direction of the proof is trivial: if there exists a modelI for H,
then based onI it is immediate to define a modelI ′ for Π (H) which interprets objects
according toIo, atomic concepts (i.e., concepts denoted by names) according toIc,
and atomic roles according toIr. As for the other direction, given a modelI for Π (H)
over a domain∆, it is possible to define a modelI ′ for H by considering the disjoint
union of a countably infinite number of copies ofI (over a countably infinite number of
copies of∆), and definingI ′o so that it coincides withIo on the expressions occurring
inH, while every expression that does not occur inH is interpreted byI ′o to an element
of the extra copies of∆. Then, it is easy to defineI ′c andI ′r in order to satisfy the
semantic conditions of Figure 1.

From the above theorem, and the computational characterization of KB satisfia-
bility in SHIQ [3], we are able to provide the computational characterization of KB
satisfiability inHi(SHIQ).

Theorem 2. KB satisfiability inHi(SHIQ) is EXPTIME-complete w.r.t. KB complex-
ity, and coNP-complete w.r.t. instance complexity.

4 Query answering inHi(SHIQ)

In this section we study query answering inHi(SHIQ). In particular, we restrict our
attention to a specfic class of HUCQs, which we callguarded. For the definition of
this class of queries, we need the notions of object position, concept position, and role
position, whose goal is to characterize the various argument positions in both atoms
and terms. If we use symbolO to mark object positions, symbolC to mark concept
positions, and symoblR to mark role positions, then we have:

InstC(O,C) InstR(O,O,R) IsaC(C,C) IsaR(R,R) Tran(R)
Not(C) And(C,C) Inv(R) AtLeastQn(R,C)

Now, a HCQq is calledguardedif, for every variablex occurring in an ISA-atom
of q, x also occurs in a concept or role position of an instance-atom ofq. A HUCQ is
called guarded is every HCQq in Q is guarded.

We start our analysis of query answering by showing that answering guarded
HUCQs is coNP-hard w.r.t. KB complexity (actually, w.r.t. instance complexity only)
and Πp

2 -complete w.r.t combined complexity, as soon as the DL admits theInstC ,
InstR and IsaC meta-predicates (and even if the DL does not allow for any logical
operator).

Theorem 3. Let L be a DL such thatMP(L) contains the meta-predicatesInstC ,
InstR and IsaC . Answering guarded HUCQs overHi(L) KBs is coNP-hard w.r.t. in-
stance complexity, andΠp

2 -hard w.r.t. combined complexity, even ifOP (L) = ∅.

We remark that the previous theorem implies that answering guarded HUCQs is in-
tractable w.r.t. instance (and KB) complexity not only inHi(SHIQ), but in all the

DLs currently studied, since all DLs comprise the meta-predicatesInstC , InstR and
IsaC .

We now provide a technique for query answering overHi(SHIQ) KBs, which is
based on the reduction toSHIQ provided by the functionΠ () defined for KB satisfia-
bility. For query answering, however, the functionΠ () must be extended to account for
expressions occurring in the query; moreover, we also need to define a translationπ of
HUCQs. Such functions are defined below.

Let Q be a HUCQ. We say thatQ is ametagroundHUCQ if it does not contain any
variable in concept or role position. Moreover, we say thatQ is aninstanceHUCQ if it
only contains instance-atoms.

In the following, given a HUCQQ, we denote byExpr(Q) the set of ground expres-
sions occurring inQ. Now letq be a HCQ and lete1, . . . , ek be the ground expressions
occurring as arguments of ISA-atoms inq. We define inductively the set of expressions
conj ISA(q) as follows:

C1 = {e1, . . . , ek}
Ci+1 = {And(e, e0)|e ∈ Ci andeo ∈ C1}
conj ISA(q) = Ck

Informally, conj ISA(q) denotes the set of all the possible conjunctions of ground ex-
pressions occurring as arguments of ISA-atoms inq. We are now ready to define the set
of ground expressionsExpr(H, Q) as follows:

Expr(H, Q) = Expr(H) ∪ Expr(Q) ∪
⋃

q∈Q

conj ISA(q)

As we will show in the following,Expr(H, Q) constitutes the set of ground ex-
pressions that we use for grounding metavariables. Notice thatExpr(H, Q) has size
polynomial in the size ofH.

Let q be a HCQ. AnH-metaground instantiation ofq is a HCQ obtained fromq
by replacing every variable occurring in at least one concept or role position with an
expression ofExpr(H, q). Given a HCQq, we definemetaground(q,H) as the HUCQ
corresponding to the union of all theH-metaground instantiations ofq. If there are
no ground terms occurring inH (i.e.,H is empty), we definemetaground(q,H) to
be the HCQ obtained fromq by replacing all variables occurring in concept and role
positions with any name inS. Given a HUCQQ, we definemetaground(Q,H) =⋃

q∈Q metaground(q,H).
Given a metaground HUCQQ, we denote byπ(Q,H) the standard UCQ obtained

from metaground(Q,H) by: (i) replacing every ground termE occurring as an argu-
ment in object position of an atom inQ with νO(E); (ii) replacing every ground term
E occurring as an argument in concept position of an atom inQ with νC(E); (iii) re-
placing every ground termE occurring as an argument in role position of an atom inQ
with νR(E).

Finally, given aHi(SHIQ) KB H and a HUCQQ, we denote byΠ (H, Q) the
SHIQ KB obtained starting fromΠ (H) and adding, for every ground termE that oc-
curs inmetaground(Q,H) and does not occur inH, the inclusion assertions generated
by the first 5 items in the definition ofΠ (H) above.

Now we restrict our attention to bothmetagroundand instancequeries. For this
class of HUCQs, the following property can be easily proved.

Theorem 4. LetH be aHi(SHIQ) KB, and letQ be a metaground instance HUCQ.
Then,H |= Q iff Π (H, Q) |= π(Q,H).

Based on the known computational characterization of answering “standard” UCQs,
i.e., bothmetagroundandinstanceUCQs, inSHIQ [9, 6, 13], we immediately get the
following result.

Theorem 5. Answering metaground instance HUCQs overHi(SHIQ) KBs is coNP-
complete w.r.t. instance complexity, EXPTIME-complete w.r.t. KB complexity, and 2-
EXPTIME-complete w.r.t. combined complexity.

We can actually extend the previous theorem to the whole class of instance HUCQs.
First, we show the following crucial property, which holds for the whole class of
guarded HUCQs.

Theorem 6. LetH be aHi(SHIQ) KB, and letQ be a guarded HUCQ.H |= Q iff
H |= metaground(Q,H).

Proof (sketch). One direction (ifH |= metaground(Q,H) thenH |= Q) is triv-
ial. The proof of the other direction is quite involved. First, the following property (*)
can be shown: ifH |= Q thenH |= metaground(Q), wheremetaground(Q) is the
query obtained fromQ through the meta-grounding of the meta-variables over the set
of all expressions of the language (not only those terms occurring inExpr(H, Q)).
Now supposeH |= Q. If H 6|= metaground(Q,H), then there exists a modelI for
H such thatI |= metaground(Q) andI 6|= metaground(Q,H). It is now possi-
ble to define a modelI ′ for H which is essentially the disjoint union of a countably
infinite number of copies ofI, in which the functionI ′o is defined in such a way
that I ′ 6|= metaground(Q), which contradicts the above property (*). Consequently,
H |= metaground(Q,H).

Theorem 6, Theorem 4, and Theorem 5 allow us to immediately derive the com-
putational characterization of query answering inHi(SHIQ) for the whole class of
instance HUCQs.

Theorem 7. Answering instance HUCQs overHi(SHIQ) KBs is coNP-complete
w.r.t. instance complexity, EXPTIME-complete w.r.t. KB complexity, and 2-EXPTIME-
complete w.r.t. combined complexity.

In order to go beyond instance HUCQs, and answer guarded HUCQs in
Hi(SHIQ), we now define a technique which reduces this problem to answering stan-
dard UCQs inSHIQ.

In the following, we callintensional (or, TBox) assertionevery assertion using one
of the meta-predicatesIsaC , IsaR, andTran. Moreover, given a KBH and a HUCQ
Q, we defineTAH,Q to be the set of all the intensional assertions inSHIQ that can be
obtained from the set of ground terms occurring inExpr(H, Q).

Let T ′ be a subset ofTAH,Q. We say thatT ′ is coherent withH iff T ⊆ T ′,
whereT is the set of TBox assertions occurring inH, andT ′ ∪ H 6|= φ for every

φ ∈ TA(Expr(H, Q)) − T ′. Then, we denote byIntEval(Q,H, T ′) the metaground
instance HUCQQ′ obtained starting fromQ′ = metaground(Q,H) and then evaluat-
ing every intensional assertion overT ′ as follows:

– if φ is an intensional assertion occurring in a HCQq ∈ Q′ and φ ∈ T ′, then
eliminateφ from q;

– if φ is an intensional assertion occurring in a HCQq ∈ Q′ and φ 6∈ T ′, then
eliminateq from Q′.

Finally, we defineKBSHIQ(H, T ′, Q) as theSHIQ KB3 obtained starting from
K′ = Π (H′, Q) (whereH′ = T ′ ∪ H) and then adding toK′ the following assertions
for every TBox assertionα ∈ TA(Expr(H, Q))− T ′:

– if α = IsaC(E1, E2) then add toK′ the ABox assertionsνC(E1)(n) and
νC(Not(E2))(n), wheren is a new individual name inK′;

– if α = IsaR(E1, E2) then add toK′ the TBox assertion (role disjointness)
νR(E2) v ¬Aux i, wherei is such thatAux i is a new role name inK′, and the
ABox assertionsνR(E1)(n1, n2) andAux i(n1, n2), wheren1, n2 are new individ-
ual names inK′;

– if α = Tran(E) then add toK′ the TBox assertion (role disjointness)νR(E) v
¬Aux i, wherei is such thatAux i is a new role name inK′, and the ABox asser-
tionsνR(E)(n1, n2), νR(E)(n2, n3) andAux i(n1, n3), wheren1, n2, n3 are new
individual names inK′.

Intuitively, KBSHIQ(H, T ′, Q) is such that, ifα ∈ TA(Expr(H, Q))− T ′, thenα is
forced to be false in every model ofKBSHIQ(H, T ′, Q).

The following theorem (whose proof relies on Theorem 6) reduces answering
guarded HUCQs inHi(SHIQ) to answering standard UCQs inSHIQ.

Theorem 8. Let H be a Hi(SHIQ) KB, and letQ be a guarded HUCQ. Then,
H 6|= Q iff there exists a subsetT ′ of TAH,Q such thatT ′ is coherent withH, and
KBSHIQ(H, T ′, Q) 6|= π(IntEval(Q,H, T ′),H).

Based on Theorem 8, Theorem 4 and Theorem 5, we get the computational charac-
terization of answering guarded HUCQs inHi(SHIQ).

Theorem 9. Answering guarded HUCQs overHi(SHIQ) KBs is coNP-complete
w.r.t. instance complexity, EXPTIME-complete w.r.t. KB complexity, and 2-EXPTIME-
complete w.r.t. combined complexity.

5 Conclusions

In this paper we have presented a general mechanism for defining a family of Descrip-
tion Logics for domain metamodeling. We have shown how, starting from any DLL,

3 Actually, KBSHIQ(H, T ′, Q) is a SHIQ KB with role disjointness assertions, however
adding this kind of axioms toSHIQ does not change the complexity of query answering.

one can define a higher-order logic, calledHi(L), that adds toL metamodeling fea-
tures. Also, we have presented algorithms for both satisfiability and query answering in
a specific expressive higher-order Description Logic, namelyHi(SHIQ).

The present paper can be seen as an extension of both the approach and the results
in [8]: in particular, on the one hand we have extended the results presented there to
SHIQ, and on the other hand we have characterized the computational complexity for
a larger class of meta-queries.

The research presented here can be continued along different lines. First, while the
query answering algorithm presented in this paper is suited for the class of guarded
HUCQs, it is our goal to address query answering for the whole class of HUCQs. Sec-
ond, it would be interesting to see whether more metamodeling features can be added
to the query language. In particular, one might wonder whether the query answering
method described in this paper can be extended to deal with the case where variables
can appear freely within the terms in the query atoms (see Example 4 in Section 2). Un-
fortunately, our first investigation on this subject shows that allowing for a more flexible
use of variables in the queries easily leads to undecidability of query answering. An-
other interesting direction is to add both domain and full metamodeling capabilities to
tractable DLs, in particular, the DLs of the DL-Lite family [5], so as to check whether
reasoning remains tractable in the resulting logics.

Finally, we remark thatpunning, i.e., using the same name for different elements
of the ontology (for example, an individual and a concept), has been introduced in
OWL 2 4. While punning can be treated trivially in classical reasoning tasks over the
DL ontology, it poses interesting problems in the context of query processing. In par-
ticular, if variables are not typed a priori, punning introduces the kind of meta-querying
discussed in this paper. Indeed, the DL query language presented in this paper is the first
one (to our knowledge) that exploits punning in queries, since it allows for expressing
joins involving variables which simultaneously denote both individuals and predicates.

AcknowledgmentsThis research has been partially supported by MIUR FIRB project
“Tecnologie Orientate alla Conoscenza per Aggregazioni di Imprese in Internet” (TO-
CAI.IT).

References

1. F. Angiulli, R. Ben-Eliyahu-Zohary, G. Ianni, and L. Palopoli. Computational properties of
metaquerying problems.ACM Trans. on Computational Logic, 4(2):149–180, 2003.

2. G. Attardi and M. Simi. Consistency and completeness ofOMEGA, a logic for knowledge
representation. InProc. of the 7th Int. Joint Conf. on Artificial Intelligence (IJCAI’81), pages
504–510, 1981.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2003.

4. L. Badea. Reifying concepts in description logics. InProc. of the 15th Int. Joint Conf. on
Artificial Intelligence (IJCAI’97), pages 142–147, 1997.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: TheDL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

4 http://www.w3.org/2007/OWL/wiki/OWLWorking Group

6. D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive query containment and
answering under description logics constraints.ACM Trans. on Computational Logic,
9(3):22.1–22.31, 2008.

7. W. Chen, M. Kifer, and D. S. Warren. HILOG: A foundation for higher-order logic program-
ming. J. of Logic Programming, 15(3):187–230, 1993.

8. G. De Giacomo, M. Lenzerini, and R. Rosati. Towards higher-orderDL-Lite. In Proc. of the
2008 Description Logic Workshop (DL 2008), volume 353 ofCEUR Electronic Workshop
Proceedings,http://ceur-ws.org/ , 2008.

9. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for the descrip-
tion logicSHIQ. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007),
pages 399–404, 2007.

10. F. Lehmann, editor.Semantic Networks in Artificial Intelligence. Pergamon Press, Oxford
(United Kingdom), 1992.

11. B. Motik. On the properties of metamodeling in OWL.J. of Logic and Computation,
17(4):617–637, 2007.

12. J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong. A language facility for designing
database-intensive applications.ACM Trans. on Database Systems, 5(2):185–207, 1980.

13. M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answering in expressive
description logics via tableaux.J. of Automated Reasoning, 41(1):61–98, 2008.

14. J. Z. Pan and I. Horrocks. OWL FA: a metamodeling extension of OWL DL. InProc. of the
15th Int. World Wide Web Conf. (WWW 2006), pages 1065–1066, 2006.

