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Abstract. We investigate an extension of Description Logics with higher-order
capabilities, based on Henkin-style semantics. Our study starts from the observa-
tion that the various possibilities of adding higher-order constructs to a DL form
a spectrum of increasing expressive power, including domain metamodeling, i.e.,
using concepts and roles as predicate arguments, and full metamodeling, pro-
viding the ability of using the language constructors and operators as predicate
arguments, in the style of RDF. We argue that higher-order features of the for-
mer type are sufficiently rich and powerful for the modeling requirements arising
in many relevant situations, and therefore we carry out an investigation of the
computational complexity of reasoning in DLs extended with such features. In
particular, we show that adding domain metamodeling capabilities to expressive
DLs has no impact on the complexity of the various reasoning tasks.

1 Introduction

Metamodeling allows one to treat concepts and properties as first-order citizens, and
to see them as individuals whose properties can be asserted and reasoned upon. This
feature is important in all applications where the need arises of modeling and reasoning
about meta-concepts, i.e., concepts whose instances are themselves concepts, and meta-
properties, i.e., relationships between meta-concepts.

Itis well-known that in logic, and in Description Logics (DLs) in particular, higher-
order constructs are needed for a correct representation of concepts and properties at
the meta-level. However, the issue of devising suitable extensions to DLs for represent-
ing and reasoning about meta-level elements is largely unexplored. Recent research on
this subject shows that there is a spectrum in the modeling capabilities of DLs. Four
points in this spectrum represent specific notable cases, which we call domain model-
ing, metaquerying, domain metamodeling, and full metamodeling, respectively.

Domain modelingln domain modeling, the language only focuses on the ability of
specifying the domain of interest in terms of individuals, concepts and roles, and is
therefore “first-order”. This is the simplest case of the spectrum, with no higher-order
feature, and is actually the one addressed in most of the research on DLs.

MetaqueryingThis is the case where the knowledge base does not contain any axiom
regarding meta-concepts or meta-roles, but the query language allows for using meta-
concepts, so that concepts and roles in the knowledge base can match the variables in
the query, and may thus be returned as answers to the query [1]. Note that this mech-
anism allows to express queries that are beyond first-order logic. For instance, asking



for the least common subsumers of two concepts, or for the most specific concept for
an individual, can be done by means of suitable meta queries.

Domain metamodelinglhis is the case where the language allows for using concepts
and roles as predicate arguments, so that one can assert properties of concepts and roles,
as if they were individuals. Note that domain metamodeling includes metaquerying as a
special case. It is our opinion that higher-order features of this kind are sufficiently rich
and powerful for the modeling requirements arising in many relevant situations. One of
the most popular approaches to domain metamodeling, and one that is closely related to
DLs, is HiLog [7]. HiLog is a logic with a higher-order syntax, thus allowing predicates

to appear as arguments in atomic formulae, but with a Henkin-style semantics, which
implies that the expressive power of the language actually remains within the first-order
realm.

Full metamodelingThis is the most general case, where the modeling language allows
not only for using concepts and roles as predicate arguments, but also for refining and
extending the properties of the language operators, and to reason upon such properties.
RDF and RDFS, which are again based on a Henkin semantics, are popular languages
enabling this kind of metamodeling. Both languages allow for stating axioms not only
on domain (meta-)elements, but also on the so-called built-in vocabulary (i.e., operators
such agdf:itype ) of the language.

In this papet, we investigate an extension of DLs with higher-order capabilities. We
are especially interested in those features that allow us both to model and to query indi-
viduals, concepts, roles, meta-concepts and meta-roles with no limitations. Therefore,
the extension that we study is geared towards domain metamodeling (thus including
metaquerying), for which we provide the following specific contributions.

First, we present syntax and semantics of an extension of DLs with domain meta-
modeling features (see Section 2). In particular, we show how, starting from au; DL
one can define its higher-order version, calléd £). From the syntax point of view,
our approach stems from two ideas. On one hand, every modeling element can be seen
simultaneously as an individual, as a concept, and as a role. On the other hand, since
concepts in DLs are denoted not only by names, but also by complex expressions, every
complex expression is a modeling element in our language. From the semantic point of
view, we adopt a Henkin semantics, as in HiLog and RDF(S).

Second, we carry out an investigation of the computational complexity of reasoning
in DLs extended with higher-order features. By reasoning we mean not only logical im-
plication, but also answering unions of conjunctive queries with metaquerying abilities.
We show that adding domain metamodeling capabilities to expressive DLs, in particular
to SHZ Q [3], has no impact on the complexity of the various reasoning tasks, including
conjunctive query answering (see Section 4).

The idea of representing concepts and properties at the meta-level is an old one
in Knowledge Representation and Computer Science. Semantic networks and early
Frame-based systems incorporated specific mechanisms for representing concepts
whose instances are themselves concepts [10, 2]. Conceptual modeling languages pro-
posed in the 70’s, such as TAXIS [12], provided both the notion of meta-class, and
suitable facilities for describing properties of operators on meta-classes. The notion of

! For the sake of brevity, proofs are omitted in this version.



meta-class is also present in virtually all object-oriented languages, including modern
programming languages (see, e.g., the Java Clkss ).

As we said before, the issue of extending DLs with higher-order constructs has been
addressed only by few research papers. In [4], probably the first paper on this subject,
the notion of “reification of concepts” is proposed as a means to express meta-level
classes, but the paper does not address neither the issue of meta-roles, nor the issue
of query answering. A more recent paper is [8], where metamodeling capabilities are
added to a DL of th®L-Lite family.

Our work has connections with recent investigations on full metamodeling, in par-
ticular on RDF, RDFS, and OWL Full. In [11], the author addresses the issue of de-
cidability of reasoning on meta-properties in different fragments of OWL Full. It is
shown that, although going from domain to full metamodeling easily leads to undecid-
ability, reasoning in some fragments of OWL Full is decidable. Differently from the
present paper, the focus of [11] is neither on the tractability frontier, nor on conjunctive
query answering. Finally, reasoning (but not query answering) with metamodeling is
also studied in [14], where the language OWL FA is proposed, which introduces a stra-
tum number in class constructors and axioms to indicate the strata they belong to, and
suitable contraints impose that TBox axioms are stated on classes of the same stratum,
while ABox axioms can only involve elements of two consecutive strata.

The rest of the paper is organized as follows. In Section 2, we describe syntax and
semantics of{i(L), by referring, in particular, to the higher-order BIi (SHZ Q). As
we said above[ (L) denotes the higher-order version of the Description Lajitn
Section 3 we present our technique for satisfiabilityi{SHZ Q), and in Section 4
we address query answering in the same DL. Both in Section 3 and in Section 4 we
also characterize the computational complexity of the presented algorithms. We end the
paper in Section 5, by pointing out future directions of our reseearch.

2 Higher-order Description Logics

In this section, we present our approach to higher-order DLs, by showing how, starting
from a DL £, one can define its higher-order version, calléd £). During the presen-
tation, we will also refer to a specific DL, namef{{Z Q. Therefore, we will describe

in detail the higher-order DIHi (SHZ Q).

Before delving intoHi(L), we present some preliminary definitions. Every tradi-
tional DL L is characterized by a s€P (L) of operators used to form concept and
role expressions, and a set® (L) of meta-predicatesused to form assertions. Each
operator and each meta-predicate have an associated arity. If sgrhbslarityn, then
we often writeS/n to denote such symbol and its arity. R§HZ Q, we have

OP(SHZIQ)= {Inv/1, And/2, Not/1} U {AtLeastQ, /2 | n € N}
MP(SHIQ)= {Instc/2,Instr/3, Isac/2, Isar/2, Tran/1}.

We assume that the reader is familiar withtZ Q. Therefore, the intuitive meaning
of all the above symbols should be clear. The formal specification of their semantics
will be given shortly.



Syntax. We assume the existence of two disjoint, countably infinite alphalSetie

set ofnamesandV, the set ofvariables The buidling blocks of &i(£) knowledge
base are assertions, which in turn are based on expressions. We define thexpasf
sions denoted by, (S), over the alphabe$ for Hi(L) inductively as follows:

— if E e SthenE € £,(S);
—if C/ne OP(L)andEs,...,E, € ££(S)thenC(En, ..., E,) € ££(S).

Example 1.If the namesCourse, Teaches, Full belong to the alphabét, then the fol-
lowing is aHi(SHZQ) expression:

And(Course, Not(AtLeast@q(Inv( Teaches)), Full)))

which intuitively denotes the concept representing the set of courses that are taught by
at most one full professor. |

A Hi(L) assertionover £, (S) is a statement of the form/ (E4, ..., E,) where
M e MP(L),n > 0is the arity ofM, and foreveri <i <n, E; € ££(S). A Hi(L)
knowledge base (KB$ a set of assertions ovéf.(S).

Thus, an assertion is simply an application of a meta-predicate to a set of expres-
sions. Intuitively, an assertion is an axiom that predicate over a set of individuals, con-
cepts or roles.

Example 2.Suppose that the alphabé&tcontains all names mentioned in Example
1, plus GradCourse, UniversityConcept, ObsoleteConcept, John, and Defined By.
Then the following areii(SHZ Q) assertions:

Isac(GradCourse, And(Course, Not(AtLeastQo(Inv( Teaches)), Full))))
Instc(And(Course, Not(AtLeastQq(Inv(Teaches)), Full))), UniversityConcept)
Inst g (UniversityConcept, John, Defined By)

Inst g (Not(ObsoleteConcept), John, DefinedBy)

The first assertion states that every graduate course is taught by at most one
full professor. The intended meaning of the second assertion is that the concept
And(Course, Not(AtLeastQ,(Inv(Teaches)), Full))) is an instance of the concept
UniversityConcept (which is therefore a meta-concept). Finally, the intended mean-
ing of the third and the fourth assertions is that the concépi@ersityConcept and
Not(ObsoleteConcept) have been introduced in the knowledge basdiyn. |

Next, we introduce the notion of query, which in turn relies on the notion of “atom”.
Intuitively, an atom is constituted by a meta-predicate applied to a set of arguments,
where each argument is either an expression or a variable. More formally, we define the
setr (S, V) of termsoverS andV to be&.(S) U V. Terms of the forn€.(S) are called
ground. We define aatomto be constituted by the application of a meta-predicate in
MP(L) to a set of terms, and we call an atgmoundif no variable occurs in it. Note
that a ground atom has the same form of an assertion. An atom whose meta-predicate



. foreachd; € A, if d = v (d,) thend” = (di")~!
. foreachds, ds € A, if d = And*°(d1, d2) thend®e = dIC dZe;
. foreachd; € A, if d = Not**(dy) thend®s = A — d=e;
. foreachds,d; € A and foreach € N, if d = AtL@G,Sth(dh ds)
thend = {e| Je1,...,en S.t.e; # e, fori # j, and
(Vist1l <i<n,(ee) €dimande; € dy°).
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Fig. 1. Semantic conditions on interpretations &HZ Q predicate expressions.

is Isac or Isag is called anlSA-atom while we callinstance-atoran atom whose
meta-predicate i$nsto or Instg.
A higher-order conjunctive query (HCQ¥ arity n is an expression of the form

q(xlw"axn) ALy ey O

whereg, called the query predicate, is a symbol that does not belo§g.td, everyz;
belongs toV, everya; is a (possibly non-ground) atom, and all variahtgs. . . , x,, oc-
cur in somes;. The variables:, . .., x,, are called théree variablegor distinguished
variables) of the query, while the other variables occurring;in . . , a,,, are calledex-
istential variables A higher-order union of conjunctive queries (HUCQharity n is a
set of HCQs of arityr with the same query predicate. A HCQ/HUCQ is calBablean
if it has no free variable.

Example 3.Referring to the alphabet mentioned in Example 2, the following is a HCQ:
q(z) — Instc(x,y), Instg(y, John, DefinedBy)

Intuitively, the query asks for the instances of all the concepts in the
knowledge base defined by John. In our case, the answer will be simply
{GradCourse, Not(AtLeastQq(Inv( Teaches)), Full)))}.

Example 4.Consider now the case where we want to ask for the instances of all the
conceptg such that the expressidot(y) is a concept in the knowledge base defined
by John. The natural formulation of this query would be:

q(x) « Instc(z,y), Instr(Not(y), John, Defined By)

However, according to our syntax for queries, variables cannot appear as arguments
within terms, and therefore the abovenist a query inHi(SHZ Q). We discuss this
kind of queries further in the conclusions. O

Semantics. The semantics offi (L) is based on the notion of interpretation structure.
An interpretation structures a triple X = (A,Z.,Z,.) where: {) A is a non-empty
(possibly countably infinite) setii{ Z. is a function that maps eache A into a subset
of A; and {ii) Z, is a function that maps eaehe A into a subset oA x A. In other



words, X treats every element oA simultaneously asi) an individual; (i) a unary
relation, i.e., a concept, through; and {ii) a binary relation, i.e., a role, through.

An interpretationover X is a pairZ = (¥,Z,), whereX = (A,Z.,Z,) is an
interpretation structure, ang, is a function that maps:)(each element of to a
single domain object ofA; and (i) each element/n € OP(L) to ann-ary func-
tion CZo : A™ — A that satisfies the conditions characterizing the oper@for. In
particular, the conditions for the operatorsGP(SHZ Q) are described in Figure 1.
We extendZ, to expressions i€ (S) inductively as follows: ifC'/n € OP(L), then
(C(By, ..., Ey))F = CTo(Efe, ... EL).

To interpret non-ground terms, we need assignments over interpretatioras-An
signmenfu over (X', 7,) is a functionu : V — A.

We are now ready to describe how to interpret termdTiiiL). Given an inter-
pretationZ = (X, Z,) and an assignment over Z, we define the functior-)Ze# :
7(S,V) — A as follows:

— if t € S thentZo# = t1o;
— if t € VthentZoH = p(t);
— if tis of the formC(ty, . .., t,), thentZo# = CTo(tTok | tZook),

Satisfaction of an assertion with respect to an interpretafiamd an assignment
w overZ is defined based on the semantics of the meta-predicatédif). For the
meta-predicates used 8#HZ Q, satisfaction irZ, i is defined as follows:

— I, pu | Inste(Ey, B) if E{*" € (Ey>*)%e;

— T, p b= Instp(Ey, By, Es) it (Ef" EXo") e (E3o™)Tr,
— Tu k= Isac(By, By) if (EF#)Te € (B3,

— I | Isap(Ey, By) if (E{"")T C (Ey™*)%;

— T, b= Tran(E) if (EZo#)I is a transitive relation.

A Hi(L) KB 'H is satisfied byZ if all the assertions irt{ are satisfied by .2 As
usual, the interpretatioris satisfyingH are called thenodelsof H. A Hi(L) KB H is
satisfiableif it has at least one model.

Let 7 be an interpretation and an assignment ovef. A Boolean HCQq of the
form g «— aq,...,a, is satisfiedin Z, i if every assertioru; is satisfied inZ, u. A
Boolean HUCQQ is satisfiedin Z, i1 if there exists a Boolean HCQ € @ that is
satisfied inZ, u. A Boolean HUCQQ is satisfied in an interpretatidh writtenZ = Q,
if there exists an assignmentoverZ such that) is satisifed inZ, ;. Given a Boolean
HUCQ @ and aHi(£) KB H, we say that) is logically impliedby H (denoted by
H |= Q) if for each modelZ of H there exists an assignmensuch that) is satisfied
by Z, u.

Given a non-Boolean HUCQ of the formq(¢4, ... ,t,) < a1,...,an, & ground-
ing substitution ofq is a substitutiord such thatt,0, ..., t,0 are ground terms. We
call ¢10,...,t,0 a grounding tuple. The set gkrtain answerdo ¢ in H is the set of
grounding tuples.9, ..., t,0 that make the Boolean quety < a40,...,a,0 logi-
cally implied byH. Notice that, in general, the set of certain answers may be infinite
even if the KB is finite. Therefore, it is of interest to define suitable notions of safeness,

2 We do not need to mention assignments here, since all assertiharia ground.



which guarantee that the set of answers is bounded. This issue, however, is beyond the
scope of the present paper.

Indeed, in this paper, we focus on Boolean queries only, so as to address the com-
putation of certain answers as a decision problem. Also, in our analysis, we measure
the computational complexity in three different ways: with respect to the size of the
whole KB (KB complexity, with respect to the size of the part of the KB formed by the
assertions involving only the meta-predicalest /2, Inst g /3 (instance complexily
and with respect to the size of the KB and the query togettmmbined complexily

3 Satisfiability in Hi(SHZ Q)

In this section we study the computational characterization of KB satisfiability in the
higher-order DLHi(SHZ Q). Query answering in the same DL is addressed in the next
section.

We start by defining a translatiaid from Hi(SHZQ) to SHZ Q. First, we define
three injective functions

vo : Esnza(S) — 87, ve : Esnro(S) — S°, VR : Esnzo(S) — 8"

whereS?, §¢ andS™ are three mutually disjoint alphabets of names, each one disjoint
from S. Then, we inductively define two functiong andrg as follows:

if §€8,thent(S) =ve(S) andrr(S) = vr(S);
To(Not(E)) = Not(rc(E));

To(And(Ey, E2)) = And(1c(E1), 7c(E2));
To(AtLeastQ,, (Er, Eq)) = AtLeastQ,,(Tr(E1), 7c(E2));
Tr(Inv(E)) = Inv(Tr(E)).

Now, let Ezpr(H) denote the set of ground expressions occurriryy ifnotice that
every subexpression of an expression occurrirgf ialso belongs t&zpr(H)). Then,
given aHi(SHZ Q) KB H, we inductively define th& HZQ KB II(H) as follows:

1. if Not(E) € Ezpr(H), thenve(Not(E)) = 1o (Not(E)) € II(H);

2. if Inu(E) € Expr(H), thenvg(Inv(E)) = tr(Inv(E)) € II(H);

3. if And(FE1,FE>) € Ezpr(H), thenve(And(Eq, Es)) = 17c(And(Eq, Es)) €
II(H);

if AtLeastQ, (E1,E2) € Ezpr(H), then vo(AtLeastQ, (F1, Es))
7o (AtLeastQ,,(Ev, E2)) € I1(H);

if Instc(Er, Eq) € H, thenva(Er)(vo(E2)) € II(H);

if InStR(El, Fs, Eg) e H, thenI/R(El)(Vo(EQ), llo(Eg)) S H(H),

if Isac(E1, Es) € H, thenve(E1) C ve(Es) € II(H);

if IsaR(El, EQ) eH, thenuR(El) C I/R(E2) S H(H)
if Tran(E) € H, thenTran(vg(E)) € II(H).

Informally, the above translation, when applied tlg§SHZ Q) DL H, provides a
SHZQ KB II(H) in which for every ground tern occurring in (notice thatt' may
be a subterm of another term occurringHf there exists a concept nameg(E) (and a
role namevg (E)) that is defined, through the use of the functien(respectivelyrr)
as equivalent to the terth seen as a concept (respectively, role) expression.

Based on the above translation, we get the first of our main results, namely a reduc-
tion of KB satisfiability in Hi(SHZ Q) to KB satisfiability inSHZ Q.

»
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Theorem 1. A Hi(SHZ Q) KB H is satisfiable iff theSHZ Q KB II () is satisfiable.

Proof (sketch). One direction of the proof is trivial: if there exists a modefor H,
then based off it is immediate to define a mod&l for I7 () which interprets objects
according taZ,, atomic concepts (i.e., concepts denoted by names) accordifig to
and atomic roles according . As for the other direction, given a modefor 17 (H)
over a domainy, it is possible to define a mod&l for H by considering the disjoint
union of a countably infinite number of copiesb{over a countably infinite number of
copies ofA), and definindZ! so that it coincides witlT, on the expressions occurring
in H, while every expression that does not occukiris interpreted byZ! to an element
of the extra copies ofA. Then, it is easy to defin€, andZ/ in order to satisfy the
semantic conditions of Figure 1. O

From the above theorem, and the computational characterization of KB satisfia-
bility in SHZ Q [3], we are able to provide the computational characterization of KB
satisfiability in Hi(SHZ Q).

Theorem 2. KB satisfiability inHi(SHZ Q) is EXPTIME-complete w.r.t. KB complex-
ity, and coNP-complete w.r.t. instance complexity.

4 Query answering in Hi(SHZ Q)

In this section we study query answeringffi(SHZ Q). In particular, we restrict our
attention to a specfic class of HUCQs, which we cplarded For the definition of

this class of queries, we need the notions of object position, concept position, and role
position, whose goal is to characterize the various argument positions in both atoms
and terms. If we use symb@ to mark object positions, symb& to mark concept
positions, and symolR to mark role positions, then we have:

Instc(0,C) Instr(0,0,R) Isac(C,C) Isar(R,R) Tran(R)
Not(C) And(C,C) Inv(R) AtLeastQ,(R,C)

Now, a HCQq is calledguardedif, for every variablex occurring in an ISA-atom
of ¢, x also occurs in a concept or role position of an instance-atog AfHUCQ is
called guarded is every HCQIin @ is guarded.

We start our analysis of query answering by showing that answering guarded
HUCQs is coNP-hard w.r.t. KB complexity (actually, w.r.t. instance complexity only)
and I15-complete w.r.t combined complexity, as soon as the DL admits/ihe.,

Instr and Isac meta-predicates (and even if the DL does not allow for any logical
operator).

Theorem 3. Let £ be a DL such thatMP (L) contains the meta-predicatdastc,
Instr and Isac. Answering guarded HUCQs ovéfi(L£) KBs is coNP-hard w.r.t. in-
stance complexity, and}-hard w.r.t. combined complexity, everif’ (L) = 0.

We remark that the previous theorem implies that answering guarded HUCQs is in-
tractable w.r.t. instance (and KB) complexity not only #fi(SHZQ), but in all the



DLs currently studied, since all DLs comprise the meta-predichies, Instz and
Isac.

We now provide a technique for query answering olé(SHZ Q) KBs, which is
based on the reduction 8HZ Q provided by the functioril () defined for KB satisfia-
bility. For query answering, however, the functifii{) must be extended to account for
expressions occurring in the query; moreover, we also need to define a translafion
HUCQs. Such functions are defined below.

Let @ be a HUCQ. We say thd&p is ametagroundHUCQ if it does not contain any
variable in concept or role position. Moreover, we say thas aninstanceHUCQ if it
only contains instance-atoms.

In the following, given a HUC@, we denote byFzpr(Q) the set of ground expres-
sions occurring irQ). Now letq be a HCQ and lety, . . ., e be the ground expressions
occurring as arguments of ISA-atomsginWe define inductively the set of expressions
cong rg4(q) as follows:

Cl = {617...,€k}
Ci+1 = {And(e, 60)|6 € C; ande, € C1}

CondSA(Q) =Cg

Informally, conj ;54 (¢) denotes the set of all the possible conjunctions of ground ex-
pressions occurring as arguments of ISA-atomg We are now ready to define the set
of ground expressionBzpr(H, Q) as follows:

Expr(H,Q) = Exzpr(H) U Ezpr(Q) U U cong rs4(q)
q€Q

As we will show in the following,Ezpr(H, Q) constitutes the set of ground ex-
pressions that we use for grounding metavariables. NoticeRhgt(H, Q) has size
polynomial in the size of.

Let ¢ be a HCQ. AnH-metaground instantiation af is a HCQ obtained frong
by replacing every variable occurring in at least one concept or role position with an
expression oFzpr(H, q). Given a HCQy, we definemetaground(q, H) as the HUCQ
corresponding to the union of all th¥-metaground instantiations qf If there are
no ground terms occurring i (i.e., H is empty), we definenetaground(q, H) to
be the HCQ obtained fronmp by replacing all variables occurring in concept and role
positions with any name i5. Given a HUCQQ, we definemetaground(Q, H) =
U,eq metaground(q, H).

Given a metaground HUCQ, we denote byr(Q, H) the standard UCQ obtained
from metaground(Q,H) by: (i) replacing every ground terd occurring as an argu-
ment in object position of an atom § with v (E); (i) replacing every ground term
E occurring as an argument in concept position of an ato® imith v (E); (iii) re-
placing every ground terr’ occurring as an argument in role position of an ator@in
with Z/R(E).

Finally, given aHi(SHZQ) KB H and a HUCQQ, we denote byl (H, Q) the
SHIQ KB obtained starting frondZ () and adding, for every ground terfthat oc-
curs inmetaground(Q, H) and does not occur i, the inclusion assertions generated
by the first 5 items in the definition df (/) above.



Now we restrict our attention to botmetagroundand instancequeries. For this
class of HUCQs, the following property can be easily proved.

Theorem 4. Let’H be aHi(SHZ Q) KB, and let@ be a metaground instance HUCQ.
ThenH = Q iff II(H, Q) E m(Q, H).

Based on the known computational characterization of answering “standard” UCQs,
i.e., bothmetagroundandinstanceUCQs, inSHZQ [9, 6, 13], we immediately get the
following result.

Theorem 5. Answering metaground instance HUCQs o¥B{SHZ Q) KBs is coNP-
complete w.r.t. instance complexity, EXPTIME-complete w.r.t. KB complexity, and 2-
EXPTIME-complete w.r.t. combined complexity.

We can actually extend the previous theorem to the whole class of instance HUCQs.
First, we show the following crucial property, which holds for the whole class of
guarded HUCQs.

Theorem 6. Let’H be aHi(SHZ Q) KB, and letQ be a guarded HUCQH = Q iff
H = metaground(Q, H).

Proof (sketch). One direction (ifH |= metaground(Q,H) thenH = Q) is triv-

ial. The proof of the other direction is quite involved. First, the following property (*)
can be shown: it = Q then™ = metaground(Q), wheremetaground(Q) is the
query obtained frond) through the meta-grounding of the meta-variables over the set
of all expressions of the language (not only those terms occurringein(H, Q)).
Now supposet = Q. If H (= metaground(Q, H), then there exists a mod&l for

H such thatZ |= metaground(Q) andZ (= metaground(Q, H). It is now possi-
ble to define a model” for H which is essentially the disjoint union of a countably
infinite number of copies of, in which the functionZ, is defined in such a way
thatZ’ = metaground(Q), which contradicts the above property (*). Consequently,
H = metaground(Q, H). U

Theorem 6, Theorem 4, and Theorem 5 allow us to immediately derive the com-
putational characterization of query answeringdi(SHZ Q) for the whole class of
instance HUCQs.

Theorem 7. Answering instance HUCQs ovédfi(SHZQ) KBs is coNP-complete
w.r.t. instance complexity, EXPTIME-complete w.r.t. KB complexity, and 2-EXPTIME-
complete w.r.t. combined complexity.

In order to go beyond instance HUCQs, and answer guarded HUCQs in
Hi(SHZIQ), we now define a technique which reduces this problem to answering stan-
dard UCQs inSHZQ.

In the following, we callintensional (or, TBox) assertiogvery assertion using one
of the meta-predicatesac, Isar, and Tran. Moreover, given a KBH and a HUCQ
Q, we definel’ A4 ¢ to be the set of all the intensional assertion§#iZ Q that can be
obtained from the set of ground terms occurringsitpr (H, Q).

Let 7/ be a subset 0T Ay o. We say that7’ is coherent withH iff 7 C 77,
where7 is the set of TBox assertions occurringty, and7’ U H [~ ¢ for every



¢ € TA(Expr(H,Q)) — T'. Then, we denote byntFval(Q, H,7"') the metaground
instance HUCQY' obtained starting fron®’ = metaground(Q, H) and then evaluat-
ing every intensional assertion oVEf as follows:

— if ¢ is an intensional assertion occurring in a HGQ= Q' and¢ € 7/, then
eliminate¢ from g;

— if ¢ is an intensional assertion occurring in a HGQ= Q' and¢ ¢ 7', then
eliminateq from Q’.

Finally, we definek Bsyzo(H, 7', Q) as theSHZQ KB? obtained starting from
K'=HI(H, Q) (whereH’ = 7' U'H) and then adding t&’ the following assertions
for every TBox assertion € TA(Ezpr(H,Q)) — 7"

—if a = Isac(E1,Es) then add toX’ the ABox assertions/c(E1)(n) and
ve(Not(Es))(n), wheren is a new individual name iiC’;

—if @« = Isar(F1,E>) then add toK’ the TBox assertion (role disjointness)
vr(E>) C —Auz;, wherei is such thatduz; is a new role name if’’, and the
ABox assertiong'r(E1)(n1,ng2) andAuz;(n1, ne), wheren, ny are new individ-
ual names irk’;

— if @ = Tran(E) then add tol’ the TBox assertion (role disjointnessy (E) C
- Auz;, wheres is such thatduz; is a new role name i/, and the ABox asser-
tionsvg(E)(n1,n2), vr(E)(na,ng) and Auz;(n1, ng), whereny, no, ng are new
individual names irk’.

Intuitively, K Bsyzo(H, 7', Q) is such that, it € TA(Ezpr(H,Q)) — 7', thena is
forced to be false in every model & Bsy7o(H, 7', Q).

The following theorem (whose proof relies on Theorem 6) reduces answering
guarded HUCQs ili(SHZ Q) to answering standard UCQs8&HZ Q.

Theorem 8. Let H be a Hi(SHZQ) KB, and let@ be a guarded HUCQ. Then,
H W= Q iff there exists a subsét’ of T'A3 ¢ such that7”’ is coherent withH, and
KBsnzo(M,T',Q) = m(IntEval(Q, H,T"), H).

Based on Theorem 8, Theorem 4 and Theorem 5, we get the computational charac-
terization of answering guarded HUCQsH#i(SHZ Q).

Theorem 9. Answering guarded HUCQs ovelli(SHZQ) KBs is coNP-complete
w.r.t. instance complexity, EXPTIME-complete w.r.t. KB complexity, and 2-EXPTIME-
complete w.r.t. combined complexity.

5 Conclusions

In this paper we have presented a general mechanism for defining a family of Descrip-
tion Logics for domain metamodeling. We have shown how, starting from any. DL

3 Actually, K Bsnzo(H,7’,Q) is aSHZQ KB with role disjointness assertions, however
adding this kind of axioms t6’HZ Q does not change the complexity of query answering.



one can define a higher-order logic, callHd(L), that adds to. metamodeling fea-
tures. Also, we have presented algorithms for both satisfiability and query answering in
a specific expressive higher-order Description Logic, nam&(SHZ Q).

The present paper can be seen as an extension of both the approach and the results
in [8]: in particular, on the one hand we have extended the results presented there to
SHIQ, and on the other hand we have characterized the computational complexity for
a larger class of meta-queries.

The research presented here can be continued along different lines. First, while the
query answering algorithm presented in this paper is suited for the class of guarded
HUCQs, it is our goal to address query answering for the whole class of HUCQs. Sec-
ond, it would be interesting to see whether more metamodeling features can be added
to the query language. In particular, one might wonder whether the query answering
method described in this paper can be extended to deal with the case where variables
can appear freely within the terms in the query atoms (see Example 4 in Section 2). Un-
fortunately, our first investigation on this subject shows that allowing for a more flexible
use of variables in the queries easily leads to undecidability of query answering. An-
other interesting direction is to add both domain and full metamodeling capabilities to
tractable DLs, in particular, the DLs of the DL-Lite family [5], so as to check whether
reasoning remains tractable in the resulting logics.

Finally, we remark thapunning i.e., using the same name for different elements
of the ontology (for example, an individual and a concept), has been introduced in
OWL 2 4. While punning can be treated trivially in classical reasoning tasks over the
DL ontology, it poses interesting problems in the context of query processing. In par-
ticular, if variables are not typed a priori, punning introduces the kind of meta-querying
discussed in this paper. Indeed, the DL query language presented in this paper is the first
one (to our knowledge) that exploits punning in queries, since it allows for expressing
joins involving variables which simultaneously denote both individuals and predicates.
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