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On Hilbert’s 17th Problem for global analytic functions in
dimension 3

José F. Fernando∗

Abstract. Among the invariant factors g of a positive semidefinite analytic function f on R
3,

those g whose zero set Y is a curve are called special. We show that if each special g is a sum of
squares of global meromorphic functions on a neighbourhood of Y , then f is a sum of squares
of global meromorphic functions. Here sums can be (convergent) infinite, but we also find some
sufficient conditions to get finite sums of squares. In addition, we construct several examples of
positive semidefinite analytic functions which are infinite sums of squares but maybe could not
be finite sums of squares.
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1. Introduction

The representation of positive semidefinite functions on a real variety as a sum of
squares has attracted a lot of attention from specialists in number theory, quadratic
forms, real algebra and real geometry; the problem goes back to the famous Hilbert’s
17th Problem for polynomial functions. The solution of that problem (see [Ar]) was
the starting point for the development of real methods in algebra and geometry. Such
development led to the theory of the real spectrum due to Coste–Roy (for more details
see [BCR]) which has been the suitable technique for an algebraic approach to many
problems in real geometry.

This tool has been proved fruitful to understand and solve Hilbert’s 17th Problem
for polynomial functions, Nash functions, analytic function germs at points and com-
pact sets, …, but it has fallen short to deal with global analytic functions in dimension
n ≥ 3 without compactness assumptions. Maybe this lack of a suitable machinery is
the main reason why the problem for general global analytic functions has been apart
from any substantial progress until now.
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As it is well known, the problem is whether or not:

H17. Every positive semidefinite analytic function f : R
n → R is a finite sum of

squares of meromorphic functions.

Let us mention the best result we can state today: A positive semidefinite global
analytic function whose zero set is discrete off a compact set is a finite sum of squares
of meromorphic functions ([BKS], [Rz], and [Jw2]; see also [ABR]). Such result dates
back to the 80s. On the other hand, note that in the analytic setting infinite convergent
sums have a meaning, which gives a new viewpoint on the problem (see [ABFR]).
Nevertheless, the definition of an infinite sum of squares of analytic functions, which
will be recalled later, must be done carefully to keep the analyticity of such sum. It is
clear that an infinite sum of squares, whatever it means, is positive semidefinite and
the classical Hilbert’s 17th Problem can be weakened to ask whether:

h17. Every positive semidefinite analytic function f : R
n → R is an infinite sum of

squares of meromorphic functions, that is, there exists a nonzero analytic function
g ∈ O(Rn) such that g2f is an infinite sum of squares of analytic functions.

This is also a qualitative question, and suggests the study of the finiteness question
for the field M(Rn) of meromorphic functions of R

n: Is every infinite sum of squares
in M(Rn) also a finite sum of squares? Obviously, H17 is equivalent to h17 plus
finiteness. Quite remarkably, finiteness is equivalent to the finiteness of the Pythago-
ras number pRn of the field M(Rn) of meromorphic functions on R

n (see [ABFR]).
We recall that pRn is either the least integer p such that every sum of squares in
M(Rn) can be written as a sum of p squares in M(Rn) or +∞ if such integer does
not exists.

Now, let us fix some terminology. Given a closed set Z ⊂ R
n and an analytic

function f : R
n → R we say that f is a sum of squares at Z if there exist an open

neighbourhood � ⊂ R
n of Z in R

n such that f |� is a (possible infinite) sum of
squares of meromorphic functions on �. One of the most relevant results in [ABFR]
is the following:

(•) To represent a positive semidefinite analytic function f as a sum of squares it
suffices to represent it at X = f −1(0).

In this work we go further and we search the obstructions for a positive semidefinite
analytic function f to have the following property:

(∗) To represent f as a sum of squares it suffices to represent its irreducible factors
at their respective zero sets.

The most satisfactory results hold for dimension 3 and, in fact, we will prove that (∗)

holds for R
3. Furthermore, notice that to represent as sum of squares each irreducible

factor at its zero set is much less than to represent f at its zero set.
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Of course, first of all we have to define carefully the irreducible factors of a real
analytic function on R

n. For that, it is crucial to introduce the irreducible factors
of a holomorphic function F : U → C on an open set U ⊂ C

n and to recall some
of their main properties. Throughout the paper holomorphic functions will refer to
the complex case and analytic functions to the real case. In both cases the notion of
irreducibility is very similar, however the behaviours are extremely different.

Given an open set � ⊂ R
n, we will say that an analytic function f ∈ O(�)

is irreducible if it cannot be written as the product of two analytic functions with
nonempty zero set. Analogously, a holomorphic function F ∈ H(U) on an open set
U ⊂ C

n of C
n is irreducible if it cannot be written as the product of two holomorphic

functions on U with nonempty zero set. We recall also that an analytic set X of U is
irreducible if it cannot be written as the union of two global analytic sets X1, X2 ⊂ X

both different from X.
First, we consider holomorphic functions. Here irreducibility behaves neatly. If

every locally principal sheaf of ideals on U is principal (which happens for instance
if H 2(U, Z) = 0) then there exists a bijection between the irreducible analytic sets of
U of codimension 1 and the principal prime ideals of the ring H(U) of holomorphic
functions on U .

Next, we turn to the real case. The situation for the irreducible functions of O(Rn)

is completely different and the behaviour of the zero set of an irreducible function
is unpredictable. The zero set of an irreducible function of O(Rn) can have any
dimension; for instance, if 2 ≤ k ≤ n the analytic function fk(x) = fk(x1, . . . , xn) =
x2

1 +· · ·+x2
k is irreducible in O(Rn) but its zero set has dimension n−k. Furthermore,

there exist irreducible analytic functions of O(Rn) with the same zero set but which
do not generate the same ideal of O(Rn). Take, for instance, f1(x) = x2

1 + x2
2 and

f2(x) = x2
1 + 4x2

2 , whose common zero set is {x1 = 0, x2 = 0}. Even more, as we
will see in Section 2, we can produce examples of real analytic functions which are
irreducible but whose zero set is reducible, and which can even have infinitely many
irreducible components.

Thus, one is led to define the irreducible factors of a real analytic function f

through the irreducible factors of a holomorphic extension F of f to a suitable open
neighbourhood U of R

n in C
n. As usual the uniqueness of the irreducible factors will

be up to multiplication by units of the respective ring, O(Rn) or H(U), that is, never
vanishing analytic or holomorphic functions.

The process to construct the irreducible factors of a real analytic function f will
be developed carefully in Section 2, but we can describe roughly the main steps.

(i) First, we consider a holomorphic extension F : U → C of f to a suitable open
neighbourhood U of R

n in C
n, invariant under conjugation, and decompose

S = F−1(0) as the union of its irreducible components {Si}i∈I . We show that
we can assume that Si ∩ R

n 
= ∅ for all i ∈ I .
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(ii) Next, for each Si we construct a holomorphic function Hi which generates the
ideal sheaf JSi

of Si . For those Si which are invariant under conjugation we
prove that the holomorphic function Hi can be chosen to restrict on R

n to a real
analytic function.

(iii) The holomorphic function germs {Hi,Rn}i∈� at R
n, which are unique, will be

called the irreducible factors of f .

Moreover, f ∈ O(Rn) is irreducible if either (1) f has one irreducible complex
factor, whose zero set germ at R

n is invariant under conjugation, or (2) two irreducible
complex factors whose respective zero set germs at R

n are conjugated. In case (1) F

is irreducible, and in case (2) F is reducible.
Given analytic functions g, f ∈ O(Rn), we say that g divides f (in O(Rn)) with

multiplicity k ≥ 1 if gk divides f but gk+1 does not. As it can be checked, taking
germs at any point of R

n at which both f and g vanish, if g divides f , there exist
an integer k ≥ 1 with the previous property. An irreducible factor h ∈ O(R) of an
analytic function f ∈ O(Rn) is special if the zero set germ at R

n of a holomorphic
extension of h is invariant under conjugation, it divides f with odd multiplicity and
1 ≤ dim h−1(0) ≤ n − 2.

In close relation to the irreducible factors of positive semidefinite analytic func-
tions we will prove in Section 2 the following decomposition result that will be crucial
for our purposes.

Lemma 1.1. Let f : R
n → R be a positive semidefinite analytic function. Then

there exist analytic functions f0, f1, f2, f3 : R
n → R such that f1, f2, f3 are positive

semidefinite, f = f 2
0 f1f2f3 and

(i) f −1
1 (0) is a discrete set (hence, by [BKS], f1 is a finite sum of squares of

meromorphic functions on R
n),

(ii) f2 is a sum of two squares of analytic functions on R
n, and

(iii) the irreducible factors of f3 are all special and divide f3 with multiplicity one.

In fact, we also see that the irreducible factors of f3 are the special irreducible
factors of f or just the special factors of f . Moreover, if n ≤ 2 we may take f3 ≡ 1
in Lemma 1.1. Hence, we get that f is a finite sum of squares of meromorphic
functions (this is of course well known: [BKS] and [Jw1]). Thus, in what follows we
may assume n ≥ 3.

Next, we recall the suitable definition of infinite sums of squares introduced in
[ABFR]:

Definition 1.2. Let � ⊂ R
n be an open set. An infinite sum of squares of analytic

functions on � is a series
∑

k≥1 f 2
k where all fk ∈ O(�), such that:
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(i) the fk’s have holomorphic extensions Fk’s, all defined on the same neighborhood
U of � in C

n, and

(ii) for every compact set L ⊂ U ,
∑

k≥1 supL |Fk|2 < +∞.

Accordingly, the infinite sum of squares
∑

k≥1 f 2
k defines well an analytic function

f on � = U ∩ R
n and we write f = ∑

k≥1 f 2
k ∈ O(�); of course, this trivially

includes finite sums. Hence, it makes sense to say that an element of the ring O(�)

is a sum of p squares in O(�), even for p = +∞. We recall that an analytic function
f : � → R is a sum of p ≤ +∞ squares (of meromorphic functions on �) if there is
g ∈ O(�) such that g2f is a sum of p squares of analytic functions on �. The zero
set {g = 0} is called the bad set of that representation as a sum of squares. The choice
of a suitable sum of squares representation will be a crucial matter and we will need
often to have a controlled bad set, that is, a bad set contained in the zero set {f = 0}.
Concerning the difference between arbitrary and controlled bad sets, we recall this

Proposition 1.3 ([ABFR, 4.1]). Let � ⊂ R
n be an open set and let f : � → R be

an analytic function which is a sum of p ≤ +∞ squares of meromorphic functions.
Then f is a sum of q ≤ 2np squares with controlled bad set. Moreover, on a smaller
neighborhood of {f = 0} we can assume q ≤ 2n−1p.

Our main result here is the following:

Theorem 1.4. Let f : R
n → R be a positive semidefinite analytic function and let

{hj }j∈J be the special irreducible factors of f . Assume that for each j ∈ J the
positive semidefinite analytic function hj is a (possibly infinite) sum of squares of
meromorphic functions at Xj = h−1

j (0). Let {Yi}i∈I be the family of the irreducible
components of the global analytic set X = ⋃

j∈J Xj . Suppose that one of the two
following conditions holds true:

(a) Yi ∩ Yk is a discrete set for i 
= k.

(b) Yi is a compact set for all i ∈ I .

Then f is a possibly infinite sum of squares of meromorphic functions on R
n with

controlled bad set.

The proof of the previous result goes along the same lines of the one of [ABFR,
1.5], but there are several aspects that go far beyond a mere updating of [ABFR, 1.5].
Moreover, one of the main difficulties for the proof of Theorem 1.4 and the reason
why the hypotheses (a) and/or (b) appear in its statement is that it cannot exist a
general formula to multiply infinitely many sums of squares; even, if these sums of
squares are finite.

On the other hand, if n = 3, then the condition (a) in the statement of Theorem 1.4
is always satisfied, since dim X = 1, and we get the following relevant consequence:
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(∗∗) To represent a positive semidefinite analytic function f : R
3 → R as a sum of

squares it is enough to represent its special factors at their zero sets.

Thus, the problem h17 for R
3 is reduced to study if every special positive semidefi-

nite irreducible analytic function on R
3 is a sum of squares of meromorphic functions.

Moreover, from Theorem 1.4 (b) and [ABR, VIII.5.8] one gets almost straightfor-
wardly the following:

Corollary 1.5. Let f : R
n → R be a positive semidefinite analytic function and let

{hj }j∈J be its special factors. Suppose that for all j ∈ J , the set Xj = h−1
j (0) is

compact. Then f is a (possibly infinite) sum of squares of meromorphic functions
in R

n.

The previous result points out that the obstruction to be an infinite sum of squares
concentrates on the special irreducible factors whose zero set is not compact.

Concerning finite sums of squares the situation is quite more delicate and we only
have some partial results.

Theorem 1.6. Let r ≥ 0 be an integer and let f : R
n → R be a positive semidefinite

analytic function. Let {hk}k∈K be the special factors of f and let Xk = h−1
k (0).

Suppose that each proper intersection Xk ∩ X� is a discrete set. If hk is a sum of 2r

squares at Xk for all k ∈ K , then f is a sum of 2r+n squares.

In fact, the previous result can be improved if we find a suitable distribution of
the special factors. Namely,

Corollary 1.7. Let r ≥ 0 be an integer and let f : R
n → R be a positive semidefinite

analytic function. Let {hk}k∈K be the special factors of f and let Xk = h−1
k (0).

Suppose that there exists a partition P = {A1, . . . , Am} of K such that each proper
intersection Xk ∩ X�, where k, � belong to the same Aj , is a discrete set. If hk is a
sum of 2r squares at Xk for all k ∈ K , then f is a sum of 2r+n squares.

As we will show in Section 3, this more technical statement allows us to represent
as finite sum of squares certain positive semidefinite analytic functions to which
Theorem 1.6 does not apply. Although the situation described in Corollary 1.7 is
quite general for positive semidefinite functions on R

3, we also construct in Section 3
two examples of positive semidefinite analytic functions on R

3 to which we can apply
Theorem 1.4 (hence, they are infinite sums of squares) but to which we cannot even
apply our best result Corollary 1.7 about finite sum of squares:

• The first function f has the following properties: (1) the zero sets of all its
special factors, which are infinitely many, have all infinitely many irreducible
components; (2) its special factors are sums of four squares in O(R3); and
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(3) it has a holomorphic extension F to an open neighbourhood U of R
3 in C

3

which is the uniform limit of a sequence {Fk}k of sums of four squares of holo-
morphic functions on U whose restrictions to R

3 are real analytic functions.1

However, any two of the special factors of this function share infinitely many
irreducible components, which makes Corollary 1.7 useless.

• The second function f has the following properties: (1) the zero sets of all
its special factors, which are infinitely many, have all finitely many irreducible
components; (2) its special factors are sums of four squares in O(R3); (3) each
irreducible component of the zero set of f is contained in no more than two of
the zero sets of its special factors; and (4) it is the uniform limit of sums of four
squares in O(R3) in the sense of the previous example.

Nevertheless, there does not exist an integer s such that the number of irreducible
components of the zero set of each special factor is bounded by s. Again, as we
will see later, Corollary 1.7 is useless here.

For the moment, we do not know whether or not the previous examples are finite
sums of squares of meromorphic functions on R

3. Both examples have been con-
structed with the purpose of having a measure of the limitations of Corollary 1.7. This
is done avoiding the hypothesis of Corollary 1.7 about the distribution of the zero
sets of the special factors, while keeping all the other hypotheses that seem essential
to have a finite sum. In fact, the second example avoids the hypothesis about the
distribution of the zero sets in a quite subtle way.

The relevance of such examples arises from the way and the purpose for what
they have been constructed. In fact, they seem to be at the border between finite and
infinite sums of squares. Thus, they are suitable candidates to be counterexamples
to Hilbert’s 17th Problem for global analytic functions. On the other hand, if one is
able to prove that some or both of them are finite sums of squares, it seems plausible
to find relevant information to prove some version of Theorem 1.4 for finite sums of
squares.

The paper is organized as follows. In Section 2 we prove some key results concern-
ing the definition and computation of irreducible factors of a real analytic function and
the decomposition of positive semidefinite analytic functions described in Lemma 1.1.
Section 3 is devoted to the introduction and development of the examples previously
mentioned. Finally, Theorems 1.4 and 1.6, are proved in Section 4.

The author would like to thank Prof. J. M. Ruiz for friendly helpful discussions
during the preparation of this work.

1As it is well known, the best way to guarantee the analyticity of the uniform limit of a sequence of real
analytic functions on R

n is to consider only sequences of such functions which have holomorphic extensions to
a common open neighbourhood of R

n in C
n.
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2. Irreducible factors

We gather here some notations and technical lemmas for later purposes. Although
our problem concerns real analytic functions, we will of course use some complex
analysis. For holomorphic functions we refer the reader to the classical [GuRo].

2.1 General terminology. Denote the coordinates in C
n by z = (z1, . . . , zn),

with zi = xi + √−1yi , where xi = Re(zi) and yi = Im(zi) are respectively the
real and the imaginary parts of zi . Consider the usual conjugation σ : C

n → C
n,

z �→ z = (z1, . . . , zn), whose fixed points are R
n. A subset A ⊂ C

n is (σ -) invariant
if σ(A) = A; obviously, A ∩ σ(A) is the biggest invariant subset of A. Thus, we
see real spaces as subsets of complex spaces. The notations Int and Cl stand for
topological interiors and closures, respectively.

Let U ⊂ C
n be an invariant open set and let F : U → C be a holomorphic

function. We say that F is (σ -) invariant if F(z) = F(z). This implies that F

restricts to a real analytic function on U ∩ R
n. In general, we denote by

�(F ) : U → C, z �→ F(z) + F(z)

2
,

and

�(F ) : U → C, z �→ F(z) − F(z)

2
√−1

,

the real and the imaginary parts of F , which satisfy F = �(F ) + √−1 �(F ). Note
that both are invariant holomorphic functions.

Given a closed set Z ⊂ C
n, germs (of sets or of holomorphic functions) at Z are

defined exactly as germs at a point, through neighborhoods of Z in C
n; we will denote

by FZ the germ at Z of a holomorphic function F defined in some neighborhood of Z.
For instance, if F : U → C is an invariant holomorphic function such that R

n ⊂ U

and Z = R
n, then the germ FZ is the same as the real analytic function f = F |Rn .

In [ABFR, 2.3] we showed how to extend a convergent sum of squares of holo-
morphic functions modulo another. Here such result will be again a powerful tool
and we recall the precise statement for the sake of the reader.

Proposition 2.2. Let U be an invariant open Stein neighborhood of R
n in C

n and
let � : U → C be an invariant holomorphic function. Let V be an open invariant
neighborhood of the connected components of �−1(0) that meet R

n, and suppose that
V does not meet the other connected components of �−1(0). Let Ck : V → C be a
family of invariant holomorphic functions such that

∑
k supL |Ck|2 < +∞ for every

compact set L ⊂ V . Then, there exist invariant holomorphic functions Ak : U → C,
such that

∑
k supK |Ak|2 < +∞ for every compact set K ⊂ U and �|V divides all

the differences Ak|V − Ck .
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2.3 Complex irreducible factors of a real analytic function. Let f : R
n → R be

an analytic function. We define the irreducible complex factors of f as follows.
Let F : U0 → R be a holomorphic extension of f to a small enough open neigh-

borhood U0 of R
n in C

n. By [WBh, 6. Proposition 9], there exists a unique locally
finite family of irreducible germs {Si}i≥1 at R

n such that Si 
⊂ Sj if i 
= j and
F−1(0)Rn = ⋃

i∈I Si . By [WBh, 6. Prop. 8, Cor. 2], for each i ∈ I there exists an
open neighborhood Ui of R

n in C
n and an irreducible analytic set Ti in Ui such that

Ti,Rn = Si . Shrinking the open sets Ui (if necessary), we may assume that the family
{Ti}i∈I is locally finite in C

n. In fact, we can take the Ui’s arbitrarily small. Consider
the open set in C

n:

U =
(
C

n \
⋃
j≥1

ClCn(Tj )
)

∪
⋃
j≥1

(
Uj \

⋃
i 
=j

(ClCn(Ti) \ Ui)
)
.

A straightforward computation shows that R
n ⊂ U and that Ti ∩ U is closed in U

for all i ∈ I . Hence, for each i ∈ I there exists an analytic set T ′
i ⊂ Ti in U , which

for simplicity we denote again by Ti , such that Ti,Rn = Si . Let U ⊂ U be an open
invariant Stein neighborhood of R

n in C
n such that R

n is a deformation retract of U
([Ca]). Denote again by Ti the intersection Ti ∩U. Taking the connected component
of Ti that intersects R

n instead of Ti we may also assume that Ti is irreducible.
Fix i ∈ I . Since the dim Ti = n − 1, for each z ∈ Ti there exists a holomor-

phic function germ hi,z ∈ O(Cn
z ) that generates the ideal of the analytic germ Ti,z.

Consider the subsheaf J(i) of the structure sheaf OU defined by

J(i)
z =

{
hi,zO(Cn

z ) if z ∈ Ti,

O(Cn
z ) if z 
∈ Ti.

Note that J(i) is a locally principal coherent ideal sheaf. Hence, it defines a cocycle
in H 1(U, O∗

C
). Since U is a Stein manifold, this group is isomorphic to H 2(U, Z),

which is 0 since R
n is a deformation retract of U. Hence, J(i) is in fact a principal

ideal sheaf, say generated by a holomorphic function Hi : U → C. We also have, by
the definition of J(i), that H−1

i (0) = Ti and that hi,zO(Cn)z = Hi,zO(Cn)z for all
z ∈ Ti . Thus, the germ Si = Ti,Rn is determined by the holomorphic function Hi .
Moreover, since F−1(0) = ⋃

i∈I Ti , each Hi divides F .
Furthermore, since the germs Si are uniquely determined by F and the function

germ at R
n of each Hi is uniquely determined by Si , the holomorphic function germs

Hi,Rn are uniquely determined by f ≡ FRn . Thus, we will say that {Hi,Rn} are the
(complex) irreducible factors of f .

Next we claim: If Si is invariant, we may assume that Hi is also invariant.
Indeed, since Si is invariant, the function Hi � σ has the same properties as Hi .

Hence, there exists a holomorphic function Ai : U → C not vanishing on U such



76 J. F. Fernando CMH

that Hi � σ = HiAi . Thus, we have that

Hi = Hi � σ Ai � σ = HiAiAi � σ

and therefore AiAi � σ = 1.
Now, let Bi : U → C be a holomorphic function such that B2

i = Ai and
BiBi � σ = 1. Indeed, (BiBi � σ)2 = AiAi � σ = 1; hence, BiBi � σ = ±1.
Since the function BiBi � σ restricts on R

n to a sum of two squares in O(Rn), we
deduce that BiBi � σ = 1.

Then H ′
i = HiBi : U → C is invariant:

H ′
i � σ = Hi � σ Bi � σ = Hi � σ Bi � σ

2
Bi = Hi � σ Ai � σBi = HiBi = H ′

i .

Moreover, it is clear that H ′
i satisfies the same properties as Hi with respect to the

germ Si . To simplify notations we denote again H ′
i by Hi . Recall that, Hi being

invariant, its restriction to R
n is a real analytic function.

Definitions 2.4. (a) We say that Hi,Rn is a special irreducible (complex) factor of f

or just a special factor of f if the germ of H−1
i (0) at R

n is invariant, the dimension d

of the real analytic set H−1
i (0) ∩ R

n satisfies the inequalities 1 ≤ d ≤ n − 2 (which
for n = 3 gives d = 1) and Hi divides F with odd multiplicity. Moreover, since
H−1

i (0)∩R
n has dimension ≤ n− 2, we may also assume that the special factors Hi

of f are invariant and that hi = Hi,Rn is a real positive semidefinite analytic function.
(b) If f has only one irreducible (complex) factor and it is special, we say that f

is a special analytic function.

We recall that a global analytic set (in an open set � of R
n) is irreducible if it

cannot be written as the union of two global analytic sets different from itself. By
[WBh, §8. Prop. 11] any global analytic set X in an open set � of R

n can be written as
the union of a unique irredundant locally finite family of irreducible global analytic
sets Xi with X = ⋃

i Xi .

Examples 2.5. (a) f (x, y, z) = (x2 + y2)2z2 + x6 + y6 defines a special analytic
function whose real zero set is {x = 0, y = 0}, which is irreducible.

(b) f (x, y, z) = x4y2 + y4z2 + z4x2 − 3x2y2z2 (Motzkin’s polynomial) defines
a special analytic function whose real zero set is {x4y2 = y4z2 = z4x2}, that is,

{x = 0, y = 0} ∪ {x = 0, z = 0} ∪ {y = 0, z = 0}
∪ {y = ±x, z = ±x} ∪ {y = ±x, z = ∓x},

which is reducible.

To introduce more exotic examples we need the following result:
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Lemma 2.6. The homogeneous polynomial F(x, y, z) = (z + ax)2(z + by)2 +
z4 + c2x2y2 ∈ R[x, y, z] is irreducible in C[x, y, z] for all a, b, c ∈ R such that
a, b, c 
= 0, c2 
= a2b2.

Proof. First, note that the zero set of F in R
3 is the union of the two lines x = 0, z = 0

and y = 0, z = 0. Next, we write

F = Ax2 + 2azB2x + z2C,

where

A = a2z2 + 2a2byz + (a2b2 + c2)y2

= (az + aby + √−1 cy)(az + aby − √−1 cy),

B = z + by,

C = (z + by)2 + z2 = (z + by + √−1 z)(z + by − √−1 z).

Let us show now that if a, b, c, a2b2 − c2 
= 0, then F is irreducible. Suppose that
F is reducible.

First, since gcd(A, zB, z2C) = 1 (because gcd(B, C) = 1 and z does not di-
vide A) we have that F cannot be written as F = G1G2, where G1 ∈ C[x, y, z] is a
polynomial of degree 0 with respect to x. Next, we see that F cannot be written as
the product of two linear real factors with respect to x, namely,

F = (α1x + β1)(α2x + β2)

where αi, βi ∈ R[y, z]. If this were the case, the set {α1x + β1 = 0} ∩ R
3, which

has dimension 2, would be a subset of {F = 0} ∩ R
3, which has dimension 1, a

contradiction.
Thus, if F is reducible, it has two conjugated roots in C(y, z), namely,

−azB2 ± z
√

a2B4 − AC

A
.

Hence,
√

a2B4 − AC ∈ √−1R(y, z) and, in fact, since R[y, z] is a normal domain,
we have that

√
AC − a2B4 ∈ R[y, z]. Therefore, AC − a2B4 = H 2, where H ∈

R[y, z] is a quadratic form. Thus, AC = a2B4 + H 2 and looking at the factors of A

and C we essentially have the following possibilities:

(i) C divides aB2 + iH . Since C ∈ R[y, z], we have that C divides B2, a contra-
diction.
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(ii) E1 = (az + aby + √−1 cy)(z + by + √−1 z) divides aB2 + iH , that is,
aB2 + iH = ηE1 for some η ∈ C. Then, there exists λ, μ ∈ R such that

λ(az2 + (2ab − c)yz + b2ay2) + μ(az2 + (ab + c)yz + cby2)

= aB2 = a(z + by)2 = az2 + 2abyz + ab2y.

Thus, λ + μ = 1, λ(2ab − c) + μ(ab + c) = 2ab and λab2 + μcb = ab2.
Therefore,

λ = 1 − μ, μ(2c − ab) = c, bμ(c − ab) = 0.

Hence, b, c being nonzero, we deduce that c = ab, a contradiction.

(iii) E2 = (az + aby + √−1 cy)(z + by − √−1 z) divides aB2 + iH . Proceeding
as in the previous case, we deduce that c = −ab, a contradiction.

Whence, we conclude that F is irreducible in C[x, y, z]. �

Example 2.7. Let H : C → C be an invariant holomorphic function such that
H−1(0) = {k ∈ Z : k ≥ 0} and H has a zero of order one at each point of
its zero set. Such a function exists by the Weierstrass Factorization Theorem. Let
ak = H ′(k) 
= 0 for all integer k ≥ 0 and let M > 0 be a real number such that

M2 
= 1

a2
ka

2
�

for all couple of integers k, � ≥ 0. Let

F(x, y, z) = (z + sin(πx))2(z + sin(πy))2 + z4 + M2H(x)2H(y)2,

which is an invariant holomorphic function on C
3. Let us show that f = F |R3 is a

special analytic function whose real zero set is the net

S =
⋃
k≥0

{x = k, z = 0} ∪
⋃
�≥0

{y = �, z = 0}

which has infinitely many irreducible components.

Proof. Indeed, a straightforward computation shows that {F = 0} ∩ R
n = S. To

show that f is a special analytic function we have to check that the restrictions of F

to small enough invariant neighbourhoods U of R
n in C

n cannot be written as the
product of two holomorphic functions G1, G2 : U → C such that G−1

i (0)∩ R
n 
= ∅.

First, we show some crucial properties of F to prove the irreducibility of f .

(a) For each pair of non-negative integers k, � ≥ 0 consider the point pk,� =
(k, �, 0). Then the function germs Fpk,�

are irreducible in the ring OC3,pk,�
for

all k, �. This is because their initial forms at the points pk,� are irreducible by
Lemma 2.6.
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(b) For each integer k ≥ 0 and each λ ∈ R \ Z consider the point pk,λ = (k, λ, 0).
Then, for all k, λ as before the function germs Fpk,λ

are the product in OC3,pk,λ

of two irreducible factors of order 1 that vanish at the line germ x = k, z = 0.

Indeed, after translating the point pk,λ to the origin, the initial form of Fpk,λ
is

(z+ax)2b2 + c2x2 for some real number a, b, c > 0. Thus, by classification of
singularities, Fpk,λ

is analytically equivalent either to x2 + z2 or to a polynomial
of the type x2 + z2 + εyk where k ≥ 3 and ε = ±1. Since the zero set of Fpk,λ

is the line germ x = k, z = 0, we conclude that Fpk,λ
is analytically equivalent

to x2 + z2. Hence

Fpk,λ
= F 2

1 + F 2
2 = (F1 + √−1F2)(F1 − √−1F2),

where the factors F1 + √−1F2, F1 − √−1F2 have order 1, are irreducible and
vanish at the line germ x = k, z = 0.

Suppose now that there exist an open invariant neighbourhood U of R
n in C

n

and two holomorphic functions G1, G2 : U → C such that G−1
i (0) ∩ R

n 
= ∅ and
F = G1G2. Then, for each p ∈ S = F−1(0) ∩ R

n we have that Fp = G1,pG2,p.
Since the line x = 0, z = 0 is irreducible and it is contained in F = 0, we may
assume that it is also contained in G1 = 0. As the germ Fp is irreducible for the points
p = p0,� = (0, �, 0), we have that all the lines y = �, z = 0 are contained in G1 = 0.
Furthermore, since the germ Fp is irreducible for the points p = pk,0 = (k, 0, 0), we
have that all the lines x = k, z = 0 are contained in G1 = 0. Hence, S is a subset of
G1 = 0. Again, since the germ Fp is irreducible for the points p = pk,� = (k, �, 0),
we have that no line of S can be contained in G2 = 0. Hence, the lines being
irreducible, we deduce that G−1

2 (0) ∩ R
n has to be a discrete set contained in S but

which does not intersect the set {(k, �, 0) : k, � ≥ 0}.
Next, we take p ∈ G−1

2 (0)∩R
n; we may assume p = (k, λ, 0) for certain integer

k ≥ 0 and certain λ ∈ R which is not a non negative integer. Since Fp = G1,pG2,p is a
product of two irreducible factors of order 1 that vanish at the line germ x = k, z = 0,
we conclude that G2,p must vanish at the line germ x = k, z = 0, a contradiction.

Thus, f is a special analytic function. �

2.8 Decomposition of real analytic functions. Now we proceed to prove the decom-
position result Lemma 1.1 announced in the introduction. We first recall a well-known
result to get rid of the squares.

Lemma 2.9. Let f : R
n → R be a positive semidefinite analytic function. Then we

can factorize f = f 2
0 f ′, where f0, f ′ are analytic functions on R

n such that f ′ is
squares free in O(Rn) and its zero set has codimension ≥ 2.

Proof. Firstly, at each zero x of f , we write fx = ζ 2
x ηx ∈ ORn,x , ηx without multiple

factors; this factorization is unique up to units. The germ {ηx = 0} has codimen-
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sion ≥ 2, because otherwise some irreducible factor ξx of ηx would be real, and fx

would change sign at x.
Now, the ζx’s generate a locally principal coherent sheaf J ⊂ ORn . Since

H 1(Rn, Z2) = 0, J is globally generated by a global analytic function f0 : R
n → R.

An easy computation shows that f 2
0 divides f , and we have f = f 2

0 f ′. Each germ
f ′

x coincides with ηx up to a unit, hence its zero set has codimension ≥ 2, f ′
x does

not change sign and it is squares free. �

Now we are ready to prove Lemma 1.1:

Proof of Lemma 1.1. By Lemma 2.9 there exist analytic functions f0, f
′ : R

n → R

such that f ′ is squares free, dim{f ′ = 0} ≤ n − 2 and f = f 2
0 f ′. Hence, all the

special factors of f ′ divide it with multiplicity one. By 2.3, there exist:

• An open invariant Stein neighborhood U of R
n in C

n such that R
n is a defor-

mation retract of U,

• A holomorphic extension F ′ of f ′ to U, and

• Holomorphic functions Hj : U → C, j ∈ J , such that {Sj = H−1
j (0)Rn}j∈J are

the (complex) irreducible components of the germ F−1(0)Rn and Hj generates
the ideal of H−1

j (0). Furthermore, if Sj is invariant we may assume that Hj is
also invariant, hence hj = Hj |Rn defines an analytic function on R

n.

Let J1 = {j ∈ J : dim(Sj ∩ R
n) = 0, Sj = σ(Sj )}, J2 = {j ∈ J \ J1 :

Sj 
= σ(Sj )} and J3 = J \ (J1 ∪ J2). Consider the bijection σ̂ : J2 → J2 defined by
Sσ̂ (i) = σ(Si). This bijection defines on J2 (together with the identity) an equivalence
relation. For each equivalence class α we choose a representative j ∈ α and consider
the set J ′

2 ⊂ J2 of such representatives. We have J ′
2∩σ̂ (J ′

2) = ∅ and J ′
2∪σ̂ (J ′

2) = J2.
Next, let D1 = ⋃

j∈J1
Sj ∩ R

n, which is a discrete set. Thus, we can define the
following sheaf

Jx =
{∏

j∈J1,x∈Sj
hj · ORn,x if x ∈ D1,

ORn,x if x 
∈ D1.

This sheaf J is a locally principal coherent ideal sheaf whose zero set is D1. Since
the group H 1(Rn, Z2) = 0, all locally principal sheaves are principal, and J has a
global generator f1. Since D1 has dimension 0 we may assume that f1 is positive
semidefinite on R

n. By the definition of J we have that f1 divides f ′.
Let Z = ⋃

j∈J ′
2
H−1

j (0) which is an analytic subset of U. Consider the coherent
sheaf of ideals � defined on U by

�x =
{∏

j∈J ′
2,x∈Sj

Hj OCn,x if x ∈ Z,

OCn,x if x 
∈ Z.
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As before (in 2.3), the locally principal coherent sheaf J is globally principal, say
generated by a holomorphic function � : U → C, whose zero set is �−1(0) = Z.
Moreover, by the definition of � we have that � divides F ′, and since F ′ is invariant,
also the holomorphic function � � σ divides F ′. By the properties of the set J ′

2 we have
that � and � � σ do not have irreducible common factors in the ring H(U) whose zero
set intersect R

n. Hence, their product F2 = � · � � σ divides F ′ in a perhaps smaller
neighbourhood of R

n in C
n. Moreover, F2 is an invariant holomorphic function such

that f2 = F2|Rn is a sum of two squares of analytic functions on R
n.

Next, since f1, f2 are positive semidefinite analytic functions that divide f and
which do not have common irreducible factors, we conclude that f3 = f ′/(f1f2) is
a positive semidefinite analytic function on R

n. Moreover, a straightforward compu-
tation shows that the irreducible complex factors of f3 are Hj , j ∈ J3, which are all
special, as wanted. �

Remark 2.10 Since f1 and f2 are finite sums of squares of meromorphic function on
R

n, to prove that f is a finite or convergent sum of squares of meromorphic functions
on R

n it is enough to check that for f3. That is, we may always assume that all the
complex irreducible factors of f are special and divide f with multiplicity one.

3. Examples

In this section we construct two examples of positive semidefinite analytic functions
on R

3 which are infinite sums of squares of meromorphic functions on R
3, but for

which we have not been able to decide whether or not they are finite sums of squares
of meromorphic functions. We also produce an example of a positive semidefinite
analytic function to which we cannot apply Theorem 1.6 but to which we can apply
Corollary 1.7; hence, it is a finite sum of squares. Let us begin with such example.

Example 3.1. Let f0 : R
3 → R be the analytic function given by

f0(x, y, z) = (z + x)2(z + y)2 + z4 + 4x2y2,

which by Lemma 2.6 is a special analytic function. Note that f is a sum of three
squares of analytic functions.

For each integer � ≥ 1, let f�(x, y, z) = f0(x − q�, y − (� − q�), z) where
q� = [

�
2

]
. The zero set of f� is

X� = {x = q�, z = 0} ∪ {y = � − q�, z = 0}.
Since the family {X�}� is locally finite, the set X = ⋃

� X� is closed in R
3. Hence,
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the presheaf

Jx =
⎧⎨
⎩
∏

�,x∈X�
f� · O(R3)x if x ∈ X,

O(R3)x if x 
∈ X

is a subsheaf of the structure sheaf OR3 . J is a locally principal coherent sheaf of
ideals whose zero set is X. Since H 1(R3, Z2) = 0, all locally principal sheaves are
principal, and J has a global generator f . Note that since X has codimension ≥ 2
we may assume that f is positive semidefinite on R

3. Clearly, the special factors of
f are the functions f�, � ≥ 1.

Next, note that

X� ∩ X�+1 =
⎧⎨
⎩

{x = q�, z = 0} if � is even,

{y = � − q�, z = 0} if � is odd,

which is not a discrete set for all � ≥ 1. Thus, we cannot apply Theorem 1.6 to f .
However, since Xi ∩ Xj is discrete if i ≡ j mod 2, we can apply Corollary 1.7
with the partition {A1, A2}, where A1 is the set of the non negative odd numbers and
A2 the set of the non negative even ones. Thus, we conclude that f is a sum of 25

squares.

Now let us construct the examples we have announced in the introduction which
are infinite sums of squares but to which we cannot apply Corollary 1.7.

Examples 3.2. (a) Let f0 : R
3 → R be the special analytic function described in

Example 2.7, which is a sum of three squares in O(R3). For each integer � ≥ 1
consider the analytic function f�(x, y, z) = f0(x − �, y − �, z), whose zero set is

X� =
⋃
k≥�

{x = k, z = 0} ∪
⋃
k≥�

{y = k, z = 0}

Since the family {X�}� is locally finite, the set X = ⋃
� X� is closed in R

3, and as in
Example 3.1 there exists a positive semidefinite analytic function f : R

n → R whose
special factors are the functions f�, � ≥ 1 (and each one divides f with multiplicity
one). Thus, by Theorem 1.4, f is a convergent sum of squares of analytic functions
on R

3.
Moreover, we claim: There exist an open invariant neighbourhood U of R

3 in
C

3, a holomorphic extension F of f to U , and a sequence of invariant holomorphic
functions {Gk}k on U which converges uniformly to F in the compact sets of U .

Indeed, let U0 be an open invariant neighbourhood of R
3 in C

3 to which we can
extend holomorphically f . We denote such extension by F . Let {Kk}k≥1 be an
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exhaustion by compact sets of U0, that is, U0 = ⋃
k≥1 Kk and Kk ⊂ Int(Kk+1) for

all k ≥ 1. We may assume that (1, 1, 0) ∈ K1. For each k ≥ 1 we set

Jk = {� ≥ 1 : F−1
� (0) ∩ Kk 
= ∅}.

We have that 1 ∈ Jk and Jk ⊂ Jk+1 for all k ≥ 1. We write

Hk =
∏
�∈Jk

Fk,

which is a finite product of sums of 4 squares of analytic functions; hence, Hk is a
sum of 4 squares itself. For each k ≥ 1, the analytic function �k = F

Hk
does not

vanish on the compact set Kk . Let

εk = 1

2k
· 1

supKk
|Hk| + 1

· infKk
|�k|

infKk
|�k| + 1

> 0

and Bk = √
�k + εk for each k ≥ 1. As one can check, �k + εk does not vanish on

Kk ∪R
n. Hence, Bk is holomorphic on an open set Uk ⊂ C

n which contains Kk ∪R
3.

Using that {Kk}k is an exhaustion of U0, one can verify that there exists an open
neighbourhood U of R

n in C
n contained in

⋂
k≥1 Uk . The functions

Gk = B2
k Hk

are sum of four squares of invariant holomorphic functions on U . Moreover, a
straightforward computation shows that the sequence {Gk}k converges to F uniformly
in the compact sets of U .

However, we do not know whether or not f is a finite sum of squares of mero-
morphic functions on R

3. Note that the lines {x = �, z = 0} and {y = �, z = 0}
belong exactly to the zero set of f1, . . . , f� for all � ≥ 1. Hence, we cannot apply
Corollary 1.7 to this example.

(b) The description of the following example requires an initial preparation. Con-
sider the following distribution of the natural numbers into an infinite array

↙ ↙ ↙ ↙ ↙ ↙
1 2 4 7 11 16 · · ·
3 5 8 12 17 · · ·
6 9 13 18 · · ·

10 14 19 · · ·
15 20 · · ·
21 · · ·
...

. . .
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and the finite sets Sk = {ak + 1, . . . , ak + k} where ak = 1
2k(k − 1), k ≥ 1. The set

Sk corresponds to the oblique line {α1k, α2,k−2, . . . , αk,1} of the previous array.
For each k ≥ 1 we also construct (inductively) a set

Tk = {
bkj : k − [

k
2

] ≤ j ≤ k − 1
}

such that bkj ∈ Sj \⋃k−1
�=1 T�. We take T1 = ∅ and T2 = {1}. By the definition of the

sets Tk , for any given j , we have Sj ∩ Tk 
= ∅ if and only if k − [
k
2

] ≤ j ≤ k − 1.
Thus, j + 1 ≤ k ≤ 2j , and this means that Sj intersects exactly j of the Tk’s, which
are Tj+1, . . . , T2j . Since the set Sj has j different elements then the Tk’s can be
constructed with the desired conditions. We denote Ck = Sk ∪ Tk .

Next, for each k ≥ 1 we consider the holomorphic function

Fk = (sin(πx) + z)2(sin(πy) + z)2 + z4 + M2(x − k)2
∏
�∈Ck

(y − �)2,

where M > 0 is a positive real number such that M2 ·∏�∈Ck,� 
=j (j − �)2 
= 1 for
all j ∈ Ck . We have that the real analytic function fk = Fk|Rn is a special analytic
function whose real zero set is

Xk = {x = k, z = 0} ∪
⋃
�∈Ck

{y = �, z = 0}.

One can check, proceeding similarly to Example 2.7, that f is a special factor.
Once again, the family {Xk}k is locally finite; hence, the set X = ⋃

k Xk is closed
in R

3 and there exists a positive semidefinite analytic function f : R
n → R whose

special factors are the functions fk , k ≥ 1. Hence, by Theorem 1.4, f is a convergent
sum of squares of analytic functions on R

3.
Proceeding as in the previous example (a), one can produce a sequence {g�}�≥1

of sums of four squares of analytic functions on R
3 which converges uniformly to f

(in the sense described in the introduction).
However, we have do not know whether or not f is a finite sum of squares of

meromorphic functions on R
3. Note that the lines {y = �, z = 0} belong exactly

to the zero set of two fk’s, and the lines {x = �, z = 0} belong exactly to the zero
set of f�. Moreover, for all k ≥ 1 the zero set Xk has finitely many irreducible
components.

Let us explain why we cannot apply Corollary 1.7 to this example. For, we have
to check that there does not exist a finite partition P = {A1, . . . , Ar} of N such that
for each j = 1, . . . , r and each pair k, � ∈ Aj the intersection Xk ∩ X� is a discrete
set. Let � ≥ r be an integer. By the definition of the sets Xk , it follows that X� shares
an irreducible component of dimension 1 with X�+1, . . . , X2�. This means that the
integers �, � + 1, . . . , 2� should belong to different elements of the partition P . But
this is impossible because the partition has r < � + 1 elements.
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A natural question is if it is possible to go a little bit further determining whether
or not there is a positive semidefinite analytic function f : R

3 → R to which we
cannot apply Corollary 1.7 but which satisfy the following conditions:

(i) The function f has infinitely many special factors whose zero sets have all
finitely many irreducible components.

(ii) The special factors of f are all sums of p squares in O(R3) for certain integer
p ≥ 1.

(iii) f is the uniform limit of a convergent sequence of analytic functions which are
sum of q squares in O(R3) for certain integer q ≥ 1.

(iv) There exists and integer r ≥ 1 such that the number of irreducible components
of a special factor of f is ≤ r .

(v) Each irreducible component of the zero set of f belongs to at most the zero sets
of s of the special factors of f for the same fixed integer s ≥ 1.

Let f : R
3 → R be a positive semidefinite analytic function satisfying the con-

ditions (i) to (v) above. Let {fk}k≥1 be the special factors of f , Xk = f −1
k (0)

and {Y�}�≥1 the irreducible components of f −1(0) = ⋃
k≥1 Xk . Consider the set

S = Sf = {(k, �) : Y� ⊂ Xk} ⊂ N
2 and the projections πi : S → N, (x1, x2) → xi

for i = 1, 2. The set S has the following properties:

(1) πi(S) = N for i = 1, 2.

(2) The fibers π−1
1 (k) and π−1

2 (�) have respectively less than or equal to s and r

points for all k, � ∈ N.

Conversely, for each set S ⊂ N
2 satisfying the properties (1) and (2) above there

exists a positive semidefinite analytic function f : R
3 → R such that Sf = S. To

check that, it is enough to proceed as in the example 3.2 (b).
Thus, the existence of an analytic function f : R

3 → R satisfying (i) to (v) above
to which we cannot apply Corollary 1.7 is equivalent to the existence of a set S ⊂ N

2

satisfying the conditions (1) and (2) above and the following one:

(3) There is no finite partitionP = {A1, . . . , Am}of N such that for all j = 1, . . . , m

and all α, β ∈ Aj , we have that π2(π
−1
1 (α)) ∩ π2(π

−1
1 (β)) = ∅.

As far as we known, after consulting several specialists in the matter, this is an
open problem which seems to be difficult.

4. Proofs of the main results

The purpose of this section is to prove Theorem 1.4 and Theorem 1.6 announced in
the introduction. Before that we need some preliminary results.
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Proposition 4.1. Let U ⊂ C
n be an open set and let Fk, Gk : U → C be in-

variant holomorphic functions such that the series
∑

k≥1 F 2
k ,
∑

k≥1 G2
k converge

in the sense of Definition 1.2 (ii), that is,
∑

k≥1 supK |F 2
k |, ∑k≥1 supK |G2

k| < +∞
for all compact sets K ⊂ U . Then the series

∑
j,k≥1 F 2

j G2
k converges on U to∑

j≥1 F 2
j ·∑k≥1 G2

k in the sense of Definition 1.2 (ii).

The proof of the proposition follows straightforwardly from the following result
whose proof is a standard exercise of the theory of convergent series that we do not
include here.

Lemma 4.2. Let {ai}i∈N, {bi}i∈N be two sequences of complex numbers such
that the series

∑
i≥1 ai,

∑
i≥1 bi converge to complex numbers a, b and the series∑

i≥1 |ai |,∑i≥1 |bi | converge to non-negative real numbers a∗, b∗. Then the series∑
i,j≥1 aibj converges to ab, that is, for all ε > 0 there exists a finite subset Iε ⊂ N

2

such that if I ⊂ N
2 is a finite subset that contains Iε then

∣∣∑
(i,j)∈I aibj − ab

∣∣ < ε.
Moreover, the series

∑
i,j≥1 |aibj | converges to a∗b∗.

Lemma 4.3. Let f, f ′ : R
n → R be two positive semidefinite analytic functions such

that f −1(0) = f ′−1
(0) = S. Suppose that there exists a discrete set D ⊂ S such

that the meromorphic function f/f ′ is analytic on R
n off the discrete set D. Then,

there exist analytic functions h1, h2 : R
n → R such that h−1

i (0) ⊂ D, h2 is a sum of
2n + n squares and h2

1f = h2f
′.

Proof. Indeed, consider the coherent sheaf (f ′ :f )ORn . This sheaf is generated in a
neighborhood of each y ∈ D by finitely many sections δ1, . . . , δry ∈ O(Rn). By the
standard sum of squares trick, fy/f

′
y = ηy/δy for δ = ∑

k δ2
k and some ηy ∈ O(Rn

y).
Furthermore, y is an isolated zero of δ. For that, suppose that there is x 
= y arbitrarily
close to y with δ(x) = 0. Then, all δk’s vanish at x, and since the ideal (f ′

x : fx)

is generated by them, it contains no unit. This means that fx/f
′
x is not analytic, a

contradiction.
The ideals �y = (δy), y ∈ D, glue to define a locally principal coherent sheaf of

ideals � of ORn , whose zero set is D. Since H 1(Rn, Z2) = 0, all locally principal
sheaves are principal, and � has a global generator �. This means that each germ
�y/δy is a unit for all y ∈ D. This � is a non-negative analytic function on R

n

whose zero set is D, and f ′′ = �2f/f ′ is analytic. Moreover f ′′ is strictly positive
on R

n \ D. Thus, by [BKS] there exists an analytic function � : R
n → R such that

�−1(0) ⊂ f ′′−1
(0) = D and �2f ′′ is a sum of 2n + n squares. Hence,

(��)2f = (�2f ′′)f ′

and taking h1 = �� and h2 = �2f ′′, we are done. �
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Lemma 4.4. Let U ⊂ C
n be an open set and let Fk : U → R, k ≥ 1, be invariant

holomorphic functions such that the sum
∑

k≥1 Fk converges in the sense of Defini-
tion 1.2 (ii). Let Y ⊂ U be a closed set and let G : U → R be a real analytic function.
If Gx divides Fk,x for all k ≥ 1 and all x ∈ Y , then G divides F = ∑

k≥1 Fk in
O(W), where W is a small enough neighbourhood of Y in U .

Proof. It is enough to check that for all x ∈ Y , Gx divides Fx . Fix x ∈ Y , and
let Gx = ∏r

i=1 G
di

i,x be the decomposition of the germ Gx into irreducible complex
factors. We take a compact neighborhood Wx ⊂ U of x such that:

• G1, . . . , Gr are holomorphic on Wx , and

• G−1
i (0) ∩ Wx is an irreducible complex analytic set in Wx for all i = 1, . . . , r .

It is enough to see that G
di

i,x divides Fx for i = 1, . . . , r . By hypothesis, for each

k ≥ 1 the germ G
di

i,x divides Fk,x , and an easy computation shows that Gi,x divides
all derivatives DαFk,x of degree |α| < di . That means that DαFk vanishes on the
intersection of G−1

i (0) with a small neighborhood of x (depending on k). Thus, since
G−1

i (0)∩Wx is irreducible, DαFk vanishes on G−1
i (0)∩Wx . As this holds for each

k ≥ 1 and DαF |Wx = ∑
k≥1 DαFk , we have that DαF |Wx vanishes on G−1

k (0)∩Wx .
Whence, Gk,x divides all derivatives DαFx with |α| < dk . This concludes the proof
up to the lemma that follows. �

Lemma 4.5. Let G, F ∈ C{z} = C{z1, . . . , zn} be analytic germs such that G is
irreducible and let d be a positive integer. Suppose that G divides all derivatives
DαF of degree |α| < d. Then, Gd divides F .

Proof. We proceed by induction on d. If d = 1 the result is clear. Suppose the result
true for d and that G divides DαF = ∂ |α|F

∂zα for |α| < d +1. By induction, Gd divides

F, ∂F
∂z1

, . . . , ∂F
∂zn

. In particular, there exists H ∈ C{z1, . . . , zn} such that F = GdH .
Hence,

∂F

∂zi

= dGd−1 ∂G

∂zi

H + Gd ∂H

∂zi

.

Since Gd divides all derivatives ∂F
∂zi

, we see that G divides all products ∂G
∂zi

H . But

G is irreducible and cannot divide all its derivatives ∂G
∂zi

, hence G divides H . Thus,

Gd+1 divides F , as wanted. �

Next, we proceed to prove Theorem 1.4.

Proof of Theorem 1.4. We will split the proof into several steps.

Step 1: Preparation. By the decomposition result Lemma 1.1 we may assume that all
the complex irreducible factors {hj }j∈J of f are special and divide f with multiplicity
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one. As we have seen in 2.3 we may assume that there exist holomorphic extensions
Hj of hj to a Stein neighborhood U0 of R

n in C
n.

We write Xj = H−1
j (0)∩R

n for all j ∈ J . By hypothesis and by Proposition 1.3,
for each j there are invariant holomorphic functions Gj, Bjk : Uj → C, defined on
an open neighborhood Uj ⊂ U0 of Xj in C

n, such that G2
j Hj |Uj

= ∑
k B2

jk (the

series converging in the strong sense of Definition 1.2 (ii)) and G−1
j (0) ∩ R

n ⊂ Xj .

We write Tj = G−1
j (0) ⊂ Uj and shrinking Uj if necessary, we may assume that the

family {Tj }j∈J is locally finite in C
n. Consider the open set in C

n:

U =
(
C

n \
⋃
j≥1

ClCn(Tj )
)

∪
⋃
j≥1

(
Uj \

⋃
k 
=j

(ClCn(Tk) \ Uk)
)
.

A straightforward computation shows that Tj ∩ U is closed in U for all j ∈ J . Let
U ⊂ U ∩ U0 be an open invariant Stein neighborhood of R

n in C
n such that R

n is a
deformation retract of U ([Ca]). Denote again by Tj the intersections of Tj with U
which are analytic (complex) subsets of U. We denote Vj = Uj ∩ U and keep F for
the restriction of F to U, and Gj, Bjk for those of Gj, Bjk to Vj . It holds:

• Tj ⊂ Vj , and

• all Tj ’s are closed analytic subsets of U, as well as their union T = ⋃
j Tj .

Step 2: Extension of denominators. Fix j ∈ J and consider the coherent sheaf of
ideals J defined on U by

Jx =
{

Gj · OCn,x if x ∈ Tj ,

OCn,x if x 
∈ Tj .

As it has been done before, the locally principal coherent sheaf J is globally prin-
cipal, say generated by a holomorphic function �j : U → C, whose zero set is
�−1

j (0) = Tj . In a small enough neighborhood of Tj we have that �j = Gjvj

where vj is a holomorphic unit. Hence, in that neighborhood �j � σ = Gj · vj � σ ,
and therefore Ej = �j � σ/�j is a unit in H(U). Moreover, one can check that
Ej · Ej � σ = 1. Let �j : U → C be a holomorphic function such that �2

j = Ej

and �j ·�j � σ = 1. A straightforward computation, already done in 2.3, shows that
G′

j = �j�j is an invariant holomorphic function that generates J.
Consider also the real analytic function g′

j = G′
j |Rn . The zero set of G′

j is Tj

and the zero set of g′
j is Tj ∩ R

n ⊂ Xj ⊂ h−1
j (0). Now, since G′

j generates J, Gj

generates J|Vj
, and these functions are invariant, there exist an invariant holomorphic

function Qj : Vj → C such that G′
j |Vj

= QjGj . We deduce:

G′
j

2
Hj = Q2

j (G2
j Hj ) = Q2

j

∑
k

B2
jk =

∑
k

C2
jk,
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where Cjk = QjBjk , and the series
∑

k C2
jk satisfies the convergence condition

Definition 1.2 (ii). Note moreover that the zero set of Gj is Tj .

Step 3: Glueing of denominators. After the preceding preparation, we glue the
denominators G′

j . Consider the coherent sheaf of ideals J defined on U by

Jx =
{∏

j,x∈Tj
G′

j · OCn,x if x ∈ Tj ,

OCn,x if x 
∈ T .

As in the preceding arguments, the locally principal coherent sheaf J is globally
principal, says generated by a holomorphic function � : U → C, whose zero set is
�−1(0) = T . As in the previous step we can substitute � by an invariant holomorphic
function G : U → C that generates J. Consider the real analytic function g = G|Rn .
The zero set of G is T = ⋃

j Tj and the zero set of g is
⋃

j Tj ∩R
n ⊂ ⋃

j Xj ⊂ f −1(0).
Moreover, by the construction of G and G′

j , we have that each G′
j divides G and for

all x ∈ T

G · OCn,x =
∏

j,x∈Tj

G′
j · OCn,x .

Step 4: Globalization of sums of squares. Here we find global sums of squares∑
k A2

jk to replace the sums
∑

k C2
jk , which are defined only on the Vj ’s, such that

their restrictions to R
n vanish only at the corresponding Xj .

After shrinking U if necessary, we may assume that the connected component
of H−1

j (0) that intersects R
n in Xj is contained in Vj (this can be done using an

auxiliary open set U similar to the one constructed in Step 1). Up to shrinking Vj ,
we may assume that it is invariant and does not intersect other connected components
of (G′

j
2
Hj)

−1(0) different to the one that intersects R
n in Xj . By Proposition 2.2,

applied to � = (G′
j

2
Hj)

2, V = Vj and Ck = Cjk , there exist invariant holomorphic

functions Ajk : U → C, such that
∑

k supK |Ajk|2 < +∞ for all compact sets
K ⊂ U, and (G′

j
2
Hj)

2 divides Ajk − Cjk on Vj .
On Vj we have:∑

k

A2
jk − G′

j
2
Hj =

∑
k

A2
jk −

∑
k

C2
jk =

∑
k

(
A2

jk − C2
jk

)
,

and this series is convergent on compact sets, as
∑

k A2
jk and

∑
k C2

jk are so. By

construction, (G′
j

2
Hj)

2 divides on Vj each term A2
jk −C2

jk = (Ajk +Cjk)(Ajk −Cjk),

hence it divides their sum
∑

k A2
jk − G′

j
2
Hj . Thus, if we set Aj0 = G′

j
2
Hj , there is

a holomorphic function �j : Vj → C such that on Vj we have:∑
k≥0

A2
jk = G′

j
2
Hj+(1+�j)(G

′
j

2
Hj)

2 = ujG
′
j

2
Hj, where uj = 1+(1+�j)G

′
j

2
Hj .
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Clearly, uj has no zeros in (G′
j

2
Hj)

−1(0) ∩ Vj , hence, uj is a holomorphic unit in

a perhaps smaller neighbourhood Vj of Tj ∪ H−1
j (0). Moreover, the restriction of∑

k≥0 A2
jk to R

n vanishes only at Xj , because A−1
j0 (0) ∩ R

n = Xj .

Step 5a: Glueing of sums of squares under the condition (a). Here we paste all the
sums of squares

∑
k A2

jk to get a single one, if the irreducible components {Yi}i∈I of
X = ⋃

j∈J Xj satisfy the condition (a) in the statement, that is, Yi ∩ Yk is a discrete
set for i 
= k.

We may assume that I = N, because if I is a finite set the result is a straightforward
consequence of Proposition 4.1. Note that each Xj is a union of some of the Yi’s and
that each Yi is a subset of finitely many Xj ’s. This fact can be checked taking germs
at any point of Yi .

For each i ∈ I we set Ji = {j ∈ J : Yi ⊂ Xj }, which is a finite set. By
Proposition 4.1, the function

∏
j∈Ji

∑
k Ajk

2 is a convergent sum of squares

∑
�

A′
i�

2 =
∏
j∈Ji

∑
k

Ajk
2

on U in the sense of Definition 1.2 (ii). Note that for each i ∈ I we have Yi ⊂⋂
j∈Ji

Xj ⊂ ⋂
j∈Ji

Vj . Hence in Wi = ⋂
j∈Ji

Vj we have

∑
�

A′
i�

2 =
∏
j∈Ji

∑
k

Ajk
2 =

∏
j∈Ji

ujG
′
j

2
Hj = u′

iFi,

where u′
i = ∏

j∈Ji
uj is a holomorphic unit on Wi and Fi = ∏

j∈Ji
G′

j
2
Hj . Note that

Fi divides G2F for all i ∈ I .
For each i ∈ I we choose a compact set Ki such that K1 
= ∅, Ki ⊂ Int(Ki+1)

and
⋃

i∈I Ki = U, that is, the family {Ki}i∈I is an exhaustion of U by compact sets.
For each i ∈ I set

μi = sup
Ki

∣∣∣∣G2F

Fi

∣∣∣∣
2∑

�

sup
Ki

|A′
i�

2| and γi = 1√
2iμi

.

We have

∑
�

sup
Ki

∣∣∣∣γi

G2F

Fi

A′
i�

∣∣∣∣
2

≤ γ 2
i sup

Ki

∣∣∣∣G2F

Fi

∣∣∣∣
2∑

�

sup
Ki

|A′
i�

2| ≤ 1

2i
.

Now, let K be a compact subset of the open set U. As U ⊂ ⋃
i≥1 IntCn(Ki), K is
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contained in some Ki0 , hence in all Ki for i ≥ i0, and so:

∑
i,�

sup
K

∣∣∣∣γi

G2F

Fi

A′
i�

∣∣∣∣
2

=
i0−1∑
i=1

∑
�

sup
K

∣∣∣∣γi

G2F

Fi

A′
i�

∣∣∣∣
2

+
∑
i≥i0

∑
�

sup
K

∣∣∣∣γi

G2F

Fi

A′
i�

∣∣∣∣
2

≤
i0−1∑
i=1

sup
K

∣∣∣∣γi

G2F

Fi

∣∣∣∣
2∑

�

sup
K

|A′
i�

2| +
∑
i≥i0

∑
�

sup
Ki

∣∣∣∣γi

G2F

Fi

A′
i�

∣∣∣∣
2

≤
i0−1∑
i=1

sup
K

∣∣∣∣γi

G2F

Fi

∣∣∣∣
2∑

�

sup
K

|A′
i�

2| +
∑
i≥i0

1

2i

≤
i0−1∑
i=1

sup
K

∣∣∣∣γi

G2F

Fi

∣∣∣∣
2∑

�

sup
K

|A′
i�

2| + 1 < +∞.

Consequently, the sum of squares

F ′ = G4F 2 +
∑
i,�

(
γi

G2F

Fi

A′
i�

)2

is convergent in the sense of Definition 1.2 (ii).
For a fixed r ∈ I , we claim: Fr = ∏

j∈Jr
G′

j
2
Hj divides the convergent sum

∑
�

(
γi

G2F

Fi

A′
i�

)2 = γ 2
i

(
G2F

Fi

)2∑
�

A′
i�

2

in H(Wr) for all i ∈ I . Indeed, in Wr = ⋂
j∈Jr

Vj we have

γ 2
i

(
G2F

Fi

)2∑
�

A′
i�

2

= γ 2
i

(
G2F

Fi

∏
j∈Jr\Ji

G′
j

2
Hj

)2

·
∏

j∈Jr\Ji

G′
j

4
H 2

j ·
∏
j∈Ji

∑
k

A2
jk

= γ 2
i

(
G2F

Fr

∏
j∈Ji\Jr

G′
j

2
Hj

)2

·
∏

j∈Jr\Ji

G′
j

4
H 2

j ·
∏

j∈Jr∩Ji

∑
k

A2
jk ·

∏
j∈Ji\Jr

∑
k

A2
jk =
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= γ 2
i

(
G2F

Fr

∏
j∈Ji\Jr

G′
j

2
Hj

)2

·
∏

j∈Jr\Ji

G′
j

4
H 2

j ·
∏

j∈Jr∩Ji

ujG
′
j

2
Hj ·

∏
j∈Ji\Jr

∑
k

A2
jk

= γ 2
i

(
G2F

Fr

∏
j∈Ji\Jr

G′
j

2
Hj

)2

· Fr ·
∏

j∈Jr\Ji

G′
j

2
Hj ·

∏
j∈Jr∩Ji

uj ·
∏

j∈Ji\Jr

∑
k

A2
jk.

Thus, Fr divides
∑

�

(
γ 2
i

G2F
Fi

A′
i�

)
)2 in H(Wr), as wanted.

Next, we denote by f ′, fi the restrictions to R
n of F ′, Fi for all i ∈ I . We claim:

For each r ∈ I we have g2
xfxORn,x = f ′

xORn,x for all x ∈ Yr \⋃i 
=r Yi .
Before showing this we summarize the following facts already proved:

(i) G2
xFxOCn,x = Fr,xOCn,x for all x ∈ Yr \⋃i 
=r Yi .

(ii)
∑

� A′
r�

2 = u′
rFr in Wr .

(iii) γ 2
r

G4F 2

F 2
r

does not vanish at Yr \⋃i 
=r Yi . Hence, by (ii), we have that

∑
�

γ 2
r

G4F 2

F 2
r

A′
r�

2 = γ 2
r

G4F 2

F 2
r

∑
�

A′
r�

2 = Fru
′
rγ

2
r

G4F 2

F 2
r

= Fr�r

where�r is an invariant holomorphic function onWr whose restriction�r |Wr∩Rn

is positive semidefinite and does not vanish at Yr \⋃i 
=r Yi .

(iv) For all i 
= r we have that Fr divides
∑

�

(
γi

G2F
Fi

A′
i�

)2. Therefore, the holo-
morphic function ∑

i 
=r

∑
�

(
γi

G2F

Fi

A′
i�

)2

is divisible by Fr in O(Wr). Moreover, the quotient �r of such division is
invariant and its restriction �r |Wr∩Rn is positive semidefinite on Wr ∩ R

n.

Now, we turn to prove our claim. Let r ∈ I and x ∈ Yr \⋃i 
=r Yi . We have that

F ′
xOCn,x =

(∑
�

(
γ 2
r

G2F

Fr

A′
r�,x

)2 +
∑
i 
=r

∑
�

(
γ 2
i

G2F

Fi

A′
i�,x

)2 + G4
xF

2
x

)
OCn,x

= (
Fr,x�r,x + Fr,x�r,x + G4

xF
2
x

)
OCn,x

= (
Fr,x(�r,x + �r,x) + G4

xF
2
x

)
OCn,x

= G2
xFxOCn,x,

hence, our claim is true.
Thus, sincef ′−1

(0) = (g2f )−1(0) = ⋃
i∈I Yi , the meromorphic functiong2f/f ′

is analytic on R
n off the discrete set D = ⋃

i,r:i 
=r Yi ∩ Yr . By Lemma 4.3, there
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exist analytic functions �1, �2 : R
n → R such that �−1

i (0) ⊂ D, �2 is a finite sum
of squares and �2

1g
2f = �2f

′.
Consequently, since moreover (�1g)−1(0) ⊂ f −1(0), f is a sum of squares of

meromorphic functions on R
n with controlled bad set.

Step 5b: Glueing of sums of squares under the condition (b). In this step, we paste
all the sums of squares

∑
k A2

jk to get a single one if the irreducible components
{Yi}i∈I of X = ⋃

j∈J Xj satisfy the condition (b) in the statement, that is, each Yi is
a compact set.

Again, we may assume that I = N because if I is finite the result follows straight-
forwardly from Proposition 4.1. Fix i ∈ I ; since Yi is a compact set and the family
{Xj }j∈J is locally finite, we deduce that Yi intersects finitely many Xj ’s. We define
Ji = {j ∈ J : Yi ∩ Xj 
= ∅} which is a finite set and

Fi =
∏
j∈Ji

G′
j

2
Hj .

By Proposition 4.1, the function
∏

j∈Ji

∑
k Ajk

2 is a convergent sum of squares

∑
�

A′
i�

2 =
∏
j∈Ji

∑
k

Ajk
2

on U in the sense of Definition 1.2 (ii). We claim: If x ∈ Yi , then
∑

� A′
i�,x

2OCn,x =
Fi,xOCn,x . Indeed, let Jx = {j ∈ J : x ∈ Xj } which is a subset of Ji . Recall that
for each j ∈ J the restriction of

∑
k Ajk

2 to R
n vanishes only at Xj (see Step 4). We

have that

Fi,xOCn,x =
∏
j∈Ji

G′
j,x

2
Hj,xOCn,x =

∏
j∈Jx

G′
j,x

2
Hj,xOCn,x

=
∏
j∈Jx

∑
k

Ajk,x
2OCn,x =

∏
j∈Ji

∑
k

Ajk,x
2OCn,x =

∑
�

A′
i�,x

2
OCn,x .

In the same way as in Step 5a, we can find real numbers γi > 0 such that the sum
of squares

F ′ = G4F 2 +
∑
i,�

(
γi

G2F

Fi

A′
i�

)2

is convergent in the sense of Definition 1.2 (ii).

For a fixed r ∈ I , we claim: Fr divides
∑

�

(
γi

G2F
Fi

A′
i�

)2 = γ 2
i

(
G2F
Fi

)2∑
� A′

i�
2

for all i ∈ I , in a small enough neighbourhood of Yr in U. Indeed, if x ∈ Yr and
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Jx = {j ∈ J : x ∈ Xj }, we have

γ 2
i

(
G2

xFx

Fi,x

)2∑
�

(
A′

i�,x

)2
OCn,x

=
( ∏

j∈Jx
G′

j,x
2
Hj,x∏

j∈Jx∩Ji
G′

j,x
2
Hj,x

)2 ∏
j∈Ji

∑
k

A2
jk,xOCn,x

=
∏

j∈Jx\Ji

G′
j,x

4
H 2

j,x

∏
j∈Ji∩Jx

∑
k

A2
jk,xOCn,x

=
∏

j∈Jx\Ji

G′
j,x

4
H 2

j,x

∏
j∈Ji∩Jx

G′
j,x

2
Hj,xOCn,x

=
∏
j∈Jx

G′
j,x

2
Hj,x

∏
j∈Jx\Ji

G′
j,x

2
Hj,xOCn,x = Fr,x

∏
j∈Jx\Ji

G′
j,x

2
Hj,xOCn,x .

The last equality is a straightforward consequence of the fact that Jx ⊂ Jr . Thus,
we deduce that Fr = ∏

j∈Jr
G′

j
2
Hj divides

∑
�

(
γ 2
i

G2F
Fi

A′
i�

)2 in a small enough
neighbourhood of Yr in U, as wanted.

Next, we denote by f ′, fi the restrictions to R
n of F ′, Fi for all i ∈ I . We claim:

For each r ∈ I we have g2
xfxORn,x = f ′

xORn,x for all x ∈ Yr .
Before showing this we summarize the following facts already known:

(i) G2
xFxOCn,x = Fr,xOCn,x for all x ∈ Yr .

(ii)
∑

� A′
r�,x

2OCn,x = FrOCn,x for all x ∈ Yr .

(iii) γ 2
r

G4F 2

F 2
r

does not vanish at Yr . Hence, by (ii), we have that

∑
�

γ 2
r

G4F 2

F 2
r

A′
r�

2
OCn,x = FrOCn,x .

for all x ∈ Yr . Thus, there exist an open neighbourhood Wr of Yr in U and an
invariant holomorphic function �r on Wr whose restriction �r |Wr∩Rn is positive
semidefinite, such that ∑

�

γ 2
r

G4F 2

F 2
r

A′
r�

2 = Fr�r,

and it does not vanish at Yr .

(iv) For all i 
= r we have that Fr divides
∑

�

(
γi

G2F
Fi

A′
i�

)2 in a small neighbourhood
of Yr in U. Therefore, by 4.4, the holomorphic function

∑
i 
=r

∑
�

(
γ 2
i

G2F

Fi

A′
i�

)2
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is divisible by Fr in H(W ′
r ) where W ′

r is a small enough neighbourhood of Yr .
Moreover, the quotient �r is invariant and its restriction �r |W ′

r∩Rn is positive
semidefinite on W ′

r ∩ R
n.

Now, we turn to prove our claim. Indeed, let r ∈ I and x ∈ Yr . We have that

F ′
xOCn,x =

(∑
�

(
γ 2
r

G2F

Fr

A′
r�,x

)2

+
∑
i 
=r

∑
�

(
γ 2
i

G2F

Fi

A′
i�,x

)2

+ G4
xF

2
x

)
OCn,x

= (
Fr,x�r,x + Fr,x�r,x + G4

xF
2
x

)
OCn,x

= (Fr,x

(
�r,x + �r,x) + G4

xF
2
x

)
OCn,x

= G2
xFxOCn,x .

Thus, sincef ′−1
(0) = (g2f )−1(0) = ⋃

i∈I Yi , the meromorphic functiong2f/f ′
is analytic and positive semidefinite on R

n. Consequently, there exists a positive
semidefinite analytic unit u : R

n → R such that g2f = f ′u2, and therefore f is an
infinite sum of squares of meromorphic functions. �

Remark 4.6 Note the following:
(1) In the step 5a of the proof of Theorem 1.4 we have only used the fact that

Yi ∩ Yk is a discrete set for i 
= k to apply, in a crucial way, Lemma 4.3 at the end
of such step. However, it seems difficult to get similar results to Lemma 4.3 for a
more general situations, because if n ≥ 3 the special irreducible factors could appear
whenever the dimension of the zero set of a positive semidefinite analytic function is
> 0. Recall that if the zero set of a special factors is not compact we do not know a
priori if it is a sum of squares of meromorphic functions.

(2) In the step 5b of the proof of Theorem 1.4 we only have used that the analytic
sets Yi are compact to have that: each Yi intersects only finitely many of the Xj ’s. �

Before proving Theorem 1.6 we need a preliminary additional result whose proof
is similar to the one of Theorem 1.4. However, its particular delicate technical details
strongly suggest to reproduce the full proof and not only to give a patch for the one
of Theorem 1.4.

Proposition 4.7. Let q ≥ 1 be an integer and let {fj : R
n → R}j∈J be a family of

positive semidefinite analytic functions such that

(a) f −1
j (0) ∩ f −1

k (0) is a discrete set if j 
= k,

(b) {f −1
j (0)}j∈J is a locally finite family in R

n, and

(c) fj is a sum of q squares with controlled bad set at f −1
j (0) for all j ∈ J .

Then there exist analytic functions g1, g2, f, f ′, f ′′ : R
n → R such that
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(i) fxORn,x = ∏
j,x∈f −1

j (0)
fj,xORn,x for all x ∈ f −1(0) = ⋃

j∈J f −1
j (0),

(ii) g−1
i (0) ⊂ f −1(0) for i = 1, 2,

(iii) f ′ is a sum of q squares of analytic functions on R
n,

(iv) f ′′ is a sum of 2n +n squares of analytic functions on R
n and its zero set, which

is contained in f −1(0), is discrete, and

(v) g2
1f = f ′′(f ′ + g4

2f 2).

Proof. We will split the proof into several steps.

Step 1: Preparation. First, we write Xj = f −1
j (0) for all j ∈ J . In the same way as

the Step 1 of the proof of Theorem 1.4, there exist:
• an open invariant Stein neighborhood of R

n in C
n such that R

n is a deformation
retract of U ([Ca]),

• open neighbourhoods Vj ’s of the Xj ’s in U, and
• invariant holomorphic functions Gj, Fj , Bjk : Vj → C, 1 ≤ k ≤ q, such that

G2
j Fj = ∑

k B2
jk , Fj = fj |Rn∩Vj

and Yj = G−1
j (0) ∩ R

n ⊂ Xj , which satisfy
the following properties:

• Tj = G−1
j (0) ⊂ Vj , Sj = F−1

j (0) ⊂ Vj , and

• all Tj ’s, Sj ’s are closed analytic subsets of U, as well as their unions
S = ⋃

j Sj , T = ⋃
j Tj .

Step 2: Extension of denominators and the positive semidefinite analytic functions.
Proceeding as in Step 2 of the proof of Theorem 1.4, for each j ∈ J one can construct
invariant holomorphic functions G′

j : U → C such that G′
j
−1

(0) = Tj and

G′
j

2
Fj =

∑
k

C2
jk,

where the series
∑

k C2
jk verifies the convergence condition (ii) on the open set Vj in

Definition 1.2.
In a similar way, one can get invariant holomorphic functions F ′

j on U that extend
the functions fj to U after multiplying fj by the square of a suitable strictly positive
analytic function on R

n. We denote again by Fj the functions F ′
j and by fj their

restrictions to R
n. We also denote by Gj the functions G′

j .

Step 3: Glueing of denominators and the positive semidefinite analytic functions.
Proceeding as in Step 3 of the proof of Theorem 1.4, one can construct an invariant
holomorphic function G : U → C such that G−1(0) = ⋃

j Tj and

G · OCn,x =
∏

j,x∈Tj

Gj · OCn,x .
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Moreover, if g denotes the real analytic function g = G|Rn , we have that g−1(0) =⋃
j Tj ∩ R

n ⊂ ⋃
j Xj ⊂ f −1(0).

Analogously, it can be obtained an invariant holomorphic function F on U such
that f = F |Rn is a positive semidefinite analytic function on R

n and

F · OCn,x =
∏

j,x∈Sj

Fj · OCn,x for all x ∈ S.

Step 4: Globalization of sums of squares. Here we find global sums of squares∑q
k=1 A2

jk to replace the sums
∑

k=1 C2
jk , which are defined only on the Vj ’s.

Up to shrinking Vj , we may assume that Vj is invariant and does not intersect
other connected components of (Gj

2Fj )
−1(0) different to the one that intersects R

n

in Xj . By Proposition 2.2, applied to � = (Gj
2Fj )

2, V = Vj and Ck = Cjk , there
exist invariant holomorphic functions Ajk : U → C, 1 ≤ k ≤ q such that (Gj

2Fj )
2

divides Ajk − Cjk in H(Vj ).
In Vj we have:

q∑
k=1

A2
jk − Gj

2Fj =
q∑

k=1

A2
jk −

∑
k=1

C2
jk =

q∑
k=1

(
A2

jk − C2
jk

)
.

By construction, (Gj
2Fj )

2 divides inH(Vj ) each termA2
jk−C2

jk = (Ajk+Cjk)(Ajk−
Cjk), hence it divides their sum

∑q
k=1 A2

jk − Gj
2Fj . Thus there is a holomorphic

function �j : Vj → C such that on Vj we have

q∑
k=1

A2
jk = Gj

2Fj + �j(Gj
2Fj )

2 = ujGj
2Fj , where uj = 1 + �jGj

2Fj .

Clearly, uj has no zeros in (Gj
2Fj )

−1(0) ∩ Vj , hence, uj is a holomorphic unit in a
perhaps smaller neighbourhood Vj of F−1

j (0) ∪ Tj .

Step 5: Glueing of sums of squares. Here we paste all the sums of squares
∑

k A2
jk

to get a single one. We may assume that J = N since the case where J is a finite set
is similar but easier.

Let {Kj }j∈J be an exhaustion of U by compact sets (indexed using the set J ).
Define, for each j ∈ J :

Mj = max
1≤i≤q

{
sup
Kj

∣∣∣∣G2F

G2
j Fj

∣∣∣∣2|Aji |
}
.

and γj = 1
2jMj

. On the compact set Kj we have

∣∣∣∣γj

(
G2F

G2
j Fj

)2

Ajk

∣∣∣∣ ≤ 1

2j
.
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Then, each infinite sum of holomorphic functions on U

Ak =
∑
j

γj

(
G2F

G2
j Fj

)2

Ajk, k = 1, . . . , q,

is a well-defined holomorphic function on U. Next, on Vj one writes

Ak = γj

(
G2F

G2
j Fj

)2

Ajk +
∑
�
=j

γ�

(
G2F

G2
�F�

)2

A�k = γj�
2
j Ajk + �jkG

4
j F 2

j

where �j = G2F

G2
j Fj

and �jk are holomorphic functions on Vj . This is because G2
j Fj

divides G2F

G2
�F�

for j 
= �. Hence, on Vj

F ′ =
q∑

k=1

A2
k = (γj�

2
j )2

q∑
k=1

A2
jk + �jG

4
j F 2

j = (γ 2
j �4

j uj + �jG
2
j Fj )G

2
j Fj ,

where �j = ∑q
k=1(2γj�

2
j Ajk�jk + �2

jkG
4
j F 2

j ).
Thus, if x ∈ Xj \⋃�
=j X� for some j ∈ J we deduce that

f ′
xORn,x = g2

j,xfj,xORn,x = g2
xfxORn,x .

Next, we consider f ′ +g4f 2 which is a sum of q +1 squares of analytic functions
on R

n and satisfies the same properties asf ′ for the germs at the points ofXj\⋃�
=j X�

for all j ∈ J . Since (f ′ + g4f 2)−1(0) = (g2f )−1(0) = ⋃
j∈J Xj , the meromorphic

function g2f/(f ′+g4f 2) is analytic on R
n off the discrete set D = ⋃

j,�:j 
=� Xj ∩X�.

By Lemma 4.3, there exists analytic functions �1, �2 : R
n → R such that �−1

i (0) ⊂
D, �2 is a sum of 2n + n squares and �2

1g
2f = �2(f

′ + g4f 2).
Finally, we write f ′′ = �2, g1 = �1g and g2 = g, and taking account of the fact

that (�1g)−1(0) ⊂ f −1(0) we are done. �

Now, we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. First, by Lemma 1.1 there exist analytic functions f0, f1, f2,
f3 : R

n → R such that f1, f2, f3 are positive semidefinite, f = f 2
0 f1f2f3 and

• f −1
1 (0) is a discrete set,

• f2 is a sum of two squares of analytic functions on R
n, and

• All the irreducible complex factors of f3 are special and divide f3 with multi-
plicity 1. In fact, the special factors of f are the same that the ones of f3.
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Next we claim: There exist analytic functions g1, g2, f
′
3, f

′′
3 : R

n → R such that

(i) g−1
i (0) ⊂ f −1

3 (0)

(ii) f ′
3 is a sum of 2n+r−1 squares of analytic functions on R

n,

(iii) f ′′
3 is positive semidefinite and its zero set, which is a subset of f −1

3 (0), is
discrete, and

(iv) g2
1f3 = f ′′

3 (f ′
3 + g4

2f 2
3 ).

We begin with some preparation. We say that two elements j1, j2 ∈ J are equiv-
alent j1 ∼ j2 if and only if Xj1 = Xj2 . The previous relation gives and equivalence
relation in J . Consider the quotient set A = J/ ∼. For each α ∈ A we set Xα = Xj

for any j ∈ α. The set Xα is well defined because if j1, j2 ∈ α, then Xj1 = Xj2 .
Since the family {Xj }j∈J is locally finite, each α ∈ A is a finite set.

At this point, we recall that the general Pfister’s theory says that if K is a field of
zero characteristic and a, b ∈ K are sum of 2d squares in K then ab is also a sum of
2d squares in K (see [Pf], [L, XI.1.9]).

Let f3,α = ∏
j∈α hj , which is a sum of 2r squares of meromorphic functions

on a neighborhood of Xα because each hj ’s is a sum of 2r squares of meromorphic
functions on a neighborhood of Xα . By Proposition 1.3, we have that f3,α is a sum
of 2r+n−1 squares of meromorphic functions on a perhaps smaller neighborhood of
Xα with controlled bad set. Now, the claim follows straightforwardly from Proposi-
tion 4.7.

Next, we have that

g2
1f = g2

1f 2
0 f1f2f3 = f 2

0 f2f1g
2
1f3 = (f 2

0 f2)(f1f
′′
3 )(f ′

3 + g4
2f 2

3 )

where

• f 2
0 f2 is a sum of 2 ≤ 2n+r squares of analytic functions on R

n,

• f1f
′′
3 is positive semidefinite and its zero set is discrete, hence by [BKS] a sum

of 2n + n ≤ 2n+r squares of meromorphic functions on R
n with controlled bad

set, and

• (f ′
3 + g4

2f 2
3 ) is a sum of 2n+r−1 + 1 ≤ 2n+r squares of analytic functions on

R
n.

Thus, g2
1f is a finite product of sums of 2n+r squares of meromorphic functions on

R
n; hence, it is a sum of 2n+r squares of meromorphic functions on R

n. �

Remark 4.8 We cannot, however, guarantee that for such expression of f , as a sum
of 2n+r squares of meromorphic functions on R

n, the bad set is controlled. To control
the bad set we should apply again Proposition 1.3, which produces a new controlled
increase in the number of squares.
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