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This paper is devoted to a refinement of Hipp’s method in the compound Poisson approximation to the

distribution of the sum of independent but not necessarily identically distributed random variables.

Approximations by related Kornya–Presman signed measures are also considered. By using alternative

proofs, we show that several constants in the upper bounds for the Kolmogorov and the stop-loss

distances can be reduced. Concentration functions play an important role in Hipp’s method. Therefore,

we provide an improvement of the constant in Le Cam’s bound for concentration functions of

compound Poisson distributions. But we also follow Hipp’s idea to estimate such concentration

functions with the help of Kesten’s concentration function bound for sums of independent random

variables. In fact, under the assumption that the summands are identically distributed, we present a

smaller constant in Kesten’s bound, the proof of which is based on a slight sharpening of Le Cam’s

version of the Kolmogorov–Rogozin inequality.
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1. Introduction

1.1. Motivation

The compound Poisson approximation of the distribution of the sum of independent but not

necessarily identically distributed random variables has a long history. Such an

approximation is reasonable when the summands are non-zero with small probabilities. In

fact, in this case, the approximation error between the distributions involved is small.

Though several upper bounds for different distances are nowadays available, there remain

some difficult tasks. For instance, there is the problem of giving a good estimate for the

constant which appears in the upper bound due to Zaı̆tsev (1983, formula (6), p. 658); in

fact, he improved the order of Le Cam’s (1965, Theorem 3, p. 188; see also Le Cam 1986,

Proposition 4, pp. 413–414) bound by using the so called ‘method of triangular functions’,

which was invented by Arak and Zaı̆tsev in the 1980s in order to find the optimal rate in

Kolmogorov’s (1956) second uniform limit theorem. For details of this method, see the

monograph by Arak and Zaı̆tsev (1988). Further developments can be found, for example,

in Čekanavičius (2003) and his previous papers. Because of the complexity of this method,
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constants are not explicitly specified; even if one followed the proofs by taking into account

explicit constants, the final constant would be very large. In order to avoid this difficulty,

Hipp (1985; 1986) invented his own method and proved some estimates, which are not

easily comparable with the Zaı̆tsev bound. As approximations, he considered not only the

compound Poisson distribution but also finite signed measures, which can be derived from

an expansion in the exponent. Apparently, such approximations were first considered by

Kornya (1983) and Presman (1983), as a result of which we speak of Kornya–Presman

signed measures. However, observe that the signed measures used by Kornya and Presman

are slightly different (see also Hipp 1986). Further results in this direction were given, for

example, by Kruopis (1986), Čekanavičius (1997), Barbour and Xia (1999) and Roos

(2002). Note that Barbour et al. (1992a) and Barbour and Xia (1999; 2000) applied Stein’s

method but obtained some unwanted terms in their bounds, some of which could be

removed by using Kerstan’s approach (see Roos 2003). However, it should be mentioned

that, in contrast to Kerstan’s approach, Stein’s method also works in the context of

dependent variables. Roos (2003) gives a more detailed review of known results.

This paper is devoted to a refinement of Hipp’s (1985; 1986) method. Motivated by the

need for explicit approximation results for the individual aggregate claims distribution

within the context of risk theory, Hipp has used concentration functions in his estimates of

the Kolmogorov and stop-loss distances. The aim of the present paper is to present

alternative proofs and smaller constants in the bounds. Additionally, we provide an

improvement of the constant in Le Cam’s (1986, remark on p. 408) bound for concentration

functions of compound Poisson distributions. But we also follow Hipp’s idea to give an

estimate of such concentration functions with the help of Kesten’s (1969) concentration

function bound for sums of independent random variables. In fact, under the assumption

that the summands are identically distributed, we present a smaller constant in Kesten’s

bound, the proof of which is based on a slight sharpening of Le Cam’s (1986, Theorem 2,

p. 411) version of the Kolmogorov–Rogozin inequality; see Kolmogorov (1958) and

Rogozin (1961, Theorem 1, p. 95). For the theory of concentration functions, the reader is

referred to Hengartner and Theodorescu (1973), Petrov (1975; 1995), and Arak and Zaı̆tsev

(1988). Note that, in the literature, many contributions on upper bounds of concentration

functions can be found. But only a small number of them deal with explicit constants; see,

for instance, Salikhov (1996) and Nagaev and Khodzhibagyan (1996). Though it is often

possible to derive bounds for concentration functions for sums of independent but not

necessarily identically distributed random variables, in this paper we only need to consider

identically distributed summands.

1.2. Notation

1.2.1. Concentration functions

The concentration functions Conc(Q; �), Conc�(Q; �) : [0, 1) ! [0, 1] of a probability

measure Q on R are defined by
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Conc(Q; t) ¼ sup
x2R

Q([x, x þ t]),

Conc�(Q; t) ¼ sup
x2R

Q((x, x þ t]), t 2 [0, 1):

We have listed some basic properties of concentration functions in the Appendix.

1.2.2. Stop-loss transforms

For a finite signed measure Q on R, let jQj denote the total variation measure and

FQ ¼ Q((�1, �]) the distribution function of Q. The stop-loss transform �Q of Q at a

point t 2 R is defined by

�Q(t) ¼
ð
R

(x � t)þ dQ(x):

Here and throughout this paper, xþ ¼ x _ 0, x _ y ¼ maxfx, yg, and x ^ y ¼ minfx, yg for

x, y 2 R. Whenever we deal with a stop-loss transform �Q, to ensure that �Q has finite

values, we assume that
Ð
R
jxj djQj(x) , 1. For a real-valued random variable X with

distribution L(X ) and distribution function FX ¼ FL(X ), we set FX ¼ 1 � FX ; if E(X ) is

finite, the stop-loss transform �X ¼ �L(X ) of X is finite and satisfies, for t 2 R,

�X (t) ¼ E(X � t)þ ¼
ð1

t

FX (x) dx ¼ E(Xþ) �
ð t

0

FX (x) dx,

where, as usual, ‘
Ð y

x
¼ �

Ð x

y
’ for x, y 2 R. Similar formulae for �Q are possible when Q is a

finite signed measure. Note that, in the context of stop-loss reinsurance, a risk X (i.e. a non-

negative random variable) is divided between the ceding company and the reinsurer in such a

way that the reinsurer has to pay the excess (X � t)þ over an agreed retention t . 0, whereas

the ceding company has to pay the remaining amount X ^ t; hence �X (t) denotes the

expected claim of the reinsurer.

1.2.3. Distances

As measures of accuracy, we consider the following distances

dKM(Q1, Q2) ¼ sup
x2R

jFQ1
(x) � FQ2

(x)j (Kolmogorov metric),

dSL(Q1, Q2) ¼ sup
t2R

j�Q1
(t) � �Q2

(t)j (stop-loss metric),

between two finite signed measures Q1 and Q2 on R. For two real-valued random variables X

and Y, we write

dKM(X , Y ) ¼ dKM(L(X ), L(Y )) and dSL(X , Y ) ¼ dSL(L(X ), L(Y )):

Sometimes it will be necessary to consider also the Fortet–Mourier metric
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dFM(X , Y ) ¼ dFM(L(X ), L(Y )) ¼
ð
R

jFX (x) � FY (x)j dx

between X and Y, and an ‘1 version of the stop-loss metric

~ddSL(M , N ) ¼ ~ddSL(L(M), L(N )) ¼
X1
n¼0

j�M (n) � �N (n)j,

between random variables M and N concentrated on Zþ ¼ f0, 1, 2, . . .g.

1.2.4. Exponentials

In what follows, we need exponentials of finite signed measures. If Q denotes a finite

signed measure on R, then we set

exp(Q) ¼
X1
j¼0

1

j!
Q� j,

where, for j 2 N ¼ f1, 2, . . .g, Q� j denotes the j-fold convolution of Q with itself and

Q�0 ¼ �0 is the Dirac measure at point 0. Note that exp(Q) is a finite signed measure. It is

well known that, for finite signed measures Q1 and Q2, we have exp(Q1) � exp(Q2) ¼
exp(Q1 þ Q2); see, for example, Hipp (1985; 1986) and Hipp and Michel (1990, Chapter 4).

This and other similar facts regarding finite signed measures can easily be proved with the

help of the Hahn–Jordan decomposition and characteristic functions. For a probability

distribution Q on R and parameter t 2 [0, 1), we define the compound Poisson distribution

by

CPo(t, Q) ¼ exp(t(Q � �0)) ¼
X1
j¼0

po( j, t) Q� j,

where po( j, t) ¼ e� t t j= j!.

2. Results

2.1. Hipp-type results

In the following proposition, we are concerned with the approximation by a compound

Poisson distribution.

Proposition 1. Let n 2 N and X 1, . . . , X n be non-negative and independent random

variables. Set Sn ¼
Pn

i¼1 X i and, for all i 2 f1, . . . , ng,
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pi ¼ P(X i . 0), Qi ¼ P(X i 2 � j X i . 0),

�i ¼
ð

x dQi(x), �(2)
i ¼

ð
x2 dQi(x),

ci ¼
1, if Qi is a Dirac measure,

2, otherwise,

(
c9i ¼

ci � 1

4
:

Let

º ¼
Xn

i¼1

pi, Q ¼ 1

º

Xn

i¼1

pi Qi, H ¼ CPo(º, Q),

~ºº ¼ 1

2

Xn

i¼1

pi(1 � pi), ~QQ ¼ 1

~ºº

Xn

i¼1

pi(1 � pi)

2
Qi, ~HH ¼ CPo(~ºº, ~QQ):

If, for all i, pi , 1, then

dKM(L(Sn), H) <
�2

8

Xn

i¼1

ci p2
i

1 � pi

Conc�( ~HH ; �i), (1)

dSL(L(Sn), H) <
�2

4

Xn

i¼1

p2
i

1 � pi

�i þ c9i �i þ
�(2)

i

�i

 ! !
Conc�( ~HH ; �i): (2)

Remark 1. (a) Hipp and Michel (1990), p. 51) give an inequality essentially the same as (1),

and their proof can be used to establish (1); see also Hipp (1985). The bound (2) is slightly

sharper than the one in Hipp and Michel (1990, p. 54). In fact, for non-degenerate probability

distribution Qi, their bound contains the term �i þ �(2)
i =(2�i) instead of the smaller value

�i þ
1

4
�i þ

�(2)
i

�i

 !
:

(b) It is well known that, under the assumptions of Proposition 1, the distribution L(Sn)

is smaller than or equal to H in the stop-loss order, that is, for all t 2 R, we have

�Sn
(t) < �H (t); see Hipp and Michel (1990, p. 43). This may be helpful when dealing with

the stop-loss distance.

(c) As pointed out by Hipp (1985), in order to obtain higher accuracy, the concentration

functions in the upper bounds of Proposition 1 should be evaluated rather than estimated.

Indeed, in many applications, where ~QQ is an arithmetic probability distribution with
~QQ(fh, 2h, 3h, . . .g) ¼ 1 and h 2 (0, 1), Conc�( ~HH ; �i) can be evaluated by using Panjer’s

(1981) recursive algorithm. Nevertheless, we provide some general upper bounds for

concentration functions in Section 2.3.

(d) Note that Zaı̆tsev (1983, formula (6), p. 658) has shown that

Hipp’s compound Poisson approximations 537



dKM(L(Sn), H) < c max
1<i<n

pi,

where c denotes an absolute constant.

Remark 2. The situation in Proposition 1 can be interpreted within risk theory: let us

consider the individual model with a portfolio of n 2 N independent policies, producing the

non-negative individual claim amounts X 1, . . . , X n. Each X i can be written as a random sum

X i ¼
PM i

k¼1Ui,k . Here, for i fixed and k 2 N, the Ui,k are positive, independent and

identically distributed random variables and M i is a Bernoulli random variable independent

of the Ui,k with P(M i ¼ 1) ¼ 1 � P(M i ¼ 0) ¼ pi. The pi represents the probability that

risk i produces a positive claim, and so we can assume that pi is small. Further, L(Ui,1) ¼ Qi

is the conditional distribution of the claim in risk i, given that a positive claim occurs in risk

i. The aggregate claim in the individual model is defined by the sum Sn of all X i. Frequently

the distribution L(Sn) of Sn is quite involved and should be approximated by a simpler

distribution. Due to the smallness of the pi, an approximation by a compound Poisson

distribution CPo(º, Q) is particularly favourable. Note that we obtain this distribution by

Poissonization: if, in the sum X i ¼
PM i

k¼1Ui,k , we replace M i with an independent Poisson

distributed random variable Ni with the same mean as M i, then we obtain random variables

Yi ¼
PNi

k¼1Ui,k . Now, L(
Pn

i¼1Yi) ¼ CPo(º, Q). From this, we see that Corollary 1 below is

applicable. The distribution CPo(º, Q) can also be obtained as the aggregate claims

distribution
P ~MM

j¼1V j of a suitable collective model: here only the claims V j and their total

number ~MM are modelled. In the present context, the number of claims ~MM has a Poisson Po(º)

distribution with mean º and the claims are independent (also of the number of claims) and

identically distributed random variables with distribution Q.

The next proposition deals with the approximation by Kornya–Presman signed measures

H K (see below).

Proposition 2. Let the assumptions of Proposition 1 be valid. Further, set K 2 N,

H K ¼ exp
Xn

i¼1

XK

k¼1

(�1)kþ1

k
pk

i (Qi � �0)� k

 !
,

�(i, K) ¼ (2 pi)
Kþ1

(K þ 1)(1 � 2 pi)
for i 2 f1, . . . , ng,

� ¼
Xn

i¼1

(e�(i,K) � 1), � ¼ �2

8(1 � �)
,

where we assume that, for all i, pi ,
1
2

and � , 1. Then
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dKM(L(Sn), H K ) < �
Xn

i¼1

ci(e
�(i,K) � 1) Conc�( ~HH ; �i), (3)

dSL(L(Sn), H K ) < �
Xn

i¼1

(e�(i,K) � 1) �i þ c9i �i þ
�(2)

i

�i

 ! !
Conc�( ~HH ; �i): (4)

Remark 3. Inequality (3) is better than that of Hipp and Michel (1990, p. 82); see also Hipp

(1986). In fact, their bound contains the values e2�(i,K) and Conc�( ~HH ; (K þ 1)�i) instead of

the better ones e�(i,K) and Conc�( ~HH ; �i). For dSL(L(Sn), H K ), we found no comparable

bounds in the literature; therefore (4) seems to be new. However, in Hipp (1986, formula

(10)), a non-uniform inequality for the difference of the stop-loss transforms of L(Sn) and the

signed measures originally used by Kornya (1983) was presented. Note that, as mentioned

above, these signed measures differ slightly from the H K of the present paper.

Remark 4. The idea behind the use of the finite signed measure H K is the following: using

the log series and characteristic functions, it is easy to show that, for i 2 f1, . . . , ng,

L(X i) ¼ �0 þ pi(Qi � �0) ¼ exp
X1
k¼1

(�1)kþ1

k
pk

i (Qi � �0)� k

 !
:

Note that, since pi ,
1
2
, the infinite sum in the exponent converges with respect to the total

variation norm and forms a finite signed measure. We obtain

L(Sn) ¼ exp
Xn

i¼1

X1
k¼1

(�1)kþ1

k
pk

i (Qi � �0)� k

 !
;

see also Hipp and Michel (1990, Chapter 4). Therefore, we should expect H K to be a good

approximation of L(Sn) if K is large. In fact, from Proposition 2, it follows that

dKM(L(Sn), H K ) and dSL(L(Sn), H K ) tend to zero as K ! 1, if pi ,
1
2

and if the respective

moments of Qi are finite for all i.

2.2. Prerequisites for Proposition 1

The following theorem seems to be new.

Theorem 1. Let X 1, X 2, X3, . . . be non-negative, independent and identically distributed

random variables. For n 2 Zþ, set Sn ¼
Pn

i¼1 X i. Let M and N be Zþ-valued random

variables with the same finite expectation. Let Y denote a random variable in R. We assume

that all Y , M , N , X1, X 2, . . . are independent.

(a) Then we have

dKM(SM þ Y , SN þ Y ) < 1
2

dFM(M , N ) dKM(Y , X1 þ Y ):
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(b) If E(X 1) , 1, then

dSL(SM þ Y , SN þ Y ) < ~ddSL(M , N ) E[(X 1 ^ X2) Conc�(L(Y ); X 1 þ X 2)]:

Note that the upper bounds in Theorem 1 are small when L(M) � L(N ), when L(X1) � �0,

or when L(Y ) has a small concentration. Theorem 1 and the telescopic sum decomposition

enable us to give results concerning the approximation of sums of independent but not

necessarily identically distributed random variables.

Corollary 1. Let n 2 N and X 1, . . . , X n, Y1, . . . , Yn be independent random variables. For

each i 2 f1, . . . , ng, X i and Yi are given by random sums of the form X i ¼
PM i

k¼1Ui,k and

Yi ¼
PNi

k¼1Ui,k , where, for i fixed, the Ui,1, Ui,2, Ui,3, . . . are non-negative, independent and

identically distributed random variables and the M i and Ni are random variables in Zþ with

E(M i) ¼ E(Ni) , 1. We assume that all M i, Ni, Ui,k are independent. Set Sn ¼
Pn

i¼1 X i,

T n ¼
Pn

i¼1Yi and, for i 2 f1, . . . , ng, Zi ¼
Pi�1

j¼1 X j þ
Pn

j¼iþ1Y j.

(a) Then we have

dKM(Sn, Tn) < 1
2

Xn

i¼1

dFM(M i, Ni) dKM(Zi, Ui,1 þ Zi):

(b) If E(Ui,1) , 1 for all i 2 f1, . . . , ng, then

dSL(Sn, T n) <
Xn

i¼1

~ddSL(M i, Ni) E[(Ui,1 ^ Ui,2) Conc�(L(Zi); Ui,1 þ Ui,2)]:

Proof. The assertion easily follows from Theorem 1 in conjunction with the well-known

telescopic sum decomposition

L(Sn) � L(Tn) ¼
Xn

i¼1

(L(X i þ Zi) � L(Yi þ Zi)),

which, in turn, can be shown via induction over n. h

Corollary 1 is used in the proof of Proposition 1.

2.3. Concentration function bounds

The following proposition is devoted to Le Cam-type bounds for the concentration functions

of a compound Poisson distribution. The absolute constant (2e)�1=2 in the bounds is the best

possible.

Proposition 3. Let Q be a probability distribution on R. Then, for t 2 (0, 1) and s 2
[0, 1),
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Conc(CPo(t, Q); s) <
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2etf (s, Q)
p , (5)

Conc�(CPo(t, Q); s) <
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2etg(s, Q)
p , (6)

where

f (s, Q) ¼ maxfQ((�1, �s)), Q((s, 1))g,

g(s, Q) ¼ maxfQ((�1, �s]), Q([s, 1))g:

In (5) and (6), equalities hold when s 2 (0, 1), t ¼ 1
2
, and Q ¼ �1 is the Dirac measure at

point 1 such that CPo(t, Q) ¼ Po(1
2
).

Remark 5. From Le Cam’s (1986, remark on p. 408) more general inequality for the

concentration function of an infinitely divisible probability distribution, it follows that, under

the assumptions of Proposition 3,

Conc(CPo(t, Q); s) <
2�

t Q(fx : jxj . sg)

� �1=2

(7)

(see also Le Cam 1965, Proposition 5, p. 183; Arak and Zaı̆tsev 1988, Theorems 2.5 and 2.6,

p. 46). Since f (s, Q) > 2�1Q(fx : jxj . sg), it follows from (5) that the constantffiffiffiffiffiffi
2�

p
� 2:51 in (7) can be replaced with e�1=2 � 0:61.

The bound (6) can be used to estimate the concentration functions in the upper bounds in

Propositions 1 and 2. However, other bounds can be derived with the help of a Kesten-type

inequality for the concentration function of the sum of independent and identically

distributed random variables:

Proposition 4. Let Sn ¼
Pn

i¼1 X i be the sum of n 2 N independent and identically distributed

random variables X 1, . . . , X n. Then, for t 2 [0, 1) ,

Conc(L(Sn); t) < 6:33
Conc(L(X 1); t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n þ 1)(1 � Conc(L(X1); t))
p : (8)

This inequality remains valid if Conc is everywhere replaced by Conc�.

Remark 6. From a more general result of Kesten (1969, Corollary 1, pp. 134–135), it follows

that, under the assumptions of Proposition 4,

Conc(L(Sn); t) < 4
ffiffiffi
2

p
(1 þ 9c)

Conc(L(X 1); t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(1 � Conc(L(X 1); t))

p : (9)

Here, c is an absolute constant satisfying the classical Kolmogorov–Rogozin inequality (see

Kolmogorov 1958; Rogozin 1961, Theorem 1, p. 95), which states that, under the same

assumptions,
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Conc(L(Sn); t) <
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n(1 � Conc(L(X 1); t))
p : (10)

Since c < 1 (see Remark 8 below), the leading constant in (9) is bounded from above by

40
ffiffiffi
2

p
< 56:6, which is considerably larger than our 6.33. A further advantage of (8) over (9)

is the factor (n þ 1)�1=2 instead of n�1=2.

Corollary 2. Under the assumptions of Proposition 3, we have

Conc(CPo(t, Q); s) < e� t þ 6:33 Conc(Q; s)(1 � e� t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t (1 � Conc(Q; s))

p : (11)

This inequality remains valid if Conc is everywhere replaced by Conc�.

Remark 7. (a) The bound (11) can be much better than (5) if t is large and if Q has a small

concentration function.

(b) Bening et al. (1997, Theorem 8, pp. 370–371) have shown that, under the

assumptions of Proposition 3,

Conc(CPo(t, Q); s) < c(E, �)
s þ 1ffiffi

t
p , (12)

where

c(E, �) ¼ 96

95

� �2

max 1,
1

�

� � ffiffiffi
�

E

r

and E, � . 0 are defined in such a way that the characteristic function jQ(x) ¼
Ð

eixy dQ(y) of

Q satisfies

jjQ(x)j < 1 � Ex2 whenever jxj < �:

In fact, for each non-degenerate probability distribution Q, there exist positive numbers E and

� with such a property (see Petrov 1975, Theorem 1.2.2, p. 11). It is easily shown that, under

the present assumptions, maxf1, ��1gE�1=2 > 1. Therefore the bound in (12) is often worse

than the one in (11).

The proof of Proposition 4 is based on a refinement of Le Cam’s version of the

Kolmogorov–Rogozin inequality for the concentration function of the sum of independent

random variables.

Proposition 5. Under the assumptions of Proposition 4, we have

Conc(L(Sn); t) <
1 � [Conc(L(X 1); t)]nþ1

(n þ 1)(1 � Conc(L(X 1); t))

� �1=2

:

This inequality remains valid if Conc is everywhere replaced by Conc�.

Remark 8. From the more general Theorem 2 in Le Cam (1986, p. 411), it follows that, in
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the Kolmogorov–Rogozin inequality (see (10)), one can choose c ¼ 1. But his inequality is

slightly better. In fact, under the assumptions of Proposition 4, his result implies that

Conc(L(Sn); t) <
1 � exp(�n(1 � Conc(L(X1); t)))

n(1 � Conc(L(X 1); t))

� �1=2

:

However, it is easily shown that this bound is always larger than or equal to the one of

Proposition 5.

3. Remaining proofs

In what follows, we use the forward difference operator ˜b : Zþ ! Zþ of a sequence

b : Zþ ! Zþ, which is defined by ˜bn ¼ bn � bnþ1 for n 2 Zþ. Powers of ˜ are

understood in the sense of composition, that is, we have ˜k b ¼ ˜(˜k�1b) for

k 2 f2, 3, . . .g. Sometimes we use the following version of Abel’s summation formula.

Lemma 1. For n 2 Zþ, let an, bn 2 R, An ¼
Pn

i¼0ai. If
P1

n¼0janj , 1 and
P1

n¼0jbnj , 1
then

X1
n¼0

an bn ¼
X1
n¼0

an

X1
m¼n

˜bm ¼
X1
m¼0

Am ˜bm:

For the proof of Theorem 1, we need the following lemma.

Lemma 2. Let the assumptions of Theorem 1 be valid and set, for y 2 R, bn(y) ¼ FSn
(y)

and, for n 2 Zþ , An ¼ FM (n) � FN (n).

(a) For y 2 R , we have

FSM
(y) � FSN

(y) ¼
X1
n¼0

An ˜bn(y):

(b) If E(X 1) , 1, then, for t 2 R ,

�S M
(t) � �S N

(t) ¼
X1
n¼1

(�M (n) � �N (n))

ð t

0

˜2bn�1(y) dy:

Proof. We may assume that, for all i, X i 6¼ 0 with positive probability. Assertion (a) follows

with the help of Abel’s summation formula. Here, we have used the fact that
P1

n¼0 FSn
(y) is a

renewal function which is bounded on intervals of finite lengths (see, for example, Feller

1971, p. 359).

We now prove (b). We may assume that t 2 [0, 1). Then

�SM
(t) � �S N

(t) ¼
ð1

t

(FSN
(y) � FSM

(y)) dy ¼
ð t

0

(FSM
(y) � FSN

(y)) dy,
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where we have used the fact that, under the present assumptions, E(SM ) ¼ E(SN ) , 1.

Application of Abel’s summation formula to assertion (a) gives

FSM
(y) � FSN

(y) ¼
X1
n¼0

Xn

m¼0

Am

 !
˜2bn(y)

¼
X1
n¼1

[�M (n) � �N (n)]˜2bn�1(y)

for y 2 R, where we have taken into account that
P1

n¼0jAnj < E(M þ N ) , 1 and that, for

k 2 Zþ,

Xk�1

n¼0

An ¼ �
X1
n¼k

An ¼ �M (k) � �N (k):

To complete the proof of (b), we use Fubini’s theorem, which is permitted sinceð t

0

X1
n¼1

j(�M (n) � �N (n))˜2bn�1(y)j dy < 4E(M þ N )

ð t

0

X1
n¼0

FS n
(y) dy , 1:

h

Proof of Theorem 1. Let bn(y) and An be defined as in Lemma 2. Using Lemma 2(a), we

obtain, for all c, x 2 R,

P(SM þ Y < x) � P(SN þ Y < x) ¼ E[FSM
(x � Y ) � FS N

(x � Y )]

¼ E
X1
n¼0

An ˜bn(x � Y )

" #

¼
X1
n¼0

An E[˜bn(x � Y )] � cð Þ,

where the latter equality follows from Fubini’s theorem and E(M) ¼ E(N ) , 1, that is,P1
n¼0 An ¼ 0. It follows that

dKM(SM þ Y , SN þ Y ) < dFM(M , N ) sup
n2Zþ

sup
x2R

jE[˜bn(x � Y )] � cj:

Since the X i are non-negative, we have, for all n 2 Zþ and x 2 R, ˜bn(x � Y ) > 0, giving

0 < E[˜bn(x � Y )]

¼ P(Sn þ Y < x) � P(Snþ1 þ Y < x)

¼ E[FY (x � Sn) � FX1þY (x � Sn)]

< dKM(Y , X1 þ Y ):
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Hence, if we set c ¼ 2�1dKM(Y , X 1 þ Y ), we obtain

jE[˜bn(x � Y )] � cj < 1
2

dKM(Y , X1 þ Y ):

Assertion (a) immediately follows.

We now prove (b). For t 2 R, we have

�SMþY (t) � �SNþY (t) ¼ E[(SM þ Y � t)þ � (SN þ Y � t)þ]

¼ E[�SM
(t � Y ) � �SN

(t � Y )]

¼ E
X1
n¼1

(�M (n) � �N (n))

ð t�Y

0

˜2bn�1(y) dy

" #
,

where we have used Lemma 2(b). Since the X n are non-negative, independent and identically

distributed with finite mean, �Sn
(y) is a convex sequence in n 2 Zþ for y 2 R fixed, that is,

˜2�Sn
(y) > 0 for all n 2 Zþ (see, for example, Müller and Stoyan 2002, p. 160). In fact, this

follows from the equalities

˜2�Sn
(y) ¼ �Snþ2

(y) � 2�Snþ1
(y) þ �Sn

(y)

¼ E[(Sn þ X nþ1 þ X nþ2 � y)þ

� (Sn þ X nþ1 � y)þ � (Sn þ X nþ2 � y)þ þ (Sn � y)þ],

and the obvious fact that, for all Æ, �, ª > 0,

(Æþ �� y)þ þ (Æþ ª� y)þ < (Æþ �þ ª� y)þ þ (Æ� y)þ:

From this we see that, for n 2 N,
Ð t�Y

0
˜2bn�1(y) dy > 0, and therefore we arrive at

dSL(SM þ Y , SN þ Y ) < ~ddSL(M , N )sup
n2N

sup
t2R

E

ð t�Y

0

˜2bn�1(y) dy

� �
:

For all n 2 N and t 2 R, we have, by conditioning on the values of Sn�1, X n and X nþ1,

E

ð t�Y

0

˜2bn�1(y) dy

� �
¼ E

ð t�Y

0

[P(Sn�1 < y) � P(Sn < y)

�

� P(Sn�1 þ X nþ1 < y) þ P(Snþ1 < y)] dy

�

¼
ð

E[Za,b,c(t � Y )] dL((Sn�1, X n, X nþ1))(a, b, c),

where, for x 2 R,
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Za,b,c(x) ¼
ðx

0

(1(�1, y](a) � 1(�1, y](a þ b)

� 1(�1, y](a þ c) þ 1(�1, y](a þ b þ c)) dy

¼

x � a, if a , x < a þ (b ^ c),

b ^ c, if a þ (b ^ c) , x < a þ (b _ c),

a þ b þ c � x, if a þ (b _ c) , x < a þ b þ c,

0, otherwise

8>>>>>><
>>>>>>:

< (b ^ c) 1(a, aþbþc](x):

Here, for a set A, 1A(x) ¼ 1 if x 2 A and 1A(x) ¼ 0 otherwise. This leads to

E

ð t�Y

0

˜2bn�1(y) dy

� �

<

ð
(b ^ c) P(t � Y 2 (a, a þ b þ c]) dL((Sn�1, X n, X nþ1))(a, b, c)

< E[(X n ^ X nþ1) Conc�(L(Y ); X n þ X nþ1)]:

Assertion (b) follows from the inequalities above. h

The proof of Proposition 1 requires the following three lemmas.

Lemma 3. Let the assumptions of Proposition 1 be valid. Further, let Y1, . . . , Yn be random

variables with distributions L(Y j) ¼ CPo( pj, Qj) for j 2 f1, . . . , ng. We assume that all

X 1, . . . , X n, Y1, . . . , Yn are independent. For i 2 f1, . . . , ng fixed, set Zi ¼Pi
j¼1 X j þ

Pn
j¼iþ1Y j and Z9i ¼ Zi � X i. Then, for all t 2 [0, 1),

Conc(L(Z9i); t) <
1

1 � pi

Conc(L(Zi); t), Conc(L(Zi); t) <
�2

4
Conc( ~HH ; t):

The above inequalities remain valid if Conc is everywhere replaced by Conc�.

Proof. For the proof with respect to Conc�, see Hipp and Michel (1990, pp. 52–53) or, for a

preliminary version, Hipp (1985, p. 231), where the main argument is a suitable smoothing

lemma for arbitrary probability measures. The proof is completed by using the continuity

properties of concentration functions (see Lemma 9 below). h

Lemma 4. (a) Let X and Y be two real-valued random variables. If � ¼ EjX j , 1, then

dKM(Y , X þ Y ) < c Conc�(L(Y ); �),

where c ¼ 2. If X is almost surely constant, then we can set c ¼ 1.
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(b) Let Y be a real-valued random variable and let X1, X 2 be non-negative, independent

and identically distributed random variables with E(X 2
1) , 1. Then

E[(X 1 ^ X 2) Conc�(L(Y ); X1 þ X2)]

< 2 �þ c9 �þ �(2)

�

� �� �
Conc�(L(Y ); �),

where � ¼ E(X 1), E(X 2
1) ¼ �(2) and c9 ¼ 1

4
. If X 1 is almost surely constant, then we can set

c9 ¼ 0.

Proof. Assertion (a) was implicitly shown in Hipp and Michel (1990, p. 52); see also Hipp

(1985, pp. 230–231). In fact, the argument is the following. We may assume that � . 0. For

y 2 R, we have

jP(Y < y) � P(X þ Y < y)j <
ð
R

jP(Y < y) � P(Y < y � x)j dL(X )(x):

The integrand is equal to P(Y 2 I(x, y)), where I(x, y) ¼ (y ^ (y � x), y _ (y � x)] is a

half-open interval with length jxj. Dividing this interval into smaller ones, we see that

P(Y 2 I(x, y)) <

�
jxj
�

	
Conc�(L(Y ); �),

where, for x 2 R, dxe 2 Z is defined by x < dxe , x þ 1. Therefore

dKM(Y , X þ Y ) < Conc�(L(Y ); �) E

�
jX j
�

	
,

from which (a) follows.

Assertion (b) can be shown in the same way. Indeed, we have

E[(X1 ^ X2) Conc�(L(Y ); X 1 þ X 2)]

< E (X 1 ^ X 2) 1 þ X 1 þ X 2

�

� �� �
Conc�(L(Y ); �)

¼ E(X1 ^ X 2) þ 1

�
E(X 1 ^ X 2)2 þ �

� �
Conc�(L(Y ); �)

and X 1 ^ X 2 < (X 1 þ X 2)=2. h

Let Bi(n, p) denote the binomial distribution with parameters n 2 N and p 2 [0, 1].

Lemma 5. For p 2 [0, 1] ,

dFM(Bi(1, p), Po( p)) ¼ 2(e� p � 1 þ p) < p2, ~ddSL(Bi(1, p), Po( p)) ¼ p2

2
:
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Proof. The assertions are easily shown. See also Roos (2001, Proposition 1 and remark after

Proposition 2). h

Proof of Proposition 1. For i 2 f1, . . . , ng, let

Pi ¼ L(X i), P̂Pi ¼ CPo( pi, Qi), M9i ¼ �i�1

j¼1
Pj

� �
� �n

j¼iþ1
P̂Pj

� �
:

Then, according to Corollary 1 and Lemmas 4 and 5,

dKM(L(Sn), H) < 1
2

Xn

i¼1

dFM(Bi(1, pi), Po( pi)) dKM(M9i, Qi � M9i)

< 1
2

Xn

i¼1

ci p2
i Conc�(M9i; �i)

and, similarly,

dSL(L(Sn), H) <
Xn

i¼1

p2
i �i þ c9i �i þ

�(2)
i

�i

 ! !
Conc�(M9i; �i):

Lemma 3 gives

Conc�(M9i; �i) <
�2

4(1 � pi)
Conc�( ~HH ; �i),

which completes the proof. h

Proof of Proposition 2. For i 2 f1, . . . , ng, let

Pi ¼ L(X i), R ¼ L(Sn),

R
(i)
K ¼

XK

k¼1

(�1)kþ1

k
pk

i (Qi � �0)� k , R(i) ¼
X1
k¼1

(�1)kþ1

k
pk

i (Qi � �0)� k ,

U (i) ¼ R
(i)
K � R(i), H

(i)
K ¼ exp(R

(i)
K ), M 0i ¼ �i�1

j¼1
Pj

� �
� �n

j¼iþ1
H

( j)
K

� �
:

Then the telescopic sum decomposition (cf. proof of Corollary 1) gives

dKM(R, H K ) <
Xn

i¼1

sup
x2R





[M 0i � (Pi � H
(i)
K )]((�1, x])





 ¼: T :

Using the telescopic sum decomposition again, we obtain, for i 2 f1, . . . , ng,

R � Pi � M 0i ¼ �n
j¼iþ1

Pj� �n
j¼iþ1

H
( j)
K

� �
� �i

j¼1
Pj

� �
¼
Xn

j¼iþ1

M 0j � (Pj � H
( j)
K ):

Since Pi ¼ exp(R(i)), this yields
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M 0i � (Pi � H
(i)
K ) ¼ M 0i � Pi � (�0 � exp(U (i)))

¼ (R þ M 0i � Pi � R) � (�0 � exp(U (i)))

¼ R �
Xn

j¼iþ1

M 0j � (Pj � H
( j)
K )

 !
� (�0 � exp(U (i))):

In view of Abel’s summation formula, we see that the second convolution factor is equal to

�0 � exp(U (i)) ¼
X1
r¼0

a(i)
r Q�r

i ¼
X1
r¼0

A(i)
r Q�r

i � (�0 � Qi), (13)

where the coefficients a(i)
r are real-valued and A(i)

r ¼
Pr

m¼0a(i)
m for r 2 Zþ. In fact, (13) is

valid, since it can be shown that B(i) :¼
P1

r¼0jA(i)
r j , 1 (see below). Hence, for

i 2 f1, . . . , ng,

sup
x2R

j[M 0i � (Pi � H
(i)
K )]((�1, x])j < B(i)(dKM(R, Qi � R) þ 2T ):

This implies

T <
Xn

i¼1

B(i)(dKM(R, Qi � R) þ 2T ),

and therefore, letting B ¼
Pn

i¼1 B(i),

(1 � 2B)T <
Xn

i¼1

B(i)dKM(R, Qi � R):

Here, we have used the fact that, since M 0i � (Pi � H
(i)
K ) is a finite signed measure for all i, T

must be finite. In order to give an estimate for B, we use, for a power series g(z) ¼
P1

i¼0 giz
i

with jzj < 1, the notation kg(z)k ¼
P1

i¼0jgij. Further, we make use of the simple property

that kg(z) ~gg(z)k < kg(z)k k ~gg(z)k, where g(z) and ~gg(z) are two such power series. For jzj < 1,

let

G
(i)
K (z) ¼ �

X1
k¼Kþ1

(�1)kþ1

k
pk

i (z � 1)k :

Then it follows that, for all i 2 f1, . . . , ng,
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B(i) ¼
����� 1

1 � z
(1 � exp(G

(i)
K (z)))

�����
<

�����G
(i)
K (z)

z � 1

�����
X1
m¼1

kG
(i)
K (z)km�1

m!

<
1

2
exp

X1
k¼Kþ1

(2 pi)
k

k

 !
� 1

 !

<
1

2
(e�(i,K) � 1),

giving B < �=2. Since dKM(R, Qi � R) < 4�1�2ciConc�( ~HH ; �i) (cf. Lemmas 4(a) and 3), we

arrive at the first inequality.

The second assertion is shown in the same manner. Here, we may assume that, for all i,

�i , 1 and �(2)
i , 1. Now

dSL(R, H K ) <
Xn

i¼1

sup
x2R






ð1

x

[M 0i � (Pi � H
(i)
K )]((y, 1)) dy





 ¼: ~TT :

By using Abel’s summation formula, we have, for i 2 f1, . . . , ng,

�0 � exp(U (i)) ¼
X1
r¼0

A(i)
r Q�r

i � (�0 � Qi) ¼
X1
r¼0

~AA(i)
r Q�r

i � (�0 � Qi)
�2,

with ~AA(i)
r ¼

Pr
m¼0 A(i)

m for r 2 Zþ. This leads to

M 0i � (Pi � H
(i)
K ) ¼ R �

Xn

j¼iþ1

M 0j � (Pj � H
( j)
K )

 !
�
X1
r¼0

~AA(i)
r Q�r

i � (�0 � Qi)
�2:

Hence

sup
x2R






ð1

x

[M 0i � (Pi � H
(i)
K )]((y, 1)) dy






<
X1
r¼0

j ~AA(i)
r j sup

x2R






ð1

x

[Q�r
i � (�0 � Qi)

�2 � R]((y, 1)) dy





þ 4 ~TT

� �
:

It is easy to see that, for r 2 Zþ,

sup
x2R






ð1

x

[Q�r
i � (�0 � Qi)

�2 � R]((y, 1)) dy





 ¼ sup
x2R





E
ðx�Sn

0

˜2b(i)
r (y) dy





,
where b(i)

r (y) ¼ Q�r
i ((�1, y]). Proceeding as in the proof of Theorem 1(b), we obtain,

together with Lemma 4(b), that
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~TT <
Xn

i¼1

X1
r¼0

j ~AA(i)
r j 2 �i þ c9i �i þ

�(2)
i

�i

 ! !
Conc�(R; �i) þ 4 ~TT

 !
,

giving

(1 � 4 ~BB) ~TT < 2
Xn

i¼1

~BB(i) �i þ c9i �i þ
�(2)

i

�i

 ! !
Conc�(R; �i),

where ~BB ¼
Pn

i¼1
~BB(i) and ~BB(i) ¼

P1
r¼0j ~AA(i)

r j. Here, we have used the fact that ~TT , 1, which

can easily be shown by using the simple inequality

sup
t2R

j�Q91�Q92 (t)j < sup
t2R

j�Q91 (t)j jQ92j(R)

for two finite signed measures Q91 and Q92 on R. Similarly to the above,

~BB(i) ¼
����� 1

(1 � z)2
(1 � exp(G

(i)
K (z)))

����� <
1

4
(e�(i,K) � 1),

and hence, we obtain ~BB < �=4. The second assertion now follows. h

For the proofs of Proposition 3, Lemma 6 below, and Proposition 5, we use a splitting

technique due to Lévy (cf. Le Cam 1986, p. 412).

Proof of Proposition 3. Let s 2 [0, 1). The proof is based on the decomposition

Q ¼ c1Q1 þ c2Q2 þ c3Q3,

where Q1, Q2 and Q3 are probability measures concentrated on (�1, �s), [�s, s] and

(s, 1), respectively, and

c1 ¼ Q((�1, �s)), c2 ¼ Q([�s, s]), c3 ¼ Q((s, 1)):

Then, for t 2 (0, 1), CPo(t, Q) ¼ �3
i¼1 CPo(tci, Qi) and therefore, by Lemma 8(c) below,

Conc(CPo(t, Q); s) < minfConc(CPo(tc1, Q1); s), Conc(CPo(tc3, Q3); s)g:
We obtain

Conc(CPo(tc1, Q1); s) ¼ sup
x2R

X1
n¼0

po(n, tc1) Q�n
1 ([x, x þ s])

 !

< sup
n2Zþ

po(n, tc1)

 !
sup
x2R

X1
n¼0

Q�n
1 ([x, x þ s]):

It is well known that, for y 2 (0, 1),

sup
n2Zþ

po(n, y) <
1ffiffiffiffiffiffiffiffi
2ey

p ; (14)

see, for example, Barbour et al. (1992b, p. 262) or Hipp and Michel (1990, pp. 46–47).
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Further, for all x 2 R, it can be shown that
P1

n¼0Q�n
1 ([x, x þ s]) < 1. Indeed, if T1, T2, . . .

are independent and identically distributed random variables with L(T1) ¼ Q1, then we may

assume that, for all i 2 N, Ti , �s and therefore

X1
n¼0

Q�n
1 ([x, x þ s]) ¼ P

[1
n¼0

Xn

i¼1

Ti 2 [x, x þ s]

( ) !
< 1:

Hence

Conc(CPo(tc1, Q1); s) <
1ffiffiffiffiffiffiffiffiffiffiffi

2etc1

p :

Similarly, Conc(CPo(tc3, Q3); s) < (2e tc3)�1=2. Combining the estimates above, (5) is

shown. Inequality (6) can be derived from (5) by using Lemma 9 below. Since

CPo(t, �1) ¼ Po(t) for t 2 [0, 1) and since, in (14), equality holds for y ¼ 1
2
, we see that

the remaining part of the assertion is true. h

For the proof of Proposition 5, we need the following lemma, which is similar to

Proposition 2 in Le Cam (1986, pp. 409–410). However, there are some differences. In

contrast to Lemma 6 below, in Le Cam’s Proposition 2 it was assumed that the summands

X i have symmetric but not necessarily identical distributions.

Lemma 6. Let n 2 N and X 1, . . . , X n be independent and identically distributed random

variables. Set Sn ¼
Pn

i¼1 X i. Let x 2 R, t . 0 be fixed. We assume that the X i admit the

decomposition L(X i) ¼ L(I iYi þ (1 � I i)Zi) for i 2 f1, . . . , ng, where fI ig, fYig and fZig
are sets of identically distributed random variables with L(I i) ¼ Bi(1, 1

2
), P(Yi < x) ¼

P(Zi > x þ t) ¼ 1. We assume that all I i, Yi, Zi are independent. Then

Conc�(L(Sn); t) <
1ffiffiffiffiffiffiffiffiffiffiffi

n þ 1
p :

Proof. Set Tn ¼
Pn

i¼1 I i and, for m 2 f0, . . . , ng, ~ZZ m ¼
Pm

i¼1Yi þ
Pn�m

i¼1 Zi. For y 2 R, we

then have

P(Sn 2 (y, y þ t)) ¼
Xn

m¼0

P(Tn ¼ m) P( ~ZZ m 2 (y, y þ t))

< sup
m2Zþ

P(Tn ¼ m)

 !Xn

m¼0

P( ~ZZ m 2 (y, y þ t))

<
1ffiffiffiffiffiffiffiffiffiffiffi

n þ 1
p ,

where we have used the fact that supm2Zþ P(Tn ¼ m) < (1 þ n)�1=2 (see, for example, Le

Cam 1986, proof of Proposition 2, p. 410) and that, since ~ZZ m � ~ZZ mþ1 > t almost surely for
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m 2 f0, . . . , n � 1g, the events f ~ZZ m 2 (y, y þ t)g for m 2 f0, . . . , ng are pairwise disjoint.

h

Proposition 5 can be proved by adapting the proof of Theorem 2 in Le Cam (1986,

p. 411); cf. Remark 8 of the present paper. In what follows, we give an alternative direct

proof.

Proof of Proposition 5. Let t 2 (0, 1) and let x ¼ xt 2 R be a median of the distribution

function 2�1(F(y) þ F(y þ t)) for y 2 R, where F is the distribution function of X 1. This

means that

F(x�) þ F((x þ t)�) < 1 < F(x) þ F(x þ t),

where F(x�) ¼ lim y"x F(y). Therefore a 2 [0, 1] exists such that

q :¼ F(x�) þ a P(X 1 ¼ x) ¼ 1 � F((x þ t)�) � a P(X 1 ¼ x þ t):

This leads to

1 � P(X1 2 [x, x þ t]) < 2q < 1 � P(X1 2 (x, x þ t)): (15)

In particular, q < 1
2
. Let us assume that q . 0. For y 2 R, set

F1(y) ¼ F(y)

q
1(�1, x)(y) þ 1[x, 1)(y),

F2(y) ¼ F(y) � (1 � q)

q
1[xþ t, 1)(y),

F3(y) ¼ 1

2
(F1(y) þ F2(y)),

F4(y) ¼
F(y) � q

1 � 2q
1[x, xþ t)(y) þ 1[xþ t, 1)(y), if q , 1

2
,

1[x, 1)(y), if q ¼ 1
2
:

8><
>:

It is easy to verify that the F1, . . . , F4 are distribution functions with

F ¼ 2qF3 þ (1 � 2q)F4:

Further, the distributions with distribution functions F1, F2, F4 are concentrated on (�1, x],

[x þ t, 1) and [x, x þ t], respectively. Let fY1, . . . , Yng, fZ1, . . . , Z ng and fI1, . . . , I ng
be families of identically distributed random variables with FYi

¼ F3, FZi
¼ F4 and

L(I i) ¼ Bi(1, 2q) for i 2 f1, . . . , ng, where we assume that all Yi, Zi, I i for i 2 f1, . . . , ng
are independent. Then Sn is equal in distribution to

Xn

i¼1

[I iYi þ (1 � I i)Zi]:

Set T n ¼
Pn

i¼1 I i and, for m 2 f0, . . . , ng, Rm ¼
Pm

i¼1Yi. For y 2 R, we now obtain

Hipp’s compound Poisson approximations 553



P(Sn 2 (y, y þ t)) ¼
Xn

m¼0

P(Tn ¼ m) P Rm þ
Xn�m

i¼1

Zi 2 (y, y þ t)

 !

<
Xn

m¼0

P(Tn ¼ m) Conc�(L(Rm); t),

where we have used Lemma 8 below. From Lemma 6, we see that

Conc�(L(Rm); t) < (m þ 1)�1=2. Therefore, using Jensen’s inequality, the equality

P(Tn þ 1 ¼ m) ¼ m

(n þ 1)2q
P(Tnþ1 ¼ m)

for m 2 f0, . . . , n þ 1g, and (15), we derive

Conc�(L(Sn); t) < E
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tn þ 1
p < E

1

T n þ 1

� �1=2

¼ 1 � (1 � 2q)nþ1

(n þ 1) 2q

� �1=2

<
1 � [Conc(L(X 1); t)]nþ1

(n þ 1)(1 � Conc(L(X 1); t))

� �1=2

,

where t 2 (0, 1). In the case q ¼ 0, the upper bound we have just proved can be set to be

one by a continuity argument, since here we have P(X 1 2 [x, x þ t]) ¼ 1 and therefore

Conc(L(X1); t) ¼ 1. The proof is completed by using Lemma 9 below. h

For the proof of Proposition 4, we need the following lemma.

Lemma 7. Let the assumptions of Proposition 4 be valid. For s, t 2 (0, 1) and Æ ¼
1 � Conc(L(X1); s), we have

Conc�(L(Sn); t) < Conc�(L(X 1); t)
Xn�1

m¼0

Conc�(L(Sm); s þ t)Æn�1�m:

Proof. Let x 2 R be arbitrary and set I ¼ (x, x þ t]. According to Lemma 9(d) below, y 2 R

exists such that Æ ¼ P(X 1 =2 J ), where we define J ¼ [y, y þ s]. Then we have (cf. Petrov

1995, p. 70)

P(Sn 2 I) ¼
ð

I�J

P(X 1 þ x 2 I , X1 2 J ) dL(Sn�1)(x)

þ Æ

ð1
�1

P(Sn�1 þ x 2 I) dL(X 1jX1 =2 J )(x),

where I � J ¼ fz1 � z2 j z1 2 I , z2 2 Jg ¼ (x � y � s, x � y þ t]. This yields

Conc�(L(Sn); t) < Conc�(L(X1); t)Conc�(L(Sn�1); s þ t)

þ ÆConc�(L(Sn�1); t):
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The assertion now follows by induction over n. h

Proof of Proposition 4. According to Lemma 9 below, it suffices to show the assertion for

Conc�. Let t 2 (0, 1). Let us first assume that Conc�(L(X 1); t) < �, where � 2 (0, 1).

Then, by Lemma 9 below, s 2 [t, 1) exists such that

Conc�(L(X 1); s) < � < Conc(L(X1); s):

In particular, we have Æ :¼ 1 � Conc(L(X1); s) < 1 � �. Using Lemma 7, Proposition 5 and

the simple inequality Conc�(L(X 1); s þ t) < 2�, we obtain

Conc�(L(Sn); t) < Conc�(L(X1); t)
Xn�1

m¼0

(1 � �)n�1�mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m þ 1)(1 � 2�)

p :

Set � ¼ 0:3322. Then simple calculus shows that

ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p Xn�1

m¼0

(1 � �)n�1�mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m þ 1)(1 � 2�)

p < 6:33, (16)

giving the assertion in the present case. In fact, it is not difficult to prove that, if we denote

the left-hand side of (16) by f n, then f n < f nþ1 for n < 6 and f n > f nþ1 for n > 7.

Therefore, supn2N f n ¼ f 7 ¼ 6:329 . . . : If Conc�(L(X 1); t) > �, then the assertion follows

easily from Proposition 5. In fact,

Conc�(L(Sn); t) <
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(m þ 1)(1 � Conc�(L(X1); t))
p

<
Conc�(L(X 1); t)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m þ 1)(1 � Conc�(L(X 1); t))

p ,

where 1=� < 3:1. h

Proof of Corollary 2. The assertion follows from

Conc(CPo(t, Q) ; s) <
X1
n¼0

po(n, t) Conc(Q� n ; s)

< e� t þ
X1
n¼1

po(n, t)
6:33 Conc(Q; s)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n þ 1)(1 � Conc(Q; s))
p ,

the simple inequality
P1

n¼1po(n, t)=
ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p
< (1 � e� t)=

ffiffi
t

p
and Lemma 9 below. h

Appendix: Concentration functions

For the proof of the following lemmas, see Hengartner and Theodorescu (1973).
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Lemma 8 (Basic properties of concentration functions). Let t, s 2 [0, 1) and X and Y be

independent real-valued random variables. Then:

(a) Conc(L(X ); s) < Conc(L(X ); s þ t).

(b) Conc(L(X ); s þ t) < Conc(L(X ); s) þ Conc(L(X ); t).

(c) Conc(L(X þ Y ); s) < minfConc(L(X ); s), Conc(L(Y ); s)g.

(d) Assertions (a)–(c) also hold if Conc is everywhere replaced by Conc�.

Lemma 9 (Continuity properties of concentration functions). Let s 2 (0, 1), t 2 [0, 1),

and Q be a probability distribution on R. Then:

(a) Conc�(Q; t) ¼ supx2R Q((x, x þ t)) ¼ supx2R Q([x, x þ t)).

(b) Conc(Q; �) is continuous from the right; Conc�(Q; �) is continuous from the left.

(c) Conc(Q; s�) ¼ Conc�(Q; s) and Conc�(Q; tþ) ¼ Conc(Q; t).

(d) There exists an xt 2 R such that Conc(Q; t) ¼ Q([xt, xt þ t]).
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