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Abstract. Let B be a Hirata separable and Galois extension of BG with Galois group
G of order n invertible in B for some integer n, C the center of B, and VB(BG) the
commutator subring of BG in B. It is shown that there exist subgroups K and N of
G such that K is a normal subgroup of N and one of the following three cases holds:
(i) VB(BK) is a central Galois algebra over C with Galois group K, (ii) VB(BK) is
separable C-algebra with an automorphism group induced by and isomorphic with K,
and (iii) BK is a central algebra over VB(BK) and a Hirata separable Galois extension
of BN with Galois group N/K. More characterizations for a central Galois algebra
VB(BK) are given.

1. INTRODUCTION

The Hirata separable extension of a ring is an important generalization of Azumaya
algebras. The class of Hirata separable Galois extensions of a ring has been intensively
investigated ([1], [7], [9]). The purpose of the present paper is to show a classification of a
Hirata separable and Galois extension B of BG with Galois group G of order n invertible
in B for some integer n. We shall show that there exist subgroups K and N of G such that
K is a normal subgroup of N and one of the following three cases holds: (i) VB(BK) is a
central Galois algebra over C with Galois group K, (ii) VB(BK) is separable C-algebra with
an automorphism group induced by and isomorphic with K, and VB(BK) and BK have the
same center, and (iii) BK is a central algebra over VB(BK) and a Hirata separable Galois
extension of BN with Galois group N/K . Moreover, several equivalent conditions for a
central Galois algebra VB(BK) are given by using the rank function of a projective module
on the spectrum of prime ideals of a commutative ring ([2], page 27). This paper was
written under the support of a Caterpillar Fellowship at Bradley University. The authors
would like to thank Caterpillar Inc. for the support.

2. A CLASSIFICATION

Let B be a ring with 1, A a subring of B with the same identity 1, and C the center
of B. Following the definitions and notations in [8], we call B a separable extension of A
if there exist {ai, bi in B, i = 1, 2, ...,m for some integer m} such that

∑
aibi = 1, and∑

bai ⊗ bi =
∑

ai ⊗ bib for all b in B where ⊗ is over A, and B is called an Azumaya
algebra if B is a separable algebra over its center C. A ring B is called a Hirata separable
extension of A if B ⊗A B is isomorphic to a direct summand of a finite direct sum of B as
a B-bimodule. Let G be a finite automorphism group of B and BG the set of elements in
B fixed under each element in G. Then B is called a Galois extension of BG with Galois
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group G if there exist elements {ai, bi in B, i = 1, 2, ...,m} for some integer m such that∑m
i=1 aig(bi) = δ1,g for each g ∈ G. A Hirata separable Galois extension B of BG with

Galois group G means that B is a Hirata separable extension and a Galois extension of BG

with Galois group G. A central Galois algebra is a Galois extension over its center.

Throughout this paper, we assume that B is a Hirata separable Galois extension of BG

with Galois group G of order n invertible in B for some integer n, C the center of B, and
VB(A) the commutator subring of A in B for a subring A of B with the same identity 1.
In this section, we shall show a classification theorem for B beginning with an important
fact on the commutator subring VB(BG) of BG in B due to K. Sugano ([7], Theorem 6).

Lemma 2.1. ([7], Theorem 6)
Let B be a Hirata separable Galois extension of BG with Galois group G of order n invertible
in B and K = {g ∈ G | g(a) = a for each a ∈ VB(BG)}. Then B is a Hirata separable Galois
extension of BK with Galois group K and BK is a Hirata separable Galois extension of BG

with Galois group G/K.

By Lemma 2.1, we can show that there exists a normal series of subgroups of G leading
to a classification of a Hirata separable Galois extension.

Theorem 2.2.
Let B be a Hirata separable Galois extension of BG with Galois group G of order n invertible
in B. Then there exists a chain of subgroups of G,

〈1〉 ⊂ Gm ⊂ · · · ⊂ Gi · · · ⊂ G2 ⊂ G1 ⊂ G0 = G,

such that for each i = 1, 2, . . . , m, Gi is a normal subgroup of Gi−1, B is a Hirata separable
Galois extension of BGi with Galois group Gi, BGi is a Hirata separable Galois extension
of BGi−1 with Galois group Gi−1/Gi, and {g ∈ Gm | g(a) = a for each a ∈ VB(BGm)} = Gm

or 〈1〉.
Proof. Let G0 = G. If {g ∈ G0 | g(a) = a for each a ∈ VB(BG0)} = G0 or 〈1〉, then

m = 0; and we are done. Otherwise, let G1 = {g ∈ G0 | g(a) = a for each a ∈ VB(BG0)},
that is, G1 is a proper subgroup of G. Then, since the order n of G0 is invertible in B, B
is a Hirata separable Galois extension of BG1 with Galois group G1, and BG1 is a Hirata
separable Galois extension of BG0 with Galois group G0/G1 by Lemma 2.1. Similarly, by
repeating the above argument for the Hirata separable Galois extension B of BG1 with
Galois group G1, we have a normal subgroup G2 of G1 where G2 = {g ∈ G | g(a) = a for
each a ∈ VB(BG1)}. Since G is a finite group, the above process terminates in m-steps for
some integer m. Thus we have a sequence of subgroups of G,

〈1〉 ⊂ Gm ⊂ · · · ⊂ Gi · · · ⊂ G2 ⊂ G1 ⊂ G0 = G,

such that for each i = 1, 2, . . . , m, Gi is a normal subgroup of Gi−1, B is a Hirata separable
Galois extension of BGi with Galois group Gi, BGi is a Hirata separable Galois extension
of BGi−1 with Galois group Gi−1/Gi, and {g ∈ Gm | g(a) = a for each a ∈ VB(BGm)} = Gm

or 〈1〉.

Next is a classification of a Hirata separable Galois extension by using Theorem 2.2.
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Theorem 2.3.
Let B be a Hirata separable Galois extension of BG with Galois group G of order n invertible
in B. Then there exist subgroups K and N of G such that K is a normal subgroup of N and
one of the following three cases holds: (i) VB(BK) is a central Galois algebra over C with
Galois group K; (ii) VB(BK) is separable C-algebra with an automorphism group induced
by and isomorphic with K, and VB(BK) and BK have the same center; and (iii) BK is
a central algebra over VB(BK) (i.e., the center of BK is VB(BK)) and a Hirata separable
Galois extension of BN with Galois group N/K.

Proof. By Theorem 2.2, there exists a sequence of subgroups of G,

〈1〉 ⊂ Gm ⊂ · · · ⊂ Gi · · · ⊂ G2 ⊂ G1 ⊂ G0 = G,

such that for each i = 1, 2, . . . , m, Gi is a normal subgroup of Gi−1, B is a Hirata separable
Galois extension of BGi with Galois group Gi, BGi is a Hirata separable Galois extension
of BGi−1 with Galois group Gi−1/Gi, and {g ∈ Gm | g(a) = a for each a ∈ VB(BGm)} = Gm

or 〈1〉. Let K = Gm and N = Gm−1 where m ≥ 1. Then K is a normal subgroup of N . By
Theorem 2.2, {g ∈ Gm | g(a) = a for each a ∈ VB(BGm)} = 〈1〉 or Gm. When it is 〈1〉 we
have two cases: (a) B = BK · VB(BK) and (b) B ⊃ BK · VB(BK). For case (a), VB(BK)
is a central Galois algebra over C with Galois group K ([7], Theorem 6(3)), so (i) holds.
For case (b), since {g ∈ K | g(a) = a for each a ∈ VB(BK)} = 〈1〉, the restriction of K
to VB(BK) is isomorphic to K, Moreover, since the order of K is a unit in B, VB(BK) is
separable C-algebra ([7], Proposition 4(3)). Also since VB(VB(BK) = BK ([7], Proposition
4(1)), we can check that VB(BK) and BK have the same center. Hence (ii) holds. Next
we discuss the possibility that {g ∈ Gm | g(a) = a for each a ∈ VB(BGm)} = Gm (= K)
as given by Theorem 2.2. In this case, VB(BK) ⊆ BK . Hence VB(BK) = VBK (BK) =
the center of BK . Thus BK is a central algebra over VB(BK). Moreover, BK is also a
Hirata separable Galois extension of BN with Galois group N/K by Theorem 2.2 again.
This implies (iii).

3. EQUIVALENT CONDITIONS
Let B be an Azumaya C-algebra with a finite automorphism group G and Jg = {a ∈

B | ax = g(x)a for each x ∈ B} for a g ∈ G. It is well known that Jg is a rank 1 projective
C-module such that Jg · Jh = Jgh

∼= Jg ⊗C Jh for all g, h ∈ G ([6], Lemma 5), and that B
is a central Galois algebra over C with Galois group G if and only if B = ⊕∑

g∈G Jg ([3],
Theorem 1 and [5], Theorem 1). These properties are generalized to a Hirata separable
Galois extension B of BG with Galois group G; that is, rankC(Jg) = 1 where C is the
center of B, Jg · Jh = Jgh

∼= Jg ⊗C Jh for all g, h ∈ G, and VB(BG) is a central Galois
algebra with Galois group G/K if and only if the center of VB(BG) is ⊕∑

g∈K Jg where
K = {g ∈ G | g(a) = a for each a ∈ VB(BG)} ([7], Theorem 6(3)). In this section, we
shall give a different proof for the above equivalent condition in [7] and then derive more
equivalent conditions for a central Galois algebra VB(BG) with Galois group G/K in terms
of the rank of a projective module over a commutative ring. We begin with the equivalent
condition for a central Galois algebra VB(BG) with a different proof from Theorem 6 in [7].

Proposition 3.1.
Let B be a Hirata separable Galois extension of BG with Galois group G of order n invertible
in B and K = {g ∈ G | g(a) = a for each a ∈ VB(BG)}. Then, VB(BG) is a central Galois
algebra with Galois group G/K if and only if the center of VB(BG) is ⊕∑

g∈K Jg.
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Proof. (⇐=) Let J ′
g = {a ∈ VB(BG) | ax = g(x)a for each x ∈ VB(BG)} for a g ∈ G

and C′ the center of VB(BG). Noting that VB(BG) = ⊕∑
g∈G Jg ([5], Proposition 1), we

have that Jg ⊆ J ′
g for each g ∈ G. We claim that VB(BG) = ⊕∑

g∈G/K J ′
g. In fact,

since for each h ∈ K, J ′
gh = {a ∈ VB(BG) | ax = gh(x)a for each x ∈ VB(BG)} = {a ∈

VB(BG) | ax = g(x)a for each x ∈ VB(BG)} = J ′
g, Jgh ⊆ J ′

gh = J ′
g for each h ∈ K. Hence

⊕∑
h∈K Jgh ⊆ J ′

g. By hypothesis, C′ = ⊕∑
g∈K Jg, so ⊕∑

h∈K Jgh
∼= ⊕∑

h∈K(Jg ⊗C

Jh) ∼= Jg ⊗C (⊕∑
h∈K Jg) ∼= Jg ⊗C C′ which is a rank 1 projective C′-module (for Jg is a

rank 1 projective C-module). On the other hand, since the order of G is a unit in B, VB(BG)
is separable C-algebra ([7], Proposition 4(3)). Hence VB(BG) is Azumaya C′-algebra. Thus
J ′

g is a rank 1 projective C′-module for each g ∈ G. Therefore VB(BG) = ⊕∑
g∈G Jg =

⊕∑
g∈G/K

∑
h∈K Jgh ⊆ ⊕∑

g∈G/K J ′
g ⊆ VB(BG); and so VB(BG) = ⊕∑

g∈G/K J ′
g. Hence

VB(BG) is a central Galois algebra with Galois group G/K ([3], Theorem 1).

(=⇒) Since VB(BG) is a central Galois algebra over C′ with Galois group G/K,
rankC′(VB(BG)) = |G/K|, the order of G/K. By hypothesis, B is a Hirata separable
Galois extension of BG with Galois group G. Hence each Jg is a projective C-module of
rank 1 ([7], Theorem 2) and rankC(VB(BG)) = |G|, the order of G ([7], Proposition 4(2)).
Noting that VB(BG) = ⊕∑

g∈G Jg, we conclude that rankC(⊕∑
h∈K Jh) = |K|. On the

other hand, since |G| =rankC(VB(BG)) =rankC′(VB(BG))·rankC(C′) = |G/K|·rankC(C′),
we have that rankC(C′) = |K|. Thus rankC(⊕∑

h∈K Jh) = |K| =rankC(C′). Noting that
⊕∑

h∈K Jh ⊆ J ′
1 = C′ as a direct summand, we conclude that C′ = ⊕∑

h∈K Jh.

From the proof of Proposition 3.1, we derive two equivalent conditions for a central
Galois algebra VB(BG) in terms of the rank of a projective module over a commutative
ring.

Theorem 3.2.
By keeping the notations of Proposition 3.1, the following statements are equivalent:

(1) VB(BG) is a central Galois algebra over C′ with Galois group G/K;
(2) J ′

g = ⊕∑
h∈K Jgh for each g ∈ G; and

(3) rankC(C′) = |K|, the order of K.

Proof. (1) =⇒ (2) By the proof of Proposition 3.1,

VB(BG) = ⊕
∑

g∈G/K

∑

h∈K

Jgh ⊆ ⊕
∑

g∈G/K

J ′
g ⊆ VB(BG)

such that ⊕∑
h∈K Jgh ⊆ J ′

g for each g ∈ G. Hence J ′
g = ⊕∑

h∈K Jgh for each g ∈ G.

(2) =⇒ (1) Taking g = 1, we have C′ = J ′
1 = ⊕∑

h∈K Jh. Hence, by Proposition 3.1,
VB(BG) is a central Galois algebra over C′ with Galois group G/K.

(1) =⇒ (3) By the proof of the necessity of Proposition 3.1, rankC(C′) = |K|.
(3) =⇒ (1) By the proof of the necessity of Proposition 3.1 again, that rankC(C′) = |K|

implies that C′ = ⊕∑
h∈K Jh. Thus VB(BG) is a central Galois algebra over C′ with Galois

group G/K by Proposition 3.1.

We conclude the present paper with three examples of a Hirata separable Galois exten-
sion of BG with Galois group G of order n invertible in B such that K as given in Theorem
2.3 is 〈1〉, G, and a proper subgroup of G, respectively.
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Example 1.
Let B = R[i, j, k], the real quaternion algebra over R and G = {1, gi, gj, gk} where gi(x) =
ixi−1, gj(x) = jxj−1, and gk(x) = kxk−1 for all x in B. Then,

(1) B is a central Galois algebra over R with a G-Galois system: {a1 = 1, a2 = i, a3 =
j, a4 = k, b1 = 1

4 , b2 = − 1
4 i, b3 = − 1

4j, b4 = − 1
4k, };

(2) BG = R;
(3) B is a Hirata separable extension of R because B is an Azumaya R-algebra;
(4) By (1)-(3), B is a Hirata separable Galois extension of BG with Galois group G of

order 4 invertible in B;
(5) Since VB(BG) = VB(R) = B, K = 〈1〉 as given in Theorem 2.3.

Example 2.
Let B = R[i, j, k], the real quaternion algebra over R and G = {1, gi} where gi(x) = ixi−1

for all x in B. Then, (1) B is a Galois extension of R[i] with Galois group G;
(2) B is a Hirata separable extension of R[i] by Theorem 1 in [4]. Thus, B is a Hirata

separable Galois extension of BG with Galois group G of order 2 invertible in B;
(3) VB(BG) = VB(R[i]) = R[i] = BG, so K = G as given in Theorem 2.3.

Example 3.
Let F ⊂ L be a Galois field extension with a Galois group G such that G has a proper
center Z, B = L ∗ G, the skew group ring of G over L, and G = {g | g ∈ G}, the inner
automorphism group of B induced by the elements of G. Then,

(1) B is a Galois extension of BG with Galois group G isomorphic with G (for L is a
Galois extension of F with Galois group G);

(2) B is a Hirata separable extension of BG ([7], Corollary 3);
(3) VB(BG) = ⊕∑

g∈G Jg = ⊕∑
g∈G Cg ([5], Proposition 1) where C is the center of

B;
(4) (G)1 = Z, a proper subgroup of G;
(5) (G)2 = (G)1 (for VB(BZ) = ⊕∑

g∈Z Cg). Thus K = (G)1 = Z as given in Theorem
2.3.
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