3. On Hirota's Difference Equations

By Tetsuji Miwa
Research Institute for Mathematical Sciences, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., Jan. 12, 1982)

§ 1. The aim of this note is to exploit the operator approach [1] to soliton equations in studying the following non linear difference equation proposed by Hirota [2]:

$$
\begin{align*}
& \alpha f(\lambda+1, \mu, \nu) f(\lambda-1, \mu, \nu)+\beta f(\lambda, \mu+1, \nu) f(\lambda, \mu-1, \nu) \tag{1.1}\\
& \quad+\gamma f(\lambda, \mu, \nu+1) f(\lambda, \mu, \nu-1)=0,
\end{align*}
$$

where α, β and γ are constants satisfying $\alpha+\beta+\gamma=0$.
Hirota [2] found the difference Lax pair for (1.1), proved the existence of three soliton solutions and gave an ample list of non linear differential and/or difference equations obtained by taking suitable limits of (1.1). Among them is the KP (Kadomtsev-Petviashvili) equation which is written in Hirota's form as follows:

$$
\begin{equation*}
\left(D_{1}^{4}+3 D_{2}^{2}-4 D_{1} D_{3}\right) \tau \cdot \tau=0 \tag{1.2}
\end{equation*}
$$

He also remarked a significant coincidence of the phase shift term in soliton solutions of the equations (1.1) and (1.2).

Here I shall give an explicit transformation which connects the hierarchy of the KP equation and that of Hirota's difference equation.

One of the striking discoveries of Mikio and Yasuko Sato [3] on the former was that it admits the characters of the general linear group as its solutions with

$$
\begin{equation*}
x_{j}=\operatorname{trace} \frac{X^{j}}{j}, \quad X \in G L(N) \quad(j=1,2,3, \cdots) \tag{1.3}
\end{equation*}
$$

as the continuum variables. The transformation tells us that the latter, in a slightly modified form, admits them also as its solutions with the multiplicities of the eigenvalues of X as the discrete variables.

The transformation gives us also an operator solution to Hirota's difference equation in the sense of [1]. It reduces to operator solutions to equations in Hirota's list in the limit. Here I discuss briefly those for the two dimensional Toda lattice.

Finally I show that a similar consideration for the BKP hierarchy [1] leads us to the following discrete version:

$$
\begin{align*}
& \alpha f(\lambda+1, \mu, \nu) f(\lambda-1, \mu, \nu)+\beta f(\lambda, \mu+1, \nu) f(\lambda, \mu-1, \nu) \\
& \quad+\gamma f(\lambda, \mu, \nu+1) f(\lambda, \mu, \nu-1)+\delta f(\lambda+1, \mu+1, \nu+1) \tag{1.4}\\
& \quad \times f(\lambda-1, \mu-1, \nu-1)=0,
\end{align*}
$$

where α, β, γ and δ are constants satisfying $\alpha+\beta+\gamma+\delta=0$.
§2. Let us recall the operator solution to the KP hierarchy.

Let ψ_{m} and $\psi_{m}^{*}(m \in \boldsymbol{Z})$ be free fermions satisfying $\left[\psi_{m}, \psi_{n}\right]_{+}=\left[\psi_{m}^{*}, \psi_{n}^{*}\right]_{+}$ $=0$ and $\left[\psi_{m}, \psi_{n}^{*}\right]_{+}=\delta_{m n}$. We use their Fourier transforms $\psi(k)$ $=\sum_{n \in Z} \psi_{n} k^{n}$ and $\psi^{*}(k)=\sum_{n \in Z} \psi_{n}^{*} k^{-n}$. Introducing an infinite set of variables $x=\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ we set

$$
\begin{equation*}
\rho(x)=\iint \frac{d p}{2 \pi i p} \frac{d q}{2 \pi i q} \frac{p / q}{1-p / q} e^{-\xi(x, p)+\xi(x, q)} \psi(p) \psi^{*}(q) \tag{2.1}
\end{equation*}
$$

where $\xi(x, k)=\sum_{j=1}^{\infty} x_{j} k^{j}$. It was shown in [1] that if g is an element of the Clifford group

$$
\begin{equation*}
\tau(x)=\left\langle: e^{\rho(x)}: g\right\rangle \tag{2.2}
\end{equation*}
$$

satisfies the bilinear equation of the KP hierarchy.
Now we introduce two other infinite sets of variables $l=\left(l_{1}, l_{2}, l_{3}\right.$, $\cdots)$ and $a=\left(a_{1}, a_{2}, a_{3}, \cdots\right)$. We relate them to x by

$$
\begin{equation*}
x_{j}=\sum_{i=1}^{\infty} l_{i} \frac{a_{i}^{j}}{j} . \tag{2.3}
\end{equation*}
$$

Then the quadratic expression (2.1) is transformed into the following.

$$
\begin{equation*}
\rho(l ; a)=\iint \frac{d p}{2 \pi i p} \frac{d q}{2 \pi i q} \frac{p / q}{1-p / q} \prod_{j=1}^{\infty}\left(\frac{1-a_{j} p}{1-a_{j} q}\right)^{l_{j}} \psi(p) \psi^{*}(q) \tag{2.4}
\end{equation*}
$$

By using Wick's theorem we can show
Theorem 1. Let g be an element of the Clifford group and set

$$
\begin{equation*}
\tau(l ; a)=\left\langle: e^{\rho(l ; a)}: g\right\rangle \tag{2.5}
\end{equation*}
$$

We pick up a triple (l, m, n) among l_{i} 's and the corresponding one (a, b, c) among a_{i} 's. Then $\tau(l, m, n)(\overline{\overline{\operatorname{det}} \tau} \tau(l ; a))$ satisfies the following bilinear difference equation.

$$
\begin{align*}
& a(b-c) \tau(l+1, m, n) \tau(l, m+1, n+1) \\
& \quad+b(c-a) \tau(l, m+1, n) \tau(l+1, m, n+1) \tag{2.6}\\
& \quad+c(a-b) \tau(l, m, n+1) \tau(l+1, m+1, n)=0 .
\end{align*}
$$

In other words, by (2.3) we can transform solutions to the KP hierarchy into those to (2.6). Firstly, we have the following N soliton solution to (2.7) as was expected by Hirota [2].

$$
\begin{align*}
\tau(x)= & 1+\sum_{1 \leq i \leq N} c_{i} \sum_{j=1}^{\infty}\left(\frac{1-a_{j} q_{i}}{1-a_{j} p_{i}}\right)^{l_{j}} \\
& +\sum_{1 \leq i \leq i^{\prime} \leq N} c_{i} c_{i^{\prime}} c_{i i^{\prime}} \prod_{j=1}^{\infty}\left(\frac{1-a_{j} q_{i}}{1-a_{j} p_{i}}\right)^{l_{j}}\left(\frac{1-a_{j} q_{i^{\prime}}}{1-a_{j} p_{i^{\prime}}}\right)^{l_{j}}+\cdots, \tag{2.7}
\end{align*}
$$

where $c_{i i^{\prime}}=\left(p_{i}-p_{i^{\prime}}\right)\left(q_{i}-q_{i^{\prime}}\right) /\left(p_{i}-q_{i^{\prime}}\right)\left(q_{i}-p_{i^{\prime}}\right)$. Secondly, taking l to be integers, we have

Theorem 2. Let Y be a Young diagram. Let (a, b, c) be three distinct eigenvalues of an element X in $G L(N)$ with a sufficiently large integer N, and let (l, m, n) be their multiplicities. The character corresponding to Y solves the equation (2.6) with respect to the variation of (l, m, n).

The correspondence between (1.1) and (2.7) is given by

$$
\begin{equation*}
\lambda=m+n+1, \quad \mu=n+l+1, \quad \nu=l+m+1, \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\alpha=a(b-c), \quad \beta=b(c-a), \quad \gamma=c(a-b) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau(l, m, n)=f(m+n, n+l, l+m) . \tag{2.10}
\end{equation*}
$$

§ 3. Let us consider the following limit $\varepsilon \rightarrow 0$ in (2.7).

$$
\begin{align*}
& a=\infty, \quad b=\varepsilon, \quad c=\varepsilon^{-1}, \\
& l+n-1=s, \quad m \varepsilon=x, \quad n \varepsilon=y . \tag{3.1}
\end{align*}
$$

The resulting equation is called the two dimensional Toda equation [2]:

$$
\begin{align*}
& D_{x} D_{y} f(s, x, y) \cdot f(s, x, y) \tag{3.2}\\
& \quad=f(s, x, y)^{2}-f(s-1, x, y) f(s+1, x, y)
\end{align*}
$$

By taking $a_{j}=0\left(a_{j} \neq a, b, c\right)$ the quadratic expression (2.5) is scaled to

$$
\begin{equation*}
\rho(s, x, y)=\iint \frac{d p}{2 \pi i p} \frac{d q}{2 \pi i q} \frac{(p / q)^{s+1}}{1-p / q} \frac{e^{q x+q-1 y}}{e^{p x+p^{-1} y}} \psi(p) \psi^{*}(q) \tag{3.3}
\end{equation*}
$$

Thus we have
Theorem 3. If g is an element of the Clifford group, then

$$
\begin{equation*}
\tau(s, x, y)=\left\langle: e^{\rho(s, x, y)}: g\right\rangle \tag{3.4}
\end{equation*}
$$

solves the equation (3.2).
§4. Now we consider the BKP hierarchy [1]. Let $\phi_{n}(n \in Z)$ be neutral free fermions satisfying $\left[\phi_{m}, \phi_{n}\right]_{+}=(-)^{m} \delta_{m,-n}$. We use the Fourier transform $\phi(k)=\sum_{n \in Z} \phi_{n} k^{n}$. In this section we set $x=\left(x_{1}, x_{3}\right.$, x_{5}, \cdots),

$$
\begin{equation*}
\tilde{\xi}(x, k)=x_{1} k+x_{3} k^{3}+x_{5} k^{5}+\cdots \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{B}(x)=\iint \frac{d p}{2 \pi i p} \frac{d q}{2 \pi i q} \frac{q / p}{1+q / p} e^{-\xi(x, p)-\xi(x, q)} \phi(p) \phi(q) . \tag{4.2}
\end{equation*}
$$

Then, if g is an element of the Clifford group

$$
\begin{equation*}
\tau_{B}(x)=\left\langle: e^{\rho_{B}(x)}: g\right\rangle \tag{4.3}
\end{equation*}
$$

solves the BKP hierarchy.
We set

$$
\begin{equation*}
x_{j}=2 \sum_{i=1}^{\infty} l_{i} \frac{a_{i}^{j}}{j} . \tag{4.4}
\end{equation*}
$$

Then $\rho_{B}(x)$ reduces to

$$
\begin{align*}
& \rho_{B}(l, a) \\
& \quad=\iint \frac{d p}{2 \pi i p} \frac{d q}{2 \pi i q} \frac{q / p}{1+q / p} \prod_{j=1}^{\infty}\left(\frac{1-a_{j} p}{1+a_{j} p}\right)^{l_{j}}\left(\frac{1-a_{j} q}{1+a_{j} q}\right)^{l_{j}} \phi(p) \phi(q) . \tag{4.5}
\end{align*}
$$

Then we have
Theorem 4. Let g be an element of the Clifford group. We set

$$
\begin{equation*}
\tau_{B}(l, a)=\left\langle: e^{\rho_{B}(l, a)}: g\right\rangle . \tag{4.6}
\end{equation*}
$$

We pick up a triple (l, m, n) among l_{j} 's and the corresponding one (a, b, c) among a_{j} 's. Then $\tau(l, m, n)\left(\overline{\overline{\operatorname{det}}} \tau_{B}(l, a)\right)$ solves the following bilinear difference equation.

$$
\begin{align*}
& (a+b)(a+c)(b-c) \tau(l+1, m, n) \tau(l, m+1, n+1) \\
& \quad+(b+c)(b+a)(c-a) \tau(l, m+1, n) \tau(l+1, m, n+1) \tag{4.7}
\end{align*}
$$

$$
\begin{aligned}
& +(c+a)(c+b)(a-b) \tau(l, m, n+1) \tau(l+1, m+1, n) \\
& +(a-b)(b-c)(c-a) \tau(l+1, m+1, n+1) \tau(l, m, n)=0 .
\end{aligned}
$$

We also note that the BKP equation

$$
\text { (4.8) } \quad\left(D_{1}^{6}-5 D_{1}^{3} D_{3}-5 D_{3}^{2}+9 D_{1} D_{5}\right) \tau \cdot \tau=0
$$

is recovered in a suitable limit of (4.7).
The author acknowledges stimulating discussions with E. Date, R. Hirota, M. Jimbo, M. Kashiwara, M. Minami and M. Sato.

References

[1] M. Kashiwara and T. Miwa: Proc. Japan Acad., 57A, 342 (1981). E. Date, M. Kashiwara and T. Miwa; ibid., 57A, 387 (1981). E. Date, M. Jimbo, M. Kashiwara and T. Miwa; J. Phys. Soc. Japan, 50, 3806, 3813 (1981) and RIMS preprint, nos. 358-362 (1981).
[2] R. Hirota: Tech. Rep., nos. A-6, A-9, Hiroshima Univ. (1981).
[3] M. Sato: A talk delivered at the Symposium on Random Systems and Dynamical Systems held at RIMS, Kyoto Univ. on Jan. 7-9, 1981.

