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Abstract

Any finite simplicial complex  and a partition of the vertex set of  determines a canonical

quotient space of the moment-angle complex of . We prove that the cohomology groups of

such a space can be computed via some Hochster’s type formula, which generalizes the usual

Hochster’s formula for the cohomology groups of moment-angle complexes. In addition, we

show that the stable decomposition of moment-angle complexes can also be extended to such

spaces. This type of spaces include all the quasitoric manifolds that are pullback from the linear

models. And we prove that the moment-angle complex associated to a finite simplicial poset is

always homotopy equivalent to one of such spaces.

1. Introduction

1. Introduction
An abstract simplicial complex on a set [m] = {v1, · · · , vm} is a collection  of subsets

σ ⊆ [m] such that if σ ∈ , then any subset of σ also belongs to . We always assume that

the empty set belongs to  and refer to σ ∈  as an abstract simplex of . The simplex

corresponding to the empty set is denoted by 0̂. In particular, any element of [m] is called

a vertex of . We call the number of vertices of a simplex σ the rank of σ, denoted by

rank(σ). Let dim(σ) denote the dimension of a simplex σ. So rank(σ) = dim(σ) + 1.

Any finite abstract simplicial complex  admits a geometric realization in some Eu-

clidean space. But sometimes we also use  to denote its geometric realization when the

meaning is clear in the context.

Given a finite abstract simplicial complex  on a set [m] and a pair of spaces (X, A) with

A ⊂ X, we can construct of a topological space (X, A) by:

(1) (X, A) =
⋃

σ∈

(X, A)σ, where (X, A)σ =
∏

v j∈σ

X ×
∏

v j�σ

A.

The symbol
∏

here and in the rest of this paper means Cartesian product. So (X, A) is a

subspace of the Cartesian product of m copies of X. It is called the polyhedral product or

the generalized moment-angle complex of  and (X, A). In particular,  = (D2, S 1) and

R = (D1, S 0) are called the moment-angle complex and real moment-angle complex of

, respectively (see [5]). Moreover, we can define the polyhedral product (X,A) of  with

m pairs of spaces (X,A) = {(X1, A1), · · · , (Xm, Am)} (see [2] or [6, Sec 4.2]).
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Originally,  and R were constructed by Davis and Januszkiewicz [9] in a different

way. We will only explain the construction of  below (the R case is completely

parallel). Let ′ denote the barycentric subdivision of . We can consider ′ as the set of

chains of simplices in  ordered by inclusions. For each simplex σ ∈ , let Fσ denote the

geometric realization of the poset ≥σ = {τ ∈  |σ ⊆ τ}. Thus, Fσ is the subcomplex of ′

consisting of all simplices of the form σ = σ0 � σ1 � · · · � σl. Let P denote the cone on

′. If σ is a (k − 1)-simplex, then we say that Fσ ⊂ P is a face of codimension k in P.

The polyhedron P together with its decomposition into “faces” {Fσ}σ∈ is called a simple

polyhedral complex (see [9, p.428]).

Let V() denote the vertex set of . Any map λ : V() → Zr is called a Zr-coloring of

, and any element of Zr is called a color. For any simplex σ ∈ ,

• let V(σ) denote the vertex set of σ and,

• let Gλ(σ) denote the toral subgroup of T r
= (S 1)r corresponding to the subgroup of

Zr generated by {λ(v) | v ∈ V(σ)}.

Given a Zr-coloring λ of , we obtain a space X(, λ) defined by

(2) X(, λ) := P × T r/ ∼

where (p, g) ∼ (p′, g′) whenever p′ = p ∈ Fσ and g′g−1 ∈ Gλ(σ) for some σ ∈ .

In particular, if r = |V()| = m and {λ(v j) ; 1 ≤ i ≤ m} is a basis of Zm, X(, λ) is

homeomorphic to . Let π : P × T m →  be the corresponding quotient map in (2).

There is a canonical action of T m on  defined by:

(3) g′ · π(p, g) = π(p, gg′), p ∈ P, g, g
′ ∈ T m.

Then any subgroup of T m acts canonically on  through this action.

The following is another way to view the canonical T m-action on . Recall

(4)  = (D2, S 1) =
⋃

σ∈

(∏

v j∈σ

D2
( j) ×
∏

v j�σ

S 1
( j)

)
⊂
∏

v j∈[m]

D2
( j)

where D2
( j)

and S 1
( j)

are the copy of D2 and S 1 associated to v j. Notice that D1
( j)
= S 1

( j)
∗ v j

(the join of S 1
( j)

with v j). So we can write

(5)  = (D2, S 1) =
⋃

σ∈

(∏

v j∈σ

S 1
( j) ∗ v j ×

∏

v j�σ

S 1
( j)

)
.

We can identify S 1
( j)

with the j-th S 1-factor in T m
= (S 1)m. Then for any (g1, · · · , gm) ∈ T m,

let g j act on S 1
( j)

through left translations. This is equivalent to the canonical T m-action on

 defined by (3).

For any map λ : V() → Zr whose image spans the whole Zr, we can view the space

X(, λ) in (2) as a quotient space of  by a toral sbugroup of T m. Indeed, let {e1, · · · , em}

be a unimodular basis of Zm and define a group homomorphism

ρλ : Zm −→ Zr, ρλ(e j) = λ(v j), 1 ≤ i ≤ m.

The kernel of ρλ is a subgroup of Zm which determines an (m−r)-dimensional toral subgroup

Hλ ⊂ T m. It is easy to see that X(, λ) is homeomorphic to the quotient space /Hλ,
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where Hλ acts on  via the canonical T m-action. Note that the action of Hλ on  is not

necessarily free.

The cohomology groups of  can be computed via a Hochster’s type formula as follows

(see [4] or [5]). For any subset J ⊂ [m], let J denote the full subcomplex of  obtained by

restricting to J. Let k denote a field or Z below. We have

(6) Hq(; k) =
⊕

J⊂[m]

H̃q−|J|−1(J; k), q ≥ 0.

where H̃∗(J; k) is the reduced cohomology groups of J and |J| denotes the number of

elements in J. Here we adopt the convention that

H̃−1(∅; k) = k.

Moreover, it is shown in [4] and [5] that there is a natural bigrading on H∗(; k) so that it

is isomorphic to Tork[v1,··· ,vm](k[]; k) as bigraded algebras, where k[] is the face ring (or

Stanley-Reisner ring) of  over k (also see [10]).

The cohomology rings of free quotient spaces of  can be reprsented in a similar way.

Suppose a subtorus H ⊂ T m acts freely on  through the canonical action. It is shown

in [15] (also see [5, Theorem 7.37]) that there is a graded algebra isomorphism

(7) H∗(/H; k) � TorH∗(B(T m/H);k)(k[]; k)

where B(T m/H) is the classifying space for the principal T m/H-bundle. However,

TorH∗(B(T m/H);k(k[]; k) is not so easy to compute in practice and it is not clear whether

there exists a Hochster’s type formula for H∗(P/H; k) in general as we have for H∗(P; k)

in (6).

R 1.1. For the calculation of the cohomology ring structure of general polyhedral

products, the reader is referred to [2, 3, 19].

An important class of quotient spaces of moment-angle complexes are quasitoric man-

ifolds. Let P be the simplicial sphere that is dual to an n-dimensional simple convex

polytope P with m facets. Then P = P
is an (m + n)-dimensional closed connected

manifolds, called the moment-angle manifold of P. Suppose H � T m−n is a subgroup of T m

that acts freely on P through the canonical action, the quotient space P/H is called a qu-

asitoric manifold over P. Quasitoric manifolds are introduced by Davis and Januszkiewicz

in [9].

In this paper, we study a special class of quotient spaces of  and show that their co-

homology groups can indeed be computed via some Hochster’s type formula. These spaces

are defined as follows.

• Let α = {α1, · · · , αk} be a partition of the vertex set V() of a simplicial complex

, i.e. αi’s are disjoint nonempty subsets of V() with α1 ∪ · · · ∪ αk = V().

• Let {ẽ1, · · · , ẽk} be a basis of Zk. We define a Zk-coloring of , denoted by λα,

which assigns ẽi to all the vertices in αi (1 ≤ i ≤ k).

Then we obtain a space X(, λα) via construction (2), which can be thought of as a

quotient space of  by the action of a rank m − k subtorus Hλα of T m. Note that it is
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Fig.1. Examples of X(, λα)

possible that the two vertices of a 1-simplex in  are assigned the same color (see Figure 1

for example).

Let α
∗ denote the trivial partition of V(), i.e. α

∗
= (α1, · · · , αm) where each α j = {v j}

consists of only one vertex of . Then according to our definition,

X(, λα∗) = .

For a non-trivial partition α of V(), the space X(, λα) is a priori not a moment-angle

complex of any kind. But we will see that some topological properties of X(, λα) are

very similar to moment-angle complexes. In particular, the cohomology groups of these

spaces can also be computed by some Hochster’s type formula as we do for moment-angle

complexes.

Let [k] = {1, · · · , k}. One should keep in mind the difference between [k] and the vertex

set [m] of . For any simplex σ ∈ , let

Iα(σ) := {i ∈ [k] ; V(σ) ∩ αi � ∅} ⊂ [k],

which just tells us the set of colors on the vertices of σ defined by λα. Obviously we have

0 ≤ |Iα(σ)| ≤ rank(σ). For any subset L ⊂ [k], define

(8) α,L := the subcomplex of  consisting of {σ ∈  ; Iα(σ) ⊂ L}.

The main results of this paper are the following two theorems.

Theorem 1.2. Let α = {α1, · · · , αk} be a partition of the vertex set of a finite simplicial

complex . Then we have group isomorphisms:

Hq(X(, λα); k) �
⊕

L⊂[k]

H̃q−|L|−1(α,L; k), ∀q ≥ 0.

Note that the above formula for α
∗ gives (6). If the action of Hλα ⊂ T m on  is

free, we obtain from (7) that H∗(X(, λα); k) � TorH∗(B(T m/Hλα );k)(k[]; k). In this case

the Tor-module splits by the refined Zk-graded components and then Theorem 1.2 gives

the Hochster’s formula for it. But generally X(, λα) may not be a free quotient of .

For example let  = ∂∆2 be the boundary of a 2-simplex and k = 1, then λα assigns the

same color ẽ1 to all the vertices of ∂∆2. It is easy to see that X(∂∆2, λα) is not even a

closed manifold while ∂∆2 � S 5. So in general we can not directly apply (7) to compute

H∗(X(, λα); k).

In addition, it was shown in [2, Corollary 2.23] that the Hochster’s formula for the coho-
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mology groups of  follows from a stable decomposition of . We have parallel results

for X(, λα) as well.

Theorem 1.3. Let α = {α1, · · · , αk} be a partition of the vertex set of a finite simplicial

complex . There are homotopy equivalences:

Σ(X(, λα)) ≃
∨

L⊂[k]

Σ
|L|+2(α,L)

where the bold Σ denotes the reduced suspension.

The paper is organized as follows. In section 2, we construct some natural cell decom-

position of X(, λα) and use it to compute the the cohomology groups of X(, λα), which

leads to a proof of Theorem 1.2. In section 3, we use the same strategy in [2] to study the

stable decompositions of X(, λα) and give a proof of Theorem 1.3. In section 4, we show

that the moment-angle complex of any finite simplicial poset  is homotopy equivalent to

X(, λα) for some finite simplicial complex  and a partition α of V(). In section 5, we

generalize our results on X(, λα) to a wider range of spaces.

2. Cohomology groups of X(, λα)

2. Cohomology groups of X(, λα)
Suppose the vertex set of  is [m] = {v1, · · · , vm}. Let ∆[m] be the simplex with vertex set

[m]. For a partition α = {α1, · · · , αk} of [m], let ∆αi denote the face of ∆[m] whose vertex set

is αi. Then  can be thought of as a simplicial subcomplex of ∆[m]. Next, we construct a

cell decomposition of X(, λα).

2.1. The cell decomposition of X(, λα).
2.1. The cell decomposition of X(, λα).

According to the construction of X(, λα) in (2), it is easy to see that X(, λα) is home-

omorphic to the quotient space of  by the canonical action of the toral subgroup Hλα of

T m corresponding to the subgroup of Zm
= 〈e1, · · · , em〉 generated by the set

{e j − e j′ | v j, v j′ ∈ αi for some 1 ≤ i ≤ k} ⊂ Zm.

In other words, the action Hλα on  = P × T m/ ∼ identifies the S 1
( j)

and S 1
( j′)

in T m
=

S 1
(1)
× · · · × S 1

(m)
whenever v j and v j′ belong to the same αi. Considering the partition α of

the vertex set of , we can rewrite the decomposition of  in (5) as:

(9)  =

⋃

σ∈

(( ∏

i∈Iα(σ)

∏

v j∈V(σ)∩αi

S 1
( j) ∗ v j

)
×
∏

v j�σ

S 1
( j)

)
.

Then with respect to this decomposition of , we obtain a decomposition of X(, λα) by

Lemma 2.1 below.

X(, λα) =
⋃

σ∈

( ∏

i∈Iα(σ)

(
S 1

(i) ∗ ∗
v∈V(σ)∩αi

v
)
×
∏

i∈[k]\Iα(σ)

S 1
(i)

)
(10)

=

⋃

σ∈

( ∏

i∈Iα(σ)

S 1
(i) ∗ (σ ∩ ∆αi) ×

∏

i∈[k]\Iα(σ)

S 1
(i)

)
⊂
∏

i∈[k]

S 1
(i) ∗ ∆

αi

where S 1
(i)

is a copy of S 1 corresponding to i ∈ [k], which can be considered as the join of

S 1 with the empty face of ∆αi .
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Lemma 2.1. If we identify all the S 1 factors in a product (S 1 ∗ v1) × · · · × (S 1 ∗ vs), the

quotient space (S 1 ∗ v1)× · · · × (S 1 ∗ vs)/ ∼ is homeomorphic to S 1 ∗ (v1 ∗ · · · ∗ vs). Note that

v1 ∗ · · · ∗ vs can be identified with a simplex whose vertex set is {v1, · · · , vs}.

Proof. The points in (S 1 ∗ v1) × · · · × (S 1 ∗ vs) can be written as

(
(t1v1 + (1 − t1)x1), · · · , (tsvs + (1 − ts)xs)

)
, xi ∈ S 1, 0 ≤ ti ≤ 1, 1 ≤ i ≤ s.

In we identify all the S 1 factors in the above product, the points in the quotient space can be

written as

Pt1,··· ,ts,x =
(
(t1v1 + (1 − t1)x), · · · , (tsvs + (1 − ts)x)

)
, x ∈ S 1, 0 ≤ ti ≤ 1, 1 ≤ i ≤ s.

Then mapping any Pt1,··· ,ts,x to the point P̂t1,··· ,ts,x in S 1 ∗ (v1 ∗ · · · ∗ vs) below

P̂t1,··· ,ts,x =
t1

s
v1 + · · · +

ts

s
vs +

1 − t1 − · · · − ts

s
x

defines a homeomorphism from (S 1 ∗ v1) × · · · × (S 1 ∗ vs)/ ∼ to S 1 ∗ (v1 ∗ · · · ∗ vs). �

R 2.2. We see from (10) that the building blocks of X(, λα) are spaces obtained

by mixtures of Cartesian products and joins of some simple spaces (i.e. points and S 1). The

building blocks of polyhedral products (X, A), however, only involve Cartesian products

of spaces. In addition, we have polyhedral join (see [1]) and polyhedral smash product

(see [2]) whose building blocks only involve joins and smash products, respectively. It

should be interesting to study spaces whose building blocks involve mixtures of Cartesian

products, joins and smash products.

To obtain a cell decomposition of X(, λα) from (10), we need to choose a cell decom-

position of the torus T k. First of all, a circle S 1
= {z ∈ C ; |z| = 1} has a natural cell

decomposition {e0, e1} where e0
= {1} ∈ S 1 and e1

= S 1\e0. We consider T k as the product∏k
i=1 S 1

(i)
and equip T k with the product cell structure (see [11, 3.B]). Then the cells in T k can

be indexed by subsets of [k] = {1, · · · , k}. More specifically, any subset L ⊂ [k] determines

a unique cell UL in T k where

UL =

∏

i∈L

e1
(i) ×

∏

i∈[k]\L

e0
(i), dim(UL) = |L|.

Here e0
(i)
, e1

(i)
denote the cells in S 1

(i)
for each i ∈ [k].

Observe that for any σ ∈ ,
∏

i∈Iα(σ) S 1
(i)
∗ (σ ∩ ∆αi) is homeomorphic to a closed ball of

dimension rank(σ) + |Iα(σ)|. Now for each L ⊂ [k]\Iα(σ), define

B(σ,L) := the relative interior of
( ∏

i∈Iα(σ)

S 1
(i) ∗ (σ ∩ ∆αi)

)
× UL.

Then from (10), a cell decomposition of X(, λα) is given by:

(11) Bα() := {B(σ,L) |σ ∈ , L ⊂ [k]\Iα(σ)}.

Note that B(σ,L) is an open cell of dimension rank(σ) + |Iα(σ)| + |L|.
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2.2. The cochain complex of X(, λα).
2.2. The cochain complex of X(, λα). For any coefficient ring k, let C∗(X(, λα); k)

be the cellular cochain complex corresponding to the cell decomposition Bα(). If we want

to write the boundary maps of the cochains in C∗(X(, λα); k), we need to put orientations

on the base elements. To do this, we need to first assign orientations to all the simplicies of

. For convenience, we put a total ordering ≺ on the vertex set {v1, · · · , vm} of ∆[m] so that

they appear in the increasing order in α1 until αk. In other words, for any 1 ≤ i < k all the

vertices of ∆αi have less order than the vertices in ∆αi+1 . Moreover, the vertex-ordering of

∆
[m] induces a vertex-ordering of any simplex ω ∈ ∆[m], which determines an orientation of

ω. Then the boundary of ω is

(12) ∂ω =
∑

σ⊂ω
dim(σ)=dim(ω)−1

ε(σ,ω)σ.

Here if V(ω) = V(σ) ∪ {v}, then ε(σ,ω) is equal to (−1)l(v,ω) where l(v, ω) is the number

vertices of ω that are less than v with respect to the vertex-ordering ≺.

The following definition is very useful for us to simplify our argument later.

D 2.3(S    ). For any m ≥ 1, let 0̂ denote the empty face of

∆
[m] (distinguished from the empty simplex 0̂ in ). In addition, we attach a ghost face −1̂

to ∆[m] with the following conventions.

• dim(0̂) = dim(−1̂) = −1, rank(0̂) = rank(−1̂) = 0.

• The interiors of 0̂ and −1̂ are themselves.

• The boundary of any vertex of ∆[m] is 0̂.

• The boundaries of 0̂ and −1̂ are empty.

In the rest of the paper we use ∆̂[m] to denote ∆[m] with the ghost face −1̂.

Let {e0, e1} be the cell decomposition of S 1 where dim(e0) = 0, dim(e1) = 1, and e0, e1

are both oriented. Then given an orientation of each face of ∆[m], we obtain an oriented cell

decomposition of S 1 ∗ ∆[m] by

{e0}, {e1}, {S 1 ∗ σ◦ |σ is a nonempty simplex in ∆[m]}.

If we formally define S 1 ∗ 0̂ = e1 and S 1 ∗ −1̂ = e0, we can write a basis of the cellular

chain complex C∗(S
1 ∗ ∆[m]; k) as {S 1 ∗ σ◦ |σ ∈ ∆̂[m]} where the orientation of S 1 ∗ σ◦ is

determined canonically by the orientations of S 1 and σ.

Let {yσ |σ ∈ ∆̂[m]} be a basis for the cellular cochain complex C∗(S 1 ∗ ∆[m]; k), where yσ

is the dual of S 1 ∗ σ◦. For any nonempty simplex σ in ∆[m],

(13) d(yσ) =
∑

σ⊂τ
dim(τ)=dim(σ)+1

ε(σ, τ) · yτ.

In addition, we have

(14) d(y−1̂) = 0, d(y0̂) =
∑

v∈[m]

yv.

Note that y−1̂ and y0̂ are cochains in dimension 0 and 1, respectively.
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By setting the σ in (10) to the big simplex ∆[m], we obtain a homeomorphism

X(∆[m], λα) �
∏

i∈[k]

S 1 ∗ ∆αi .

Let X(∆[m], λα) be equipped with the product cell structure of each S 1∗∆αi . The correspond-

ing cellular cochain complex C∗(X(∆[m], λα); k) has a basis

{yΦ = yσ1 × · · · × yσk ; Φ = (σ1, · · · , σk), where σi ∈ ∆̂
αi , 1 ≤ i ≤ k}.

We need to introduce two more notations for our argument below.

• For any vertex v of  and a partition α = {α1, · · · , αk} of V(), let iα(v) ∈ [k] denote

the index so that v belongs to the subset αiα(v).

• For any i ∈ L ⊂ [k], define κ(i,L) = (−1)r(i,L), where r(i,L) is the number of elements

in L less than i. Moreover, for any simplex σ ∈ α,L we define

(15) κ(σ,L) :=
∏

v∈V(σ)

κ(iα(v),L).

(16) So if V(ω) = V(σ) ∪ {v}, we have κ(ω,L) = κ(σ,L) · κ(iα(v),L).

The differential of yΦ in C∗(X(∆[m], λα); k) is given by:

(17) d(yΦ) :=
∑

1≤i≤k

ι(Φ, σi) y
σ1 × · · · × dyσi × · · · × yσk ,

where ι(Φ, σi) = (−1)
∑i−1

l=1 dim(yσl ). For a simplex σ ∈ ∆[m] and J ⊂ [k]\Iα(σ), let

Φ
J
σ = (σJ

1, · · · , σ
J
k)

(18) where σJ
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ ∩ ∆αi , i ∈ Iα(σ);

0̂ ∈ ∆̂αi , i ∈ J;

−1̂ ∈ ∆̂αi , i ∈ [k]\(Iα(σ) ∪ J);

So by our definition when Φ = ΦJ
σ = (σJ

1
, · · · , σJ

k
), we have

dim(yσ
J
i ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

rank(σJ
i
) + 1, i ∈ Iα(σ);

1, i ∈ J;

0, i ∈ [k]\(Iα(σ) ∪ J).

For Φ = ΦJ
σ, the formula (17) reads:

d(yΦ
J
σ) =

∑

1≤i≤k

ι(ΦJ
σ, σ

J
i ) y
σJ

1 × · · · × dyσ
J
i × · · · × yσ

J
k

(13)
=

∑

1≤i≤k

ι(ΦJ
σ, σ

J
i ) y
σJ

1 × · · · ×
( ∑

σJ
i
⊂τ⊂∆αi

dim(τ)=dim(σ)+1

ε(σJ
i , τ) · y

τ
)
× · · · × yσ

J
k .

Note that if V(ω) = V(σ) ∪ {v} where v ∈ αi, then ωJ
i
= σJ

i
∪ {v} and we have

κ(i, Iα(σ) ∪ J) · ε(σ,ω) = ι(ΦJ
σ, σ

J
i ) · ε(σ

J
i , τ).
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This is because for each i ∈ [k]\(Iα(σ) ∪ J), dim(yσ
J
i ) = 0. So we obtain

(19) d(yΦ
J
σ) =

∑

σ⊂ω, Iα(ω)⊂Iα(σ)∪J

dim(ω)=dim(σ)+1

κ
(
iα(ω\σ), Iα(σ) ∪ J

)
· ε(σ,ω) yΦ

Iα(σ)∪J\Iα(ω)
ω

where ω\σ denotes the only vertex of ω that is not in σ.

For the simplicial complex  ⊂ ∆[m] and any simplex σ ∈ , yΦ
J
σ is a cochain of dimen-

sion rank(σ) + |Iα(σ)| + |J| in C∗(X(, λα); k) that is dual to the cell B(σ,J) (see (11)). So

C∗(X(, λα);Z) has a basis

{yΦ
J
σ ; σ ∈ , J ⊂ [k]\Iα(σ)}.

Note that for any σ ∈ , the differential d(yΦ
J
σ) in C∗(X(, λα); k) is only the sum of those

terms yΦ
Iα(σ)∪J\Iα(ω)
ω on the right hand side of (19) with ω ∈ .

Proof of Theorem 1.2. For any subset L ⊂ [k], let C∗,L(X(, λα); k) denote the k-

submodule of C∗(X(, λα); k) generated by the following set

{B(σ,J) | Iα(σ) ∪ J = L, σ ∈ , J ⊂ [k]\Iα(σ)}.

From the differential of C∗(X(, λα); k) in (19), we see that C∗,L(X(, λα); k) is ac-

tually a cochain subcomplex of C∗(X(, λα); k). We denote its cohomology groups by

H∗,L(X(, λα); k). Then we have the following decompositions:

(20) H∗(X(, λα); k) =
⊕

L⊂[k]

H∗,L(X(, λα); k).

For any subset L ⊂ [k], let C∗(α,L; k) denote the simplicial cochain complex of α,L. For

any simplex σ ∈ , let σ∗ be the cochain dual to σ in C∗(α,L; k). Then we have the

following isomorphism of k-modules:

ϕL
α

: C∗(α,L; k) −→ C∗,L(X(, λα); k)

σ∗ �−→ κ(σ,L) yΦ
L\Iα(σ)
σ

Note dim(yΦ
L\Iα(σ)
σ ) = rank(σ)+ |L|. Moreover, ϕL

α
is actually a chain complex isomorphism.

Indeed by the differential of C∗(X(, λα); k) shown in (19),

d(ϕL
α

(σ∗)) = d
(
κ(σ,L) yΦ

L\Iα(σ)
σ
)

= κ(σ,L)
∑

σ⊂ω∈, Iα(ω)⊂L

dim(ω)=dim(σ)+1

κ(iα(ω\σ),L) · ε(σ,ω) yΦ
L\Iα(ω)
ω

=

∑

σ⊂ω∈, Iα(ω)⊂L

dim(ω)=dim(σ)+1

κ(ω,L) · ε(σ,ω) yΦ
L\Iα(ω)
ω = ϕL

α
(dσ∗).

The third “=” uses the relation κ(ω,L) = κ(σ,L) · κ(iα(ω\σ),L) (see (16)). So we have an

additive isomorphism of cohomology groups

H̃q(α,L; k) � Hq+|L|+1,L(X(, λα); k).
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Let ϕα =

⊕

L⊂[k]

ϕL
α

:
⊕

L⊂[k]

H̃q−|L|−1(α,L; k) −→ Hq(X(, λα); k).

Then ϕα is an isomorphism that satisfies our requirement. �

E 1(B S C  P   L M). An

(n−1)-dimensional simplicial complex  is called balanced if there exists a map φ : V()→

[n] = {1, · · · , n} such that if {v, v′} is an edge of , then φ(x) � φ(y) (see [18]). We call φ

an n-coloring on . It is easy to see that  is balanced if and only if  admits a non-

degenerate simplicial map onto ∆n−1. In fact, if we identify the vertex set of ∆n−1 with [n],

any n-coloring φ on  induces a non-degenerate simplicial map from  to ∆n−1 which sends

a simplex σ ∈  with V(σ) = {vi1 , · · · , vis
} to the face of ∆n−1 spanned by {φ(vi1), · · · , φ(vis

)}.

Suppose φ : V() → [n] is an n-coloring of an (n − 1)-dimensional simplicial complex

. Let {e1, · · · , en} be a basis of Zn. Then φ uniquely determines a Zn-coloring λφ : V()→

Zn where λφ(v) = eφ(v). The space X(, λφ) is called a pullback from the linear model

in [9, Example 1.15]. On the other hand, we have a partition of V() defined by αφ :=

{φ−1(1), · · ·φ−1(n)}. By our notation in section 1, we have X(, λφ) = X(, λαφ). Then by

Theorem 1.2, the cohomology groups of X(, λφ) can be computed by

(21) Hq(X(, λφ); k) �
⊕

L⊂[n]

H̃q−|L|−1(αφ,L; k), ∀q ≥ 0.

R 2.4. There are analogues of Hochster-type decompositions for pullbacks from

linear models in combinatorial commutative algebra, at least when  is Cohen-Macaulay.

Let φ : V() → [n] be an n-coloring of such a complex, A ⊂ [n] be a subset of colors and

φ−1(A) be the full subcomplex colored in A. It is easy to show that: (1) φ−1(A) is Cohen-

Macaulay again; (2) its top Betti number is the flag h-number hA() (see [17, Sec 3]); (3)

we obviously have hi() =
∑
|A|=i hA() which is Hochster’s formula for the h-vector of .

3. Stable decompositions of X(, λα)

3. Stable decompositions of X(, λα)
It is shown in [2] that the stable homotopy type of a polyhedral product (X,A) is a

wedge of spaces, which implies corresponding homological decompositions of (X,A). In

this section, we prove a parallel result for X(, λα). Our argument proceeds along the same

line as [2].

Let α = {α1, · · · , αk} be a partition of the vertex set V() of . For any i ∈ [k], choose

the base-point of S 1
(i)
= e0

(i)
∪ e1

(i)
to be e0

(i)
. So

• e0
(i)

is a base-point of S 1
(i)
∗ τ for any simplex τ ∈ , and

• (e0
(i)
, · · · , e0

(is)
) is a base-point of S 1

(i1)
× · · · × S 1

(is)
for any i1, · · · , is ∈ [k].

Then for any subset L ⊂ [k] and any simplex σ ∈ , it is meaningful to define

WS 1

α,L(σ) :=
∧

i∈Iα(σ)∩L

S 1
(i) ∗ (σ ∩ ∆αi) ∧

∧

i∈L\(Iα(σ)∩L)

S 1
(i)

where ∧ and
∧

denote the smash product with respect to the based spaces. So for L =

{i1, · · · , is}, the base-point of WS 1

α,L
(σ) is (e0

(i)
, · · · , e0

(is)
). We adopt the convention that the



Q S M-A C 43

smash product of a space with the empty space is empty. Then the following lemma is

immediate from the definition of WS 1

α,L
(σ).

Lemma 3.1. For any subset L ⊂ [k] and any simplex σ ∈ , we have

(i) WS 1

α,L
(σ) =WS 1

α,L
(σ ∩α,L),

(ii) WS 1

α,L
(σ) is contractible whenever Iα(σ) ∩ L � ∅,

(iii) WS 1

α,L
(0̂) =

∧
i∈L S 1

(i)
� S |L|.

For any simplex σ ∈ , define

(22) Dα(σ) :=
∏

i∈Iα(σ)

S 1
(i) ∗ (σ ∩ ∆αi) ×

∏

i∈[k]\Iα(σ)

S 1
(i).

Note that all the Dα(σ) have the same base-point (e0
(1)
, · · · , e0

(k)
), which is the base-point of

X(, λα).

By [2, Theorem 2.8], there are natural homotopy equivalences

Σ(Dα(σ)) ≃ Σ
( ∨

L⊂[k]

WS 1

α,L(σ)
)

where Σ denotes the reduced suspension and
∨

denotes the wedge sum with respect to the

base-point of WS 1

α,L
(σ). Now let

Eα(σ) :=
∨

L⊂[k]

WS 1

α,L(σ).

Let Cat() denote the face category of  whose objects are simplices σ ∈  and there

is a morphism from σ to τ whenever σ ⊆ τ. Then we can consider Dα and Eα as functors

from Cat() to the category CW∗ of connected, based CW-complexes and based continuous

maps. It is clear that

X(, λα) =
⋃

σ∈

Dα(σ) = colim(Dα(σ)).

For any subset L = {l1, · · · , ls} ⊂ [k], define

X̂(α,L, λα) :=
⋃

σ∈

WS 1

α,L(σ) =
⋃

σ∈α,L

WS 1

α,L(σ).

For a fixed L ⊂ [k], all the spaces {WS 1

α,L
(σ), σ ∈ α,L} share a base-point, which then

defines the base-point of X̂(α,L, λα). So X̂(α,L, λα) is the colimit of WS 1

α,L
(σ) over the

face category Cat(α,L) of α,L. In addition, we clearly have

colim(Eα(σ)) =
∨

L⊂[k]

X̂(α,L, λα).

Since the suspension commutes with the colimits up to homotopy equivalence (see [2,

Theorem 4.3]), we obtain the following homotopy equivalences.

Σ(X(, λα)) ≃ colim(Σ(Dα(σ))) ≃ colim(Σ(Eα(σ)))(23)

≃ Σ
( ∨

L⊂[k]

X̂(α,L, λα)
)
.
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D 3.2(O C). Given a poset (partially ordered set) ( , <), the order

complex ∆() is the simplicial complex with vertices given by the set of points of  and k-

simplices given by the ordered (k+1)-tuples (p1, p2, ..., pk+1) in  with p1 < p2 < . . . < pk+1.

Lemma 3.3. For any L ⊂ [k], there is a homotopy equivalence:

X̂(α,L, λα) ≃
∨

σ∈α,L

|∆((α,L)<σ) | ∗WS 1

α,L(σ).

Here ∆((α,L)<σ) is the order complex of the poset {τ ∈ α,L | τ ⊇σ} whose order is the

reverse inclusion, and |∆((α,L)<σ) | is the geometric realization of ∆((α,L)<σ).

Proof. Note that the natural inclusion S 1 ֒→ S 1 ∗ ∆[m] is null-homotopic for any m ≥ 1.

Then the same argument as in the proof of [2, Theorem 2.12] shows that there is a homotopy

equivalence HL(σ) : WS 1

α,L
(σ) →WS 1

α,L
(σ) for each simplex σ ∈ α,L so that the following

diagram commutes for any τ ⊆ σ ∈ α,L,

(24) WS 1

α,L
(τ)

HL(τ)
��

ζσ,τ

��

WS 1

α,L
(τ)

cσ,τ

��

WS 1

α,L
(σ)

HL(σ)
�� WS 1

α,L
(σ)

where ζσ,τ is the natural inclusion and cσ,τ is the constant map to the base-point. Then by [2,

Theorem 4.1] and [2, Theorem 4.2], there is a homotopy equivalence

X̂(α,L, λα) = colim(WS 1

α,L(σ)) ≃
∨

σ∈α,L

|∆((α,L)<σ) | ∗WS 1

α,L(σ).

So the lemma is proved. �

Proof of Theorem 1.3. Putting the homotopy equivalences in the equation (23) and

Lemma 3.3 together gives us a homotopy equivalence:

Σ(X(, λα)) ≃ Σ
( ∨

L⊂[k]

∨

σ∈α,L

|∆((α,L)<σ) | ∗WS 1

α,L(σ)
)
.

Moreover, the space in the left hand side can be simplified by the following facts.

• WS 1

α,L
(σ) is contractible whenever σ � 0̂ ∈ α,L (see Lemma 3.1(ii)).

• ∆((α,L)<0̂) is isomorphic to the barycentric subdivision ′
α,L

of α,L as simplicial

complexes. So the geometric realization |∆((α,L)<0̂) | is homeomorphic to that of

α,L.

Then by Lemma 3.1, we have the following homotopy equivalences:

Σ(X(, λα)) ≃ Σ
( ∨

L⊂[k]

|α,L| ∗ S |L|
)
≃
∨

L⊂[k]

Σ
|L|+2(|α,L|).

So Theorem 1.3 is proved. �
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4. A description of moment-angle complexes of simplicial posets

4. A description of moment-angle complexes of simplicial posets
A poset (partially ordered set)  with the order relation ≤ is called simplicial if it has an

initial element 0̂ and for each σ ∈  the lower segment

[0̂, σ] = {τ ∈  : 0̂ ≤ τ ≤ σ}

is the face poset of a simplex.

For each σ ∈  we assign a geometric simplex ∆σ whose face poset is [0̂, σ], and glue

these geometric simplices together according to the order relation in  . We get a cell com-

plex ∆ in which the closure of each cell is identified with a simplex preserving the face

structure, and all attaching maps are inclusions. We call ∆ the geometric realization of  .

For convenience, we still use ∆σ to denote the image of each geometric simplex ∆σ in ∆ .

Then ∆σ is a maximal simplex of ∆ if and only if σ is a maximal element of  .

The notion of moment-angle complex  associated to a simplicial poset  is introduced

in [12] where  is defined via the categorical language. Note that the barycentric subdivi-

sion also makes sense for ∆ . Let P denote the cone of the barycentric subdivision of ∆ .

Let the vertex set of ∆ be V(∆ ) = {u1, · · · , uk}. Let λ : V(∆ ) → Zk be a map so that

{λ (ui), 1 ≤ i ≤ k} is a unimodular basis of Zk. Then we can construct  from P and λ

via the same rule in (2). So we also denote  by X( , λ ).

Define a map λ : [m] = {v1, · · · , vm} → Z
m by λ(vi) = ei, 1 ≤ i ≤ m, where {e1, · · · , em}

is a unimodular basis of Zm. We identify ∆[m] with ∆[m] × {0} in ∆[m] × [0, 1] (considered as

a product of simplices). Let the vertex set of ∆[m] × [0, 1] be {v1, · · · , vm, v
′
1
, · · · , v′m} where

v′
i
= vi × {1}, 1 ≤ i ≤ m. Define a map λ̃ : {v1, · · · , vm, v

′
1
, · · · , v′m} → Z

m by

λ̃(vi) = λ̃(v
′
i) = ei, 1 ≤ i ≤ m.

It is clear that X(∆[m], λ) can be considered as a subspace X(∆[m] × [0, 1], λ̃).

Lemma 4.1. There is a canonical deformation retraction from X(∆[m] × [0, 1], λ̃) to

X(∆[m], λ) = ∆[m] .

Proof. Any m-simplex in ∆[m] × [0, 1] can be written as

σm
j = [v1, · · · , v j, v

′
j, · · · , v

′
m], 1 ≤ j ≤ m.

Note that σm
j
∩ σm

j+1
= [v1, · · · , v j, v

′
j+1
, · · · , v′m]. So σm

1
, σm

2
, · · · , σm

m is a shelling of ∆[m] ×

[0, 1]. By the cell decomposition (10), we have

X(∆[m], λ) = (S 1
(1) ∗ v1) × · · · × (S 1

(m) ∗ vm) ⊂
∏

1≤ j≤m

S 1
( j) ∗ [v j, v

′
j].

X(∆[m] × [0, 1], λ̃) =
⋃

1≤ j≤m

B j ⊂
∏

1≤ j≤m

S 1
( j) ∗ [v j, v

′
j], where

B j = (S 1
(1)
∗ v1) × · · · × (S 1

( j−1)
∗ v j−1) × (S 1

( j)
∗ [v j, v

′
j
]) × (S 1

( j+1)
∗ v′

j+1
) × · · · × (S 1

(m)
∗ v′m).

There is a canonical deformation retraction from ∆[m] × [0, 1] to ∆[m] along the above

shelling of ∆[m] × [0, 1] as follows. We first compress the edge [v1, v
′
1
] to v1, which induces

a deformation retraction
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Fig.2. Canonical deformation retraction from ∆[m] × [0, 1] to ∆[m]

σm
1 = [v1, v

′
1, · · · , v

′
m] −→ [v1, v

′
2 · · · , v

′
m] = σm

1 ∩ σ
m
2 .

It compresses ∆[m] × [0, 1] =
⋃

1≤ j≤m σ
m
j

to
⋃

2≤ j≤m σ
m
j
. Next, we compress the edge [v2, v

′
2
]

to v2 which induces a deformation retraction from σm
2

to σm
2
∩ σm

3
and hence compresses⋃

2≤ j≤m σ
m
j

to
⋃

3≤ j≤m σ
m
j
, and so on. After m steps of retractions, ∆[m] × [0, 1] is deformed

to ∆[m] × {0} = ∆[m] (see Figure 2).

Using the above retractions of ∆[m] × [0, 1], we obtain parallel deformation retractions

from
∏

1≤ j≤m S 1
( j)
∗ [v j, v

′
j
] to X(∆[m], λ) in m steps. The j-th step is to compress S 1

( j)
∗ [v j, v

′
j
]

to S 1
( j)
∗ v j along the edge [v j, v

′
j
], which compresses B j to B j ∩ B j+1. Then starting from the

first step, we obtain a sequence of retractions

X(∆[m] × [0, 1], λ̃) =
⋃

1≤ j≤m

B j

step 1
−→

⋃

2≤ j≤m

B j

step 2
−→ · · · −→

⋃

m−1≤ j≤m

B j

step m-1
−→ Bm

step m
−→ (S 1

(1) ∗ v1) × · · · × (S 1
(m) ∗ vm) = X(∆[m], λ).

The above deformation process is canonical since it only depends on the ordering of the

vertices of ∆[m]. �

The canonical deformation retraction from X(∆[m] × [0, 1], λ̃) to X(∆[m], λ) in the above

lemma will serve as a model of homotopies in our argument below.

Theorem 4.2. For any finite simplicial poset  , there always exists a finite simplicial

complex  and a partition α of V() so that  is homotopy equivalent to X(, λα).

Proof. We can construct  and α in the following way. Let p : ∆ × [0, n] → ∆ be the

projection where ∆ is identified with ∆ × {0}, and n is a large enough integer. For each

maximal simplex ∆σ ⊂ ∆ , we can choose a simplex ∆̃σ ⊂ ∆ × {lσ} for some 0 ≤ lσ ≤ n so

that

• p maps ∆̃σ simplicially isomorphically onto ∆σ.

• ∆̃σ ∩ ∆̃τ = ∅ for any maximal elements σ and τ in  .

We call ∆̃σ a horizontal lifting of ∆σ. We consider ∆σ× [0, n] as the Cartesian product of ∆σ

and [0, n] as simplicial complexes (see [5, Construction 2.11]), where [0, n] is considered

as a 1-dimensional simplicial complex with vertices {0, · · · , n} and the set of 1-simplices

{[i, i + 1], 0 ≤ i ≤ n − 1}. If σ and τ are both maximal, ∆σ ∩ ∆τ is the geometric realization
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Fig.3. A stretch of a simplicial poset

of σ ∧ τ (the greatest common lower bound of σ and τ). Now define

 =
( ⋃

σ∈
maximal

∆̃
σ
)⋃( ⋃

σ,τ∈

maximal
lσ<lτ

(∆σ ∩ ∆τ) × [lσ, lτ]
)
,

where [lσ, lτ] is considered as a simplicial subcomplex of [0, n]. Then by our construction,

 is clearly a finite simplicial complex, called a stretch of ∆ (see Figure 3 for example).

Let V(∆ ) = {u1, · · · , uk} be the vertex set of ∆ . Define a partition α = {α1, · · · , αk} of

V() by

αi = {v ∈ V() | p(v) = ui}, 1 ≤ i ≤ k.

Then we get a Zk-coloring λα on . In the following we show that the space X(, λα) is

homotopy equivalent to X( , λ ) =  .

For a pair of maximal elements σ, τ ∈  , we have a decomposition

(∆σ ∩ ∆τ) × [lσ, lτ] =
⋃

lσ≤s<lτ

(∆σ ∩ ∆τ) × [s, s + 1] =
⋃

lσ≤s<lτ

⋃

ω∈σ∧τ

∆
ω × [s, s + 1].

Given the shelling of each ∆ω× [s, s+1] as we do for ∆[m]× [0, 1] in the proof of Lemma 4.1,

we obtain a canonical shelling of (∆σ ∩ ∆τ) × [lσ, lτ]. If for all pairs of maximal elements

σ, τ ∈  we do the deformation retractions from (∆σ ∩∆τ)× [lσ, lτ] to (∆σ ∩∆τ)× {lσ} in 

along their canonical shellings, we obtain a space that can be identified with ∆ in the end.

Note that all these retractions are caused by compressing {v}×[s, s+1] to {v}×{s} step by step

for each vertex v ∈ ∆σ ∩ ∆τ. So for different pairs of maximal elements of  , the retractions

we constructed are compatible with each other and hence can be done simultaneously at

each {v} × [s, s + 1]. In addition, the Zm-coloring λα on  naturally induces a Zm-coloring

on the space in each step of the deformation and eventually recovers λ on ∆ in the end.

So by applying Lemma 4.1 to every ∆ω × [s, s + 1] ⊂ (∆σ ∩ ∆τ) × [lσ, lτ], we see that

the above deformation retractions on  induce a homotopy equivalence from X(, λα) to

X( , λ ) =  . This proves the theorem. �

For any subset L ⊂ V(), let L denote the full subposet of  with vertex set L. By our

construction of the stretch  of  in the proof of Theorem 1.2, the geometric realization

∆
L of L is a deformation retraction of the subcomplex α,L of . So by Theorem 4.2 and
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Theorem 1.2, we derive that for any q ≥ 0,

Hq( ; k) � Hq(X(, λα); k) �
⊕

L⊂V()

H̃q−|L|−1(α,L; k) �
⊕

L⊂V()

H̃q−|L|−1(∆L ; k).

The above equality can also be derived from [12, Theorem 3.5] easily.

5. Some generalizations

5. Some generalizations
We can generalize our results on X(, λα) to a wider range of spaces as follows. For a

partition α = {α1, · · · , αk} of V(), we can replace the S 1
(i)

in (10) by a sequence of spheres

S = (S d1 , · · · , S dk ) and define

X(,α, S) =
⋃

σ∈

( ∏

i∈Iα(σ)

S di ∗ (σ ∩ ∆αi) ×
∏

i∈[k]\Iα(σ)

S di

)
⊂
∏

i∈[k]

S di ∗ ∆αi .

We have the following two theorems which are parallel to Theorem 1.2 and Theorem 1.3,

respectively.

Theorem 5.1. For any coefficients k, there is a k-module isomorphism:

Hq(X(,α, S); k) �
⊕

L⊂[k]

H̃q−1−
∑

i∈L di(α,L; k), ∀q ≥ 0.

Theorem 5.2. There is a homotopy equivalence

Σ(X(,α, S)) ≃
∨

L⊂[k]

Σ
(
∑

i∈L di)+2(α,L).

The proofs of the above two theorems are completely parallel to the proofs of Theorem 1.2

and Theorem 1.3. So we leave them to the reader. There is only one technical point in the

proof here. The definition of κ(i,L) and κ(σ,L) (see (15)) in the proof of Theorem 1.2. need

to be modified to be adapted to Theorem 5.1. For X(,α, S) we should redefine κ(i,L) as

follows and adjust the definition of κ(σ,L) accordingly.

κ(i,L) = (−1)rS(i,L), where rS(i,L) =
∑

j∈L, j<i

d j, ∀i ∈ L ⊂ [k].

R 5.3. When α
∗ is the trivial partition of V(), X(,α∗, S) is nothing but the

polyhedral product (D,S) where (D, S) = {(Dd1+1, S d1), · · · , (Ddk+1, S dk )}. In this special

case, Theorem 5.1 coincides with [8, Theorem 4.2].

If we let S = (S 0, · · · , S 0), the space X(,α∗, S) is the real moment-angle complex of K.

Then similar to Example 1, we obtain Hochster’s formula (with arbitrary coefficient k) for

small covers which are pullbacks from linear models from Theorem 5.1. More specifically,

if φ : V() → [n] is an n-coloring of an (n − 1)-dimensional simplicial complex . Let

{ē1, · · · , ēn} be a basis of (Z2)n. Then φ uniquely determines a (Z2)n-coloring λ̄φ : V() →

(Z2)n where

λ̄φ(v) = ēφ(v).

We can construct a space X(, λ̄φ) from  and λ̄φ in a similar fashion as we do for Zn-

colorings of  (see [9]). The space X(, λ̄φ) is called a pullback from the linear model
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in [9, Example 1.15] as well. It is clear that X(, λ̄φ) is a quotient of the real moment-angle

complex of K by a subgroup of (Z2)|V()| that satifies Theorem 5.1. So by Theorem 5.1, the

cohomology groups of X(, λ̄φ)

(25) Hq(X(, λ̄φ); k) �
⊕

L⊂[n]

H̃q−1(αφ,L; k), ∀q ≥ 0.

where αφ := {φ−1(1), · · · φ−1(n)} is the partition of V() defined by φ.

The homology groups of a general small cover with Zq-coefficients (q is odd) and with ra-

tional coefficients are studied in [7, 16]. But here in (25) we can let k be arbitrary cofficients

including Z. Moreover, we have the stable decomposition of X(, λ̄φ) from Theorem 5.2.

Σ(X(, λ̄φ)) ≃
∨

L⊂[k]

Σ
2(αφ,L).

A. The author wants to thank the anonymous referee for some helpful

comments.
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