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1 Introduction

Insulators and superconductors are central concepts in strongly correlated electron mate-

rials giving rise to high Tc superconductivity, [1]. The less understood region is the region

in which the insulator-metal transition happens, [2, 3], characterized by novel features of

the electronic conductivity, [4].

The mechanisms that create insulators can be broadly classified as follows:

1. Band gap insulators, where the conduction band is empty, and there is therefore a

gap that prevents current transport.
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2. Anderson localization, [5], where strong disorder inhibits conduction.

3. Mott localization, where strong on-site interactions localize electrons, [6]. This has

been argued to be at work in insulating anti-ferromagnets, [7] as was first pointed

out by Mott and van Vleck.

Lately a new further mechanism was argued to lead to insulating behavior:

4 Momentum-dissipating interactions become relevant (strong) in the IR, and they

inhibit conduction, [8]. The model used as an example was a holographic model with

a saddle-point of helical symmetry. The mechanism was generalized to Einstein-

Maxwell-Dilaton (EMD) theories in [9] and many saddle points corresponding to

insulators, bad metals and conventional metals were found.

Holography has provided a new paradigm and a new arena for theoretical models that

address physics at strong coupling, but in a semiclassical setup (that is typically present

because of a large-N limit involved).1 It is a natural framework to describe quantum critical

systems at zero and finite density. It is convenient to describe out of equilibrium effects

as well as conductivity, a major observable in condensed matter. A study of holographic

ground states has indicated that they are very diverse in their properties, [14–25].

Most holographic systems analyzed at finite density are translationally invariant. Ex-

ceptions also exist, using D-brane defects and magnetic vortices, [26–29], but such systems

have been much more difficult to analyze so far, although exceptions exist, [30]. The stan-

dard symmetry argument indicates that the real part of the AC conductivity will have a

δ(ω) contribution as in a translationally invariant system a constant electric field generates

an infinite current. The δ-function can be argued to relate via causality to a 1
ω pole in

the imaginary part of the conductivity, via standard dispersion relations. In the context of

holographic correlators this was analyzed recently in [14]. This δ-function is distinct from

the one appearing in superfluid/superconducting phases.

The interaction with momentum dissipation agents has been discussed in rather gen-

eral terms in [31–33]. When the interaction with dissipators is IR irrelevant with respect to

RG fixed points, a perturbative IR calculation can determine the scaling of the IR DC con-

ductivity. When the dissipation is IR relevant, it can change the nature of the saddle point,

turning the system into an insulator as was first argued in [8]. This is the mechanism 4

above that leads to insulating behavior.

There have been several lines of research addressing the breaking of translational in-

variance in holographic saddle points at finite density and its impact on conductivity. A

first line of research introduced a holographic lattice imprinted by boundary conditions on

the bulk charge contribution, [34–38]. In the regimes accessible to the numerical calcula-

tions, the lattice perturbation is irrelevant in the IR and it controls to leading order in the

IR the DC conductivity as predicted in [33] on general principles.

Another line of approach, [39–44], was to assume an effective action treatment for

momentum dissipation associated to the breaking of translational invariance and this was

provided by a massive gravity action.

1Useful reviews for condensed matter physics applications can be found in [10–12] and section 2 of [13].

– 2 –



J
H
E
P
0
9
(
2
0
1
5
)
1
6
8

More recently a third approach to breaking translational invariance and therefore in-

troducing momentum dissipation was introduced in [45] and [46]. In [45] the phase of UV

relevant, charge neutral, complex scalars was used in order to break translational symme-

try on the boundary. The construction of [46] used bulk fields which are perturbatively

without a potential on AdS. In order to relax momentum, the massless scalars were given

a linear dependence on the spatial coordinates of the boundary.

The formula obtained for the DC conductivity in all the studies above is a sum of two

contributions:

σDC = σccsDC + σdissDC (1.1)

The first term, σccsDC, has been interpreted, [47], as a pair creation contribution as it persists

at zero charge density. For the RN black hole it is a constant proportional to the inverse

of the bulk gauge coupling constant that counts the relative density of charge-carrying

degrees of freedom to the neutral ones in the strongly-coupled plasma. More recently, it

was verified in [48] that the first term in (1.1) is the electric conductivity in the absence

of a heat current. The interpretation as a pair creation term is then natural since charged

pairs are created with zero total momentum and therefore not contributing to a net matter

flow. It is fair to say however that this pair production interpretation, although appealing

is not in agreement with other related expectations from weak coupling, like the fact that

we expect it to be exponentially suppressed in the chemical potential as this gaps free

fermions. At finite density, this term persists and can be powerlike in the temperature in

scaling IR geometries. We will henceforth call this term the charge conjugation symmetric

(ccs) term following J. Zaanen’s suggestion.

The second contribution in (1.1) is due to the effects of dissipating momentum. When

translation-breaking operators are irrelevant, the system is expected to be metallic and this

term is expected to give the leading contribution to the DC conductivity. Then, a descrip-

tion of momentum relaxation in terms of the memory matrix formalism is appropriate and

shows that the conductivity takes a Drude-like form, though no quasi-particle description

is assumed [33].

This general form of the DC conductivity was seen already in pure metric backgrounds

in [47] and was generalized to dilatonic backgrounds in [17]. In both cases, as the gauge

field action is the DBI action, (1.1) is replaced by

σDC =
√

(σccsDC)
2 + (σdissDC )2 (1.2)

giving results compatible with (1.1) in the regimes where pair creation or diffusion dom-

inates the conductivity. In general, we expect a nonlinear formula that reflects the bulk

action of the gauge field. In the probe DBI cases the momentum dissipation is due to

the fact that charge degrees of freedom are subleading compared to uncharged ones. This

means that there is a momentum conserving δ-function but its coefficient is hierarchically

suppressed (by
Nf

Nc
).

In [17] it was observed, based on (1.2), that for running scalars other than the dilaton

and in 2+1 boundary dimensions, the drag DC resistivity, when it dominates, is propor-

tional to the electronic entropy. This is a general property of strange metals where both the
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measured electronic entropy and resistivity are linear in temperature. This was extended

in [49] to more general cases using the massive graviton theory, and most importantly

provided a kinetic explanation for the correlation suggesting a more general validity.

The general properties of holographic conductivity were further corroborated recently

by a careful study of the holographic current-current correlators, and the associated prop-

erties of their poles in the complex plane, [50].

In most holographic cases, the translationally invariant systems are good conductors

and we will call them “holographic metals”. There have been also systems that have a

discrete spectrum in the current-current correlator and they are therefore candidates for

insulators. At zero density such systems were described in [51–54].

More interestingly, at finite density a large class of systems were found in [17, 18]

that had a discrete spectrum for the current-current correlator (as well as the stress-tensor

correlators). One particular case in a different supergravity was independently observed

in [55] and a new one (the two-charge STU solution in AdS4) is presented in this paper.

Such holographic saddle points have very peculiar properties. In particular, the spectra

of the stress tensor and current-current correlators were discrete. The current-current

correlator had a δ-function at zero frequency because of translational invariance. Finally,

the IR endpoint of the bulk geometry does not affect IR physics but UV physics. Moreover,

although the analysis of [17] was based on “bottom-up” theories, the example of [55] and

the one studied here are found in M-theory compactifications and are both therefore “top-

down”.

Interestingly, the thermodynamics for such systems is reminiscent of that of Yang-Mills

in four dimensions, [56, 57]. At finite temperature, up to a transition temperature Tc, the

dynamics is temperature-independent to leading order in the large-N limit. However there

is a first-order transition at Tc to a new phase that is strongly coupled, liquid-like and

gapless. However, in these theories, the saddle points are translationally invariant and the

DC conductivity is strictly infinite because of the δ-function.

The purpose of this work will be to introduce momentum dissipation in the holo-

graphic theories in question and study the ensuing holographic saddle points. We will

model momentum dissipation by using massless scalars with translationally non-invariant

backgrounds, [45, 46] and choose it to be irrelevant in the IR. Our results are as follows:

• In EMD theories, as in (1.3) with no U(1) symmetry breaking (W (φ) = 0) and with

momentum dissipation we analyze the nature of the zero-temperature current-current

correlator for theories that without momentum dissipation had a discrete spectrum.

We find that the zero-temperature spectrum remains discrete but as expected the zero

frequency δ-function disappears. Such saddle points are insulators with a hard gap

and a discrete spectrum. They share similarities with insulators of type 1 above, with

the difference that there, electrons are weakly-coupled and the underlying spectrum

of possible states is not-only gapped but has bands. Therefore the only similarity

with type 1 insulators is the presence of a gap. In our case this is driven by strong

interactions in the underlying theory, and in that respect it resembles type 3 (Mott)

insulators although the detailed mechanism seems different.

– 4 –
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Such ground states share many similarities with nuclear matter at finite charge den-

sity, [58].

We believe that this mechanism of insulation is new and it should be number five on

the previous list. To substantiate this claim however further work is needed and we

comment on this in the outlook section.

• To corroborate the previous claims a subtle and detailed analysis of the T = 0

current-current correlator, and the conductivity are required. The reason is that at

T = 0 a zero frequency δ-functions can re-emerge as it happens in metals, because

the momentum dissipating effects are IR irrelevant and therefore shut-off at T = 0.

Our analysis indicates that in the saddle-points in question this does not happen. It

is interestingly correlated with another feature of non-trivial quantum critical saddle

points: the presence of the mild IR (resolvable) singularity and its resolution. As was

first argued in detail in [17], sometimes the calculation of a correlator in the presence

of a resolvable singularity is well defined and the result independent of its resolution.

We called such cases, “repulsive” or “holographically well-defined”. We show here

that there is a clear correlation between such holographically well defined cases and

the absence of the zero frequency δ-function.

• We construct examples of such saddle points numerically using a concrete bulk gravi-

tational theory and a complete flow from the UV to the IR. As the zero temperature

geometry is numerically challenging we approach it from the unstable black hole

branch. Our findings corroborate the asymptotic analytical tools used to analyze the

zero temperature saddle points.

• We further consider effective holographic actions with U(1) symmetry breaking (spon-

taneous or explicit) as in (1.3) with (W (φ) 6= 0). We consider fractionalized IR fixed

points of the type found in [19], with a discrete spectrum for the current-current cor-

relator. We add momentum dissipation as in the previous case and verify analytically

that the nature of the spectrum of the current-current correlator remains similar: it

is discrete. In the case where the U(1) symmetry breaking is spontaneous, there is

always a δ-function at zero frequency due to the superfluid pole. Such saddle points

describe superfluids in the presence of the breaking of translation invariance, with a

discrete spectrum and a hard gap above the superfluid pole. Their behavior in this

respect resembles supersolids,2 although in the supersolids discussed in the literature

the translation invariance breaking is expected to be spontaneous. We may call them

“charge supersolids” although the spectral density of the spin-2 (shear) part and the

spin-0 (bulk) part of the stress tensor is also discrete and gapped in these saddle

points (as detailed in section 7).

2Supersolids (see [59] for a review) have been anticipated theoretically, [60] and have been described

in several contexts, [61–67]. Experimental evidence for supersolids has been claimed in [68]. Realizations

in cold atoms have been also put forward, [69]. Most recent experiments however cast doubt on the first

experimental observation, [70] although there are further experimental claims for verifications.

– 5 –
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The rest of this paper is organized as follows:

• In the next subsection the main gravitational (bulk) Lagrangians are introduced and

the procedure for constructing the extremal IR geometries (along the lines of [17–19])

is described.

• In section 2, the equations of motion for the holographic saddle points are analyzed

and an analytic forms of the asymptotic solutions are obtained and studied.

• In section 3, the conductivity is studied analytically for scaling solutions of the EMD

theories introduced in 1.1. Such solutions contains both the charged and neutral

hyperscaling violating solutions of [17, 18].

• In section 4, the conductivity is analyzed in the presence of momentum dissipation.

In particular it is shown that the nature of the charged spectra do not change in the

relevant theories.

• In section 5, a further analysis of the DC conductivity substantiates the claim that

such systems have properties reminiscent of strongly coupled insulators and super-

solids.

• Section 6 contains the numerical results in concrete holographic models that substan-

tiate the analytical conclusions obtained in previous sections.

• In section 7, we consider the spin-2 and spin-0 parts of the stress-tenror two-point

function.

• In section 8, we present our conclusions and outlook for the present work.

• In appendix A, we analyze in detail the equations of motion.

• In appendix B, the potential for the scalar, used for the numerical evaluations is

analyzed in detail.

• Appendix C contains an overview of the properties of charged black holes known from

supergravity, and compares them with the systems described in this paper.

• Finally in appendix D, we analyze zero density systems that are gapped, by applying

the same method.

1.1 Holographic finite density systems at quantum criticality

We will consider a general Einstein-Maxwell-scalar action in four dimensions with a massive

gauge field (mEMD)

S =

∫

d4x
√−g

[

R− 1

2
(∂φ)2 − V (φ)− Z(φ)

4
F 2 − W (φ)

2
A2 − Y (φ)

2

2
∑

i=1

(∂ψi)
2

]

, (1.3)

where ψi (i = 1, 2) are massless scalars responsible for the breaking the translational

invariance. We will eventually require the last term to be irrelevant in the IR. Moreover

– 6 –
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IR fixed points

Einstein-
Maxwell-
scalar

W 6= 0

IR neutral

IR charged

Cohesive

Fractionalized

Cohesive

φ = φ∗: AdS4

φ → ∞: (z = 1, θ)

φ = φ∗: AdS2 × R
2

φ → ∞: (z 6= 1, θ)

φ = φ∗: (z, θ = 0)

φ → ∞: (z 6= 1, θ)

IR neutral

IR charged

Einstein-
Maxwell-
scalar

W = 0

Figure 1. The possible IR geometries from systems with a U(1) symmetry which may be broken

or unbroken. The running scalar cases correspond to those that may have a gapped geometry.

these scalars will take a simple form, namely ψi = kixi (no sum on i) in order to break

translational invariance.

The scalar φ is dual to the most important scalar relevant operator of the system

that drives a non-trivial RG flow from the UV to the IR. We assume that V (φ), Z(φ),

W (φ), and Y (φ) have exponential asymptotics as in supergravity systems. To obtain an

asymptotically AdS geometry, V (φ) must have a finite extremum. The detailed analysis of

the IR geometries from (1.3) without the axions was given in [19].

The possible IR scaling geometries are summarized in figure 1 where we use the ter-

minology of reference [19] to characterize the holographic critical scaling geometries. In

particular, the two sides of the diagram refer to the bulk action used. On the right-hand

side, the bulk action has the U(1) symmetry unbroken (or the dual gauge boson is mass-

less). On the left-hand side the symmetry is broken (either spontaneously or explicitly)

and the gauge boson is massive. As we study a finite density system, the gauge field is

always non-trivial in the bulk background solution. There are two possibilities:

• The IR-neutral solution is a solution where the gauge field vanishes fast enough and

therefore does not affect the background solution in the IR. This does not necessarily

imply that the electric flux vanishes in the IR.

• On the other hand in IR-charged solutions the gauge field is affecting non-trivially

the solution in the IR.

The scalar φ can either be a constant or running in the IR. We are interested in the

case when φ is running, which leads to the IR geometry

ds2 = r̃θ
(

− dt2

r̃2z
+
dr̃2 + dx2 + dy2

r̃2

)

, (1.4)

where z is the Lifshitz scaling exponent, and θ is the hyperscaling violation exponent. We

will change r̃ to r later. The exponents (z, θ) do not uniquely characterize the solution.

– 7 –
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Beyond the metric the behavior of the gauge field is important to characterize the solution

and there is another critical exponent ζ that was introduced in [19] and characterized in

more detail in [71].3

In the case where the U(1) symmetry is broken and therefore there is a nontrivial mass

term W (φ)A2 for the gauge field in the bulk, we need to use two more concepts.

• If the symmetry breaking term does not contribute to the leading order of the IR

geometry, then the electric flux in the IR
∫

⋆[Z(φ)F ] ∼ rξ (1.5)

is constant, and the system is in a fractionalized phase.

• If the symmetry breaking term contributes to leading order to the IR geometry, then

the electric flux in the IR is zero, and the system is in a cohesive phase.

We will mainly study the fractionalized phase in this work. See [74, 75] for details

about the fractionalized and cohesive phases.

We now focus on the IR charged, fractionalized phase, and briefly mention the other

two hyperscaling violating cases, which are cohesive phases. In the fractionalized phase,

the metric exponents (z, θ) can be obtained in terms of two parameters in the Lagrangian

(γ, δ). These are defined in terms of the asymptotic form of the potential functions in (1.3)

in the far IR of the solution as

V (φ) ∼ e−δφ, Z(φ) ∼ eγφ, W (φ) ∼ eǫφ. (1.6)

The Gubser criterion for the singularity that is present in these backgrounds is imply-

ing [17, 76]4

3γ2 − 2γδ − δ2 + 4 > 0 , γ2 − γδ + 2 > 0 , δ2 − γδ − 2 < 0 . (1.8)

When these inequalities are satisfied, the naked singularity is expected to be resolvable.

Moreover, we require that the singularity is “repulsive”. In practice this means that the

Sturm-Liouville problem (associated to the conductivity calculation) be well defined, i.e.,

there is only one normalizable solution in the IR limit, among the two linearly independent

solutions. Under the above conditions, the naked singularity is expected to be resolvable5

and moreover the conductivity does not depend on how this resolution is done.

The conductivity for holographic models satisfies a Schrödinger-like equation. If the

Schrödinger potential Ṽ only allows bound states, then the spectrum is discrete. This

implies that the poles of the conductivity have a discrete pattern and the conductivity is

given by a discrete sum over the poles. See figures 2 and 3.

3A somewhat similar exponent was also introduced for different reasons in [72] and also in [73].
4This is stronger than the null energy condition: (2− θ)(2z− 2− θ) ≥ 0, (z− 1)(2+ z− θ) ≥ 0 [77]. The

Gubser criterion in terms of z and θ is [18]

z + 2− θ

2z − 2− θ
> 0 ,

z − θ + 1

2z − 2− θ
> 0 ,

z − 1

2z − 2− θ
> 0 . (1.7)

5Either by embedding in a higher-dimensional geometry or by a stringy resolution.

– 8 –
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0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

ϕh

T

ρ1/2

γ=0.4, δ=-1.2

extremal limit

Figure 2. A typical relation between the temperature and φh ≡ φ(rh) for the gapped geometry.

There is a minimal temperature, and the ground system can be obtain by taking the extremal limit

T → ∞. The dashed line shows the relation between T and φh when the axions are added, while

the solid line shows the case without axions. The parameters are k = 1/2 and λ = 1/2.

UV IR
r ω0 0

Ṽ Re(σ)
δ(ω − ω∗)

(a)

UV IR
r ω0 0

Ṽ Re(σ)

(b)

Figure 3. Schematic plots of the effective potential and the conductivity with a gap. (a) The

spectrum is discrete. (b) The spectrum is continuous with a gap.

We plot the parameter space for (γ, δ) when Ṽ → ∞ in the IR in figure 4 below.

If Ṽ → ∞ in the UV also, then Re[σ(ω)] has discrete spectrum only; if Ṽ is a positive

constant in the UV, then Re[σ(ω)] has a hard gap, may have a few low-lying poles and

continuous spectrum above this.

The two-dimensional parameter space (γ, δ) will be characterised on the basis of con-

ductivity. The parameter space when the conductivity has a gap will be identified, and the

corresponding geometry at finite temperature will be numerically constructed.

– 9 –
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The DC conductivity for a translationally invariant system at finite density has a δ-

function at ω = 0. This is because in a translationally invariant system charge at rest can

be boosted to arbitrary velocities implying infinite DC conductivity.

Momentum dissipation can resolve the δ-function. In this work we will choose as

the mechanism for momentum dissipation a distribution of string charge, described by an

inhomogeneous solution of scalars without potentials,6 [45, 46]. The fluctuation equations

that determine the conductivity involve two coupled equations that couple the gauge field

fluctuation to the axion fluctuation responsible for the momentum dissipation. When the

effects of momentum dissipation on the background solution vanish in the IR,7 we show that

the qualitative behavior of the conductivity is the same as without momentum dissipation,

except that now the δ-function peak has disappeared. The gap in the conductivity, and

the discrete spectrum of poles persists.

To determine whether the system is a metal or insulator, we must calculate the DC

conductivity. The DC conductivity of holographic systems has two types of contributions.

One exists and is finite without the momentum dissipation, and is also non-trivial at zero

charge density. It has been interpreted as due to charge pair-production albeit in a critical

massless system, [47] and this interpretation was reinforced in [17] and [48], although this

interpretation is still tentative.

The other term originates from the momentum dissipation. If there are several sources

of momentum dissipation then there are several such contributions that add-up. As seen

in special cases in [9], this second term has the structure Q2

Γ1+Γ2+··· , where Q is the charge

density and Γi are the various diffusion rates.

In the class of theories that we study the dissipative term always dominates. This

is true for both gapless and gapped geometries. In each case the system can be either a

conductor or an insulator. We will later obtain the parameter space for which the system

is a conductor or insulator.

We find theories that in the presence of momentum dissipation have a current two-

point function whose imaginary part is a discrete sum of poles on the real axis. This gives

a conductivity whose real part is a sum of δ-functions. This behavior persists at all non-

zero temperatures T < Tc up to a fist order phase transition in which the system jumps

into a “plasma” phase described by a hairy black hole. The current correlator at leading

order in 1/Nc is independent of temperature in the low temperature phase 0 < T < Tc.

The system in this phase transport-wise resembles a Mott insulator.8 This behavior was

conjectured first in [17] after translationally-invariant solutions with a discrete spectrum

in the current-current channel was found.9

Alternatively, we analyze holographic systems that are effective theories with a broken

U(1) symmetry in the presence of momentum dissipation (arising from broken translational

invariance), along the lines of [19]. We again use axion solutions that break translation

6These are known as axions in string theory.
7This is tantamount to the dissipation dynamics being IR irrelevant.
8Mott insulators are defined as insulators due to strong repulsive on-site interactions. In this paper we

use a more liberal and more general definition: insulators due to strong interactions.
9Another example of a translationally invariant holographic finite density system with a discrete spec-

trum was found independently in [55].
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invariance. We find holographic superfluid holographic ground states, whose two-point

function of the current has a discrete set of poles including the pole at zero frequency

guaranteed by Goldstone’s theorem. These systems are superconductors with a discrete

spectrum. In many respects they resemble supersolids, [59, 69]: translational invariance

is broken, there is a pole in the conductivity at zero frequency, and they have a discrete

spectrum of lattice vibrations. A main difference is that supersolids are crystalline while the

holographic system is (not-surprisingly) continuous. Like the Mott-insulator-like ground

states described above, here also there is a low temperature supersolid phase up to a finite

transitional temperature, Tc. To leading order in 1/Nc the spectrum and conductivity are

temperature independent. The system enters a liquid plasma phase (black hole) above Tc.

To determine whether such IR ground states can be reached by RG flows from the

UV we solve the finite temperature equations of motion and then take the near-extremal

limit. We explicitly construct two systems with hyperscaling violating geometries in the IR.

The near-extremal scaling behaviors are obtained and matched with the analytic results

from the near-extremal black hole. This gives rise to complete holographic ground states

realizing the behaviors (Mott-insulator and supersolid) described above.

2 Constructing the extremal geometry

The detailed analysis of the IR geometries from (1.3) is given by [19]. We will construct

the hyperscaling violating geometries from a Einstein-Maxwell-scalar system with W = 0.

This is sufficient for us to discuss the fractionalized phase, in which the symmetry breaking

term is subleading in the IR.

We want to obtain the extremal geometry of the following system

S =

∫

d4x
√−g

[

R− 1

2
(∂φ)2 − V (φ)− Z(φ)

4
FµνF

µν

]

, (2.1)

where

Z(φ) = eγφ, V (φ) = V0e
−δφ + V1e

δ1φ + · · · . (2.2)

We are looking for the extremal geometry when φ → ∞ in the IR. We assume that the

leading term in V (φ) in the IR is the first term and V0 < 0 is required.

The metric ansatz is

ds2 =
1

r2

(

− g(r)

h(r)
dt2 +

dr2

g(r)
+ dx2 + dy2

)

. (2.3)

The AdS boundary is at r = 0, and the IR limit is r → ∞. The IR geometry is

ds2 =
1

r2

(

− g0
h0
r−

4(z−1)
2−θ dt2 + r

2θ
2−θ

dr2

g0
+ dx2 + dy2

)

, (2.4)

where z is the Lifshitz scaling exponent, and θ is the hyperscaling violation exponent.10

10The relation between r and r̃ in (1.4) is r2 = r̃2−θ. The advantage of the coordinates (2.3) is that it is

the Poincaré coordinates in the UV, and thus more convenient for numerical calculations.

– 11 –



J
H
E
P
0
9
(
2
0
1
5
)
1
6
8

The equations of motion are

2r2ghφ′′ − 4rghφ′ + 2r2hg′φ′ − r2gh′φ′ − 2hV ′(φ) + r4h2A′2
t Z

′(φ) = 0 , (2.5a)
(
√
hZ(φ)A′

t

)′
= 0 , (2.5b)

4rg′ − 12g − 2V (φ)− r4hZ(φ)A′2
t − r2gφ′2 = 0 , (2.5c)

2h′ − rhφ′2 = 0 . (2.5d)

There is a conserved (extremality) charge

Q =
√
h

[

Z(φ)AtA
′
t −

1

r2

(

g

h

)′]

, (2.6)

which is zero for the extremal geometry [16]. Equation (2.5b) can be solved as

√
hZ(φ)A′

t = −ρ , (2.7)

where ρ is the charge density. We may use this equation to eliminate At in (2.5a), (2.5c),

and (2.5d), and obtain three coupled equations for φ, g, and h.11

The near horizon expansion for the functions is as follows

eφ = rκ̄(f0 + f̃1r
β + f̃2r

2β · · ·+ f1r
α + f2r

2α + · · · ) , (2.8a)

At = rζ̄−z(a0 + ã1r
β + ã2r

2β · · ·+ a1r
α + a2r

2α + · · · ) , (2.8b)

g = r−
2θ
2−θ (g0 + g̃1r

β + g̃2r
2β · · ·+ g1r

α + g2r
2α + · · · ) , (2.8c)

h = r
2(2z−2−θ)

2−θ (h0 + h̃1r
β + h̃2r

2β · · ·+ h1r
α + g2r

2α + · · · ) , (2.8d)

where the leading terms are from the hyperscaling violation geometry, the terms involving

β are the modes of the linear perturbations and the terms involving α are from the second

exponential in the scalar potential. There can be more powers if the potential has more

exponentials.

The exponents κ and ζ are defined in terms of the coordinates (1.4) [17]:

φ ∼ r̃κ, At ∼ r̃ζ−z. (2.9)

The relation between κ̄, ζ̄ and κ, ζ is

κ̄ =
2κ

2− θ
, ζ̄ − z =

2(ζ − z)

2− θ
. (2.10)

After we substitute the above expansion to the equations of motion, we obtain equa-

tions order by order in the perturbations. At the zeroth order, we can solve κ̄, ζ, z, θ, g0,

and a0 as follows. The parameter h0 is fixed by requiring h = 1 in the UV. Thus, the only

free parameter in the IR is f0. There are two sets of consistent solutions.

11We can use the conserved charge Q to determine the chemical potential µ. At the horizon, Q = Ts,

where T is the temperature, and s is the entropy density; at the AdS boundary, Q = −µρ + 3ǫ/2, where

ǫ is the energy density determined by (6.6) below. However, if we work in the grand canonical ensemble

(fixing µ), we need to solve the four equations.
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• IR charged solution, [17]:

z =
γ2 + 2γδ − 3δ2 + 4

γ2 − δ2
, θ =

4δ

γ + δ
,

κ̄ =
4

γ − δ
, κ =

4

γ + δ
, ζ = θ − 2 ,

g0 = − f−δ0 (γ − δ)4V0
2(3γ2 − 2γδ − δ2 + 4)(γ2 − γδ + 2)

,

a20 =
2f−γ−δ0 (γ − δ)4(δ2 − γδ − 2)V0

h0(3γ2 − 2γδ − δ2 + 4)2(γ2 − γδ + 2)
.

(2.11)

The powers βi arise from perturbing the hyperscaling violating geometry,

β0 = 0 , βu =
4 + (γ − δ)(3γ + δ)

2(γ − δ)2
,

β± =
4+(γ−δ)(3γ+δ)±

√

(

4+(γ−δ)(3γ+δ)
)(

36+(γ−δ)
(

17δ+γ
(

19+8(γ−δ)δ
)))

2(γ−δ)2 .

(2.12)

In the IR expansion, βi can be taken as either β0 or β−.12

• IR neutral solution:

z = 1 , θ =
2δ2

δ2 − 1
,

κ̄ = −2δ , κ =
2δ

δ2 − 1
, ζ =

2(δ2 − γδ − 1)

δ2 − 1
,

g0 = − f−δ0 V0
2(3− δ2)

.

(2.13)

We will only focus on the IR charged solution in this work.

The terms involves α are from other exponentials in the potential of the scalar. At

the first order, we can solve f1, a1, g1, h1, and α. For the first set of solutions (2.11), the

solution for α is

α =
4(δ + δ1)

γ − δ
. (2.14)

For the second set of solutions (2.13), the solution for α is

α = −2δ(δ + δ1) . (2.15)

Note that α depends on the UV completion of the system. The value of α gives a further

constraint for z and θ by requiring α < 0.

The asymptotic behavior of the scalar field φ near the AdS boundary is

φ = φar
∆(1 + · · · ) + φbr

3−∆(1 + · · · ) , (2.16)

12If we write the numerator of β± as a±
√
b, we have a > 0 and a2−b = 8(3γ2−2γδ−δ2+4)(γ2−γδ+2)

(δ2 − γδ − 2) < 0, according to the Gubser criterion; consequently, we always have β− < 0 and β+ > 0.
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where φa is the expectation of the scalar operator dual to φ, and φb is its source. When ∆

is an integer, there may be log terms. We discuss the choice of the potential V (φ) to avoid

the log terms in appendix B.

3 Conductivity with translational invariance

3.1 The IR charged solution

We will focus on the conductivity calculated from the extremal geometries. We are in-

terested in the case when the conductivity has a discrete spectrum for the hyperscaling

violating geometries. To obtain the conductivity, we perturb the system (2.1) around the

solution to (2.5) by δAx = ax(r)e
−iωt and δgtx = gtx(r)e

−iωt. Generically, for the metric

ds2 = −D(r)dt2 +B(r)dr2 + C(r)(dx2 + dy2) , (3.1)

the equation for ax after eliminating gtx is, [17]

(

Z

√

D

B
a′x

)′

+

(

Z

√

B

D
ω2 − Z2A′2

t√
BD

)

ax = 0 . (3.2)

After we impose an appropriate boundary condition in the IR (to be discussed below), the

asymptotic behavior in the UV is

ax(r) = a(0)x + a(1)x r + · · · , (3.3)

and the conductivity is calculated from13

G =
a
(1)
x

a
(0)
x

, σ(ω) =
G

iω
. (3.4)

We do not need to know ax explicitly to decide whether the spectrum of Re(ω) is gapped/

gapless and/or discrete/continuous.

After a change of variables by

dξ

dr
=

√

B

D
, ãx =

√
Zax , (3.5)

we can obtain a Schrödinger equation

− d2ãx
dξ2

+ Ṽ (ξ)ãx = ω2ãx . (3.6)

The potential is given by

Ṽ =
ZA′2

t

B
− DB′Z ′

4B2Z
+
D′Z ′

4BZ
− DZ ′2

4BZ2
+
DZ ′′

2BZ
, (3.7)

13If Z = Z0 at the AdS boundary, then there will be an extra factor in G so that G = Z0
a
(1)
x

a
(0)
x

. We can

set Z0 = 1 by rescale Aµ. This amounts to a suitable change of units of measuring the boundary charge

density.
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where the prime is denoting a derivative with respect to r. If Ṽ asymptotes to infinity in

both the IR and the UV, then the Schrödinger equation can only have bound states.

To analyze the behavior of Ṽ in the IR, we use the hyperscaling violating geometry (2.4)

as background:

D = r−
4(z−1)
2−θ

−2, B = r
2θ
2−θ

−2, C =
1

r2
. (3.8)

We change the variable r to ξ as

ξ =

√
h0
g0

2− θ

2z
r

2z
2−θ . (3.9)

The asymptotic Schrödinger potential is given by

Ṽ (ξ) =
ν2 − 1/4

ξ2
, (3.10)

where

ν =
(γ − δ)(3γ + 5δ) + 12

2[(γ − δ)(γ + 3δ) + 4]
=

3z − θ

2z
. (3.11)

The expression of ν in terms of z and θ holds for both the fractionalized phase and the

cohesive phase when the current is dominant in the IR.14

The boundary condition in the IR depends on whether the IR limit is at ξ → ∞ or

ξ → 0. This is directly related to whether in the extremal limit the black hole solution has

T → 0 or T → ∞ in the near-extremal geometry. The relation between the entropy and

temperature is

S ∼ T
2−θ
z . (3.12)

Comparing (3.9) and (3.12), we can distinguish three different cases as follows:

(1) The IR limit is at ξ → ∞, which happens when z
2−θ > 0. In this case, the extremal

limit of the small black hole branch is at T → 0. Moreover, the Gubser criterion implies

that we have ν > 1
2 . To leading order in the IR expansion, the solution for ãx with the

in-falling wave boundary condition is

ãx ∼
√

ξH(1)
ν (ωξ) ∼ eiωξ . (3.13)

The current-current correlator is gapless in this case.

(2) The IR limit is at ξ → 0, which happens when z
2−θ < 0. In this case, the extremal

limit of the small black hole branch (that is now thermodynamically unstable) is at

T → ∞. Moreover, the Gubser criterion implies that ν < 0. To leading order in the

IR expansion, the general solution for ãx is

ãx = C1

√

ξ J−ν(ωξ) + C2

√

ξJν(ωξ) ∼ C1 ξ
1/2−ν + C2 ξ

1/2+ν . (3.14)

14We use two different terms to describe two different effects. We call the current “dominant” in the IR

if the gauge field is both non-trivial in the IR and contributes to the leading order IR background solution.

This is distinct from the term “relevant” current that indicates a current perturbation of the IR solution

that is relevant in the RG sense.

– 15 –



J
H
E
P
0
9
(
2
0
1
5
)
1
6
8

The first linearly independent solution in (3.14) is always normalizable:

∫ ∞

0
|ãx|2dξ <∞ . (3.15)

The second linearly independent solution in (3.14) is normalizable when |ν| < 1, and is

non-normalizable when |ν| > 1. If there are two normalizable solutions, the boundary

condition in the IR depends on how the singularity is resolved, and thus the calculation

of the correlator is unreliable and can only be fixed when the singularity is properly

resolved.

When |ν| < 1/2, the current-current correlator is gapless; when |ν| > 1/2, the current-

current correlator is gapped, if the Schrödinger potential in the UV is also positive,

which happens for scaling dimension 1/2 < ∆ < 2.15

(3) The IR limit is at a constant non-zero ξ, which happens when z
2−θ → 0. In this case,

the extremal limit is at a constant T , and the Schrödinger potential is a constant V0.

The general solution for ax is

ax = C1e
√
V0−ω2 ξ + C2e

−
√
V0−ω2 ξ . (3.16)

When ω2 > V0, the first solution describes the in-falling wave with the ω → ω + iǫ

prescription. When ω2 < V0, both solutions are real and normalizable. As the back-

ground extremal solution is singular, this situation seems to be in the holographically

non-well defined class we have discussed earlier: we need to impose an extra boundary

condition at the singularity in order to obtain a unique solution. However, in this case,

analyticity (in ω) of the correlator makes the solution unique. Indeed, if we analytically

continue the ω2 > V0 solution to ω2 < V0, the solution for ax is unambiguous for all ω.

When V0 < 0, the current-current correlator is gapless; when V0 > 0, the current-

current correlator is gapped, if the Schrödinger potential in the UV is also positive.16

If the IR is at ξ → ∞ and |ν| > 1/2, the potential Ṽ is divergent in the IR. To

summarize, the conditions for a gapped background charged spectrum are

• Gubser criterion: (γ − δ)(3γ + δ) + 4 > 0, (γ − δ)γ + 2 > 0, (γ − δ)δ + 2 > 0 [17].

• Thermodynamical instability of the small black hole branch ( 2−θz < 0): (γ − δ)(γ +

3δ) + 4 < 0.

• The Sturm-Liouville problem is well-defined: |ν| > 1 (stronger than |ν| > 1/2).

Figure 4 is a summary of the above discussion. The parameter space when the current-

current correlator can have a gap is region B.

15In [17] where an analogous condition was first derived it was assumed that near the UV fixed point at

φ = 0, Z(φ) = 1 +O(φ2). Here we assume the more general case Z(φ) = 1 +O(φ).
16It is fair to say that such cases are degenerate and generalize a similar case that was discussed in [56, 57].

Further and deeper analysis is necessary in order to find out waht happens in such cases.
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Figure 4. This figure refers to the IR charged solutions. The regions A, B, and C are the parameter

space constrained by the Gubser criterion. We assume that the conditions detailed at the end of

section 3.1 in the UV for a gapped geometry are satisfied. In the left plot the axes are given by

the gravity action parameters (γ, δ). In the right plot the axes are given by the metric critical

exponents (z, θ) that are related to (γ, δ) as in (2.11). In region A (yellow), the extremal limit is

at T → 0, and the current-current correlator is gapless. In region B (red), the extremal limit is at

T → ∞, and the current-current correlator is gapped. In region C (green), the extremal limit is at

T → ∞, and the current-current correlator is gapless. Region D (enclosed by blue boundaries) is

holographically unreliable.

The Schrödinger potential Ṽ near the AdS boundary was analyzed in the appendix

of [78] and their conclusions are as follows. The asymptotic behavior of φ near the AdS

boundary is (2.16). When both φa and φb are nonzero, Ṽ in the UV is divergent when

∆ 6= 1 and ∆ 6= 2, and is constant when ∆ = 1 or 2. When the source is zero (φb = 0), Ṽ

in the UV diverges when 1/2 < ∆ < 1 and 1 < ∆ < 2, is constant when ∆ = 1 or 2, and

vanishes when ∆ > 2 (the unitarity bound is ∆ > 1/2).

3.2 The IR neutral solution

When the current is subdominant in the IR we must use the IR neutral solution solu-

tion (2.13). To leading order in the IR geometry, the effective potential for the Schrödinger-

like equation is

V (x) =
ν20 − 1/4

ξ2
, (3.17)

where

ν0 =
δ2 − 2γδ − 1

2(δ2 − 1)
=
ζ − 1

2
. (3.18)

The analysis is similar to the case with a dominant current, except that the values z, θ

and ζ are given by eq. (2.13).
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Figure 5. This figure refers to the IR neutral solutions. The regions A, B, and C are the parameter

space constrained by the Gubser criterion. We assume that the conditions detailed at the end of

section 3.1 in the UV for a gapped geometry are satisfied. In the left plot the axes are given by

the gravity action parameters (γ, δ). In the right plot the axes are given by the critical exponents

of the metric θ and gauge field ζ defined in (2.10) and given in (2.13). In region A (yellow), the

extremal limit is at T → 0, and the current-current correlator is gapless. In region B (red), the

extremal limit is at T → ∞, and the current-current correlator is gapped. In region C (green),

the extremal limit is at T → ∞, and the current-current correlator is gapless. Region D (enclosed

by blue boundaries) is holographically unreliable. In region E (enclosed by black boundaries), the

conductivity has a δ-function at ω = 0.

When the IR is at ξ → 0, the solution for ãx is

ãx = C1ξ
1/2−ν0 + C2ξ

1/2+ν0 , (3.19)

where ν0 is defined in (3.18). When |ν0| < 1, both solutions are normalizable, and this

is a holographically unreliable case as argued above in the sense that an extra boundary

condition is necessary at the IR singularity. Therefore we require ν0 > 1 or ν0 < −1.

The conditions for a gapped background solution are

• Validity of the Gubser criterion δ2 < 3.

• Thermodynamical instability of the small black hole branch ( 2−θz < 0): δ2 > 1

• The Sturm-Liouville problem is well-defined: |ν0| > 1 (stronger than |ν0| > 1/2).

Figure 5 is a summary of the above discussion. The parameter space when the current-

current correlator has a gap is region B.
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4 Conductivity in the presence of momentum dissipation

To add momentum dissipation and at the same time preserve the rotational symmetry we

will consider the following bulk theory

S =

∫

d4x
√−g

[

R− 1

2
(∂φ)2 − V (φ)− Z(φ)

4
F 2 − W (φ)

2
A2 − Y (φ)

2

2
∑

i=1

(∂ψi)
2

]

, (4.1)

where the leading IR behavior of V , Z, W , and Y are

V (φ) = V0e
−δφ, Z(φ) = eγφ, W (φ) =W0e

ηφ, Y (φ) = eλφ. (4.2)

This is a simple way to add momentum dissipation [45, 46] as the scalars ψi take the form

ψi = kxi. Having the same slope for the axions guarantees a rotationally invariant solution.

To calculate the conductivity, we perturb the system by

δAx = ax(r)e
−iωt, δgtx = gtx(r)e

−iωt, δψ1 = χ(r)e−iωt. (4.3)

The independent linearized equations are

a′′x +

(

(logZ)′ − B′

2B
+
D′

2D

)

a′x +

(

ω2

D
− W

Z

)

Bax +
A′
t

D

(

g′tx −
C ′

C
gtx

)

= 0 , (4.4)

χ′′ +

(

(log Y )′ − B′

2B
+
C ′

C
+
D′

2D

)

χ′ +
ω2B

D
χ− ikωBgtx

CD
= 0 , (4.5)

g′tx −
C ′

C
gtx +A′

tZax +
ik

ω
DY χ′ = 0 . (4.6)

We define

bx ≡ ik

ω

√

D

B
CY χ′, q ≡ CZ√

BD
A′
t . (4.7)

From (A.12), we observe that q is a constant if W = 0. If W 6= 0, q is the minus charge

density in the UV, but not a constant in the bulk. In the fractionalized phase, q is a

nonzero constant in the IR, while in the cohesive phase, q = 0 in the IR. After eliminating

gtx(r), two coupled equations are derived

(

Z

√

D

B
a′x

)′

+

(

Z

√

B

D
ω2 −W

√
BD − q2

√
BD

C2

)

ax − q

√
BD

C2
bx = 0 , (4.8)

(

1

CY

√

D

B
b′x

)′

+

(

ω2

CY

√

B

D
− k2

√
BD

C2

)

bx − k2q

√
BD

C2
ax = 0 . (4.9)

The equations for ax and bx can be written in a more symmetric form. Define Z1 :=

Z = rκγ and Z2 :=
1
CY = r2−κλ. The relation between the metric (3.1) and (2.3) is

D =
g

r2h
, B =

1

r2g
, C =

1

r2
. (4.10)
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Also we define f = g/
√
h =

√

D/B. The coupled equations for ax and bx are

1

fZ1
(fZ1a

′
x)

′ +
ω2

f2
ax =

r2

gZ1

(

(

q2 +
W

r4

)

ax + qbx

)

, (4.11)

1

fZ2
(fZ2b

′
x)

′ +
ω2

f2
bx =

r2

gZ2
(k2bx + k2qax) . (4.12)

Define ãx =
√
Z1ax and b̃x =

√
Z2bx, and then we obtain

−d
2ãx
dξ2

+ V1(ξ)ãx = ω2ãx +
qgr2

h
√
Z1Z2

b̃x , (4.13)

−d
2b̃x
dξ2

+ V2(ξ)b̃x = ω2b̃x +
k2qgr2

h
√
Z1Z2

ãx , (4.14)

where x is the same as in (3.5) and

Vi(ξ) =
1

F 2

(

Qi +
1

4
P 2
i − 1

2
P ′
i −

3

4

F ′2

F 2
+

1

2

F ′′

F

)

,

F =
1

f
, Pi = −(fZi)

′

fZi
, Q1 =

q2r2

gZ1
+

W

r2gZ1
, Q2 =

k2r2

gZ2
.

(4.15)

After inserting the hyperscaling-violating geometry to the equations, we obtain

−d
2ãx
dξ2

+

(

c1
ξ2

+
cw
ξβ

)

ãx = ω2ãx +
d1
ξα
b̃x , (4.16)

−d
2b̃x
dξ2

+

(

c2
ξ2

+
c3

ξ2α−2

)

b̃x = ω2b̃x +
d2
ξα
ãx , (4.17)

where

α = 2− (γ − δ)(γ + δ + 2λ)

(γ − δ)(γ + 3δ) + 4
= 2− κλ− 2

2z
, (4.18)

β = 2 +
4(γ − δ)(γ − δ − η)

(γ − δ)(γ + 3δ) + 4
= 2− κη + 2θ − 4

z
, (4.19)

and c1, c2, c3, cw, d1, and d2 are constants.17 The coefficients c1 and c2 are given by

c1 = ν21 − 1/4 and c2 = ν22 − 1/4, where

ν1 =
(γ − δ)(3γ + 5δ) + 12

2[(γ − δ)(γ + 3δ) + 4]
=

3z − θ

2z
, (4.20)

ν2 =
(γ − δ)(γ − 5δ − 4λ)− 4

2[(γ − δ)(γ + 3δ) + 4]
=

2− z − θ − κλ

2z
. (4.21)

The terms involving α are from the momentum dissipation sector and the term involv-

ing β comes from the U(1) symmetry breaking. We impose two conditions:

17The coefficients c3, cw, d1, and d2 are obtained from

c3
ξ2α−2

=
k2r2

gZ2
,

cw
ξβ

=
W

r2gZ1
,

d1
ξα

=
qgr2

h
√
Z1Z2

,
d2
ξα

=
k2qgr2

h
√
Z1Z2

.
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• The axions do not change the IR geometry to leading order. After we include the

axions, the effective potential for the scalar is

Vtot = V (φ) +
Y (φ)

2
gxxk2 ∼ e−δφ +

k2

2
r2eλφ ∼ r−κ̄δ +

k2

2
r2+κ̄λ, as r → ∞ .

(4.22)

For the axions to not change the IR geometry, the first term must be dominant.

Therefore we require

− κ̄δ > 2 + κ̄λ ⇒ (γ − δ)(γ + δ + 2λ) < 0 . (4.23)

• The system is in the fractionalized phase, in which the symmetry breaking term is

subleading in the IR.18 To implement this we demand that in (A.12) the right hand

side is subleading to the left hand side. This implies

(γ − δ)(γ − δ − η) > 0 . (4.24)

If the IR is at ξ → ∞, i.e., the extremal limit is at T → 0, we have α > 2 and β > 2.

If the IR is at ξ → 0, i.e., the extremal limit is at T → ∞, we have α < 2 and β < 2.

We will show that the terms involving α and β are all subleading to the solution without

those terms. This will imply that the qualitative features of the charged spectrum is not

changed by the presence of the momentum-dissipating sector nor by the U(1) symmetry

breaking.

We take first cw = 0 (W = 0) for simplicity. We can obtain a fourth-order equation

for ãx after eliminating b̃x:

d4ãx
dξ4

+
2α

ξ

d3ãx
dξ3

+

(

α(α− 1)− c1 − c2
ξ3

− ǫc3
ξ2α−2

)

d2ãx
dξ2

+
2(2− α)c1

ξ2
dãx
dξ

+

(

c1
(

c2 − (2− α)(3− α)
)

ξ4
+
ǫ(c1c3 − d1d2)

ξ2α

)

ãx = 0 (4.25)

where ǫ is a bookkeeping parameter that keeps track of the order of perturbation and which

we will eventually set to 1. The asymptotic behavior of ãx at ξ → 0 is

ãx = ξ1/2−ν1
(

a0 + ǫa1ξ
2(2−α) + ǫ2a2ξ

4(2−α) + · · ·
)

. (4.26)

Since α < 2, the above expansion is valid and reliable. The coefficients a1, a2, · · · can

be solved order by order. We observe that the coupled equations for ãx and b̃x do not

change the leading exponent of ãx. Therefore, if ãx is normalizable at ξ → 0 without the

momentum dissipation, it is still normalizable with the momentum dissipation. The hard

gap remains in the conductivity.

When the U(1) symmetry breaking term is included, the fourth-order equation for ãx is

d4ãx
dξ4

+
2α

ξ

d3ãx
dξ3

+

(

α(α−1)−c1−c2
ξ2

− ǫαc3
ξ2α−2

− ǫβcw
ξβ

)

d2ãx
dξ2

+

(

2(2−α)c1
ξ3

+
2ǫβ(β−α)cw

ξβ+1

)

dãx
dξ

+

(

c1
(

c2−(2−α)(3−α)
)

ξ4
+
ǫα(c1c3−d1d2)

ξ2α
+
ǫβcw

(

c2−(β−α)(β+1−α)
)

ξβ+2
+
ǫαǫβc3cw
ξ2α+β−2

)

ãx = 0 ,

(4.27)

18In the cohesive phase, the symmetry breaking term is at the same order, which requires η = γ − δ.
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where there are two subleading terms multiplied by ǫα = ǫβ that in the end will be set to 1.

The solution is a double expansion

ãx = ξ1/2−ν1
(

a0 + ǫαaα1ξ
2(2−α) + ǫβaβ1ξ

2−β + ǫαǫβaα1β1ξ
6−2α−β + · · ·

)

, (4.28)

where all terms involving α and β are subleading. Therefore, we confirm that in this case,

the U(1) symmetry breaking term and the momentum dissipation effects do not charge the

main characteristics of the spectrum: the spectrum remains discrete. The only difference is

that the zero mode (responsible for the δ-function at zero frequency) has now disappeared

and therefore now the spectrum is gapped. We conclude that the parameter space for the

gapped geometry in figure 4, for the fractionalized phase has not changed.

In the following we will discuss the solutions of ax and bx in the IR. We will impose

the Gubser criterion so that the extremal limit is at the T → ∞ end of the small black-hole

branch (ξ → 0). The general solutions of ãx and b̃x are

ãx = C1ξ
1/2−ν1 + C2ξ

1/2+ν1 , (4.29)

b̃x = D1ξ
1/2−ν2 +D2ξ

1/2+ν2 . (4.30)

For the system to be holographically reliable we must impose the condition that only one

normalizable solution exists for each of ãx and b̃x. This requires |ν1| > 1 and |ν2| > 1. We

have the following observations:

• ν1 < 0 is always satisfied, but ν1 < −1 gives nontrivial constraints for (γ, δ), as

discussed before.

• ν2 can be either positive or negative, and |ν2| > 1 gives nontrivial constrains for

(γ, δ).

In the UV, substituting in (2.16), the near-boundary expansion of the potentials

in (4.15) is

V1 =
1

2
∆(∆− 1)γφar

∆−2 +
1

4
(∆2γ2 + 4W0η

2)φ2ar
2(∆−1),

+
1

2
(2−∆)(3−∆)γφbr

1−∆ +
1

4
((3−∆)2γ2 + 4W0η

2)φ2br
2(2−∆), (4.31)

V2 = −1

2
∆(∆ + 1)λφar

∆−2 +
1

4
∆2λ2φ2ar

2(∆−1)

− 1

2
(3−∆)(4−∆)λφbr

1−∆ +
1

4
(3−∆)2λ2φ2br

2(2−∆). (4.32)

The UV behavior of ax and bx is

ax = a(0)x + a(1)x r + · · · , bx = b(1)x r + · · · . (4.33)

The Schrödinger potentials V1 and V2 are divergent when 1/2 < ∆ < 2, except for ∆ = 1

or 2, for which they asymptote to constants. The analysis is similar to the last paragraph

of section 3.1.
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5 On holographic Mott-like insulators and supersolids

We will first consider the EMD bulk action with no U(1) symmetry breaking (W = 0

in (4.1)). To decide whether the system is a metal or insulator, we must calculate its

DC conductivity. With momentum dissipation, a formula for the DC conductivity was

derived in [42]. We will briefly review the procedure, and use it for the near-extremal

geometries. Then we will apply this formulation to extremal geometries. We define for

latter convenience

H(r) = Z1 +
q2

k2
Z2 ≡ Z +

q2

k2CY
. (5.1)

The two eigenmodes of the equations for ax and bx are

λ1 =
Z1

H

(

ax −
q

k2
Z2

Z1
bx

)

, λ2 =
Z2

H
(qax + bx) . (5.2)

Following [42, 79], we can derive an equation

[

fHλ′1 −
q

k2
fZ2

(

Z1

Z2

)′
λ2

]′
+
ω2

f
Hλ1 = 0 . (5.3)

From this we observe that the equations for ax and bx have a massless eigenmode. There-

fore, we define

Π = fHλ′1 −
q

k2
fZ2

(

Z1

Z2

)′
λ2 , (5.4)

and Π is a radially conserved quantity at ω = 0. At the UV, we have H = 1,19 λ1 = a
(0)
x ,

λ2 = 0, and Π = a
(1)
x in the leading order. The conductivity is

σ(ω) =
a
(1)
x

iωa
(0)
x

=
Π

iωλ1

∣

∣

∣

∣

r→0

. (5.5)

At ω = 0, Π can be evaluated at the horizon,

σDC =
Π

iωλ1

∣

∣

∣

∣

r=rh

. (5.6)

Refs. [79, 80] derived the DC conductivity at finite temperature as

σDC = Zh +
q2

k2ChYh
= eγφh +

q2

k2Cheλφh
, (5.7)

where φh ≡ φ(rh) and Ch ≡ C(rh) are the values of the scalar (dilaton) and the scale

factor on the black-hole horizon. At finite temperature, σDC is finite. The formula in (5.7)

however cannot be directly applied to extremal geometries. We will discuss the finite

temperature, near-extremal geometries first, and then the extremal geometries.

19As we set Z0 = 1.
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5.1 DC conductivity for near-extremal black holes

We now return to the analysis of the nature of the conductivity in the hyperscaling violating

Lifshitz geometries perturbed by U(1) breaking as well as by the momentum dissipating

sector.

We apply the formula (5.7) for the DC conductivity to the near-extremal geometries,

and then take the extremal limit. The near-extremal solution from [17] is20

ds2 = −V (r̃)r̃−4
γ(γ−δ)

wu dt2 +
eδφdr̃2

−wΛV (r̃)
+ r̃2

(γ−δ)2

wu (dx2 + dy2) ,

eφ = eφ0 r̃−4
(γ−δ)
wu , At = 2

√

−v
wu

e−
γ
2
φ0(r̃ − r̃h) V (r̃) = r̃(r̃ − r̃h) ,

wu = 3γ2 − 2γδ − δ2 + 4 , u = γ2 − γδ + 2 , v = δ2 − γδ − 2 .

(5.9)

Note that this r̃ is different from the r in (2.3). Thus we obtain

σDC ∼ r̃
− 4γ(γ−δ)

3γ2−2γδ−δ2+4

h +
q2

k2
r̃
− 2(γ−δ)(γ−δ−2λ)

3γ2−2γδ−δ2+4

h ≡ r̃α1
h +

q2

k2
r̃α2
h . (5.10)

In terms of z and θ,

α1 =
θ − 4

2 + z − θ
, α2 =

θ − 2 + κλ

2 + z − θ
. (5.11)

The extremal limit is rh → 0 keeping the other coordinates fixed. The Gubser criterion

and the condition that the axions are irrelevant in the IR imply that the second term is

always dominant:

α1 − α2 = −2(γ − δ)(γ + δ + 2λ)

3γ2 − 2γδ − δ2 + 4
> 0 . (5.12)

Therefore, the DC conductivity is always dissipation-dominated in the extremal limit. If

σDC → 0 as r̃h → 0, the system is an insulator; if σDC → ∞, the system is a (perfect)

conductor. The condition that the system is an insulator is α2 < 0, i.e.,

(γ − δ)(γ − δ − 2λ) < 0 . (5.13)

For different values of the parameter λ that controls the IR strength of momentum dissi-

pation, the parameter spaces for insulators and conductors are plotted in figure 6. In the

green region, the system is a conductor, and in the red region, the system is an insulator.

Finally in the light blue region the axions are relevant in the IR, a case that was analyzed

further in [79, 80], but we do not analyze it further here.

20The AdS4 near-extremal solution in coordinates (2.3) is (we need to add appropriate coefficients before

dt2 and dr2, as in eq. (2.4))

ds2 =
1

r2

(

− fr−
4(z−1)
2−θ dt2 + r

2θ
2−θ

dr2

f
+ dx2

)

, f = 1−
(

r

rh

)

2(2+z−θ)
2−θ

. (5.8)

The power in the blackness function f(r) is always positive as required by the Gubser criterion. The

extremal solution can be obtained by sending rh → ∞.
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Figure 6. Parameter space for the conducting and insulating phases. The parameter space con-

strained by the Gubser criterion is enclosed by dashed lines; moreover, we have excluded the holo-

graphically unreliable region in which there are two normalizable solutions in the IR. In the gray

region, the axions term is relevant in the IR. In the green region, the system is a conductor; in the

red region, the system is an insulator. The parameter space for the gapped geometry is above and

below the two curves (γ − δ)(γ + 3δ) + 4 = 0.

The relation between the temperature T and the horizon radius r̃h is [17]

T =
1

4π

√
−wΛ e− δ

2
φ0 r̃

1−2
(γ−δ)2

wu
h ∼ r̃

γ2+2γδ−3δ2+4

3γ2−2γδ−δ2+4

h . (5.14)

Thus, the DC conductivity for the near-extremal black hole is

σDC ∼ T
− 4γ(γ−δ)

γ2+2γδ−3δ2+4 +
q2

k2
T
− 2(γ−δ)(γ−δ−2λ)

γ2+2γδ−3δ2+4 ≡ T β1 +
q2

k2
T β2 . (5.15)
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In terms of z and θ,

β1 =
θ − 4

z
=
ζ − 2

z
, β2 =

θ − 2 + κλ

z
, (5.16)

where ζ is the conduction exponent given in (2.11), [19, 71]. As mentioned above, the

second term is always dominant no matter whether the extremal limit is T → 0 or T → ∞.

We are especially interested in Mott-like insulators. In figure 6, the parameter space

in which the conductivity can have a hard gap and a discrete spectrum is above and below

the two curves (γ − δ)(γ + 3δ) + 4 = 0 (which gives 2−θ
z = 0). This is in the region B in

figure 4. From figure 6, we can see that this region can be either a perfect conductor or an

insulator, depending on the value of λ. In sum, in the red region of the parameter space

for the gapped geometry, the system is a Mott insulator, if the scaling dimension of the

scalar operator in the UV satisfies 1/2 < ∆ < 2.

If the U(1) symmetry is spontaneously broken, there will be a δ-function at ω = 0

even in the presence of momentum dissipation (the superfluid mode) provided that the

breaking is spontaneous and we will have therefore a superfluid (or superconductor if the

U(1) is weakly gauged) with a discrete spectrum. This will provide a system that it is

in the broken phase (φ there will be interpreted as the modulus of a charged scalar),

and will therefore have a δ-function at zero frequency in the conductivity but will have

discrete spectrum otherwise! This characteristic ressembles what is expected from the

conductivity in supersolids (although there are also differences that were expanded upon

in the introductory sections).

5.2 DC conductivity for gapped, extremal geometries

For extremal geometries, the formula for the DC conductivity (5.7) cannot be directly

applied. When the extremal limit is at T → 0, the ω2 terms in the perturbation equations

can not be neglected to calculate the ω → 0 behavior of the conductivity; we need to use

the asymptotic match. On the contrary, when the extremal limit is at T → ∞, we can

neglect the ω2 terms. Moreover, for gapped geometries, the IR solution is independent of

ω, and there is no in-falling wave boundary condition. From (5.5), we can evaluate the

radially conserved quantity Π at the IR, and the ω → 0 limit of the conductivity is

σDC =
Π(r → ∞)

iωλ
(0)
1

, (5.17)

where λ
(0)
1 = a

(0)
x is the source of the perturbation, and Π can be regarded as the strength

(coefficient) of the zero-frequency δ-function.

The condition that the presence of axion-generated dissipation do not change the

original IR solution is equivalent to

Z1/Z2 → 0 as r → ∞ . (5.18)

Another important observation is that we always have21

Z1

Z2

ax
bx

∼
√

Z1

Z2
ξ|ν1|−|ν2| → 0 , (5.19)

21We do not always have ax/bx → 0 as ξ → 0.
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no matter ν2 > 0 or ν2 < 0. Consequently, the leading behavior of Π in the IR is

Π = − q

k2
fZ2b

′
x + · · · (5.20)

If Π → 0 as r → ∞, the conductivity does not have a δ-function at ω = 0. If Π is constant

as r → ∞, the conductivity has a δ-function at ω = 0 and its coefficient is proportional to

Π(ω = 0). That there is only one normalizable solution for bx requires |ν2| > 1. There are

two cases to consider as follows:

• Case 1: ν2 > 1, for which we have (γ − δ)(γ − 5δ − 4λ)− 4 < 0. The solution for bx
is bx ∼ √

Z2ξ
1/2+ν2 The radially conserved quantity Π evaluated at the IR is

Π ∼ fZ2b
′
x ∼ r

(γ−δ)(γ−5δ−4λ)−4

(γ−δ)2 → 0 . (5.21)

• Case 2: ν2 < −1, for which we have (γ − δ)(γ − 5δ − 4λ) − 4 > 0. The solution for

bx is bx ∼ √
Z2ξ

1/2−ν2 . The radially conserved quantity evaluated in the IR is

Π ∼ fZ2b
′
x → constant . (5.22)

We expect that the insulating phase corresponds to the case 1, and the conducting

phase corresponds to the case 2. We will show that this is true after we excluded the

holographically unacceptable region |ν2| < 1 and have imposed Gubser’s criterion.

Gapped, insulating phase. The condition that the extremal geometries are at T → ∞ limit

of the small black-hole branch is (γ−δ)(γ+3δ)+4 < 0. The condition that the system is an

insulator is (γ−δ)(γ−δ−2λ) < 0. These two inequalities give (γ−δ)(3γ+δ−4λ)+4 < 0.

Consequently,

ν2 + 1 =
(γ − δ)(3γ + δ − 4λ) + 4

(γ − δ)(γ + 3δ) + 4
> 0 . (5.23)

If we further impose that there is only one normalizable solution, which is |ν2| > 1, we

obtain ν2 > 1. According to the discussion above, this corresponds to the case 1. The

conductivity does not have a δ-function at ω = 0 in the gapped, insulating phase. Note

that this is not always true without the constraint |ν2| > 1.

Gapped, conducting phase. The condition that the extremal geometries are at T → ∞ is

(γ−δ)(γ+3δ)+4 < 0. The condition that the system is a conductor is (γ−δ)(γ−δ−2λ) > 0.

These two inequalities give (γ − δ)(γ + 11δ + 4λ) + 12 < 0. Consequently,

ν2 − 1 = −(γ − δ)(γ + 11δ + 4λ) + 12

(γ − δ)(γ + 3δ) + 4
< 0 . (5.24)

If we further impose that there is only one normalizable solution, which is |ν2| > 1, we

obtain ν2 < −1. According to the discussion above, this corresponds to the case 2. The

conductivity has a δ-function at ω = 0 in the gapped conducting phase.
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6 Constructing the finite temperature geometry

To determine which is the ground state of the system (2.1), we need to solve for the finite

temperature geometry, and lower the temperature to obtain the near-extremal geometry.

Note that the RN black hole is not a solution of the system (2.1) when Z ′(φ)|φ=0 6= 0.

If we want to choose ∆ = 1 for general values of δ without log r terms in the boundary,

we can use a three-exponential potential. The simplest potential is

V (φ) = −6− 4

δ2
sinh2

δφ

2
. (6.1)

The reason why we choose this potential is explained in appendix B.

After eliminating A′
t by

√
hZ(φ)A′

t = −ρ, where ρ is the charge density, we solve the

three coupled equations for φ, g, and h. We work in the canonical ensemble. At finite

temperature, we can set the horizon be at rh = 1 by a rescaling of coordinates. The

asymptotic behavior of the scalar field φ near the AdS boundary is

φ = φar + φbr
2 + · · · . (6.2)

We consider the UV scaling dimension ∆ = 1, so φa is the expectation value, and φb is the

source. The way to impose the boundary condition in the UV is not unique, for example,

• φb = φ0. This is the standard Dirichlet case. Here φ0 has the dimension of energy.

We have a two-parameter family of the solutions (ρ, φ0).

• φb/φa = κ. This corresponds to a double-trace perturbation by the scalar operator

dual to φ. In this case, κ has the dimension of energy. We have a two-parameter

family of the solutions (ρ, κ).

• φb/φ
2
a = τ . This corresponds to a triple-trace perturbation by the scalar operator

dual to φ. In this case, the only quantity that has a dimension is the charge density.

We have a two-parameter family of the solutions (ρ, τ).

On the scalar we will use boundary conditions of the third type.22 We further need four

boundary conditions as in the following table (“X” means no boundary condition).

horizon (r = 1) AdS boundary (r = 0)

φ regularity φ′′ − 2τφ′2 = 0 (∆ = 1)

At At = 0 A′
t = −ρ

g g = 0 X

h X h = 1

22The bulk action that has the gapped solution, has also an AdS2 IR critical solution. It is RG-unstable.

The bulk action that has the gapless solution has also an AdS2 IR critical solution which is RG-stable.

However we do not reach it for the values of the sources we explored in our numerics. We should also

note that the parameters of the action with the gapped solution were chosen slightly outside the region

determined in the previous section for reasons of numerical reliability.
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The entropy is S = 4πr2hV = 4πV , as we have set rh = 1, where V is the volume (area)

in the spatial dimensions. The dimensionless temperature and entropy density are

T̃ =
T√
ρ
= − g′h

4π
√
hhρ

, s̃ =
s

ρ
=

4π

ρ
. (6.3)

The extremal limit is T → 0 or T → ∞. Although the RN black hole has finite entropy at

zero temperature, the other cases studied here have S → 0 in the extremal limit, which is

obtained by sending ρ→ ∞. When the geometry is near-extremal, we obtain

S̃ ∝ T̃
2−θ
z . (6.4)

The free energy in the canonical ensemble is

F

V
= ǫ− Ts , (6.5)

where ǫ is the energy density from

g

h

∣

∣

∣

∣

r→0

= 1− ǫ

2
r3 + · · · . (6.6)

We compare a gapless case and a gapped case. We choose the parameters (γ, δ) ac-

cording to figure 4, and solve the equations of motion numerically.

Figure 7 is for a gapless case with (γ, δ) = (0.5,−0.7), and figure 8 is for a gapped case

with (γ, δ) = (0.4,−1.2). In figures 7 and 8, the upper-left plot shows the relation between

the temperature and φh ≡ φ(rh). The upper-right plot shows the relation between the

entropy and the temperature. The lower-left plot shows the scaling exponent in S ∼ T η as

a function of φh, and the lower-right plot shows the relation between the free energy and

the temperature.

In the gapped case, there is a minimal temperature Tmin for the black holes and there

is a small black hole and large black hole branch. This is clearly visible in the left-upper

plot of figure 8. The small black hole branch is on the right side of this figure. The

extremal limit can be approached from this branch by going to the right. In this limit the

temperature of the black holes T → ∞ like the usual Schwarzschild black holes. Only the

left branch is stable.

The extremal limit is the ground state of the system. As we heat up the system,

there will be a first-order phase transition at Tc > Tmin and the system will jump from

the low temperature ground state to the black hole in the stable branch, [56, 57]. The AC

conductivity calculated from the same gapped geometry at two different temperatures is

plotted in figure 9. It shows that as we increase the temperature of the unstable branch in

order to approach the extremal limit, a hard gap will emerge in the extremal limit.

7 The spectrum of tensor and scalar fluctuations

In previous sections, we studied systems where the current-current correlator has a gap.

Here we study the spin-2 and spin-0 excitations associated to the stress tensor. Such
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Figure 7. Numerical results for physical properties of a gapless geometry. The parameters are

chosen by γ = 0.5 and δ = −0.7. In this case, the extremal limit is at T → 0.
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Figure 8. Numerical results for physical properties of a gapped geometry. The parameters are

chosen by γ = 0.4 and δ = −1.2. In this case, the extremal limit is at T → ∞.
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Figure 9. AC Conductivity calculated at two different temperatures: T/ρ1/2 = 0.538 for the left

plot, and T/ρ1/2 = 0.858 for the right plot. The background is a gapped geometry with γ = 0.4

and δ = −1.2. As we go to the extremal limit by increasing the temperature of the unstable branch,

the spectrum will have a hard gap.

fluctuations determine holographically the spin-2 (also known as the shear channel) and

the spin-0 (bulk channel) parts of the stress-tensor two-point function.

Generally, we need to turn on the following perturbations and derive the linearized

equations of motion, to calculate various transport coefficients:

gµν → gµν
(

1 + e−iωthµν(r)
)

, Aµ → Aµ
(

1 + e−iωtaµ(r)
)

, φ→ φ
(

1 + e−iωtδφ(r)
)

.

(7.1)

The fluctuations can be classified by their spins under the spatial rotations (here i = x, y)

as follows.

• Spin-0: htt, hrr, hii, htr, at, ar, δφ. In a gauge where δφ is unperturbed [81, 82], a

decoupled equation for hii can be obtained, responsible for the bulk viscosity.

• Spin-1: hti, hri, ai. A decoupled equation for ai can be obtained, responsible for the

conductivity.

• Spin-2: hij . The equation for hij is responsible for the shear viscosity.

7.1 Spin-2 fluctuation — shear viscosity

The spin-2 fluctuation hxy satisfies the Laplace’s equation. The Laplace’s equation∇2Φ = 0

with the the metric (3.1) is

(

√

D

B
CΦ′

)′

+

√

B

D
Cω2Φ = 0 . (7.2)

After the change of variables by

dξ

dr
=

√

B

D
, Φ̃ =

√
C Φ , (7.3)

we can obtain a Schrödinger equation

− d2Φ̃

dξ2
+ Ṽ (ξ)Φ̃ = ω2Φ̃ . (7.4)
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The potential is

Ṽ = −DB
′C ′

4B2C
+
D′C ′

4BC
− DC ′2

4BC2
+
DC ′′

2BC
, (7.5)

where the prime is with respect to r. If Ṽ goes to to infinity in both IR and UV, then the

Schrödinger equation can only have bound states that correspond to a discrete spectrum

for the spectral density of the correlator. To analyze the behavior of Ṽ in the IR, we use

the hyperscaling violating geometry (2.4) as the background.

IR charged solution. We change the variable r to ξ by (3.9), and the Schrödinger poten-

tial is

Ṽ (x) =
ν2L − 1/4

ξ2
, (7.6)

where

νL =
(γ − δ)(3γ + δ) + 4

2[(γ − δ)(γ + 3δ) + 4]
=

2 + z − θ

2z
. (7.7)

Assuming the Gubser criterion is always satisfied, we have νL > 0 when the extremal limit

at T → 0 (ξ → ∞), and νL < 0 when the extremal limit is at T → ∞ (ξ → 0). In the later

case, we should further impose that |ν| > 1 so that there is only one normalizable solution

in the IR. By comparing (3.11) with (7.7), we can see that |ν| − |νL| > 0, which implies

that when the Laplacian is gapped, the current-current correlator is also gapped and vice

versa in the holographically reliable region. Figure 10 is a summary of the parameter space

(γ, δ) for the spectrum of the Laplacian.

IR neutral solution. We change the variable r to ξ by (3.9), and the Schrödinger poten-

tial is

Ṽ (x) =
ν2L0 − 1/4

ξ2
, (7.8)

where

νL0 =
δ2 − 3

2(δ2 − 1)
=

3− θ

2
. (7.9)

We observe that ν0 in terms of θ can be obtained from (7.7) with z = 1, although the

expression in terms of δ is very different. Assuming the Gubser criterion is always satisfied,

we have νL0 > 0 when the extremal limit at T → 0 (ξ → ∞), and νL0 < 0 when the extremal

limit is at T → ∞ (ξ → 0). In the later case, we should further impose that |νL0| > 1 so

that there is only one normalizable solution in the IR. Considering all above constraints,

the parameter space for the gapped Laplacian is 1 < δ2 < 5/3.

7.2 Spin-0 fluctuation — bulk viscosity

To calculate the bulk viscosity, we can turn on the perturbations htt, hrr, hxx, and at only,

according to the gauge choice of [81, 82]. After eliminating htt, hrr, and at, a decoupled
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Figure 10. The regions A, B, and C are the parameter space constrained by the Gubser criterion.

We assume that the conditions in the UV for a gapped geometry has been satisfied as explained in

the end of section 3.1. In region A (yellow), the extremal limit is at T → 0, and the Laplacian is

gapless. In region B (red), the extremal limit is at T → ∞, and the Laplacian is gapped. In region C

(green), the extremal limit is at T → ∞, and the Laplacian is gapless. Region D (enclosed by blue

boundaries) is holographically unreliable. When both correlators are holographically reliable a

gapped current-current correlator implies a gapped shear tensor correlator.

equation for hxx is derived23

h′′xx+

(

7C ′

2C
+
D′

D
−Cφ′2

2C ′ −
3C ′′

C ′ +
2φ′′

φ′

)

h′xx+

[

ω2B

D
+

(

C ′Z ′

Cφ′2
−Z

2

)

A′2
t

D
+
C ′′

C
−D′′

2D

+

(

CD′

DC ′−1

)

φ′2

4
+
C ′

C

(

5C ′

4C
− 5D′

4D
+
φ′′

φ′

)

+
D′

D

(

3C ′′

2C ′ −
φ′′

φ′

)]

hxx = 0 .

(7.11)

After the change of variables by

dξ

dr
=

√

B

D
, h̃xx = φ′hxx , (7.12)

where the prime is with respect to r, we can obtain a Schrödinger equation

− d2h̃xx
dξ2

+ Ṽ (ξ)h̃xx = ω2h̃xx . (7.13)

23This appearance of this equation is not unique by applying the equations of motion. It can be written

in a simple form in the coordinates (2.3) with f = g/
√
h:

1

fφ′2 (fφ
′2h′

xx)
′ +

(

ω2

f2
− r2h(hZ)′A′2

t

gh′ − (g/h)′

g/h

(rφ′)′

rφ′

)

hxx = 0 . (7.10)
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If Ṽ goes to to infinity in both IR and UV, then the Schrödinger equation can only have

bound states that correspond to a discrete spectrum for the spectral density of the corre-

lator. To analyze the behavior of Ṽ in the IR, we use the hyperscaling violating geome-

try (2.4) as the background.

IR charged solution. We change the variable r to ξ by (7.12), and the leading order of the

Schrödinger potential is

Ṽ (ξ) =
ν2s − 1/4

ξ2
, (7.14)

where

νs =

√

[(γ−δ)(3γ+δ)+4][(γ−δ)(3γ+17δ)+36]

2[(γ−δ)(γ+3δ)+4]
=

√

(z−θ+2)(9z−θ−6)

2z sgn(2−θ) . (7.15)

Assuming the Gubser criterion is always satisfied, the expression inside the square root is

always positive, and we have νs > 0 when the extremal limit at T → 0 (ξ → ∞), and

νs < 0 when the extremal limit is at T → ∞ (ξ → 0). In the later case, we should further

impose that |νs| > 1 so that there is only one normalizable solution in the IR. The three

correlators responsible for the conductivity, shear viscosity, and bulk viscosity are gapped

at the same time in their common holographically reliable region.

IR neutral solution. The Schrödinger potential is the same as (B.7). Therefore, the dis-

cussion about the spectrum for the scalar fluctuation is the same as the Laplacian.

8 Conclusion and outlook

We have obtained two new classes of holographic matter, constructed from geometries that

have correlators with discrete spectrum of excitations.

The first is a class of holographic ground-state saddle points of the bulk action (1.3)

withW (φ) = 0 which implies the U(1) symmetry is intact. Such saddle points have a source

of momentum dissipation due to the non-trivial axion solutions that break the translational

symmetry. The characteristic exponent λ in (4.2) that controls the IR properties of the

coupling of the axions to the rest of the degrees of freedom can be selected so that the

momentum dissipation effects are irrelevant in the IR.

In the absence of momentum dissipation, the saddle-point solutions of interest, found

already in [17] have a discrete spectrum for the charge charge correlators, implying the

associated spectral density is a discrete sum of δ-functions. Translation invariance implies

that one of the δ-functions is at zero frequency.

A careful analysis, done in this paper, indicates that in the presence of IR irrelevant

momentum dissipation, the correlator still has a discrete spectrum, with the only difference

that the zero frequency δ-function has now disappeared. Therefore, these are bona-fide

insulators with a hard gap and a discrete spectrum of charged degrees of freedom. They

resemble in several respects Mott insulators but we suspect this is a novel class of insulators.

We have found explicit numerical solutions that connect well-defined asymptotically

AdS4 UV fixed points with a non-trivial charge density to the insulating fixed points
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discussed above. There are however caveats in our discussion. Although explicit flows

exist, it is not yet clear whether they are the dominant (in the sense of free energy) flows

between the UV and IR fixed points in top-down string theory effective actions, although

the M-theory example of [55] is a good candidate for a stable flow. We believe that the

mechanism is a wider interest and is the one expected to be at play for example in real

QCD at finite but O(1) baryon density, [58, 83].

Other characteristics of such saddle points are as follows:

• All non-trivial quantum critical saddle points with z 6= 1 have a mild IR geometrical

singularity. It is a naked singularity in the presence of hyperscaling violation, while it

is a much subtler singularity not captured by scalar curvature invariant in the case of

Lifshitz scaling symmetry. Despite the fact that holography demands regular saddle

points, singularities can be tolerated because they can arise from the neglect of some

degrees of freedom (coarse graining). They should be however resolvable, as adding

back the missing degrees of freedom, one should recover a regular background. A

criterion for resolvability was advanced by Gubser, [76], and we always impose it

on our singular saddle points. There is however a further issue in the presence of

a resolvable singularity: that the calculation of correlators should not depend on

the resolution of the IR singularity. This issue crops up as the presence (or not)

of two normalizable modes, in the Sturm-Liouville problem that is relevant for the

calculation of a two-point function. In such a case the solution is not unique, and

a further boundary condition at the singularity is necessary in order to define the

correlator, [17]. This is the case where the holographic calculation is unreliable, and

a resolution of the singularity is necessary in order to provide a concrete answer for

the relevant correlator.

We find that in the saddle-points of interest studied in this paper, the δ-function at

zero frequency, is absent only for those bulk theories for which the charge correlator

is holographically well defined (does not suffer from singularity resolution ambigu-

ities). This is interesting and may provide important clues for other cases where

zero-frequency δ-functions in transport appeared when it was not expected, [9].

• In a related theme, in appendix C we have computed analytically the conductivity of

a class of black holes solutions of gauged supergravity (known as STU black holes)

dual to deformations of the ABJM theory. In particular, in the extremal two-charge

case (where the charge density is zero), we obtain a gap and a zero-frequency δ-

function although none was expected due to symmetry principles. The reason is

that there is no charge density and without charge density there is no argument for a

zero-frequency δ-function. Moreover, the equation for the conductivity below the gap

is in the holographically non-well-defined class as it has two normalizable solutions.

However here a unique solution can be chosen using analyticity in the frequency ω.

• The zero-temperature phase of the gapped solutions persists up to a finite critical

temperature Tc. Indeed the phase diagram of candidate black-hole ground states is

similar to that relevant for holographic QCD, [56–58]. There is a minimum temper-
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ature, Tmin < Tc below which there are no black-hole solutions as can be seen in the

upper left part of figure 8. Above Tc the system jumps to a plasma-like phase via

a first order transition. Calculating the conductivity of this phase is an interesting

problem. We expect that this will correspond to a conductor, where momentum

dissipation effects may be strong.

• In the low temperature insulating phase the change of conductivity with temperature

is an effect suppressed in the large-N limit. It can be calculated however by a one-

loop gravity calculation. The relevant diagrams will be the one-loop correction to

the bulk propagator of two gauge bosons. This calculation is in principle feasible (a

related one-loop correction to holographic thermodynamics was performed recently

in [84]).

• Energy transport is controlled by the stress tensor two-point function. In section 7 we

analyzed the equations for shear and bulk channels. We found that for all holograph-

ically reliable geometries, when the current-current correlator is gapped, then the

shear and bulk channels are also gapped. Therefore there is no low-energy transport

in these insulators. On the other hand, in the supersolid class this fact is consistent

with our interpretation.

• Our analysis has used effective holographic theories following the philosophy devel-

oped in [17]. Some of the solutions we find and analyze however appear in string-

derived supergravities, (see [55] and appendix C), namely the AdS4 gauged super-

gravity obtained from compactification of M-theory on S7 that is dual to the 3d

ABJM theory, [85]. It is therefore expected that they may be ubiquitous in three

dimensional QFTs that are deformations of the ABJM theory at finite density.

We do expect that in codimension-one subspaces of the theory space we are studying

there will be IR fixed points that are non-scaling. This is the case we expect to give rise

to Arhenius-type insulators and looking for them is an interesting endeavour.

The second class of holographic saddle-points have finite density but in theories where

the U(1) symmetry is broken. The action in (1.3) with W (φ) 6= 0 is describing this class of

saddle points and the universality classes of quantum critical IR fixed points were classified

in [19]. This class contains both superfluid IR fixed points when the U(1) symmetry is

spontaneously broken as well as fixed points with the U(1) symmetry explicitly broken.

There are several possible IR fixed points but in this paper we have studied the frac-

tionalized phases for which the bulk mass term W (φ) flows to zero in the IR. There is still

a source of breaking of translational invariance in the form of non-trivial axion profiles.

We have found fractionalized fixed points with a current-current correlator that has

a discrete spectrum. Unlike the previous case studied above and despite the presence

of momentum dissipation, the presence of symmetry breaking guarantees that there is a

non-trivial δ-function at zero frequency due to the superfluid mode.

Such systems are therefore superfluids (or superconductors when the U(1) is weakly

gauged) in the presence of translational symmetry breaking with a discrete spectrum.

This is not unlike to what is expected in supersolids with the sole exception that the
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translational invariance breaking is spontaneous. Like the case of insulators mentioned

above, the systems here are also separated by a first order phase transition from a liquid-like

deconfined plasma phase. Moreover the temperature dependence of the low-temperature

supersolid-like phase is again a subleading effect in 1/N .

There are several problems that remain open in this direction. We highlight that the

fate of other phases, in particular the cohesive ones requires further study.

We also expect that the nature of the breaking of translational symmetry in the super-

solid like ground states can be improved to be as required for standard supersolids, [59].

This can be done by “injecting” skyrmion-like charged solitons in the geometry (these are

baryons in holographic models of QCD that are represented by flavor gauge theory instan-

tons, [86, 87]). Such charge is expected to form a crystal at sufficiently high density, which

is not expected to be high enough so that there is serious backreaction on the original

geometry. Implementing this construction is an interesting problem.

In this respect, looking back at standard (massless) QCD at zero density, we can

interpret it as a zero density superfluid, where the broken symmetry is the SU(Nf )A flavor

symmetry and the superfluid is composed of the massless pions. Turning on a baryon

density, the system is driven to a quantum critical AdS2 phase, [58]. It is plausible that

for higher density there may be a crystalline phase that would be a supersolid.
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A Equations of motion

In this appendix we make explicit the equations of motion from the action we are using

in (1.3)

Rµν −
1

2
gµνR =

1

2
(TAµν + T φµν + Tψµν) , (A.1)

∇µ
(

Z(φ)Fµν
)

=W (φ)Aν , (A.2)

∇2φ− V ′(φ)− Z ′(φ)
4

F 2 − W ′(φ)
2

A2 − Y ′(φ)
2

2
∑

i=1

(∂ψi)
2 = 0 , (A.3)

∇µ
(

Y (φ)∇µψi
)

= 0 , (A.4)
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where

TAµν = Z(φ)

(

FµρF
ρ
ν −

1

4
gµνF

2

)

+W (φ)

(

AµAν −
1

2
gµνA

2

)

, (A.5)

T φµν = ∂µφ∂νφ− 1

2
gµν(∂φ)

2 − gµνV (φ) , (A.6)

Tψµν = Y (φ)

2
∑

i=1

(

∂µψi∂µψi −
1

2
gµν(∂ψi)

2

)

. (A.7)

We take ψi = kixi (i = 1, 2), which solves (A.4). The equations of motion with the ansatz

ds2 = −D(r)dt2 +B(r)dr2 + C(r)(dx2 + dy2) (A.8)

are as follows. The Einstein equations are

2C ′′

C
− C ′

C

(

B′

B
+
C ′

2C

)

+
ZA′2

t

2D
+
BWA2

t

2D
+BV +

k2BY

2C
+

1

2
φ′2 = 0 , (A.9)

2C ′′

C
− C ′

C

(

B′

B
+
C ′

C
+
D′

D

)

+
BWA2

t

D
+ φ′2 = 0 , (A.10)

2D′′

D
− 2C ′′

C
− D′

D

(

B′

B
− C ′

C
+
D′

D

)

+
B′C ′

BC
− 2ZA′2

t

D
− 2k2BY

C
= 0 . (A.11)

The Maxwell equation is
(

CZ√
BD

A′
t

)′
= CW

√

B

D
At . (A.12)

The equation for the scalar is

φ′′ +

(

C ′

C
+
D′

2D
− B′

2B

)

+
A′2
t Z

′(φ)
2D

+
A2
tBW

′(φ)
2D

−BV ′(φ)− k2BV ′(φ)
2C

= 0 . (A.13)

Without the momentum dissipation (k = 0), there is a conserved charge

Q =
C√
BD

[

ZAtA
′
t − C

(

D

C

)′]

. (A.14)

With the momentum dissipation, Q satisfies the following equation:

Q′ + k2
√
BDY = 0 . (A.15)

B The potential for the scalar

In this appendix we analyze optimal choices for the scalar potential.

We assume that the potential for the scalar V (φ) only contains exponential terms, as

is the case in supergravity systems. We need only the leading exponential term in the IR

to discuss the hyperscaling violating geometry. However, we need at least two exponential

terms to construct an asymptotically AdS geometry. A potential with only two exponentials

can be parameterized as

V2-exp = − 6

L2
(

6δ2 +∆(3−∆)
)2

[

∆(3−∆)e−δ(φ−φ0) + 6δ2e
∆(3−∆)

6δ
(φ−φ0)

]

. (B.1)
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We have traded the four real parameters of a two-exponential potential in terms of the

position of the UV fixed point, φ0, the UV AdS4 scale L, the UV dimension ∆ of the scalar

operator dual to φ, and the extra exponent δ that controls the IR hyperscaling violating

solution when the factor e−δ(φ−φ0) dominates in the IR.

The potential (B.1) (at zero charge density), has a single UV fixed point at φ = φ0.

In the IR, at finite charge density, it has two hyperscaling-violating fixed points. One

corresponds to −δφ → ∞ with an IR asymptotic geometry given in [17] with exponents

(γ, δ). The other corresponds to a hyperscaling violating geometry when δφ → ∞ with

exponents (γ,−∆(3−∆)
6δ ).

This parametrization emerges from imposing the following constraints on the potential

• V (0) = −d(d−1)
L2 . For AdS4 with L = 1, V (0) = −6.

• V ′(0) = 0.

• V ′′(0) = m2. For ∆ = 1 or 2, V ′′(0) = −2.

By applying the above three constraints, the potential only has one parameter that is δ. If

we use the following potential

V (φ) = − 3

3δ2 + 1

(

2e−δφ + 6δ2e
1
3δ
φ
)

, (B.2)

which has V = −6 − φ2 + · · · in the UV limit, the asymptotic behavior of φ will contain

ln z terms in general. The near horizon behavior of φ, g, and h is

φ = f1r + f2r
2 + f3r

3 + · · ·+ log r(f12r
2 + f13r

3) . (B.3)

If we choose ∆ = 2, there are no ln z terms. If ∆ = 1, the consistency of the equations

without ln z requires δ = ±1/
√
3. However, these values of δ cannot give the gapped

geometry.

Consider a three-exponential potential

V (φ) = c1e
c2φ + c3e

c4φ + c5e
c6φ. (B.4)

If we set c6 = 0 for simplicity, we have one more free parameters in addition to δ. We

parametrize the potential as

V (φ) = − 2(6 + u)e−δφ

2 + (6 + u)δ2
− (6 + u)2δ2e

2φ
(6+u)δ

2 + (6 + u)δ2
+ u . (B.5)

With this potential, if we plugin the near boundary expansion (B.3) without the log terms

to the equations of motion, the leading term is

− 2f21
(

− 2 + (6 + u)δ2
)

(6 + u)δ
r2 + · · · (B.6)

If the near boundary expansion (B.3) is consistent without the log terms, the coefficient in

the above term must be zero, which gives

u =
2(1− 3δ2)

δ2
. (B.7)
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Figure 11. The parameter space of (γ, δ) under the two conditions: (1) the solution of φ∗ exists;

(2) β− < 0. In the light blue region, there is only one solution of φ∗, and in the blue region, there

are two solutions of φ∗. The parameter space depends on the concrete form of V (φ) and Z(φ), and

this plot is for the potential (6.1) and Z = eγφ.

Substituting the above u to (B.5), we obtain the potential (6.1) used in our numerical

calculations.

Note that there may also be an AdS2 × R
2 IR fixed point at constant φ = φ∗ [19], as

shown in figure 1. The condition for the existence of an IR AdS2 extremum at finite charge

density is
(

V ′

V
+
Z ′

Z

)∣

∣

∣

∣

φ=φ∗

= 0 → V ′
∗
V∗

+ γ = 0 . (B.8)

The critical exponents for the perturbation around the IR AdS2 is

β± =
1

2

(

1±
√

1− 4δ1
)

, (B.9)

where

δ1 =

(

V ′′

V
+
Z ′′

Z
− 2

V ′2

V 2

)∣

∣

∣

∣

φ=φ∗

=

(

V ′′
∗
V∗

− γ2
)∣

∣

∣

∣

φ=φ∗

. (B.10)

If a RG-stable AdS2 fixed point exists, the solution of φ∗ is real, and there is an irrelevant

mode associated with this φ∗. For the potential (6.1) and Z = eγφ, the parameter space of

(γ, δ) under the above condition is potted in figure 11.

C Analytic solutions from supergravity

Four special cases of the maximal gauged supergravity in AdS4 are given in table 1, re-

garding how they fit into the general classification. These four examples provide both the

analytic understanding of some EMD systems and the numerical check of the program.

The metric is

ds2 = e2A(r̄)
(

− h(r̄)dt2 + dx2
)

+
dr̄2

e2A(r̄)h(r̄)
. (C.1)
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1-charge 2-charge 3-charge 4-charge (RN)

V (φ) −6 cosh(φ/
√
3) −2(coshφ+ 2) −6 cosh(φ/

√
3) −6

Z(φ) e
√

3φ eφ eφ/
√
3 1

e2A r̄3/2(r̄ +Q)1/2 r̄(r̄ +Q) r̄1/2(r̄ +Q)3/2 (r̄ +Q)2

h 1− r̄2H(r̄H +Q)

r̄2(r̄ +Q)
1− r̄H(r̄H +Q)2

r̄(r̄ +Q)2
1− (r̄H +Q)3

(r̄ +Q)3
1− r̄(r̄H +Q)4

r̄H(r̄ +Q)4

At

√
Qr̄H√
r̄H+Q

(

1− r̄H+Q

r̄+Q

) √
2Qr̄H

(

1− r̄H+Q

r̄+Q

)

√

3Q(r̄H+Q)

(

1− r̄H+Q

r̄+Q

)

2
√
Q(r̄H+Q)√

r̄H

(

1− r̄H+Q

r̄+Q

)

φ

√
3

2
ln

(

1 +
Q

r̄

)

ln

(

1 +
Q

r̄

)
√
3

2
ln

(

1 +
Q

r̄

)

0

(γ, δ) γ =
√
3, δ = − 1√

3
γ = 1, δ = −1 γ =

1√
3
, δ = − 1√

3
γ = 0, δ = 0

(z, θ) z = 1, θ = −1 z = 1, θ → ∞ z → ∞, −θ/z = 1 z → ∞, θ = 0

(κ, ζ) κ =
√
3, ζ = −1 κ̄ = 2, ζ̄ = −1 κ =

√
3, ζ = 1

(α, β) a α = −4

3
, β = 0 α = −2, β = 0 α = −4, β = 0

τ − 1

2
√
3

0
1

2
√
3

T
(3r̄H + 2Q)

√
r̄H

4π
√
r̄H +Q

3r̄H +Q

4π

3
√

r̄H(r̄H +Q)

4π

(r̄H +Q)(3r̄H −Q)

4πr̄H

S see b see b ∝ T const

Exceptional Exceptional c IR charged, gapless IR charged, gapless

a They are defined in eq. (2.8).
b The scaling exponent depends on the ensemble (fixing ρ or µ). See figures 13 and 14.
c For the rH = 0 geometry, the conductivity has a gap. See (C.5).

Table 1. Geometries and properties of 1, 2, 3, 4-charge black holes in AdS4.

The relation between r̄ and the r in (2.3) is e2A(r̄) = 1/r2. The functions A(r̄) and h(r̄)

are given in table 1. These solutions are obtained from a more general black hole with four

U(1) charges found in [88].

The temperature and entropy are given by

T =
|h′|e2A
4π

, s = 4πe2A(rH) . (C.2)

The relation between the free energy and the temperature is plotted in figure 12. There are

some exceptional features for these systems. For example, if we set the horizon size rH = 0,

then the gauge field will vanish for the 1-charge and 2-charge black holes. Consequently, the

extremal geometries have to be at zero density. The geometries are significantly simplified,

and it allows us to obtain exact, analytic solutions for σ(ω) for arbitrary ω. The extremal
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Figure 12. The relation between the free energy and the temperature for 1-charge (γ =
√
3,

δ = −1/
√
3), 2-charge (γ = 1, δ = −1), 3-charge (γ = 1/

√
3, δ = −1/

√
3), and RN black holes in

AdS4.

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

ϕh

T


0.0 0.2 0.4 0.6 0.8

0

2

4

6

8

10

12

14

T


S


Figure 13. 2-charge black hole. The solid line is for the canonical ensemble (fix ρ), for which

T̂ = T/
√
ρ and Ŝ = S/ρ; the dashed line is for the grand canonical ensemble (fix µ), for which

T̂ = T/µ and Ŝ = S/µ2.

geometries for the 1-charge and 2-charge black holes can only be at zero density, and thus

they are not “topologically” connected to the finite temperature black holes. The situation

is similar to the asymptotically-AdS5 case that was discussed in [89].

2-charge black hole in AdS4. To obtain the conductivity, we perturb the system (2.1)

around the solution to (2.5) by δAx = ax(r̄)e
−iωt, and obtain the equation for ax:

a′′x +
2

r̄ +Q
a′x +

ω2

r̄2(r̄ +Q)2
ax = 0 , (C.3)

where the prime stands for derivative with respect to r̄. By the usual redefinitions this

equation can be mapped to a Schrödinger equation with a constant potential equal to

Ṽ = Q2/4. The general solution for ax is

ax = C1

(

r̄

r̄ +Q

)

Q+
√

Q2−4ω2

2Q

+ C2

(

r̄

r̄ +Q

)

Q−
√

Q2−4ω2

2Q

. (C.4)
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Figure 14. 1-charge black hole. The solid line is for the canonical ensemble (fix ρ), for which

T̂ = T/
√
ρ and Ŝ = S/ρ; the dashed line is for the grand canonical ensemble (fix µ), for which

T̂ = T/µ and Ŝ = S/µ2.

There are two linearly-independent solutions. When ω2 > Q2/4, the first solution describes

the in-falling wave with the ω → ω + iǫ prescription. When ω2 < Q2/4, both solutions

are real and normalizable. As the background extremal solution is singular, this situation

seems to be in the holographically non-well defined class we have discussed earlier: we

need to impose an extra boundary condition at the singularity in order to obtain a unique

solution.

However, in this case, analyticity (in ω) of the correlator makes the solution unique.

Indeed, if we analytically continue the ω2 > Q2/4 solution to ω2 < Q2/4, the solution for

ax is unambiguous for all ω. The conductivity is24

σ(ω) =
i(Q+

√

Q2 − 4ω2)

2ω

∣

∣

∣

∣

ω→ω+iǫ

. (C.5)

From (C.5) we observe that the spectrum is gapped and continuous above the gap.25 The

conductivity has a δ-function at ω = 0. The AC conductivity as a function of ω is plotted

in figure 15. We should note that very few exact solutions for the conductivity at arbitrary

ω are available for extremal geometries; another example is the 1-charge black hole in

AdS5 [89].

1-charge black hole in AdS4. The equation for ax is

a′′x +
2

r̄ +Q
a′x +

ω2

r̄3(r̄ +Q)
ax = 0 . (C.6)

The effective Schrödinger potential is given by

Ṽ =
3Q2r̄

16(Q+ r̄)
. (C.7)

24We assume ω > 0. It is crucial to shift the pole to the lower half ω-plane:
√
−ω2 →

√

−(ω + iǫ)2 =

ω
√
−1− iǫ = −iω.

25This is very reminiscent to the situation studied in [52, 53] in Einstein-Dilaton gravity with a potential

that asymptotes at strong coupling to the Liouville potential of non-critical string theory and the dilaton

solution to the well-known linear dilaton solution of string theory.
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Figure 15. The left plot is the AC conductivity calculated from the 2-charge black hole in AdS4

at extremality, and the right plot is the AC conductivity calculated from the 1-charge black hole in

AdS4 at extremality. Both of them have a δ-function at ω = 0.

The solution with the in-falling wave in the IR is

ax = C1

√

r̄

r̄ + 1
H

(1)
1

(

ω

√

r̄ + 1

r̄

)

, (C.8)

where H
(1)
n is the Hankel function.

From this solution we obtain the conductivity as

σ(ω) = i
H

(1)
2 (2ω)

H
(1)
1 (2ω)

∣

∣

∣

∣

ω→ω+iǫ

. (C.9)

As ω → 0,

σ =
i

ω
+ (π + 2iγ + 2i lnω)ω + · · · . (C.10)

The spectrum is gapless, and the conductivity has a δ-function at ω = 0. The AC conduc-

tivity as a function of ω is plotted in figure 15.

D DC conductivity at zero density

Although we focus on finite density systems, it is illuminating to examine zero density

systems at extremality. Consider a zero density density system whose background is de-

scribed by

S =

∫

d4x
√−g

[

R− 1

2
(∂φ)2 − V (φ)

]

, (D.1)

and the dynamics of the gauge field is given by a Z(φ)F 2 term, where V (φ) and Z(φ) are

defined by (2.2). At finite temperature, the DC conductivity is finite and can be calculated

from (5.7) with the IR neutral geometry. The result is

σDC = Zh ∼ rκ̄γh = r−2γδ
h , (D.2)

where rh → ∞ is the extremal limit.
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• When γδ > 0, σDC → 0 in the extremal limit, so the system is an insulator.

• When γδ < 0, σDC → ∞ in the extremal limit, so the system is a conductor.

For the extremal limit (T → 0) and the DC limit (ω → 0) to be compatible the conductivity

should have a δ-function at ω = 0 when γδ > 0, while the conductivity should not have

a δ-function at ω = 0 when γδ < 0. We will examine whether this is true for the gapped

geometries in the following.

To obtain the conductivity, we perturb the system (D.1) around the background met-

ric (3.1) by δAx = ax(r)e
−iωt, and obtain the equation for ax:

1

fZ
(fZa′x)

′ +
ω2

f2
ax = 0 , (D.3)

where f =
√

D/B. As noted before, we can ignore the ω2 term when we discuss the

ω → 0 limit of the conductivity for extremal geometries at T → ∞, while we need to do

the asymptotic match for extremal geometries at T → 0. We will discuss the extremal

geometries at T → ∞. In terms of the Schrödinger coordinate ξ in (3.9), the general

solution of ax in the IR neutral geometry is

ax = C1

√
Z ξ1/2−ν0 + C2

√
Z ξ1/2+ν0 , ξ → 0 , (D.4)

where ν0 is defined in (3.18). From (D.3), we observe that there is a radially conserved

quantity at ω = 0:

Π = fZa′x , ∂r Π = 0 . (D.5)

If Π → 0 as r → ∞ (the IR), the conductivity does not have a δ-function at ω = 0. If

Π is constant as r → ∞, the conductivity has a δ-function at ω = 0 and its coefficient

is proportional to Π(ω = 0). That there is only one normalizable solution for ax requires

|ν0| > 1. There are two cases as follows:

• Case 1 : ν0 > 1, for which we have δ2 − 2γδ − 1 > 0. The solution for ax is

ax ∼
√
Zξ1/2+ν0 The radially conserved quantity Π evaluated at the IR is

Π = fZa′x → constant . (D.6)

• Case 2 : ν0 < −1, for which we have δ2 − 2γδ − 1 < 0. The solution for ax is

ax ∼
√
Zξ1/2−ν0 . The radially conserved quantity evaluated in the IR is

Π = fZa′x ∼ rδ
2−2γδ−1 → 0 . (D.7)

We expect that the insulating phase corresponds to the case 1, and the conducting

phase corresponds to the case 2. We will show that this is true after we excluded the

holographically unacceptable region |ν0| < 1 and have imposed Gubser’s criterion.
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Gapped, conducting phase. The condition that the extremal geometries are at T → ∞
limit of the small black-hole branch is δ2 > 1. The condition that the system is a conductor

is γδ < 0. These two inequalities imply 3δ2 − 2γδ − 3 > 0. Consequently,

ν0 + 1 =
3δ2 − 2γδ − 3

2(δ2 − 1)
> 0 . (D.8)

If we further impose that there is only one normalizable solution, which translates to

|ν0| > 1, we finally obtain ν0 > 1. According to the discussion above, this corresponds to

the case 1. The conductivity has a δ-function at ω = 0 in the gapped, conducting phase.

Note that this is not always true without the constraint |ν0| > 1.

Gapped, insulating phase. The condition that the extremal geometries are at T → ∞ is

δ2 > 1. The condition that the system is an insulator is γδ > 0. These two inequalities

give δ2 + 2γδ − 1 > 0. Consequently,

ν0 − 1 = −δ
2 + 2γδ − 1

2(δ2 − 1)
< 0 . (D.9)

If we further impose that there is only one normalizable solution, which is |ν0| > 1, we

obtain ν0 < −1. According to the discussion above, this corresponds to the case 2. The

conductivity does not have a δ-function at ω = 0 in the gapped, insulating phase as

expected from general principles.

The above conclusion can be obtained in another way. The equations for ax at ω = 0

can be solved by

ax = C̃1 + C2

∫ r

0

dr′

f(r′)Z
(

φ(r′)
) . (D.10)

In the IR, the first constant term corresponds to the first term in (D.4), and the second

term corresponds to the second term in (D.4). In the UV, we have ax = C̃1 + C2r + · · · ,
and thus the conductivity is

σ =
C2

iωC̃1

. (D.11)

We can see that if only the first solution is normalizable, we have C2 = 0, and thus there

is no δ-function at ω = 0; if only the second solution is normalizable, we have C2 6= 0, and

thus there is a δ-function at ω = 0.

For the finite density systems with axions, we can obtain a solution for λ1 similar

to (D.10). The first term in Π is always dominant in the IR. Equation (5.3) at ω = 0 in

the IR can be significantly simplified to be (fZ2λ
′
1)

′ = 0, which can be solved as

λ1 = D̃1 +D2

∫

dr

fZ2
. (D.12)

This is the counterpart of (D.10) for finite density systems with axions, but the difference

is that (D.12) is valid only for the IR geometry.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 46 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
9
(
2
0
1
5
)
1
6
8

References

[1] B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida and J. Zaanen, High temperature

superconductivity in the cuprates, Nature 518 (2015) 179 arXiv:1409.4673.

[2] M. Imada, A. Fujimori and Y. Tokura, Metal-insulator transitions,

Rev. Mod. Phys. 70 (1998) 1039 [INSPIRE].

[3] V. Dobrosavljevic, Introduction to metal-insulator transitions, in Conductor insulator

quantum phase transitions, V. Dobrosavljevic, N. Trivedi and J.M. Valles Jr. eds., Oxford

University Press, Oxford U.K. (2012) [arXiv:1112.6166].

[4] D.N. Basov, R.D. Averitt, D. van der Marel, M. Dressel and K. Haule, Electrodynamics of

correlated electron materials, Rev. Mod. Phys. 83 (2011) 471 [arXiv:1106.2309].

[5] P.W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958) 1492

[INSPIRE].

[6] B.H. Brandow, Electronic structure of Mott insulators, Adv. Phys. 26 (1977) 651.

[7] P.A. Lee, N. Nagaosa and X.-G. Wen, Doping a Mott insulator: physics of high-temperature

superconductivity, Rev. Mod. Phys. 78 (2006) 17 [INSPIRE].

[8] A. Donos and S.A. Hartnoll, Interaction-driven localization in holography,

Nat. Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].
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