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1 Introduction

Let Λ be a finite-dimensional k-algebra of tame representation type, k an algebraically

closed field. We recall that Λ is of tame representation type if for all natural numbers

d, there is a finite number of Λ-k[x]-bimodules M1, ...,Mn which are free of finite rank

as right k[x]-modules and such that if M is an indecomposable Λ-module of k-dimension

equal to d, then M ∼= Mi ⊗k[x] k[x]/(x− λ) for some 1 ≤ i ≤ n and λ ∈ k.

It is known from [6] that for each dimension d, almost all Λ-modules of dimension

at most d are controlled by finitely many isomorphism classes of generic modules in the

sense of (i) of Theorem 1.2. A question arises naturally: are Hom-spaces of Λ-modules

also controlled by those of generic modules? In this paper, we will give a positive answer.

If G is a left Λ-module then G can be regarded as a left EndΛ(G)-module, and we call

its length as EndΛ(G)-module, the endolength of G. We say that G is a generic module

if it is indecomposable, of infinite dimension over k but finite endolength. We recall that

if G is a generic Λ-module and R a commutative principal ideal domain which is finitely

generated over k, then a realization of G over R is a finitely generated Λ-R-bimodule T

such that if K is the quotient field of R, then G ∼= T ⊗R K and dimK(T ⊗R K) is equal

to the endolength of G.

As an example consider, Λ=kQ, the Kronecker algebra defined by quiver Q, then G

is a generic module, and T is a realization of G over R = k[x].

Q =: ·

a

−→
−→

b

·, G =: k(x)

x

−→
−→

id

k(x), T =: k[x]

x

−→
−→

id

k[x].

We denote by Λ-Mod the category of left Λ-modules, by Λ-mod the full subcategory of

Λ-Mod consisting of the finite-dimensional Λ-modules, and by Λ-ind the full subcategory

of Λ-mod consisting of the indecomposable Λ-modules.

We recall from Theorem 5.4 of [6] that if Λ is of tame representation type then given

any generic Λ-module there is a good realization of G over some R in the sense of the

following definition:

Definition 1.1. Let T be a realization of a generic module G over some R, then T is

called a good realization if:

(i) T is free as right R-module;

(ii) the functor T ⊗R − : R-Mod → Λ-Mod preserves isomorphism classes and inde-

composability;

(iii) if p ∈ R is a prime, n ≥ 1 and Sp,n denotes the exact sequence

0 → R/(pn)
(p,π)→ R/(pn+1) ⊕ R/(pn−1)

�
�����
π

−p

�
�����

→ R/(pn) → 0
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where π is the canonical projection, then T ⊗R Sp,n is an almost split sequence in Λ-mod.

We know from Theorem 4.6 of [6] that if G is a generic Λ-module then there is

a splitting EndΛ(G) = k(x) ⊕ radEndΛ(G). This splitting induces a structure of left

Λk(x) = Λ⊗k k(x)-module for G and such structure is called an admissible structure. The

main aim of this paper is to prove of the following theorem:

Theorem 1.2. Let Λ be a finite-dimensional k-algebra of tame representation type, k

an algebraically closed field. Let d be an integer greater than the dimension of Λ over

k. Then there are generic Λ-modules G1, ..., Gs with admissible structures of left Λk(x)-

modules and good realizations Ti over some Ri, finitely generated localization of k[x], of

each Gi and indecomposable Λ-modules L1, ..., Lt with dimkLj ≤ d for j = 1, ..., t with the

following properties:

(i) If M is an indecomposable left Λ-module with dimkM ≤ d, then either M ∼= Lj

for some j ∈ {1, ..., t} or M ∼= Ti ⊗Ri
Ri/(p

m) for some i ∈ {1, ..., s} some prime element

p ∈ Ri and some natural number m. If M is an indecomposable which is simple, projective

or injective left Λ-module, then M ∼= Lj for some j ∈ {1, ..., t}.
(ii) If M = Ti ⊗Ri

Ri/(p
m), N = Tj ⊗Rj

Rj/(q
n), L

k(x)
u = Lu ⊗k k(x) with i, j ∈

{1, ..., s}, u ∈ {1, ..., t}, p a prime in Ri, q a prime in Rj, then

dimkrad∞
Λ (M,N) = mndimk(x)radΛk(x)(Gi, Gj),

dimkrad∞
Λ (Lu,M) = mdimk(x)radΛk(x)(Lk(x)

u , Gi),

dimkrad∞
Λ (M,Lu) = mdimk(x)radΛk(x)(Gi, L

k(x)
u ).

(iii) Suppose M = Ti ⊗Ri
Ri/(p

m), N = Tj ⊗Rj
Rj/(q

n), then if i = j, p = q,

HomΛ(M,N) ∼= HomRi
(Ri/(p

m), Ri/(p
n)) ⊕ rad∞

Λ (M,N).

And if i �= j or (p) �= (q):

HomΛ(M,N) = rad∞
Λ (M,N).

Moreover, HomΛ(Lu,M) = rad∞
Λ (Lu,M), HomΛ(M,Lu) = rad∞

Λ (M,Lu).

For the proof of our main result we first study layered bocses of tame representation

type (see Theorem 9.2). For this we use the method of reduction functors F : B1-

Mod → B2-Mod between the representation categories of two layered bocses B1 and B2

(see [5], [7] and section 7 of this paper). We prove that given a layered bocs A of tame

representation type and a dimension vector d of A there is a composition of reduction

functors F : B-Mod → A-Mod with B a minimal bocs such that if M ∈ A-Mod with

dimM ≤ d, then there is a N ∈ B-Mod with F (N) ∼= M. Observe that in Theorem

A of [5] several minimal bocses are needed. In section 6 we study the Hom-spaces for

minimal bocses. Consider now the category P 1(Λ) of morphisms f : P → Q with P ,Q

projective Λ-modules and f(P ) ⊂ radQ. There is a layered bocs D(Λ), the Drozd’s bocs,
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such that D(Λ)-Mod is equivalent to P 1(Λ). Using our results on Hom-spaces for minimal

layered bocses we study the Hom-spaces in P 1(Λ) obtaining a version of Theorem 1.2 for

P 1(Λ) (see Theorem 9.5). Finally, we use the relations between Hom-spaces in P 1(Λ)

and Λ-Mod collected in the results of sections 2 and 3.

2 Generalities

Here we state the general results needed in our work. We recall that an additive k-category

R is a Krull-Schmidt category if each object is a finite direct sum of indecomposable

objects with local endomorphism rings. In this case, the indecomposable objects coincide

with those having local endomorphism rings.

Let R be a Krull-Schmidt category. A morphism f : E → M in R is called irreducible

if it is neither a retraction nor a section and for any factorization f = vu, either u is a

section or v is a retraction.

A morphism f : E →M in R is called right almost split if

(i)f is not a retraction ;

(ii) if g : X →M is not a retraction, there is a s : X → E with fs = g.

Moreover, f : E → M a right almost split morphism is said to be minimal if fu = f

with u ∈ EndR(E) implies u is an isomorphism.

One has the dual concepts for left almost split morphisms and minimal left almost

split morphisms.

Remark. Any minimal right almost split morphism f : E → M is an irreducible

morphism. Moreover if X �= 0, g : X → M is an irreducible morphism iff there is a

section σ : X → E with fσ = g.

In particular if h : F → M is also a minimal right almost split morphism there is an

isomorphism u : F → E with fu = h.

Similar properties hold for minimal left almost split morphisms.

Definition 2.1. A pair of composable morphisms in R,

M
f→ E

g→ N

is said to be almost split if

(i) g is a minimal right almost split morphism;

(ii) f is a minimal left almost split morphism, and;

(iii) gf = 0

In the following, we use the following notation. If f : E → M and f ′ : E′ → M ′

are morphisms in R, a morphism from f to f ′ is a pair (u, v) where u : E → E ′ and

v : M → M ′ are morphisms such that f ′u = vf . If u, v are isomorphisms, we say that f

and g are isomorphic. Similarly if M
f→ E

g→ N , M ′ f ′→ E ′ g′→ N ′ are pairs of composable

morphisms, a morphism from (f, g) into (f ′, g′) is a triple (u1, u2, u3) where u1 : M → M ′,
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u2 : E → E ′, u3 : N → N ′ are morphisms such that u2f = f ′u1, u3g = g′u2. If u1, u2, u3

are isomorphisms we say that the pair (f, g) is isomorphic to the pair (f ′, g′). The pairs

(f, g) and (f ′, g′) are equivalent if M = M ′, N = N ′ and there is an isomorphism from

the first pair into the second one of the form (1M , u, 1N).

If A is an additive category with split idempotents a pair (i, d) of composable mor-

phisms X
i→ Y

d→ Z in A is said to be exact if i is a kernel of d, and d is a cokernel of

i. Let E be a class of exact pairs closed under isomorphisms. The morphisms i and d

appearing in a pair of E are called an inflation and a deflation of E , respectively.

We recall from [9] that the class E is an exact structure for E if the following axioms

are satisfied:

E.1 The composition of two deflations is a deflation.

E.2 If f : Z ′ → Z is a morphism in A for each deflation d : Y → Z there is a morphism

f ′ : Y ′ → Y and a deflation d′ : Y ′ → Z ′ such that df ′ = fd′.
E.3 Identities are deflations. If de is deflation, then so is d.

E.3op Identities are inflations. If ji is a inflation, then so is i.

If E is an exact structure for A then we denote by ExtA(X, Y ) the equivalence class

of the pairs Y
i→ E

d→ X in E . If A is a k-category, ExtA(?,−) is a bifunctor from A
into the category of k-vector spaces, contravariant in the first variable and covariant in

the second variable.

An object X ∈ A is called E-projective if ExtA(X,−) = 0, and it is called E-injective

if ExtA(−, X) = 0.

Definition 2.2. An almost split pair X → Y → Z in A which is in E is called an almost

split E-sequence.

As in the case of modules, one can prove that in the above definition, X and Z are

indecomposables.

Now, consider (A, E) an exact category with A a Krull-Schmidt k-category such that

for X, Y ∈ A, dimkHomA(X, Y ) is finite. Let C be a full subcategory of A having the

following property:

(A) IfX is an indecomposable object in C there is a minimal left almost split morphism

in A, f : X → Y1 ⊕ ...⊕ Yt with Yi ∈ C.

We recall that a morphism f : M → N with M,N indecomposable objects in A is

called a radical morphism if f is not an isomorphism.

Proposition 2.3. Let C be a full subcategory of A with condition (A).

Suppose h : M → N is a morphism in A with M,N indecomposable objects in C
such that h =

∑
hi, where each hi is a composition of m radical morphisms between

indecomposables in A, then h =
∑
gj with each gj composition of m radical morphisms

between indecomposables in C.

Proof. By induction on m. If m = 1 our assertion is trivial. Assume our assertion is
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true for m− 1. We may assume h = sm · · · s1 with si : Mi → Mi+1, Mj indecomposable

object of A for j = 1, ..., m+ 1, M1 = M,Mm+1 = N . By (A), there is a left almost split

morphism M = M1
u→ Y1 ⊕ ...⊕ Yt with Y1, ..., Yt ∈ C. We have u =

⎛

⎜
⎜
⎜
⎜
⎝

u1

...

ut

⎞

⎟
⎟
⎟
⎟
⎠

. Then there

is v = (v1, ..., vt) : Y1 ⊕ ...⊕ Yt →M2 with vu = s1 =
∑t

i=1 viui. Therefore,

h = sm · · · s2s1 =

t∑

i=1

sm · · · s2viui.

Now, consider gi = sm · · · s2vi : Yi → N which is a composition ofm−1 radical morphisms.

Then, by induction hypothesis, each gi is a sum of m − 1 radical morphisms between

indecomposables in C. Consequently, h is a sum of compositions of m radical morphisms

between objects in C. This proves our claim. �

We recall that an ideal of a k-category R is a subfunctor of HomR(−, ?). If I, J

are ideals of R, IJ is the ideal such that for X, Y ∈ R, IJ(X, Y ) consists of sums of

compositions gf with f ∈ J(X,Z), g ∈ I(Z, Y ) for some Z ∈ R. We denote by I2 the

ideal II and, by induction, In = In−1I. For R a Krull-Schmidt k-category we define

the ideal radR such that for X and Y indecomposable objects of R, radR(X, Y ) = the

morphisms which are not isomorphisms. The infinity radical is defined by

rad∞
R =

⋂

n

radn
R.

Corollary 2.4. With the hypothesis of proposition 2.3, for X, Y ∈ C,

rad∞
C (X, Y ) = rad∞

A (X, Y ).

Proof. We may assume X and Y are indecomposables. It follows from Proposition 2.3

that radm
C (X, Y ) = radm

C (X, Y ) for all m. Hence,

rad∞
C (X, Y ) =

⋂

m

radm
C (X, Y ) =

⋂

m

radm
A(X, Y ) = rad∞

A (X, Y ).

�

Now, we recall the following definition of [5], section 2:

Definition 2.5. If (A, E) is an exact category with A a Krull-Schmidt category, we say

that it has almost split sequences if

i) for any indecomposable Z in A there is a right almost split morphism Y → Z and

a left almost split morphism Z → X;

ii) for each indecomposable Z in A which is not E-projective, there is an almost split

E-sequence ending in Z, and for each indecomposable Z in A which is not E-injective,

there is an almost split E-sequence starting in Z.



R. Bautista et al. / Central European Journal of Mathematics

Remark. If the exact category (A, E) has almost split sequences one can consider the

valued Auslander-Reiten quiver of A as in the case of the category of finitely generated

modules over an artin algebra.

Proposition 2.6. Suppose (A, EA) and (B, EB) are two exact categories such that the

first category has almost split sequences and F : B → A is a full and faithful functor

sending EB-sequences into EA-sequences. Let {Ei}i∈N be a set of pairwise non-isomorphic

objects in B which are not EB-projectives, and almost split EB-sequences:

(e1) : E1
f1→ E2

g1→ E1

(ei) : Ei

�
�����
fi

gi−1

�
�����

−→ Ei+1 ⊕Ei
(gi,fi−1)−→ Ei,

for i > 1. Then, if there is an almost split EA- sequence ending in F (E1) which is

the image under F of a sequence in EB, then the image F (ei) of the sequence ei is an

EA-almost split sequence for all i ∈ N.

Proof. There is a sequence in EB, (a) : M
u→ E

v→ E1 whose image under F is an

almost split EA-sequence. Since F is a full and faithful functor, then (a) is an almost split

sequence. This implies that (a) is isomorphic to (e1). Therefore, the image under F of

(e1) is isomorphic to the image under F of (a) which is an almost split sequence, and so,

the image of (e1) under F is an almost split sequence.

Suppose that F (el) is an almost split sequence for all l ≤ i. By hypothesis, (ei+1)

is a non-trivial EB-sequence, since F is a full and faithful functor. Then F (ei+1) is a

non-trivial EA-sequence. Thus, F (Ei+1) is not EA-projective. Then there is an almost

split sequence

Li+1 →Mi+1 → F (Ei+1).

Here F (ei) is an almost split sequence. Then we have an almost split sequence:

F (Ei) → F (Ei+1) ⊕ F (Ei−1) → F (Ei),

and so, we have an irreducible morphism F (Ei) → F (Ei+1). Therefore, Mi+1
∼= F (Ei) ⊕

Y . Thus, we have an irreducible morphism Li+1 → F (Ei). This implies that Li+1
∼=

F (Ei+1) or Li+1
∼= F (Ei−1). But we have an almost split sequence starting and ending

in F (Ei−1). Therefore, if Li+1
∼= F (Ei−1), then F (Ei+1) ∼= F (Ei−1) implies Ei+1

∼= Ei−1,

which is not the case, therefore Li+1
∼= F (Ei+1). Then the socle of ExtA(F (Ei+1), F (Ei+1))

as EndA(F (Ei+1))-module is simple. As previously stated, F (ei+1) is a non-zero element

of the above socle, and; therefore, F (ei+1) is an almost split sequence. �

3 The categories P (Λ) and P 1(Λ)

Let Λ be a finite-dimensional algebra over an arbitrary field k. We denote by Λ-Proj the

full subcategory of Λ-Mod whose objects are projective Λ-modules, and by Λ-proj, the
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full subcategory of Λ-mod whose objects are projective Λ-modules.

Here Λ-proj has only a finite number of isoclasses of indecomposable objects, then for

any indecomposable projective Λ-module P there are morphisms

ρ(P ) : r(P ) → P, λ(P ) : P → l(P )

such that they are a minimal right almost split in Λ-proj and a minimal left almost split

in Λ-proj, respectively. Observe that ρ(P ) and λ(P ) are also a minimal right almost split

and a minimal left almost split morphism, respectively, in the category Λ-Proj.

Denote by P (Λ) the category whose objects are morphisms X = fX : PX → QX , with

PX , QX ∈ Λ-Proj. The morphisms from X to Y , objects of P (Λ), are pairs u = (u1, u2)

with u1 : PX → PY , u2 : QX → QY such that u2fX = fY u1. If u = (u1, u2) : X → Y and

v = (v1, v2) : Y → Z are morphisms, its composition is defined by vu = (v1u1, v2u2).

We denote by E the class of pairs of composable morphisms X
u→ Y

v→ Z such that

the sequences of Λ-modules:

0 → PX
u1→ PY

v1→ PZ → 0

0 → QX
u2→ QY

v2→ QZ → 0

are exact and then split exact.

Proposition 3.1. The pair (P (Λ), E) is an exact category.

Proof. See [1]. �

For P any projective Λ-module consider J(P ) = (P
idP→ P ), Z(P ) = (P

0→ 0),

T (P ) = (0
0→ P ). It is easy to see that the objects J(P ) and T (P ) are E-projectives and

the objects J(P ), Z(P ) are E-injectives. One can see without difficulty that the exact

category (P (Λ), E) has enough projectives and enough injectives.

Proposition 3.2. The indecomposable E-projectives in P (Λ) are the objects

J(P ) and T (P ) for P indecomposable projective Λ-module.

The indecomposable E-injectives in P (Λ), are the objects J(P ) and Z(P ) for P inde-

composable projective Λ-module.

We denote by P (Λ) the category having the same objects as P (Λ) and morphisms

those of P (Λ) modulo the morphisms which factorizes through E-injective objects.

We have a full and dense functor Cok : P (Λ) → Λ-Mod which in objects is given by

Cok(fX : PX → QX) = CokerfX .

Proposition 3.3. The functor Cok : P (Λ) → Λ-Mod induces an equivalence Cok :

P (Λ) → Λ-Mod.

Proof. One can prove (see [1] ) that if f : X → Y is a morphism in P (Λ) then Cok(f) = 0

iff f factorizes through some E-injective object in P (Λ). �
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We consider now p(Λ), the full subcategory of P (Λ) whose objects are morphisms

between finitely generated Λ-modules.

Proposition 3.4. The exact category (p(Λ), E) has almost split E- sequences.

Proof. See [1]. �

Now consider P 1(Λ) the full subcategory of P (Λ) whose objects are those X = fX :

PX → QX with Im(fX) ⊂ rad(QX). We denote by E1 the class of composable morphisms

in P 1(Λ) which are in E . By p1(Λ) we denote the full subcategory of P 1(Λ), whose

objects are morphisms between finitely generated projective Λ-modules.

Proposition 3.5. The pair (P 1(Λ), E1) is an exact category.

Proof. See [1]. �

For an indecomposable projective Λ-module P denote by R(P ) the object ρ(P ) :

r(P ) → P and by L(P ) the object λ(P ) : P → l(P ). Observe that P a left Λ-module is

in Λ-proj if P is indecomposable and projective.

Lemma 3.6. The morphism

σ(P ) = (ρ(P ), idP ) : R(P ) → J(P )

is a minimal right almost split morphism in P (Λ), the morphism

τ(P ) = (idP , λ(P )) : J(P ) → L(P )

is a minimal left almost split morphism in P (Λ).

Proposition 3.7. Suppose u : X → Y is a morphism in P 1(Λ) such that Cok(u) = 0,

then u = gh with h : X →W , g : W → Y and W a sum of objects of the form Z(P ) and

R(Q).

Proof. It follows from Proposition 3.3 and Lemma 3.6. �

Proposition 3.8. The indecomposable E1-projectives in P 1(Λ) are the objects T (P ) and

L(P ) with P indecomposable projective Λ-module. The indecomposable E1-injectives are

the objects Z(P ) and R(P ) with P an indecomposable projective Λ-module.

Proof. It follows from Proposition 3.2 and Lemma 3.6. �

Proposition 3.9. For X, Y ∈ P 1(Λ), there is an exact sequence

0 → HomP 1(Λ)(X, Y )
i→ HomΛ(PX , PY ) ⊕ HomΛ(QX , QY )
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δ→ radΛ(PX , QY )
η→ ExtP 1(Λ)(X, Y ) → 0

Proof. See Proposition 5.1 of [1]. �

Now, if X = (PX
fX→ QX) ∈ P (Λ) choose some minimal projective cover P2

g→ P1
η→

Kerh→ 0 with h = D(Λ)⊗ fX : D(Λ)⊗Λ PX → D(Λ)⊗Λ QX . We put τX = (P2
g→ P1).

Proposition 3.10. If X is an indecomposable which is not E1-projective in p1(Λ), then

there is an almost split E1-sequence:

(1) Y → E → X

with Y ∼= τX. Dually if Y is indecomposable non E1-injective, then there is an almost

split E1-sequence (1).

Proof. See [10] for k a perfect field and [1] for the general case. �

Proposition 3.11. For X, Y ∈ p1(Λ), there is an isomorphism of k-modules

ExtP 1(Λ)(X, Y ) ∼= DHomP 1(Λ)(Y, τ(X)).

Here Homp1(Λ)(Z,W ) stands for the morphisms from Z to W modulo those morphisms

which are factorized through E1-injectives objects.

Proof. It follows from Corollary 9.4 of [9]. �

As a consequence we obtain:

Proposition 3.12. (See [3] and [1]) For X, Y ∈ p1(Λ), there is an isomorphism of

k-modules:

ExtP 1(Λ)(X, Y ) ∼= D(HomΛ(Cok(Y ), DtrCok(X))/S(Cok(Y ), Dtr(Cok(X)))

where S(M,N) are the morphisms which factorizes through semisimple Λ-modules.

Proposition 3.13. If Y
v→ E

u→ X is an almost split sequence in p(Λ) with Cok(Y ) �= 0

and Cok(X) �= 0, then

0 → Cok(Y )
Cok(v)→ Cok(E)

Cok(u)→ Cok(X) → 0

is an almost split sequence in Λ-mod. Moreover, if Cok(Y ) is not a simple Λ-module,

then the sequence Y
v→ E

u→ X lies in p1(Λ).

Proof. For the first part of our statement see Proposition 5.6 of [1], for the second part

see Theorem 2.6 of [10] and Proposition 5.7 of [1]. �
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Suppose now that Λ is a basic finite-dimensional k-algebra, and 1Λ =
∑n

i=1 ei is a

decomposition into pairwise orthogonal primitive idempotents. Moreover, assume that

dimk(Λ/radΛ)ei = 1 for all i = 1, ..., n. For M ∈ Λ-mod we put

dimM = (dimke1M, ..., dimkenM).

For X = fX : PX → QX an object in p1(Λ) we put

dimX = (dim(PX/radPX),dim(QX/radQX)) ∈ Z
2n.

In the following, we consider three bilinear forms defined on Z
2n:

For x = (x1, ..., xn; x′1, ..., x
′
n),y = (y1, ..., yn; y

′
1, ..., y

′
n), we put

hΛ(x,y) =
∑

i,j

(xiyj + x′iy
′
j)dimk(eiΛej) −

∑

i,j

xiy
′
jdimk(eiradΛej),

sΛ(x,y) =

n∑

i=1

xiy
′
i, gΛ(x, y) =

∑

i,j

(xiyj + x′iy
′
j − xiy

′
j)(dimkeiΛej).

Clearly gΛ(x,y) = hΛ(x,y) − sΛ(x,y).

Proposition 3.14. For X, Y ∈ p1(Λ) we have:

(1)dimkHomp1(Λ)(X, Y ) − dimkExtp1(Λ)(X, Y ) = hΛ(dimX,dimY );

(2)dimkExtp1(Λ)(X, Y ) = dimkHomΛ(Cok(Y ), DtrCok(X)) − sΛ(dimX,dimY );

(3)dimkHomΛ(Cok(Y ), DtrCok(X)) = dimkHomp1(Λ)(X, Y ) − gΛ(dimX,dimY ).

Proof. The part (1) follows from Proposition 3.9, part (2) follows from Proposition 3.12

and from the equalities:

dimkS(Cok(Y ), DtrCok(X)) = dimkHomΛ(topCok(Y ), socDtrCok(X))

= sΛ(dimX,dimY ).

Finally, (3) follows from (1) and (2). �

4 Bocses

We recall that a coalgebra over a k-category A is an A-bimodule V endowed with two

bimodule homomorphisms, a comultiplication μ : V → V ⊗A V and a counit ε : V → A,

subject to the conditions

(μ⊗ 1)μ = (1 ⊗ μ)μ

(ε⊗ 1)μ = il, (1 ⊗ ε)μ = ir
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with il : V ∼= A⊗A V and ir : V ∼= V ⊗A A the natural isomorphisms. Observe that A is

a coalgebra over A with comultiplication A ∼= A ⊗A A the natural isomorphism and the

counit the identity morphism idA : A→ A.

A bocs is a pair A = (A, V ) with A a skeletally small k-category and V a coalgebra

over A.

The bocs (A,A) is called the principal bocs.

The category A-Mod has the same objects as A-Mod, the covariant functors A→ k-

Mod. Then, if M,N are in A-Mod, a morphism in A-Mod is given by an A-module

morphism from V ⊗AM to N . The composition of f : V ⊗AM → N and g : V ⊗AN → L

is given by the composition

V ⊗A M
μ⊗1→ V ⊗A V ⊗A M

1⊗f→ V ⊗A N
g→ L,

the identity morphism for M in A-Mod is given by the composition:

V ⊗A M
ε⊗1→ A⊗A M

σ→M,

where σ is given by σ(a ⊗ m) = am for a ∈ A, m ∈ M . We identify A-Mod with

(A,A)-Mod.

Suppose now A = (A, V ) and B = (B,W ) are two bocses, denote by εV , μV , εW ,

μW the corresponding counits and comultiplications. A morphism of bocses θ : A → B
is a pair (θ0, θ1) where θ0 : A→ B is a functor and θ1 : V → θ0Wθ0 is a morphism of A-A

bimodules such that

εW θ1 = θ0εV , and π(θ1 ⊗ θ1)μV = μWθ1,

where π is the natural map W ⊗A W → W ⊗B W . A morphism of bocses θ : A → B
induces a functor θ∗ : B-Mod → A-Mod. For M ∈ B-Mod we put θ∗M = θ0M and if

f : W ⊗B M → N is a morphism in B-Mod then θ∗(f) is the composition:

V ⊗A (θ0M)
θ1⊗1→ W ⊗A (θ0M)

π→W ⊗B M
f→ N

where π is the natural morphism.

Observe that if

A (θ0,θ1)→ B (φ0,φ1)→ C
are morphisms of bocses then (φ0θ0, φ1θ1) = φθ : A → C is a morphism of bocses. Clearly

(φθ)∗ = (θ)∗(φ)∗.

Lemma 4.1. If θ = (θ0, θ1) : A = (A, V ) → B = (B,W ) is a morphism of bocses then

(θ)∗(1, εW )∗ = (1, εV )∗(θ0, θ0)∗.

Proof. It follows from the definition of morphism of bocses and the above. �

Let A = (A, V ) be a bocs and A′ a subcategory of A with the same objects as A. A

morphism ω : A′ → A′VA′ of A′-A′ bimodules is said to be a grouplike of A relative to
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A′ if (i, ω) : (A′, A′) → A is a morphism of bocses, where i : A′ → A is the inclusion. If

the induced functor (i, ω)∗ : A-Mod → A′-Mod reflects isomorphisms we say that ω is a

reflector. If ω :A′ A′
A′ → −A′VA′ is a grouplike we have that ω is completely determined

by the elements ωX = ω(idX) for all X ∈ indA′ such that μ(ωX) = ωX ⊗ ωX .

If A = (A, V ) is a bocs V = Kerε is called the kernel of A. Then there is the following

exact sequence of A-A bimodules:

0 → V
σ→ V

ε→ A→ 0

where σ is the inclusion.

We recall that if ω : A′ → A′VA′ is a grouplike, it determines two morphisms δ1 :

A′AA′ → A′V A′ and δ2 : A′V A′ → A′V ⊗AV A′ , given for a ∈ HomA(X, Y ) and v ∈ V (X, Y )

by :

δ1(a) = aωX − ωY a, δ2(v) = μ(v) − ωY ⊗ v − v ⊗ ωX .

Observe that (idA, ε) : A → (A,A) is a morphism of bocses. Therefore, it induces

a functor (idA, ε)
∗ : A-Mod → A-Mod. For M ∈ A-Mod, (idA, ε)

∗(M) = M , and

for h : M → N a morphism of A-modules (idA, ε)
∗h : V ⊗ AM → N is given by

(idA, ε)
∗(h)(v ⊗m) = h(ε(v)m) for m ∈M, v ∈ V .

For M ∈ A-Mod, (i, ω)∗(M) = A′M and if f : V ⊗AM → N is a morphism in A-Mod,

f 0 = (i, ω)∗f : A′M → A′N is given by f 0(m) = f(ωX ⊗m) for m ∈M(X).

Given A = (A, V ) a bocs with a grouplike ω relative to some A′ subcategory of A, for

any morphism, f : V ⊗A M → N we have the morphisms f 0 = (i, ω)∗f ∈ HomA′(M,N),

f 1 = f(σ ⊗ 1) : V ⊗A M → N . The pair of morphisms (f 0, f 1) satisfies the following

property:

(A) f 0(am) = af 0(m) + f 1(δ1(a) ⊗m).

Now, for any object Y ∈ A we have :

(V ⊗A M)(Y ) = V (−, Y ) ⊗A M = ωY ⊗M(Y ) ⊕ (V ⊗A M)(Y ),

therefore, a pair of morphisms (f 0, f 1) with

f 0 ∈ HomA′(M,N) and f 1 ∈ HomA(V ⊗A M,N)

which satisfies the condition (A) determines a morphism of A-modules f : V ⊗AM → N .

Thus, any morphism f : V ⊗A M → N is completely determined by the pair (f 0, f 1)

satisfying property (A). In the rest of the paper, we put f = (f 0, f 1).

Proposition 4.2. If f = (f 0, f 1) : M → N , g = (g0, g1) : N → L are morphisms in

A-Mod then gf = (g0f 0, (gf)1) with

(gf)1(v ⊗m) = g1(v ⊗ f 0(m)) + g0(f 1(v ⊗m)) +
∑

i

g1(v1
i ⊗ f 1(v2

i ⊗m)),

where v ∈ V,m ∈M and δ2(v) =
∑

i v
1
i ⊗ v2

i .
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Proof. It follows from the fact that (i, ω)∗ is a functor and from the definitions. �

Following [5], if A is a k-category a morphism a ∈ A(X, Y ) is called indecomposable

if both X and Y are indecomposable objects of A. Similarly, if W is an A-A bimodule

an element of W is an element w ∈ W (X, Y ) for some X, Y . In case both X and Y are

indecomposable, w will be called indecomposable. If X and Y are objects of A , then we

denote by FX,Y the A-A bimodule given by

FX,Y = HomA(−, X) ⊗k HomA(Y,−).

We say that theA-A bimoduleW is freely generated by the elements wi ∈W (Xi, Yi), i =

1, ..., n if there is an isomorphism of A-A bimodules

ψ : FX1,Y1 ⊕ ...⊕ FXn,Yn →W

such that ψ(idXi
⊗ idYi

) = wi, for i = 1, ..., n.

Now, suppose that A′ has the same objects as A, and T is an A′-A′ -subimodule of

A′AA′ , denote by T⊗n the tensor product T ⊗A′ T ⊗A′ ... ⊗A′ T of n copies of T and set

T 0 = A′. Then the direct sum of A′-A′-bimodules:

T⊗ =
∞⊕

n=0

T⊗n

can be regarded as a category with the same objects as A and product given by the

natural isomorphisms T⊗n ⊗A T
⊗m → T⊗m+n.

We recall from Definition 2.5 of [5] that if A′ has the same objects as A, we say that

A is freely generated over A by morphisms a1, ..., an in A if the ai freely generate an A′-A′

subimodule T of A′AA′ such that the functor T⊗ → A induced by the inclusion of A′ and

T in A is an isomorphism.

Definition 4.3. A k-category A is called minimal if it is skeletal and is equivalent to

mod(k) × ...× mod(k) × P (R1) × ...× P (Rn)

where Ri = k[x, fi(x)
−1] with fi(x) is a nonzero element of k[x] and P (R) denotes the

category of finitely generated projective left R-modules. We denote by indA the set of

indecomposable objects of a minimal category A.

Definition 4.4. Let A = (A, V ) be a bocs with kernel V . A collection L = (A′;ω; a1, ..., an;

v1, ...vm), is a layer for A, if

(L1) A′ is a minimal category;

(L2) A is freely generated over A′ by indecomposable elements a1, ..., an;

(L3) ω is a reflector for A relative to A′;
(L4) V is freely generated as an A-A bimodule by indecomposable elements v1, ...vm;

(L5) let δ1 : A→ V be the morphism induced by ω, A0 = A′ and for i ∈ {1, ..., n−1},
Ai the subcategory of A generated by A′ and a1, ...ai, then for any 0 ≤ i < n, δ1(ai+1) is

contained in the Ai-Ai subimodule of V generated by v1, ...vm.
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A bocs having a layer will be called layered.

Suppose A = (A, V ) is a bocs with layer L = (A′;ω; a1, ..., an; v1, ...vm). Through-

out this paper, we denote by A-mod the full subcategory of A-Mod whose objects are

representations M such that
∑

X∈indA′ dimkM(X) <∞.

For A as before we have

V ⊗A M ∼=
⊕

vi

A(−, Yi) ⊗k M(Xi)

for M ∈ A-Mod. Thus, for M,N ∈ A-Mod we have an isomorphism:

φM,N :
⊕

vi

Homk(M(Xi), N(Yi)) → HomA(V ⊗A M,N).

Therefore, in this case a morphism f : M → N in A-Mod is given by a pair of morphisms

(f 0, φM,N(f 1
1 , ..., f

1
m)), f 0 ∈ HomA′(M,N), f 1

i ∈ Homk(M(Xi), N(Yi)),

i = 1, ..., m such that for all aj : Xj → Yj, j = 1, ..., n and u ∈M(Xj)

f 0
Yj

(aju) = ajf
0
Xj

(u) + φM,N(f 1
1 , ..., f

1
m)(δ1(aj) ⊗ u).

Observe that φM,N(f 1
1 , ..., f

1
m)(vi ⊗ u) = f 1

i (u) for u ∈M(Xi), i = 1, ..., m.

Lemma 4.5. With the above notations, if (f, 0) : M → N and

(h0, φN,L(h1, ..., hm)) : N → L are morphisms in A-Mod then:

(h0, φN,L(h1, ..., hm))(f, 0) = (h0f, φM,L(g1, ..., gm)) with gi = hifXi
.

Similarly, if (h0, φM,N(h1, ..., hm)) : M → N , (f, 0) : N → L are morphisms

in A-Mod, then:

(f, 0)(h0, φM,N(h1, ..., hm)) = (fh0, φM,N(g1, ..., gm)), with gi = fYi
hi.

In later sections we need the following.

Definition 4.6. Let A = (A, V ) be a bocs with layer (A′;ω; a1, ..., an; v1, ..., vm). Then

a sequence of morphisms in A-Mod,

M
f→ E

g→ N

is called proper exact if gf = 0 and the sequence of morphisms

0 →M
(i,ω)∗f→ E

(i,ω)∗g→ N → 0

in A′-Mod is exact. An almost split sequence in A-mod which is also a proper exact

sequence is called a proper almost split sequence.

Definition 4.7. With the notation of Definition 4.6 an indecomposable object X ∈ A′

is called marked if A′(X,X) �= kidX .
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5 Hom-spaces of Minimal Bocses

We recall from [5] that a minimal bocs is a bocs A = (A, V ) with layer

L = (A′;ω; a1, ..., an; v1, ..., vm)

such that A′ = A. Therefore in this case the a1, ..., an do not appear.

Throughout this section, B = (B,W ) is a minimal bocs with layer

L = (B;ω;w1, ..., wm), where wi ∈W (Xi, Yi).

For M,N ∈ B-Mod we put HomB(M,N)1 = {f : M → N |(1, ω)∗(f) = 0}.

Proposition 5.1. Let B = (B,W ) be a minimal bocs and ε : W → B the counit of W .

Then for M,N ∈ B-Mod we have

HomB(M,N) = (1, ε)∗(HomB(M,N)) ⊕ HomB(M,N)1.

Proof. We have (1, ε)∗(1, ω)∗ ∼= idB-Mod. �

Observe that if we have any pair of morphisms (f, φM,N(h1, ..., hm)) with f ∈ HomB(M,N),

hi ∈ Homk(M(Xi), N(Yi)) where wi : Xi → Yi, this pair is a morphism from M to N in

B-Mod, because in a minimal bocs δ1 = 0 and condition (A) before Proposition 4.2 is

trivially satisfied. Then we have:

Corollary 5.2. For M,N ∈ B-mod :

dimkHom1
B(M,N) =

∑

wi

dimkHomk(M(Xi), N(Yi)).

The morphisms in the image of (1, ε)∗ have the form (f, 0) where the morphism f is

in HomB(M,N).

Lemma 5.3. (Compare Definition 3.8 in [5]) Let M,N be two objects in B-Mod, then

M ∼= N in B-Mod iff M ∼= N in B-Mod.

Proof. If h : M → N is an isomorphism in B-Mod then (1, ω)∗(h) is an isomorphism

in B-Mod. Conversely, if g : M → N is an isomorphism in B-Mod then (1, ε)∗(g) is an

isomorphism in B-Mod. �

Clearly, Lemma 5.3 implies that indecomposable objects in B-Mod and B-Mod coin-

cide.

We have B(Z,Z ′) = 0 for Z �= Z ′ ∈ indB and for Z ∈ indB, B(Z,Z) = RZ =

k[x, h(x)−1]idZ with h(x) ∈ k[x] or B(Z,Z) = kidZ . Take M an indecomposable object

in B-mod, then there is only one Z ∈ indB such that M(Z) �= 0. Here M is a covariant
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functor of B into k-Mod, M(Z) is a left RZ- module. Therefore if B(Z,Z) = RZ �= kidZ ,

M(Z) ∼= RZ/(p
n) with p = x− λ a prime element in RZ , if B(Z,Z) = kidZ , M(Z) = k.

For Z ∈ indB with B(Z,Z) = RZ �= kidZ and p = x − λ, a prime element in RZ we

define M(Z, p, n) ∈ B-Mod by

M(Z, p, n)(W ) = 0 for W �= Z,W ∈ indB, M(Z, p, n)(Z) = RZ/(p
n).

If B(Z,Z) = kidZ we define SZ ∈ B-mod by

SZ(W ) = 0 for W �= Z,W ∈ indB, SZ(Z) = k.

Lemma 5.4. If M is an indecomposable object in B-mod then M ∼= M(Z, p, n) or

M ∼= SZ for some Z ∈ indB.

Lemma 5.5. Let (f, 0) : M → N be a morphism in B-Mod such that for all Z ∈ indB,

fZ : M(Z) → N(Z) is surjective. Then if h : L → N is a morphism in B-Mod with

(1, ω)∗(h) = 0, there is a morphism g : L→ M in B-Mod with (f, 0)g = h.

Proof. Take h : L → N with (1, ω)∗(h) = 0, then h = (0, φL,N(h1, ..., hm)). We may

assume that there is a j with 0 �= hj ∈ Homk(M(Xj), N(Yj)) and hi = 0 for i �= j.

We have that fYj
: M(Yj) → N(Yj) is an epimorphism. Consequently, there is

a k-linear map σ : N(Yj) → M(Yj) with fYj
σ = idN(Yj). Take now gj = σhj ∈

Homk(L(Xj),M(Yj)), and 0 = gi ∈ Homk(L(Xi),M(Yi)), for i �= j. Take now the

morphism

g = (0, φL,M(g1, ..., gm)) : L→M

then by Lemma 4.5 (f, 0)g = (0, φL,N(λ1, ..., λm)) with λi = fYi
gi. Therefore, λi = 0 for

i �= j and λj = fYj
gj = fYj

σhj = hj . Consequently, (f, 0)g = (0, φL,N(λ1, ..., λm)) =

(0, φL,N(h1, ..., hm)) = h. �

Similarly, we have the dual version of the above result.

Lemma 5.6. Let (f, 0) : M → N be a morphism in B-Mod such that for all Z ∈ indB,

fZ : M(Z) → N(Z) is an injection. Then if u : M → L is a morphism with (1, ω)∗(u) = 0

there is a morphism v : N → L with v(f, 0) = u.

For Z,Z ′ ∈ indB we denote by t(Z,Z ′) the number of wi ∈W (Z,Z ′).

Lemma 5.7. SupposeM,N are indecomposable objects in B-mod withM(Z) �= 0, N(Z ′) �=
0, Z,Z ′ ∈ indB. Then

dimkHomB(M,N)1 = t(Z,Z ′)dimkM(Z)dimkN(Z ′).

Proof. It follows from Corollary 5.2. �
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Lemma 5.8. If M,N are indecomposable objects in B-mod, then

rad∞
B (M,N) ⊂ HomB(M,N)1.

Proof. Suppose there is a h ∈ rad∞
B (M,N) with (1, ω)∗(h) �= 0. Then there is a Z ∈ indB

with M(Z) �= 0, N(Z) �= 0. Since (1, ω)∗ reflects isomorphisms, then (1, ω)∗(h) is not

an isomorphism. Consequently, B(Z,Z) = RZ �= kidZ and M ∼= M(Z, p,m), N ∼=
M(Z, p, n).

Here rad∞
B (M,N) ∼= rad∞

RZ
(RZ/(p

m), RZ/(p
n)) = 0. Then there is a s with rads

B(M,N) =

0.

On the other hand, there is a chain of non-isomorphisms between indecomposables:

M
f1→ X1

f2→ X2 → ...→ Xs−1
fs→ N

with g = (1, ω)∗(fs · · · f2f1) �= 0.

But g = (1, ω)∗(fs) · · · (1, ω)∗(f1) ∈ rads
B(M,N) = 0, a contradiction. This proves our

claim. �

Consider M = M(Z, p,m), N = M(Z, p, n) indecomposables in B-mod. If f :

RZ/(p
m) → RZ/(p

n) is a morphism of RZ-modules, we put u(f) : M → N given by

u(f)Z = f and u(f)W = 0 for W �= Z.

Proposition 5.9. Let M,N be indecomposables in B-mod with M(Z) �= 0 or N(Z) �= 0

for some Z ∈ indB with B(Z,Z) �= kidZ , then

rad∞
B (M,N) = HomB(M,N)1.

Proof. By Lemma 5.8, it is enough to prove that if f : M → N is a morphism in B-mod

with (1, ω)∗(f) = 0 then f ∈ rad∞
B (M,N). Suppose M(Z) �= 0 with B(Z,Z) = RZ �=

idZk. Then we may assume M = M(Z, p,m). Take any natural number n. Consider the

monomorphism il : RZ/(p
l) → RZ/(p

l+1) given by il(ηl(a)) = ηl+1(pa) for a ∈ RZ and ηj :

RZ → RZ/(p
j) the quotient map. Take (u, 0) = (u(in+m−1), 0)...(u(im+1), 0)(u(im), 0) :

M(Z, p,m) → M(Z, p,m + n). Here uZ : M(Z, p,m)(Z) → M(Z, p,m + n)(Z) is a

monomorphism . By Lemma 5.6, there is a morphism t : M(Z, p,m+ n) → N in B-Mod

such that t(u, 0) = f.

Now, (u, 0) ∈ radn
B(M,M(Z, p,m + n)), and, therefore, f = t(u, 0) ∈ radn

B(M,N) for

all n, then f ∈ rad∞
B (M,N).

For the case in which N(Z) �= 0 with B(Z,Z) �= kidZ one proceeds in a similar way.

�

Corollary 5.10. If M,N are indecomposable objects in B-mod, and Z,Z ′ ∈ indB with

M(Z) �= 0, N(Z ′) �= 0, and B(Z,Z) �= kidZ or B(Z ′, Z ′) �= kidZ′, then

dimkrad∞
B (M,N) = dimkM(Z)dimkN(Z ′)t(Z,Z ′).
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Corollary 5.11. Let M = M(Z, p,m), N = M(Z ′, q, n), S = SW be indecomposables in

B-mod, with B(Z,Z) �= kidZ , B(Z ′, Z ′) �= kidZ′, B(W,W ) = kidW . Then if Z = Z ′,
p = q,

HomB(M,N) ∼= HomB(M,N) ⊕ rad∞
B (M,N),

with dimk(HomB(M,N)) = min{m,n}.
And if Z �= Z ′ or Z = Z ′, and (p) �= (q)

HomB(M,N) = rad∞
B (M,N).

Moreover,

HomB(M,S) = rad∞
B (M,S) and HomB(S,M) = rad∞

B (S,M).

Lemma 5.12. If 0 → M
f0→ E

g0→ N → 0 is a short exact sequence in B-Mod, then the

pair of morphisms in B-Mod, M
(f0,0)→ E

(g0,0)→ N is an exact pair of morphisms.

Proof. We claim that f = (f 0, 0) is a kernel of (g0, 0). Assume there is a morphism

u = (u0, u1) = (u0, 0) + (0, u1) : L → E such that gu = (g0u0, (gu)1) = 0. Here

g0u0 = 0, then there is a unique morphism in B-Mod, v0 : L → M with f 0v0 = u0.

Now, u1 = φL,E(u1, ..., um), with ui : L(Xi) → E(Yi) where wi ∈ W (Xi, Yi). Then

(gu)1 = φL,N(g0
Y1
u1, ..., g

0
Ym
um). Therefore, for i = 1, ..., m, g0

Yi
ui = 0. Thus, there

are linear maps vi : L(Xi) → M(Yi) with f 0
Yi
vi = ui for i = 1, ..., m. Then taking

v = (v0, φL,M(v1, ..., vm)) we have fv = u. Clearly v is unique with this property. This

proves our claim. In a similar way one can prove that g is a cokernel of f . �

Lemma 5.13. Suppose (a) : M
f→ E

g→ N is a proper exact sequence in B-Mod. Then

(a) is isomorphic to the sequence: M
(f0,0)→ E

(g0,0)→ N .

Proof. By Lemma 5.5 and its proof, there is a morphism u = (0, u1) : E → E such that

(g0, 0)u = (0, g1). Then (g0, 0)(1E, u
1) = g, with σ = (1E , u

1) an isomorphism. Thus,

(g0, 0)σf = gf = 0. But by the above Lemma, (f 0, 0) is a kernel of (g0, 0), then there is

a morphism λ = (λ0, λ1) : M → M with (f 0, 0)λ = σf . Here f 0λ0 = f 0, since f 0 is a

monomorphism then λ0 = 1M . Therefore, λ : M → M is an isomorphism. This proves

our claim. �

From Lemma 5.12 and Lemma 5.13, we deduce that proper exact sequences are exact

pairs of morphisms. Denote by Ep the class of proper exact sequences in B-Mod, then we

have the following.

Proposition 5.14. The pair (B-Mod, Ep) is an exact category.

Proof. Observe first that g = (g0, g1) : E → M is a deflation if and only if g0 is an

epimorphism. In fact, if g is a deflation, by definition of proper exact sequence g0 is an
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epimorphism. Conversely, suppose g0 is an epimorphism, then as in the proof of Lemma

5.5 there is an isomorphism τ : E → E such that (g0, 0) = gτ . Taking f 0 : N → E the

kernel of g0 in B-Mod, we see that (g0, 0) is a deflation, thus g is a deflation too. Similarly,

one can prove that f : N → E is an inflation if and only if f 0 is a monomorphism.

From this, it is clear that conditions E.1, E.3 and E.3op hold. For proving E.2, assume

g : E → N is a deflation and h : L → N is an arbitrary morphism. Then we have

the morphism (g, h) : E ⊕ L → N . Now, (g, h) = ((g0, h0), (g1, h1)), here g0 is an

epimorphism, then (g0, h0) is also an epimorphism, thus (g, h) is a deflation, therefore it

has a kernel, M
u→ E ⊕ L. Take u1 : M → E equal to u composed with the projection

on E and −u2 : M → L, the composition of u with the projection on L. Now, one can

see that u2 is a deflation and gu1 = hu2. Therefore, E.2 holds. �

Let Z1, ..., Zs be all marked objects in indB. For i = 1, ..., s take Ri = B(Zi, Zi) and

the B-Ri-bimodule Bi = B(Zi,−). Then if p is a prime element of Ri and n a positive

integer, M(Zi, p, n) ∼= Bi ⊗Ri
Ri/(p

n). We denote by Si
p,n the exact sequence in Ri-mod:

0 → Ri/(p
n)

(p,π)→ ((Ri/(p
n+1) ⊕Ri/(p

n−1))

�
�����
π

−p

�
�����

→ R/(pn) → 0.

Proposition 5.15. The sequence Bi ⊗Ri
Si

p,n:

Bi ⊗Ri
Ri/(p

n)
id⊗(p,π)→ Bi ⊗Ri

((Ri/(p
n+1) ⊕ Ri/(p

n−1))

id⊗

�
�����
π

−p

�
�����

→ Bi ⊗Ri
Ri/(p

n)

is a proper almost split sequence in B-mod.

Proof. The sequence Si
p,n is an almost split sequence in Ri-mod. Now, using Lemma 5.5

and Lemma 5.6 one can prove that Bi ⊗Ri
Si

p,n is a proper almost split sequence. �

6 Hom-spaces between A-k(x)-bimodules

Let A = (A, V ) be a bocs with layer (A′;ω; a1, ..., an; v1, ..., vm). We recall from [6] that

an A-k(x)-bimodule is an object M ∈ A-Mod with a morphism αM : k(x) → EndA(M).

If M and N are A-k(x)-bimodules, a morphism f : M → N in A-Mod is a morphism of

A-k(x)-bimodules if for all q ∈ k(x), fαM(q) = αN (q)f.

We denote by A-k(x)-Mod the category whose objects are the A-k(x)-bimodules and

the morphisms are morphisms of A-k(x)-bimodules. If F : B-Mod → A-Mod is a functor

with A,B layered bocses, then F induces a functor F k(x) : B-k(x)-Mod → A-k(x)-Mod. If
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M is a B-k(x)-bimodule, with αM : k(x) → EndB(M) then F (M) is an A-k(x)-bimodule

with αF (M) = FαM : k(x) → EndA(F (M)). Observe that if f : M → N is a morphism

of B-k(x)-bimodules, then F (f) is a morphism of A-k(x)-bimodules. Now, if F is full

and faithful then F (f) : F (M) → F (N) is a morphism of A-k(x)-bimodules if and

only if for all q ∈ k(x) , F (f)F (αM(q)) = F (αN(q))F (f) and this is true if and only if

fαM(q) = αN(q)f for all q ∈ k(x). Thus, F induces a full and faithful functor

F k(x) : B-k(x)-Mod → A-k(x)-Mod.

The A-k(x)-bimodule M is called proper if there is a βM : k(x) → EndA(M) such

that αM = (1, ε)∗βM , thus αM(q) = (βM(q), 0) for all q ∈ k(x). Observe that if M is

a proper A-k(x)-bimodule then M is an A-k(x)-bimodule. We denote by A-k(x)-Modp,

the full subcategory of A-k(x)-Mod whose objects are the proper bimodules. Suppose

θ : A → B is a morphism of bocses with εB the counit of B and εA the counit of A ,

then θ∗ : B-Mod → A-Mod is a full and faithful functor. Observe that if M is a proper

B-k(x)-bimodule then αM = (1, εB)∗βM with βM : k(x) → EndB(M). Then θ∗(M) is a

A-k(x)-bimodule, using Lemma 4.1 we have

αθ∗(M) = (θ0, θ1)
∗(1, εB)∗βM = (1, εA)∗(θ0, θ0)∗βM ,

thus θ∗(M) is a proper B-k(x)-bimodule, consequently θ∗ induces a full and faithful

functor (θ∗)k(x) : B-k(x)-Modp → A-k(x)-Modp.

Proposition 6.1. Let M,N be proper A-k(x)-bimodules. Then

f = (f 0, φM,N(f1, ..., fm)) : M → N is a morphism of A-k(x)-bimodules if and only if f 0 is

a morphism of A′-k(x)-bimodules and fi ∈ Homk(x)(M(Xi), N(Yi)) for all vi ∈ V (Xi, Yi).

Proof. We have that M and N are proper bimodules so, αM(q) = (βM(q), 0) and

αN(q) = (βN(q), 0) with morphisms of k-algebras βM : k(x) → EndA(M) and βN :

k(x) → EndA(N). Then a morphism f : M → N in A-Mod is a morphism of A-k(x)-

bimodules if and only if fαM(q) = αN(q)f for all q ∈ k(x). Then, by Proposition 4.2,

the above holds if and only if f 0βM(q) = βN(q)f 0 for all q ∈ k(x), and for all vi and all

q ∈ k(x), u ∈ M(Xi): βN (q)φM,N(f1, ..., fm)(vi ⊗ u) = φM,N(f1, ..., fm)(vi ⊗ βM (q)(u)).

Using the relations given in Lemma 4.5, we obtain that the latter equality is equivalent

to βN(q)fi(u) = fi(βM(q)(u)). From here we obtain our result. �

Corollary 6.2. Let B = (B,W ) be a minimal bocs with layer (B;ωB;w1, ..., wm), with

wi ∈W (Xi, Yi). Then if M and N are proper B-k(x)-bimodules we have:

HomB-k(x)(M,N) ∼= HomB-k(x)(M,N) ⊕
⊕

i

Homk(x)(M(Xi), N(Yi)).

Let B = (B,W ) be a minimal bocs with layer (B;ω;w1, ..., wm), for Z a marked

object in indB we define QZ ∈ B-Mod as follows: QZ(Z) = k(x) where B(Z,Z) =

k[x, f(x)−1]idZ and the action of x on QZ(Z) is the multiplication by x, QZ(W ) = 0 for
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Z �= W. The action of k(x) is the multiplication on the right by the elements of k(x).

Here QZ is a proper B-k(x)-bimodule. Using the notation of section 5, we have as a

consequence of the above corollary:

Corollary 6.3. If Z,Z ′ are marked objects and W is a non-marked object in indB, write

S
k(x)
W = SW ⊗k k(x). We have:

dimk(x)HomB-k(x)(QZ , QZ′) = δ(Z,Z ′) + t(Z,Z ′)

where δ(Z,Z ′) = 1 if Z = Z ′ and zero otherwise. Moreover

dimk(x)(radB-k(x)(QZ , S
k(x)
W )) = t(Z,W ),

dimk(x)(radB-k(x)(S
k(x)
W , QZ)) = t(W,Z).

Corollary 6.4. With the notations in Corollary 6.3 we have :

HomB-k(x)(QZ , QZ′) = k(x) ⊕ radB-k(x)(QZ , QZ′) when Z = Z ′,

HomB-k(x)(QZ , QZ′) = radB-k(x)(QZ , QZ′) when Z �= Z ′.

Moreover:

HomB-k(x)(QZ , S
k(x)
W ) = radB-k(x)(QZ , S

k(x)
W ),

HomB-k(x)(S
k(x)
W , QZ) = radB-k(x)(S

k(x)
W , QZ).

From the above corollaries, we obtain the next proposition.

Proposition 6.5. Let B = (B,W ) be a minimal bocs with layer (B;ω;w1, ..., wm).

Suppose Z, Z ′, and W are objects in indB with B(W,W ) = idWk, B(Z,Z) �= idZk,

B(Z ′, Z ′) �= idZ′k. Take M = M(Z, p,m), N = M(Z ′, q, n), L = SW with p, q prime

elements in B(Z,Z) and B(Z ′, Z ′), respectively. Then

dimkrad∞
B (M,N) = mn(dimk(x)HomB-k(x)(QZ , QZ′) − δ(Z,Z ′));

dimkrad∞
B (M,L) = mdimk(x)radB-k(x)(QZ , L

k(x));

dimkrad∞
B (L,M) = mdimk(x)radB-k(x)(L

k(x), QZ).

7 D-isolated Objects

Let A = (A, V ) be a bocs with layer L = (A′;ω; a1, ..., an; v1, ..., vm). We recall that an

object X ∈ indA′ is called marked if A′(X,X) �= kidX , we denote by m(A′), the set of

marked objects of A′. For M ∈ A-mod we define its dimension vector

dimM : indA′ → N by dimM(X) = dimkM(X).
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By DimA we denote the set of functions d : indA′ → N. If d,d′ ∈ DimA we have d +d′,
defined by (d + d′)(X) = d(X) + d′(X) for all X ∈ indA′. The norm of d ∈ DimA is

defined by ||d|| =
∑n

i=1 d(Xi)d(Yi) +
∑

X∈m(A′) d(X)2, where ai : Xi → Yi. For M ∈ A-

mod we define the norm of M , ||M || = ||dimM ||.
If d ∈ Dim(A) we define |d| =

∑
X∈indA′ d(X). For M ∈ A-mod, we put |M | =

|dimM | which is called the dimension of M .

Take θ : A → B a functor with B a skeletally small category, the induced bocs

AB = (B,W ) is given as follows: W = B ⊗A V ⊗A B with counit

εB : W → B

given by εB(b1 ⊗ v ⊗ b2) = b1θ(ε(v))b2 for b1, b2 morphisms in B, v ∈ V . The coproduct

μB : W → W ⊗B W

is given by μB(b1 ⊗ v ⊗ b2) =
∑

i b1 ⊗ v1
i ⊗ 1⊗ 1⊗ v2

i ⊗ b2, where b1, b2 are morphisms in

B and v ∈ V with δ(v) =
∑

i v
1
i ⊗ v2

i .

There is a morphism of A-A-bimodules

θ1 : V →W

given by θ1(v) = 1 ⊗ v ⊗ 1, for v ∈ V . Then we obtain a morphism of bocses (θ, θ1) :

A → AB which induces a full and faithful functor θ∗ : AB-Mod → A-Mod.

Assume AB has layer

Lθ = (B′;ω′; b1, ..., bn′ ;w1, ..., wm′).

There is an additive function tθ : Dim(AB) → Dim(A), given by tθ(d)(X) =
∑

j d(Yj)

with θ(X) =
⊕

j Yj, Yj ∈ indB′. We have dimθ∗(M) = tθ(dimM), for M ∈ AB-mod.

Following [6], we say that that the bocs A = (A, V ) with counit ε : V → A and layer

L = (A′;ω; a1, ..., an; v1, ..., vm) is of wild representation type or simply wild if there is a

functor F : A→ Σ, where Σ are the finitely generated free k〈x, y〉-modules such that the

induced functor:

(F, Fε)∗ : Σ-Mod → A-Mod

preserves isomorphism classes and indecomposables.

From [7], we know that a layered bocs A = (A, V ) which is not of wild representation

type is of tame representation type. This is, for each natural number d, there are a

finite number of A-k[x]-bimodules M1, ...,Ms free of finite rank as right k[x]-modules,

and such that every indecomposable M in A-Mod with |dimM | ≤ d is isomorphic to

Mi ⊗k[x] k[x]/(x− λ) for some 1 ≤ i ≤ s and λ ∈ k.

This section is devoted to find some subset D of DimA with A a bocs of tame rep-

resentation type such that the marked indecomposable objects of A become D-isolated

objects in the sense of Definition 7.4. For this we need the following specific functors (see

section 4 of [5]):
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1. Regularization. Suppose a1 : X1 → Y1 with δ(a1) = v1. Then B is freely gener-

ated by A′ and a2, ..., an. The functor θ : A→ B is the identity onA′, θ(a1) = 0, θ(ai) = ai

for i = 2, ..., n. The bocs AB = (B,W ) has layer (A′;ωB; a2, ..., an; θ1(v2), ..., θ1(vm)).

The functor θ∗ : AB-Mod → A-Mod is an equivalence of categories, Dim(AB) =

Dim(A) and tθ = id. In this case ||tθ(d)|| ≥ ||d||, and one has the equality if and only if

d(X1)d(Y1) = 0.

2. Deletion of objects . Let C be a subcategory of A. Let B′ be the full subcategory

of A′ whose objects have no non-zero direct summand isomorphic to a direct summand

of an object of C. Take I0 the set of i ∈ {1, ..., n} such that ai ∈ A(Xi, Yi) with Xi, Yi in

B′, and I1 the set of j ∈ {1, ..., m} such that vj ∈ V (Xj , Yj) with Xj , Yj in B′. Then B

is freely generated by B′ and the ai with i ∈ I0. The functor θ : A → B is the identity

on B′ and θ(X) = 0 for all X ∈ C. The bocs AB has layer (B′;ωB; (ai)i∈I0 ; (θ1(vj))j∈I1).

Here M ∈ A−Mod is isomorphic to some θ∗(N) if and only if M(X) = 0 for all X

indecomposable objects of C. The function tθ : Dim(AB) → Dim(A) is an inclusion,

d ∈ Dim(A) is in the image of tθ if and only if d(X) = 0 for all X indecomposable

objects of C. In this case ||tθ(d)|| = ||d||.
3. Edge reduction . Suppose a1 : X1 → Y1 with X1 �= Y1 is such that δ(a1) = 0,

and A′(X1, X1) = kidX1 , A
′(Y1, Y1) = kidY1. Let C be the full subcategory of A′ whose

objects have no direct summands isomorphic to X1 or Y1. Now denote by D a minimal

category with three indecomposable objects Z1, Z2, Z3, D(Zi, Zi) = kidZi
for i = 1, 2, 3.

Take B′ = C ×D. The category B is freely generated by B′ and elements b1, ..., bs. The

number of arrows bj : Wj → W ′
j with Wj and W ′

j different from Z2 is n − 1, where n is

the number of ai.

The functor θ : A→ B is the identity on C and θ(X1) = Z1 ⊕ Z2, θ(Y1) = Z2 ⊕ Z3.

The bocs AB = (B,W ) has a layer of the form (B′, ωB; b1, ..., bs;w1, ...wu). Moreover,

if M ∈ AB-Mod, θ∗(M)(ai) = 0 for all i ∈ {1, ..., n} if and only if M(bj) = 0 for all

j ∈ {1, ..., s} and M(Z2) = 0. The functor θ∗ is an equivalence of categories. Moreover

||tθ(d)|| > ||d|| if and only if (tθ(d))(X1)(t
θ(d)(Y1)) �= 0. If ||tθ(d)|| = ||d|| and ||tθ(d′)|| =

||d′||, then tθ(d) = tθ(d′) implies d = d′.
4. Unraveling . Let X be an indecomposable object in A′ with A′(X,X) =

k[x, f(x)−1]idX . Suppose S = {λ1, ..., λt} is a set of elements of k which are not roots

of f(x). For r a positive integer there is a functor θ : A → B, where B is freely gen-

erated by B′ and elements b1, ..., bs, B
′ = C × D, where C is the full subcategory of

A′ whose objects have no direct summands isomorphic to X. The category D is the

minimal category with indecomposable objects Y, Zi,j with i ∈ {1, ..., r}, j ∈ {1, ..., t},
D(Zi,j, Zi,j) = kidZi,j

, D(Y, Y ) = k[x, f(x)−1, g(x)−1]idY , where g(x) = (x−λ1)...(x−λt).

The functor θ : A→ B acts as the identity on C and θ(X) = Y ⊕⊕t
j=1

⊕r
i=1 Z

i
i,j, where

Z i
i,j is the direct sum of i copies of Zi,j.

The bocs AB = (B,W ) has a layer of the form (B′;ωB; b1, ..., bs;w1, ..., wu).

Moreover for N ∈ AB-mod we have the following:

(a) ||N || ≤ ||θ∗(N)||, with strict inequality if θ∗(N)(g(x)) is not invertible.

(b) If M ∈ A-mod and for all Z ∈ indA′, dimkM(Z) ≤ r then there is a N ∈ AB-mod
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such that θ∗(N) ∼= M .

(c) θ∗(N)(x) = N(x)⊕⊕s
j=1

⊕r
i=1N(Z i

i,j)(x) with eigenvalues of N(x) not in S, and

N(Z i
i,j)(x) = Ji(λj), the Jordan block of size i and eigenvalue λj.

(d) Suppose M ∈ A-mod is an indecomposable with M(X) �= 0 and M(W ) = 0 for

all W �= X, W ∈ indA′, M(ai) = 0 for i ∈ {1, ..., n}. Then if the unique eigenvalue of

M(x) is not in the set S, there is a N ∈ AB-mod with N(W ) = 0 for all W ∈ indB′,
with W �= Y , N(bj) = 0 for all j ∈ {1, ..., s} and θ∗(N) ∼= M .

(e) The number of bj : Y1 → Y2 with Y1, Y2 non isomorphic to Zi,j is equal to n, the

number of ai.

Definition 7.1. Let A = (A, V ) be a bocs with layer (A′;ω; a1, ..., an; v1, ...vm). We say

that M ∈ A-Mod is concentrated in the indecomposable X ∈ A′ if M(X) �= 0, M(Y ) = 0

for Y indecomposable in A′, Y �= X and M(ai) = 0 for all i ∈ {1, ..., n}.

Proposition 7.2. Let A = (A, V ) be a bocs which is not wild, with layer

(A′;ω; a1, ..., an; v1, ..., vm). Let X be an indecomposable object in A′ with

A′(X,X) = k[x, f(x)−1]. Then given a fixed dimension vector d with d(X) �= 0, there is a

finite subset S(X,d) of k such that if M is indecomposable in A-mod with dimM = d and

λ in k but not in S(X,d) is an eigenvalue of M(x), then M ∼= M ′, with M ′ concentrated

in X.

Proof. We may assume d is sincere. We prove our assertion by induction on ||d||. If

||d|| = 1, take S(X,d) the set of roots of f(x). Then if M is an indecomposable in

A-mod, M(X) �= 0, dimM = d, clearly M is concentrated in X.

Suppose our result proved for all non-wild layered bocses and dimension vectors with

norm smaller than r. We may assume that for all ai : Xi → Yi with δ(ai) = 0, Yi is not

equal to Xi, since if Xi = Yi, then because A is not wild and by Proposition 9 of [7] we

have A′(Xi, Xi) = kidXi
, so we may move ai into A′, such that A′(Xi, Xi) = k[z], with

z = ai.

Take a1 : X1 → Y1 the first arrow. By condition L.5 of a layered bocs we have

δ(a1) =
∑

j∈T

cjvjdj,

where cj ∈ A′(Y1, Y1), dj ∈ A′(X1, X1) and T is the set of all j ∈ {1, ..., m} such that

vj : V (X1, Y1). We have then the following possibilities: δ(a1) = 0 or δ(a1) =
∑

j cjvjdj

with some cjvjdj �= 0. If all ci, di ∈ k, we may assume di = 1 for all i ∈ T . In this case we

put v′i = vi for i �= j and v′j =
∑

j cjvj. Taking {v′j , v′1, ..., v′m} instead of {v1, ..., vm} we

have again a layer for A, thus in this case we may assume δ(a1) = v1. In case that for some

j ∈ T , cj is not in k or dj is not in k, we have A′(Y1, Y1) �= kidY1 or A′(X1, X1) �= kidX1 .

Case 1. δ(a1) = v1. Take θ∗ : AB-Mod → A-Mod the regularization of a1. Here θ∗

is an equivalence and the norm of d in AB is smaller than r. Our claim is true for X

and the norm r′ of d in AB. Take S(X,d) = S ′(X,d), with S ′(X,d) the subset of k for

which our claim is true in AB.
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Then if M ∈ A-mod is indecomposable with dimM = d and λ is an eigenvalue of

M(x) which is not in S(X,d), we may assume M = θ∗(N). Here M(x) = N(x), thus

N ∼= N ′, with N ′ concentrated in X, but this implies that θ∗(N ′) is concentrated in X,

thus θ∗(N ′) ∼= θ∗(N) = M , proving our claim.

Case 2. δ(a1) = 0. Since A is not wild, by Proposition 9 of [7], A′(X1, X1) = kidX1

and A′(Y1, Y1) = kidY1 . Here X1 is not equal to Y1. We have the edge reduction of a1,

θ∗ : AB-Mod → A-Mod, with AB = (B,W ). Consider the dimension vectors d1, ...,dl of

those N ∈ AB-mod such that dimθ∗(N) = d.

The norms of the di are smaller than r. HereX is not equal toX1 and to Y1. Therefore

X is an indecomposable object of B′. We may consider the subsets S(X,d1), ..., S(X,dl).

Take S(X,d) = S(X,d1) ∪ ... ∪ S(X,dl).

Let M be an indecomposable in A-mod with dimM = d. Suppose λ is an eigenvalue

of M(x) which is not in S(X,d). Since θ∗ is an equivalence there is a N ∈ AB-mod such

that θ∗(N) ∼= M . We may assume θ∗(N) = M , then M(X) = N(X) and M(x) = N(x).

Here dimN = di for some i ∈ [1, l]. Therefore, since λ is an eigenvalue of N(x) which is

not in S(X,di), N ∼= N ′, with N ′ concentrated in X, consequently θ∗(N ′) is concentrated

in X and θ∗(N ′) ∼= M.

Case 3. a1 : X1 → Y1 with A′(X1, X1) �= kidX1 or A′(Y1, Y1) �= kidY1.

Using the notation of [5], we have an unraveling in X1 or in Y1, for r and some

elements of k, λ1, ..., λs followed by regularization of b : Y → Y1 or of b : X1 → Y ,

with b the generator corresponding to a1. Let θ∗ : AB-Mod → A-Mod be the unravel-

ing functor followed by the corresponding regularization, with AB = (B,W ) and layer

(B′, ωB; b1, ..., bv;w1, ..., wu).

In case X is not equal to X1 and to Y1 we proceed as in Case 2.

Suppose now that the unraveling is in X with X = X1 or X = Y1, such that

θ(X) = Y ⊕ (
⊕

i,j Z
i
i,j). Take all dimension vectors d1, ...,dl of those N ∈ AB-mod

with dimθ∗(N) = d.

The norms of all di are smaller than r. Then we may take S(Y,di). We put S(X,d) =

S(Y,d1) ∪ ... ∪ S(Y,dl) ∪ {λ1, ..., λs}.
Let M be an indecomposable in A-mod with dimM = d, M(X) �= 0 and λ an

eigenvalue of M(x) which is not in S(X,d).

There is a N ∈ AB with θ∗(N) ∼= M . We may assume θ∗(N) = M . There is a di

with i ∈ [1, l] such that dimN = di.

Here M(x) = N(x) ⊕M ′(x) with eigenvalues of M ′(x) contained in {λ1, ..., λs}. The

eigenvalue λ of M(x) is not in S(X,d), therefore, λ is an eigenvalue of N(x). But λ is

not in S(Y,di), then N ∼= N ′, with N ′ concentrated in Y . This implies that θ∗(N ′) is

concentrated in X and M ∼= θ∗(N ′). �

Notation 7.3. We recall that if d and d′ are dimension vectors of the bocs A = (A, V )

we say that d ≤ d′ if for all indecomposable objects X of A′, d(X) ≤ d′(X). Then if D is

a finite set of dimension vectors of A, we denote by s(D) the set consisting of all vectors

in D, all sums d+d′ with d,d′ ∈ D, and all vectors e with e ≤ f with f one of the above
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dimension vectors. Clearly s(D) is also a finite set.

Definition 7.4. Let A = (A, V ) be a bocs with layer (A′;ω; a1, ..., an; v1, ..., vm) and D
be a finite set of dimension vectors of A. We say that X, an indecomposable object in

A′, with A′(X,X) = k[x, f(x)−1]idX is D-isolated if for any indecomposable M ∈ A-mod

with dimM ∈ s(D) and M(X) �= 0, there is a M ′ ∈ A-mod, concentrated in X with

M ∼= M ′.

Lemma 7.5. Let A = (A, V ) be a layered bocs as above, which is not of wild representa-

tion type, and D be a finite set of dimension vectors of A such that for all indecomposable

X ∈ A′ there is a d ∈ D with d(X) �= 0, and a1 : X1 → Y1. Then

(1) if X1 and Y1 are both D-isolated and δ(a1) ∈ I2V + V I1 with I1 an ideal of

A′(X1, X1), I2 an ideal of A′(Y1, Y1), then I1 = A′(X1, X1) or I2 = A′(Y1, Y1);

(2) if X1 is D-isolated, A′(Y1, Y1) = kidY1, δ(a1) ∈ V I1 with I1 an ideal of A′(X1, X1),

then I1 = A′(X1, X1);

(3) if Y1 is D-isolated, A′(X1, X1) = kidX1, δ(a1) ∈ I2V with I2 an ideal of A′(Y1, Y1),

then I2 = A′(Y1, Y1).

Proof. We have

(∗) δ(a1) =
∑

s∈T1

hsvs +
∑

s∈T2

vsgs

with hs ∈ I2, gs ∈ I1.

(1) Suppose our claim is not true, then we may assume I1 and I2 are maximal ideals.

Then A′(X1, X1)/I1
∼= k and A′(Y1, Y1)/I2

∼= k. First assume X1 = Y1. Take the

representation M of A such that M(X1) = M1⊕M2 with Mi = A′(X1, X1)/Ii for i = 1, 2,

M(W ) = 0 for W �= X1. Take M(a1) such that 0 �= M(a1)(M1) ⊂ M2, M(a1)(M2) = 0

and M(aj) = 0 for j > 1. Here dimM ∈ s(D), then if M is indecomposable, M ∼= M ′

with M ′ concentrated in X1, but this implies that M ′ is indecomposable as A′-module,

which is not the case because as A′-modules, we have M ′ ∼= M ∼= M1 ⊕M2. Therefore,

M ∼= L1 ⊕ L2, with L1, L2 indecomposables, and dimL1,dimL2 are in s(D). Then

L1
∼= L′

1, L2
∼= L′

2, with L′
1, L

′
2 concentrated in X1, thus M ∼= L = L′

1⊕L′
2, and L(a1) = 0.

There is an isomorphism f = (f 0, f 1) : M → L. Then from (∗) we obtain

L(a1)f
0
X1

− f 0
Y1
M(a1) =

∑

s∈T1

L(hs)f
1(vs) +

∑

s∈T2

f 1(vs)M(gs),

then, since L(a1) = 0 and I1M1 = 0, from the above formula we obtain

f 0
Y1
M(a1)(M) = f 0

Y1
M(a1)(M1) ⊂ I2L,

then if I1 = I2, I2L = 0, so f 0
Y1
M(a1)(M) = 0. If I1 �= I2, A

′(X1, X1) = I1 + I2. We

have

I1f
0
Y1
M(a1)(M) ⊂ I1I2L = 0,

I2f
0
Y1
M(a1)(M) ⊂ f 0

Y1
(I2M2) = 0.
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Consequently, f 0
Y1
M(a1) = 0, a contradiction to M(a1) �= 0. Thus we obtain our state-

ment in this case.

Now, assumeX1 �= Y1, takeM the representation of A such thatM(X1) = A′(X1, X1)/I1,

M(Y1) = A′(Y1, Y1)/I2, M(Z) = 0 for Z indecomposable non-isomorphic to X1 or Y1;

M(a1) �= 0 and M(aj) = 0 for all j > 1. Clearly dimM ∈ s(D). We claim that M ∼= L

with L(a1) = 0. In fact if M is indecomposable then M ∼= M ′ with M ′ concentrated

in X1 since M(X1) �= 0, and M ∼= M ′′ with M ′′ concentrated in Y1, since M(Y1) �= 0.

Thus X1 = Y1 a contradiction, therefore M is decomposable M ∼= L = L1 ⊕ L2 with

L1(X1) ∼= M(X1), L1(Y1) = 0 and L2(X1) = 0, L2(Y1) ∼= M(Y1), consequently, L1(a1) = 0

and L2(a1) = 0, and, therefore L(a1) = 0, proving our claim.

Then there is an isomorphism (f 0, f 1) : M → L. Here f 0
X1

: M(X1) → L(X1) and

f 0
Y1

: M(Y1) → L(Y1) are isomorphisms. From (∗) we obtain

L(a1)f
0
X1

− f 0
Y1
M(a1) =

∑

s∈T1

L(hs)f
1(vs) +

∑

s∈T2

f 1(vs)M(gs) = 0,

consequently, f 0
Y1
M(a1) = 0, so M(a1) = 0, a contradiction.

(2) We are assuming that X1 is D-isolated, by Definition 7.4, A′(X1, X1) �= kidX1 .

Here we suppose A′(Y1, Y1) = kidY1, thenX1 �= Y1. If our claim is not true, we may assume

that I1 is a maximal ideal and A′(X1, X1)/I1 = k. Consider now M , the representation of

A, such that M(X1) = A′(X1, X1)/I1,M(Y1) = k, M(Z) = 0 for Z indecomposable non-

isomorphic to X1 and to Y1, M(a1) �= 0,M(aj) = 0 for all j ≥ 2. If M is indecomposable,

then M ∼= M ′ with M ′ concentrated in X1, since M(X1) �= 0, a contradiction to M(Y1) �=
0. If M is decomposable, we may construct a module L = L1 ⊕ L2 and lead to a

contradiction similar to (1).

(3) The proof is similar to (2). �

Remark 7.6. Let A be a non wild bocs and θ : A → B any of our reduction

functors such that it does not delete marked indecomposable objects. If A has layer

(A′;ω; a1, ..., an; v1, ..., vm) and AB has layer (B′;ωB; b1, ..., bn′ ;w1, ...wm′), then to each

marked X ∈ indA′ corresponds a marked Xm ∈ B′ such that θ(X) = Xm ⊕ Y with Y

either 0 or a sum of non-marked indecomposables. Conversely each marked object in B′

is equal to some Xm. Moreover,

i) if N ∈ AB-Mod is concentrated in Xm then θ∗(N) is concentrated in X.

ii) Suppose N ∈ AB-Mod is indecomposable with N(Xm) �= 0 and θ∗(N) ∼= M with

M concentrated in X, then there exists N ′ ∈ AB-Mod concentrated in Xm such that

N ′ ∼= N .

Lemma 7.7. If θ : A → B is a reduction functor and (e) : M
f→ E

g→ N is a proper

exact sequence in AB-mod, then θ∗(e) : θ∗(M)
θ∗(f)→ θ∗(E)

θ∗(g)→ θ∗(N) is a proper exact

sequence in A-mod (see Definition 4.6).

Proof. Let f : L → H be a morphism in AB-Mod. From the explicit description of θ∗
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for each of the reduction functors given in section 4 of [5] one can see that if (i, ωB)∗(f)

is a monomorphism (respectively an epimorphism), then (i, ω)∗θ∗(f) is a monomorphism

(respectively an epimorphism). We have dimE = dimM + dimN , then dimθ∗(E) =

tθ(dimE) = dimθ∗(M) + dimθ∗(N). Therefore, dimkθ
∗(E)(X) = dimkθ

∗(M)(X) +

dimkθ
∗(N)(X), for each X ∈ indA′. From this and our first observation we may conclude

that θ∗(e) is a proper exact sequence, proving our claim. �

8 An improvement of the Tame Theorem

In this section, we prove in Theorem 8.5 that given a tame layered bocs A and a positive

integer r, then there is a minimal layered bocs B and a functor F : B-Mod → A-

Mod, which is a composition of the reduction functors of section 7, such that for any M

representation of A, with dimension smaller than or equal to r there is a representation

N of B with F (N) ∼= M . This is an improvement of Theorem A in [5] which needs several

minimal bocses.

We recall that if A = (A, V ) is a bocs, then a family F of non-isomorphic indecom-

posable objects in A-mod is called a one-parameter family if there is T an A-k[x, f(x)−1]-

bimodule free of finite rank as right k[x, f(x)−1]-module, such that for all λ ∈ k which is

not a root of f(x), there is aN ∈ F with T⊗k[x,f(x)−1]k[x]/(x−λ) ∼= N and for each N ∈ F
there is an unique λ ∈ k which is not a root of f(x) with N ∼= T ⊗k[x,f(x)−1] k[x]/(x− λ).

Two one-parameter families F1 and F2 are said to be equivalent if there is only a

finite number of elements in F1 which are not isomorphic to objects in F2. It follows

from Theorem 5.6 of [6] that if A is not of wild representation type and D is a finite set of

dimension vectors there is only a finite number m(A,D) of non-equivalent one-parameter

families of objects in A-mod having dimension vectors in s(D). Observe that the number

of D-isolated objects X in A′ is smaller than or equal to m(A,D).

In the following, A0 = (A0, V0) is a fixed layered bocs which is not of wild represen-

tation type and D0 a fixed finite set of dimension vectors of A0. Consider the family

P of pairs (A,D) with A a bocs with layer (A′;ω; a1, ..., an; v1, ..., vm), D a finite set of

dimension vectors of A such that there exists θ : A0 → A a composition of reduction

functors with AA
0 = A and tθ(D) ⊂ D0. We denote by m0 the number m(A0, s(D0)).

Observe that since θ∗ is a full and faithful functor and A0 is not of wild representation

type, then A is not of wild representation type.

If (A,D) ∈ P, for each X ∈ indA′ which is D-isolated we have a one-parameter fam-

ily of representations of A. To different D-isolated indecomposables in indA′ correspond

non-equivalent one-parameter families of representations of A. By the definition of P,

there exists a composition of reduction functors θ : A0 → A with tθ(D) ⊂ D0. Therefore,

the image under θ∗ of the one-parametric family corresponding to a D-isolated indecom-

posable in A′ is a one-parametric family of A0 with dimension vector in s(D0). Therefore,

the number of D-isolated indecomposables in A′ is smaller or equal to m0.

Notation. Suppose A is a layered bocs which is not of wild representation type and

D is a finite set of dimension vectors of A. For j a non-negative integer, we denote by
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S(A,D)(j) the subset of D consisting of the d in D with ||d|| = j.

Take (A,D) a pair in P, we define a function c(A,D) : {−1, 0, 1, 2, ...,∞} → {0, 1, 2, ...}
in the following way:

c(A,D)(∞) = m0 − i(A,D)

with i(A,D) the number of indecomposables in A′ which are D-isolated.

c(A,D)(−1) = n

where n is the number of ai in the layer of A. For j a non-negative integer we put

c(A,D)(j) = CardS(A,D)(j).

The functions c(A,D) belong to H, the set of functions

f : {−1, 0, 1, ...,∞} → {0, 1, ..., }
with f(x) = 0 for almost all x ∈ {−1, 0, 1, ...,∞}.

If f, g are elements in H we put f < g if there is a s in {−1, 0, 1, ...,∞} such that

f(s) < g(s) and f(u) = g(u) for u ∈ {−1, 0, 1, ...,∞}, u > s. Clearly if we have an infinite

sequence of elements in H with:

f1 ≥ f2 ≥ .... ≥ fm ≥ fm+1 ≥ ....

then there exists l such that for all m > l, fm = fl.

Notation. If θ : A→ B is any of our reduction functors and D is a finite set of dimension

vectors of A, we say that θ∗ is D-covering if for each M ∈ A-mod with dimM ∈ D there

exists a N ∈ AB-mod with θ∗(N) ∼= M . If θ : A → B is a composition of our reduction

functors, we denote by DB the set of d′ ∈ Dim(AB) such that tθ(d′) ∈ D.

In the statement of the following Lemma, we use the notation of Remark 7.6.

Lemma 8.1. Let θ : A→ B be any of our reduction functors such that it does not delete

marked objects. Then if X is D-isolated, one has that Xm is DB-isolated. Conversely if

θ is a regularization or the deletion of an object W such that d(W ) = 0 for all d ∈ D
and Xm is DB-isolated then X is D-isolated.

Proof. Suppose X is D-isolated in A. We shall prove that Xm is DB-isolated in AB.

For this take an indecomposable N ∈ AB-mod, with dimN ∈ s(DB) and N(Xm) �= 0.

Consider M = θ∗(N), then following the notation of Remark 7.6, M(X) = N(Xm) ⊕
N(Y ), thus M(X) �= 0, moreover dimM ∈ s(D). Since X is D-isolated, then there

exists M ′ ∈ A-mod, with M ∼= M ′ and M ′ concentrated in X. Therefore, by Remark 7.6

there is a N ′ concentrated in Xm such that N ∼= N ′. From here we conclude that Xm is

DB-isolated. This proves the first part of our claim.

Suppose now that θ is a regularization. In this case tθ = id and DB = D. Suppose

Xm is DB-isolated, let us prove that X is D-isolated. Let M be an indecomposable in



R. Bautista et al. / Central European Journal of Mathematics

A-mod, with dimM ∈ s(D) and M(X) �= 0. Since θ∗ is an equivalence of categories,

there is a N ∈ AB-mod with θ∗(N) ∼= M . We have N(Xm) = M(X), and, therefore,

N(Xm) �= 0. Moreover, dimN ∈ s(DB). Since Xm is DB-isolated, there is a N ′ ∈ AB-

mod, concentrated in Xm such that N ′ ∼= N . We have M ′ = θ∗(N ′) is concentrated in

X, clearly M ∼= M ′, proving our claim.

A similar proof is done for the case θ is the deletion of an indecomposable W with

d(W ) = 0 for all d ∈ D. �

Lemma 8.2. Let θ : A → B be a reduction functor which is not an unraveling or the

deletion of some X for which there is a d ∈ D with d(X) �= 0. Suppose there is a d′ with

tθ(d′) ∈ D and ||tθ(d′)|| > ||d′||. Let

r = max{||tθ(d′)|| | tθ(d′) ∈ D, and ||tθ(d′)|| > ||d′||}.

Then for j > r,

c(AB,DB)(j) = c(A,D)(j) and c(AB,DB)(r) < c(A,D)(r).

Proof. Let us prove first that for j ≥ r, tθ induces an injective function

tθj : S(AB,DB)(j) → S(A,D)(j).

Take d′ ∈ S(AB,DB)(j), then ||tθ(d′)|| ≥ ||d′|| = j ≥ r. By definition of r, ||tθ(d′)|| =

||d′|| = j. Thus, tθ induces a function tθj . If tθj (d
′) = tθj(d

′′), we have ||tθ(d′)|| = ||d′|| and

||tθ(d′′)|| = ||d′′||, therefore d′ = d′′. Consequently, tθj is an injective function.

Suppose j > r. Take d ∈ S(A,D)(j), since θ∗ does not delete indecomposable objects

X ∈ indA′ for which there is a f ∈ D with f(X) �= 0 then there is a d′ ∈ S(AB,DB) with

tθ(d′) = d. We have r < ||d|| = ||tθ(d′)|| ≥ ||d′||. By definition of r, ||tθ(d′)|| = ||d′|| = j.

Thus d′ ∈ S(AB,DB)(j). Consequently, tθj is a bijective function and we have proved the

first part of our claim.

For the second part of our claim, take d′ ∈ DB such that r = ||tθ(d′)|| > ||d′||.We have

d = tθ(d′) in S(A,D)(r). Let us prove that d is not in the image of tθr : S(AB,DB)(r) →
S(A,D)(r). If θ is a regularization or deletion of objects, tθ is an injective function and

if d = tθr(d
′′), with ||d′′|| = r, since tθ is injective we have d′ = d′′, a contradiction.

We only need consider the case in which θ is an edge reduction of a1 : X1 → Y1. Since

||d|| = ||tθ(d′)|| > ||d′||, d(X1)d(Y1) �= 0 and if d = tθ(d′′) then r = ||tθ(d′′)|| > ||d′′||,
proving our claim. �

Lemma 8.3. Suppose (A,D) is a pair in P. Let θ : A → B be the deletion of a non-

marked indecomposable X ∈ A′, such that for all d ∈ D, d(X) = 0, then c(AB,DB)(u) =

c(A,D)(u) for all u ∈ {0, 1, ..,∞}.

Proof. By Lemma 8.1 c(AB,DB)(∞) = c(A,D)(∞). On the other hand, by our hy-

pothesis, tθ induces a bijective function tθ : DB → D and ||tθ(d)|| = ||d||, for all d ∈ Dθ.
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Therefore, c(AB,DB)(j) = c(A,D)(j) for all non-negative integers j. This proves our

claim. �

Lemma 8.4. Let (A,D) be a pair in P. Suppose that for each X ∈ indA′ there exists d ∈
D with d(X) �= 0. Then, if A is not a minimal bocs, there is a composition of reduction

functors θ : A → B, with θ∗ a s(D)-covering functor, such that c(AB,DB) < c(A,D),

or there is a change of layer of A such that if c′(A,D) is the corresponding function we

have c′(A,D) < c(A,D).

Proof. (1) Suppose a1 : X1 → X1 and δ(a1) = 0. Since A is not of wild representation

type, then by Proposition 9 of [7] we have A′(X1, X1) = kidX1 . Take B′ = A′(a1) and

change the layer (A′;ω; a1, ..., an; v1, ...vm) by the layer (B′;ω; a2, ..., an; v1, ..., vm). We

have B′(X1, X1) = k[a1]idX1. Clearly if W is an object non isomorphic to X1 in indA′,
this object is D-isolated with respect to the original layer of A if and only if it is D-

isolated with respect to the new layer. Here it is possible that X1, which is not marked

with respect to the original layer of A, becomes a D -isolated object with respect to the

new layer. Therefore, if we denote by c′(A,D) the corresponding function with respect

to the new layer we have c′(A,D)(∞) ≤ c(A,D)(∞).

The norm of a dimension vector does not depend of the choice of the layer, therefore,

c′(A,D)(j) = c(A,D)(j) for all non-negative integers j. Moreover,

c′(A,D)(−1) = c(A,D)(−1) − 1.

Therefore, c′(A,D) < c(A,D).

(2) Suppose there is a marked X ∈ indA′ which is not D-isolated. Take S =
⋃

d∈s(D) S(X,d), with S(X,d) the sets of Proposition 7.2. Take r the maximal of the

numbers d(X) with d ∈ s(D). Consider now the unraveling θ : A→ B in X with respect

to r and S. Clearly, the functor θ∗ : AB-Mod → A-Mod is a s(D)-covering functor. We

have θ(X) = Xm⊕⊕
i,j Z

i
i,j. We shall see thatXm is DB-isolated. TakeN an indecompos-

able in AB-mod with N(Xm) �= 0 and dimN ∈ s(DB), then dimθ∗(N) ∈ s(D). We have

θ∗(N)(X) = N(Xm) ⊕ ⊕
i,j N(Zi,j)

i �= 0. Take any eigenvalue of N(x), this is an eigen-

value of θ∗(N)(x) which is not in S, therefore, it is not in S(X,d) with d = dimθ∗(N).

Therefore, by Proposition 7.2, θ∗(N) ∼= M , with M concentrated in X. But this implies

that M(x) has only one eigenvalue which is not in S. Therefore, M ∼= θ∗(N ′) with N ′

concentrated in Xm. But N ∼= N ′, this proves that Xm is DB-isolated. We have

c(AB,DB)(∞) ≤ c(A,D)(∞)− 1.

Therefore, c(AB,DB) < c(A,D).

(3) Suppose a1 : X1 → Y1 with δ(a1) = 0 and X1 �= Y1. Take θ : A→ B the reduction

of a1. By Lemma 8.1, c(AB,DB)(∞) ≤ c(A,D)(∞). If there is a d′ ∈ DB such that

||tθ(d′)|| > ||d′||, by Lemma 8.2, c(AB,DB) < c(A,D). On the other hand if for all

d′ ∈ DB, ||tθ(d′)|| = ||d′||, then again by Lemma 8.2, c(AB,DB)(j) = c(A,D)(j) for

all non-negative integers j. We have that for all d ∈ D, d(X1)d(Y1) = 0. This implies



R. Bautista et al. / Central European Journal of Mathematics

that for all d′ ∈ DB, d′(Z2) = 0. Take θ : B → C the deletion of Z2. By Lemma 8.3

we have c(((A)B)C , (DB)C)(u) = c(AB,DB)(u) = c(A,D)(u) for all u �= −1. Moreover,

c(((A)B)C , (DB)C)(−1) = c(A,D)(−1) − 1, therefore, c((AB)C), (DB)C) < c(A,D).

(4) δ(a1) = v1. In this case take θ : A → B the regularization of a1. As in the above

case if there is a d′ ∈ DB with ||tθ(d′)|| > ||d′||, then c(AB,DB) < c(A,D). On the other

hand if for all d′ ∈ DB, ||tθ(d′)|| = ||d′||, by Lemma 8.1 c(AB,DB)(∞) = c(A,D)(∞).

By Lemma 8.2, c(AB,DB)(j) = c(A,D)(j) for all non-negative integers j. Moreover,

c(AB,DB)(−1) = c(A,D)(−1) − 1. Therefore, c(AB,DB) < c(A,D).

(5) δ(a1) =
∑

s∈T rsvs with a1 : X1 → Y1, T the set of s such that vs ∈ V (X1, Y1)

and rs ∈ A′(Y1, Y1) ⊗k (A′(X1, X1))
op = H. If there is a marked object in indA′ which

is not D-isolated we may proceed as in (2). Therefore, we may assume that all marked

objects in indA′ are D-isolated. The ring H is isomorphic either to k, or to k[x, f(x)−1],

or to k[x, y, f(x)−1, g(y)−1]. Let I be the ideal of H generated by the elements {rs}s∈T .

If I �= H , then A′(X1, X1) �= kidX1 or A′(Y1, Y1) �= idY1 . Moreover there are ideals

I2 ⊂ A′(Y1, Y1) and I1 ⊂ A′(X1, X1) with I ⊂ I2 ⊗k (A′(X1, X1))
op + A′(Y1, Y1) ⊗k I1,

I2 �= A′(Y1, Y1) and I1 �= A′(X1, X1). Thus, δ(a1) ∈ I2V (X1, Y1) + V (X1, Y1)I1 with

I2 �= A′(Y1, Y1) and I1 �= A′(X1, X1).

Then if A′(X1, X1) �= kidX1 and A′(Y1, Y1) �= kidY1 , both X1 and Y1 are D-isolated.

But this contradicts (1) of Lemma 7.5 (recall that A is not of wild representation type).

If A′(X1, X1) �= kidX1 and A′(Y1, Y1) = kidY1, then X1 is marked, so it is D-isolated,

we have I1 �= A′(X1, X1), and I2 = 0, but this contradicts (2) of Lemma 7.5. In case

A′(X1, X1) = kidX1, then Y1 is a marked object in indA′, so it is D-isolated and this

contradicts (3) of Lemma 7.5.

Therefore, I = H and 1 =
∑

s∈T uiri. This implies that there is a free basis of

V (X1, Y1), with one of their elements equal to δ(a1), then we may apply case (4). �

Theorem 8.5. Let A0 = (A0, V0) be a layered bocs which is not of wild representation

type. Then given a positive integer r there is a composition of reduction functors θ :

A0 → B with AB a minimal layered bocs such that for all M ∈ A0-mod with |M | ≤ r

there exists N ∈ B-Mod with θ∗(N) ∼= M.

Proof. Take D0 the set of d ∈ Dim(A0) such that
∑

X∈indA′
0
d(X) ≤ r, D0 is a finite

set. Denote by P the family of pairs (A,D), with A a layered bocs, D a finite subset of

Dim(A) such that there is a functor, composition of reduction functors θ : A0 → B with

tθ(D) ⊂ D0 and θ∗ a s(D0)-covering functor.

Let A = (A, V ) be a bocs with layer (A′;ω; a1, ..., an; v1, ..., vm) and D be a set of

dimension vectors of A, such that (A,D) is in P.

For X ∈ indA′ we denote by dX the dimension vector of A such that dX(X) = 1 and

dX(Z) = 0 for Z ∈ indA′ with Z �= X.

We will consider non-empty sets D of dimension vectors of A with the following two

conditions:

(a) If d ∈ D and d′ < d, then d′ ∈ D.
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(b) If X is a marked object in indA′ then dX ∈ D.

Let θ : A → B be a reduction functor which does not delete marked objects of

indA′ and such that θ∗ : Mod-AB → Mod-A is a s(D)-covering functor, we claim

that if D satisfies properties (a) and (b), then DB also satisfies these properties. Let

(B′;ω; b1, ..., bt;w1, ..., ws) be a layer for AB.

Here θ∗ is a s(D)-covering functor, then DB is a non-empty set. Suppose now that D
satisfies properties (a) and (b). Property (a) for DB, follows from the fact that d′ < d in

D implies tθ(d′) ≤ tθ(d).

For proving property (b) of DB, suppose W is a marked object in B′. Then following

the notation of Lemma 7.6, W = Xm for some marked object X ∈ indA′. Consider

dXm , dimension vector of AB. Then for Z ∈ indA′, Z �= X we have θ(Z) =
⊕

i Zi

with Zi ∈ indB′, Zi �= Xm. Then tθ(dXm)(Z) =
∑

i dXm(Zi) = 0. We have θ(X) =

Xm⊕⊕
j Yj with Yj ∈ indB′, Yj �= Xm, then tθ(dXm)(X) = dXm(Xm) = 1. Consequently,

tθ(dXm) = dX ∈ D, thus dXm ∈ DB, proving our claim.

Now, suppose D satisfies properties (a) and (b), and θ : A → B is the deletion of all

objects Z ∈ indA′ such that d(Z) = 0 for all d ∈ D. Since D satisfies property (b), then

θ does not delete marked objects. Therefore, DB satisfies properties (a) and (b).

Now, if AB is not a minimal bocs, by Lemma 8.4 there is a reduction functor ρ : B →
A1 such that ρ∗ is a s(DB)-covering functor with

c((AB)A1, (DB)A1) < c(AB,DB),

or there exists a new layer for AB such that

c′(AB,DB) < c(AB,DB).

By the proof of Lemma 8.4, we know that ρ does not delete marked objects, then

(DB)A1 satisfies properties (a) and (b). Now for any Z ∈ indB′ there exists some d ∈ DB

with d(Z) �= 0, thus dZ ≤ d, so by property (a), dZ ∈ DB, then DB also satisfies property

(b) with respect to the new layer.

Then starting from (A0,D0), we can construct a sequence of composition of reduction

functors:

A0
θ0→ A1

θ1→ A2 → ...
θl−1→ Al,

with sets of dimension vectors Di = (Di−1)
Ai of Ai = (Ai−1)

Ai having conditions (a) and

(b), such that all functors θ∗i are s(Di)-covering functors. Moreover, we have a strictly

decreasing sequence in H,

c(A0,D0) > c(A1,D1) > ... > c(Al,Dl).

In H we can not have infinite strictly decreasing sequences, so there is a sequence of

reduction functors as before with Al a minimal bocs, proving our result. �
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9 Hom-spaces in D(Λ)-mod and in P (Λ)

We may observe that if Λ1 and Λ2 are two Morita-equivalent finite-dimensional k-algebras,

then Theorem 1.2 is valid for Λ1 if and only if it is valid for Λ2. Therefore, without loss

of generality, we assume in the rest of the paper that Λ is a basic algebra.

Assume k is an algebraically closed field and 1 =
∑n

i=1 ei is a decomposition of the

unit element of Λ as a sum of pairwise orthogonal primitive idempotents. Then we

have ΛΛ =
⊕n

i=1 Λei a decomposition as sum of indecomposable projective Λ -modules

and Λ = S ⊕ J a decomposition as a direct sum of S-S-bimodules, with J = rad(Λ),

S = ke1⊕...⊕ken a basic semisimple algebra. We can construct a basis T = {α1, ..., αm} of

J with αj ∈ es(j)radΛet(j), inductively extending a basis of J i to J i−1 by adding elements

each of which lies in esJet for some s and t. In the following, if L is a right S-modulo we

denote its dual with respect to S by L∗ = HomS(L, S). For each element αj ∈ es(j)Tet(j)

we define the element α∗
j ∈ J∗, by α∗

j (αi) = 0 for αi �= αj and α∗
j (αj) = et(j), clearly

α∗
j ∈ et(j)J

∗es(j) the elements α∗
j form a basis for J∗.

In the following, if U1, U2, U3 are k-vector spaces we denote by

⎛

⎜
⎝
U1 0

U2 U3

⎞

⎟
⎠, the set of

matrices of the form

⎛

⎜
⎝
u1 0

u2 u3

⎞

⎟
⎠, with ui ∈ Ui, i = 1, 2, 3. With the usual sum of matrices

and multiplication of scalars in k by matrices, the above set is a k-vector space.

In order to define the Drozd’s bocs of Λ we need to consider the following two matrix

algebras A =

⎛

⎜
⎝
S 0

J∗ S

⎞

⎟
⎠, and A′ =

⎛

⎜
⎝
S 0

0 S

⎞

⎟
⎠. We are going to define a coalgebra V over

A which is isomorphic to the coalgebra given in Proposition 6.1 of [5]. First consider the

morphism of S-S-bimodules:

m : J∗ ν∗→ (J ⊗S J)∗ ∼= J∗ ⊗S J
∗

where ν : J⊗S J → J is the multiplication. We have the k-vector spaces W0 =

⎛

⎜
⎝

0 0

J∗ 0

⎞

⎟
⎠,

and W1 =

⎛

⎜
⎝
J∗ 0

0 J∗

⎞

⎟
⎠, the elements of both vector spaces can be multiplied as matrices

by the right and the left by elements of A′, thus W0 and W1 are A′-A′-bimodules.

We have a morphism of A′-A′-bimodules,

m : W1 →W1 ⊗A′ W1



R. Bautista et al. / Central European Journal of Mathematics

such that its composition with the isomorphism

W1 ⊗A′ W1
∼=

⎛

⎜
⎝
J∗ ⊗S J

∗ 0

0 J∗ ⊗S J
∗

⎞

⎟
⎠ ,

is the map that sends

⎛

⎜
⎝
h 0

0 g

⎞

⎟
⎠ to

⎛

⎜
⎝
m(h) 0

0 m(g)

⎞

⎟
⎠ .

Now, consider the k-vector space V =

⎛

⎜
⎝

J∗ 0

M ⊕M J∗

⎞

⎟
⎠, with M = J∗ ⊗S J

∗, this is

an A-A-bimodule with the following actions of A over V :

⎛

⎜
⎝
s1 0

g s2

⎞

⎟
⎠

⎛

⎜
⎝

h1 0

(w1, w2) h2

⎞

⎟
⎠ =

⎛

⎜
⎝

s1h1 0

(s2w1 + g ⊗ h1, s2w2) s2h2

⎞

⎟
⎠ ,

⎛

⎜
⎝

h1 0

(w1, w2) h2

⎞

⎟
⎠

⎛

⎜
⎝
s1 0

g s2

⎞

⎟
⎠ =

⎛

⎜
⎝

h1s1 0

(w1s1, w2s1 + h2 ⊗ g) h2s2

⎞

⎟
⎠ .

The k-linear map δ : A→ V given by

δ(

⎛

⎜
⎝
s1 0

h s2

⎞

⎟
⎠) =

⎛

⎜
⎝

0 0

(m(h),−m(h)) s2

⎞

⎟
⎠ ,

is a derivation, thus it gives an extension of A-A-bimodules:

0 → V
i→ V

ε→ A→ 0

where V = V ⊕ A as right A-modules, and putting ω = (0, 1), the left action of A over

V is given by a(v + ωb) = av + δ(a)b+ ωab, for a, b ∈ A, v ∈ V . Here V is generated by

W1 as A′-A′-bimodule. We have:

(a) A ∼= W⊗
0 = A′ ⊕W0.

(b) The multiplication map A⊗A′ W1 ⊗A′ A→ V is an isomorphism.

We have a morphism of A-A-bimodules μ : V → V ⊗A V , with μ(ω) = ω ⊗ ω and for

v ∈W1, μ(v) = v ⊗ ω + ω ⊗ v + λ(v), where λ is the composition of morphisms:

W1
m→W1 ⊗A′ W1 → V ⊗A V → V ⊗A V.

The A-A-bimodule V is a coalgebra over A with counit ε and comultiplication μ.

We have 1 =
∑n,2

i=1,j=1 fi,j a decomposition of the unit of A as a sum of pairwise

orthogonal primitive idempotents, where fi,2 =

⎛

⎜
⎝
ei 0

0 0

⎞

⎟
⎠ and fi,1 =

⎛

⎜
⎝

0 0

0 ei

⎞

⎟
⎠.
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Denote by D the full subcategory of A-proj whose objects are all finite direct sums

of objects Afi,j . By D′ we denote the subcategory of D with the same objects as D and

such that D′(X,X) = kidX for all X ∈ indD and D′(X, Y ) = 0 for X, Y ∈ indD with

X �= Y . If Af and Ag are in indD, and x ∈ fAg we denote by νx : Af → Ag the right

multiplication by x.

Now, if W is an A-A-bimodule we denote by ϑ(W ) the D-D bimodule given by

ϑ(W )(Af,Ag) = fWg and if νx : Af ′ → Af , νy : Ag → Ag′ are morphisms then

ϑ(W )(νx, νy) : ϑ(W )(Af,Ag) → ϑ(W )(Af ′, Ag′) is given by ϑ(W )(νx, νy)(w) = xwy for

w ∈ ϑ(W )(Af,Ag). Similarly, for L a right A-module and M a left A-module we define

functors, ϑ(L) : D → Mod-k and ϑ(M) : Dop → Mod-k. If f : W1 → W2 is a morphism

of A-A-bimodules we have an induced morphism ϑ(f) : ϑ(W1) → ϑ(W2). If g : W2 →W3

is a morphism of A-A-bimodules then ϑ(f2f1) = ϑ(f2)ϑ(f1). The morphisms between

left A-modules and right A-modules induce also morphisms between the corresponding

functors.

Fixed L a right A-module we have F : A-mod → Mod-k, given in objects by F (M) =

ϑ(L)⊗Dϑ(M) and if f : M1 →M2 is a morphism of left A-modules, then F (f) = 1⊗ϑ(f).

The functor F is right exact and commutes with direct sums. Consequently, F ∼= W ⊗A

M , with W the right A-module ϑ(L)(A) ∼= L, therefore ϑ(L) ⊗D ϑ(M) ∼= L ⊗A M an

isomorphism natural in L and M .

Now, suppose V1 and V2 are A-A-bimodules then for Af,Ag ∈ indD we have (ϑ(V1)⊗D

ϑ(V2))(Af,Ag) = ϑ(V1)(Af,−)⊗D ϑ(V2)(−, Ag) ∼= ϑ(fV1)⊗D ϑ(V2g) ∼= fV ⊗A V g. Now,

it is easy to see that in fact we have :

(c) ϑ(V1) ⊗D ϑ(V2) ∼= ϑ(V1 ⊗A V2)

The morphism of A-bimodules μ : V → V ⊗AV induces a morphism ofD-D-bimodules

ϑ(μ) : ϑ(V ) → ϑ(V )⊗Dϑ(V ). In a similar way the morphism of A-A bimodules ε : V → A

induces a morphism of D-D-bimodules ϑ(ε) : ϑ(V ) → ϑ(AAA) ∼= D. Now it is clear that

D(Λ) = (D, VD) with VD = ϑ(V ) is a bocs, the Drozd’s bocs of Λ.

The bocs D(Λ) is isomorphic to the one given in Theorem 4.1 of [8] (see also the bocs

given in the proof of Theorem 11 in [7]). We have now a grouplike ωD relative to D′,
given by ωAf = fωf ∈ ϑ(V )(Af,Af). Observe that we have ϑ(μ)(ωAf) = ωAf ⊗ ωAf .

The set of elements ωAf is called a normal section in [8].

We are now going to construct a layer for D(Λ), with this purpose for each i = 1, ..., n,

consider the following elements of D and VD = ϑ(V ),

bi = νx(i) ∈ D(Aft(i),1, Afs(i),2) = HomA(Aft(i),1, Afs(i),2), x(i) =

⎛

⎜
⎝

0 0

α∗
i 0

⎞

⎟
⎠; vi,1 =

⎛

⎜
⎝

0 0

0 α∗
i

⎞

⎟
⎠ ∈ ϑ(V )(Aft(i),1, Afs(i),1) = ft(i),1V fs(i),1, vi,2 =

⎛

⎜
⎝
α∗

i 0

0 0

⎞

⎟
⎠ , an element in ϑ(V )(Aft(i),2, Afs(i),2) =

ft(i),2V fs(i),2.

Consider the set L = (D′;ωD; b1, ..., bn; v1,1, ..., vn,1, v1,2, ..., vn,2). We will see that L is
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a layer for D(Λ). Here D′ is a minimal category, so L.1 is satisfied. Properties (a), (b)

and (c) imply L.2 and L.4. By (1) of Proposition 3.1 of [8], we have L.3.

For proving L.5 observe that m(α∗
i ) =

∑
s,t α

∗
i (αsαt)α

∗
t ⊗ α∗

s , then

δ1(bi) = V (1, bi)ωXt(i),1
− V (bi, 1)ωXs(i),2

= −δ(xi) =

∑

s,t

α∗
i (αsαt)(vt,1xs − xtvs,2) =

∑

s,t

α∗
i (αsαt)(bsvt,1 − vs,2bt).

Then by our choice of the αi, we have α∗
i (αsαt) = 0 for s ≥ i or t ≥ i. This proves L.5,

therefore L is a layer for D(Λ).

In the following we put D(Λ) = D and Xi,j = Afi,j for i = 1, ..., n; j = 1, 2.

There is an equivalence of categories Ξ : D-Mod → P 1(Λ). If M ∈ D- Mod then,

Ξ(M) :

n⊕

i=1

Λei ⊗k M(X1,i) →
n⊕

i=1

Λei ⊗k M(X2,i),

such that for mi ∈M(X1,i), and ci ∈ Λei,

Ξ(M)(
n∑

i=1

ci ⊗mi) =
n∑

j=1

cs(j)αj ⊗M(bj)(ms(j)).

For a morphism of the form f = (f 0, f 1) : M → N in D-Mod, Ξ(f) is given by the

pair of morphisms:

Ξ(f)u :
n⊕

i=1

Λei ⊗k M(Xu,i) →
n⊕

i=1

Λei ⊗k N(Xu,i), u = 1, 2

such that for mi ∈M(Xi,u) and ci ∈ Λei we have

Ξ(f)u(
n∑

i=1

ci ⊗mi) =
n∑

i=1

ci ⊗ f 0
Xi,u

(mi) +
n∑

j=1

cs(j)αj ⊗ f 1(vj,u)(ms(j)).

Observe that if M is a proper D-k(x)-bimodule then Ξ(M) is an object in P 1(Λk(x)), and

if f : M → N is a morphism between proper D-k(x)-bimodules then Ξ(f) is a morphism

in P 1(Λk(x)). Therefore Ξ induces an equivalence:

Ξk(x) : D-k(x)-Modp → P 1(Λk(x)).

Lemma 9.1. There are constants l1 and l2 such that if we have an almost split sequence

in D(Λ)-mod starting in H ′ and ending in H such that ΞH is not E-injective, then

|H ′| ≤ l1|H| and |H| ≤ l2|H ′|.

Proof. We put l = dimkΛ. Suppose ΞH = f : P1 → P2, here ΞH is indecomposable and

it is not E-injective. Therefore, ΞH has not direct summands of the form P → 0, this
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implies that kerf is contained in radP1, then f induces a monomorphism P1/radP1 →
Imf/radImf , consequently dimk(P1/radP1) ≤ dimkImf ≤ dimkP2. Then we have:

dimkCok(ΞH) ≤ dimkP2 ≤ dimkP1 + dimkP2 ≤ |H|l.

Moreover:

dimkP2 ≤ ldimk(P2/radP2) ≤ ldimkCok(ΞH)

and |H| = dimk(P1/radP1) + dimk(P2/radP2) ≤ dimkP2 + dimkCok(ΞH)

≤ (1 + l)dimkCok(ΞH).

On the other hand, there is a constant l0 such that for all non projective indecompos-

able M ∈ Λ-mod, dimkM ≤ l0dimkDtrM (see proof of Theorem D in [5]). By Proposi-

tions 3.10 and 3.13, Cok(ΞH ′) ∼= DtrCok(ΞH). Then dimkCok(ΞH
′) ≤ l0dimkCok(ΞH).

Therefore :

|H ′| ≤ dimk(Cok(ΞH
′))(1 + l) ≤

l0dimk(Cok(ΞH))(1 + l) ≤ l0|H|l(1 + l) = l1|H|.
The second part of our statement is proved in a similar way. �

Theorem 9.2. Let D = (D, V ) be the Drozd’s bocs of a tame algebra Λ. Then (D-

Mod, ED) is an exact category, with ED the class of proper exact sequences. This exact

category restricted to D-mod has almost split sequences in the sense of Definition 2.5.

Given a positive integer r, there is a composition of reduction functors θ : D → B with

B = (B, VB) = DB a minimal layered bocs having the following properties.

(i) For any indecomposable M ∈ D-mod with |M | ≤ r there is a N ∈ B-mod with

M ∼= θ∗(N). Moreover any proper almost split sequence in D-mod starting or ending in

an indecomposable M with |M | ≤ r is the image under θ∗ of an almost split sequence (in

the sense of Definition 2.1) in B-mod.

(ii) The image under θ∗ of a proper exact sequence in B-mod is a proper exact sequence

in D-mod.

(iii) The image under θ∗ of a proper almost split sequence in B-mod is an almost split

sequence in D-mod.

(iv) Let Z1, ..., Zs be all the marked objects of indB with

Ri = B(Zi, Zi) = k[x, hi(x)
−1], hi(x) ∈ k[x],

and M(Zi, p,m), QZi
, the indecomposable objects in B-Mod defined in section 5 and 6

respectively. Then Bi = HomB(Zi,−) is a B-Ri-bimodule such that QZi
∼= Bi ⊗Ri

k(x)

and M(Zi, p,m) ∼= Bi ⊗Ri
Ri/(p

m).

Take the D-Ri-bimodule Di = θ∗(Bi), then

θ∗(QZi
) ∼= Di ⊗Ri

k(x), and θ∗(M(Zi, p, n)) ∼= Di ⊗Ri
Ri/(p

m).

Moreover, dim(Di ⊗Ri
Ri/(p

m)) = mdimk(x)(Di ⊗Ri
k(x)).
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Proof. There is an equivalence Ξ : D-Mod → P 1(Λ), observe that if (a) is a pair of

composable morphisms X → E → Y in D-Mod, Ξ(a) is a sequence in the class E in

P 1(Λ) if and only if (a) is a proper exact sequence. Therefore if E1 is the class of proper

exact sequences in D-mod, the pair (D-mod, E1) is an exact category with almost split

sequences, moreover if (a) is a pair of composable morphisms in D-mod, Ξ(a) is an almost

split E-sequence if and only if (a) is an almost split E1-sequence.

Take the number r(1 + l), with l = max{l1, l2}, l1, l2 the constants of Lemma 9.1.

Then by Theorem 8.5 there is a composition of reduction functors θ1 : D → C with

C = (C, VC) = DC a minimal bocs with layer (C ′;ω;w1, ..., ws) such that the full and

faithful functor θ∗1 : C-Mod → D-Mod has the property that for all M ∈ D-Mod with

|M | ≤ r, there is a N ∈ C-Mod with (θ1)
∗(N) ∼= M . Take now θ2 : C → B the deletion

of all marked indecomposable objects Z ∈ indC with |tθ1(dZ)| > r, where dZ ∈ Dim(C)

with dZ(Z) = 1, and dZ(Z ′) = 0 for Z ′ �= Z, Z ′ ∈ indC. Then we have θ = θ2θ1 : D → B

and B = (B, VB) = ((D)C)B = DB is a minimal layered bocs.

(i) Take an indecomposable object M ∈ D-mod with |M | ≤ r, then there is a N1 ∈ C-

mod with (θ1)
∗(N1) ∼= M . Since N1 is an indecomposable object in the minimal bocs

C, then either M ∼= M(Z, p,m) for some marked Z ∈ indC or M ∼= SZ for some non-

marked Z ∈ indC. In the first case |tθ1(dimN1)| = m|tθ1(dZ)| = |dimM | ≤ r. Thus,

|tθ1(dZ)| ≤ r. Consequently, in both casesN1(W ) = 0 forW a marked object in indC with

|tθ1(dW )| > r, then there is a N ∈ B-mod with N1
∼= (θ2)

∗(N). Therefore M ∼= θ∗(N)

proving the first part of (i). For the second part take M → E → L a proper almost

split sequence in D-mod, then if either M or L have dimension equal or smaller than r,

all indecomposable summands of the other terms of the sequence have dimension equal

or smaller than (l + 1)r, consequently our proper almost split sequence is isomorphic to

the image under (θ1)
∗ of an almost split sequence (in the sense of Definition 2.1) (a1) :

M1 → E1 → L1 in C-mod. Then if M1 or L1 is an object of the form M(Z, p,m), with Z

a marked object in indC, we have M1
∼= L1 and E1 = M(Z, p,m− 1) ⊕M(Z, p,m+ 1).

Here |M(Z, p,m)| ≤ r implies |tθ1(dZ)| ≤ r, then the sequence (a1) is the image under

(θ2)
∗ of an almost split sequence in B-mod. In case that M1 or L1 is an object of the form

SZ for a non marked object in indC, then all other terms of (a1) are sums of objects of

the form SW with W a non-marked object in indC. Therefore, again (a1) is the image

under (θ2)
∗ of an almost split sequence in B-mod. This proves the second part of (i).

(ii) Follows from Lemma 7.7.

(iii) Take now Z a marked indecomposable in B and M(Z, p, 1) ∈ B-mod with p a

fixed prime element in RZ = B(Z,Z). By definition of B we have |tθ(dZ)| ≤ r and

θ2(Z) = Z ∈ C. There is a non-trivial proper sequence ending and starting in M(Z, p, 1),

since θ∗ is a full and faithful functor, there is a non-trivial proper exact sequence ending

and starting in θ∗(M(Z, p, 1)). Then H = θ∗(M(Z, p, 1)) is not E1-projective. Therefore,

there is an almost split sequence (a) : H ′ → H0 → H . By the second part of (i) the

sequence (a) is the image under θ∗ of an almost split sequence (b) in B-mod. Then using

Proposition 2.6 we obtain (iii).

(iv) The first part follows from the definition of θ∗. For proving the second part take
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X an indecomposable object in D and assume θ(X) =
⊕t

j=1 njZj , where Z1, ..., Zj are

all indecomposable objects of B. Then for each i ∈ {1, ..., s}:

dimk(x)(θ
∗Bi ⊗Ri

k(x))(X) = dimk(x)(B(Zi, θ(X)) ⊗Ri
k(x)) =

dimk(x)(R
ni
i ⊗Ri

k(x)) = ni.

On the other hand:

tθ(dZi
)(X) = dZi

(θ(X)) = ni.

Therefore tθ(dZi
) = dim(θ∗Bi ⊗Ri

k(x)). Then

dim(Di ⊗Ri
Ri/(p

m)) = dim(θ∗(M(Zi, p,m)) = mtθ(dZi
),

proving (iv). �

In the following we put Λk(x) = Λ ⊗k k(x).

Definition 9.3. If R is a k-algebra a P (Λ)-R-bimodule is a morphism X = fX : PX →
QX , where PX and QX are Λ-R-bimodules which are projectives as left Λ-modules and fX

is a morphism of Λ-R-bimodules. If Z is a left R-module, X ⊗R Z = f ⊗ 1 : PX ⊗R Z →
QX ⊗R Z.

We recall from section 3 that if X : PX → QX is an object in p1(Λ), then dimX =

(dim(topPX),dim(topQX)). Then if H ′ ∈ D-mod, dim(ΞH ′) = dimH ′. In case X ∈
p1(Λk(x)) we put dimk(x)X = (dimk(x)(topPX),dimk(x)(topQX)), then if H ′ ∈ D-k(x)-

mod, we have dimk(x)(ΞH
′) = dimk(x)H

′.
An indecomposable object H = fH : PH → QH in P (Λ) which is not in p(Λ) is

called generic if PH and QH have finite length as EndP (Λ)(H)-modules. A structure of

P (Λ)-k(x)-bimodule for H is called admissible in case EndP (Λ)(H) = k(x)m ⊕R, where

R = radEndP (Λ)(H) and k(x)m denotes the set of morphisms h : H → H of the form

h = (m(x)idPH
, m(x)idQH

) with m(x) ∈ k(x).

Definition 9.4. Suppose T̂ = fT̂ : PT̂ → QT̂ is a P (Λ)-R-bimodule with R a finitely

generated localization of k[x] and PT̂ , QT̂ finitely generated as right R-modules. We say

that T̂ is a realization of H if T̂ ⊗R k(x) ∼= H . The realization T̂ of H over R is called

good if:

(i) PT̂ and QT̂ are free as right R-modules;

(ii) the functor T̂ ⊗R − : R-Mod → P (Λ) preserves isomorphism classes and indecom-

posable objects;

(iii) for p a prime in R, and n a positive integer T̂ ⊗R Sp,n is an almost split sequence,

where Sp,n is the sequence given in (iii) of Definition 1.1.

We are now ready for giving a version of Theorem 1.2 for P (Λ).
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Theorem 9.5. Let Λ be a finite-dimensional algebra over an algebraically closed field k

of tame representation type. Let r be a positive integer. Then there are indecomposable

objects in p1(Λ), L̂1, ..., L̂t with |L̂j| ≤ r for j = 1, ..., t and generic objects in P 1(Λ) with

admissible structure of P (Λ)-k(x)-bimodules, H1, ..., Hs such that for j = 1, ..., s, Hj has

a good realization T̂j over Rj, a finitely generated localization of k[x], with the following

properties:

(i) If X is an indecomposable object in p1(Λ) with |X| ≤ r, then either X ∼= L̂j for

some j ∈ {1, ..., t} or X ∼= T̂i ⊗Ri
Ri/(p

m) for some i ∈ {1, ..., s}, some prime element

p ∈ Ri and some natural number m.

(ii) If X = T̂i ⊗Ri
Ri/(p

m), Y = T̂j ⊗Rj
Rj/(q

n), with i, j ∈ {1, ..., s}, p a prime in Ri,

q a prime in Rj, and L̂u with u ∈ {1, ..., t}, then

dimkrad∞
p1(Λ)(X, Y ) = mndimk(x)radp1(Λk(x))(Hi, Hj),

dimkrad∞
p1(Λ)(X, L̂u) = mdimk(x)radp1(Λk(x))(Hi, L̂

k(x)
u ),

dimkrad∞
p1(Λ)(L̂u, X) = mdimk(x)radp1(Λk(x))(L̂

k(x)
u , Hi).

(iii) If X = T̂i ⊗Ri
Ri/(p

m), Y = T̂j ⊗Rj
Rj/(q

n), then if i = j and p = q,

Homp1(Λ)(X, Y ) ∼= HomRi
(Ri/(p

n), Ri/(p
m)) ⊕ rad∞

p1(Λ)(X, Y ).

If i �= j or i = j and (p) �= (q):

Homp1(Λ)(X, Y ) = rad∞
p1(Λ)(X, Y ).

Moreover:

Homp1(Λ)(L̂u, X) = rad∞
p1(Λ)(L̂u, X), Homp1(Λ)(X, L̂u) = rad∞

p1(Λ)(X, L̂u).

Proof. We apply Theorem 8.5 for the Drozd’s bocs D = (D, VD) of Λ and the positive

integer r(l+1) with l = max{l1, l2} where l1, l2 are the integers given in Lemma 9.1. Then

we obtain a minimal layered bocs B = (B, VB) having properties (i)-(iv) of Theorem 9.2.

We have the reduction functor θ : D → B, suppose θ(Xj,i) =
⊕

l n
l
j,iZl with j = 1, 2 and

i = 1, ..., n given in the beginning of this section.

Let Z1, ..., Zs be the marked objects of indB and Zs+1, ..., Zs+t be the non-marked

objects. We have Bi, Ri and Di given in (iv) of Theorem 9.2.

Consider T̂i = ΞDi. T̂i = gi : Pi → Qi, then:

Pi =
⊕

v

Λev ⊗Di(X1,v) =
⊕

v

Λev ⊗k HomB(Zi, θ(X1,v)) ∼=
⊕

v

Λev ⊗k n
i
1,vRi.

Similarly Qi
∼= ⊕

v Λev ⊗k n
i
2,vRi. If λ ∈ Λev, and m ∈ Di(X1,v), then:

gi(λ⊗m) =
∑

dj :X1,s(j)→X2,t(j),s(j)=v

λαj ⊗ HomB(1, θ(bj))(m)
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We have

Hi = ΞDi ⊗Ri
k(x) = fi : PHi

→ QHi
, PHi

= Pi ⊗Ri
k(x), QHi

= Qi ⊗Ri
k(x),

with fi = gi ⊗ 1k(x), therefore Hi = T̂i ⊗Ri
k(x).

Moreover, PHi
∼= ⊕

v n
i
1,vΛ

k(x)(ev ⊗ 1) and QHi
∼= ⊕

v n
i
2,vΛ

k(x)(ev ⊗ 1).

For i = 1, ..., s consider the objects Hi ∈ P 1(Λ). For all i = 1, ..., s we have an

isomorphism induced by the functor Ξθ∗:

EndB(QZi
) = EndB(QZi

)0 ⊕ EndB(QZi
)1 → EndP 1(Λ)(Hi),

where EndB(QZi
)0 denotes the morphisms of the form (f 0, 0) and EndB(QZi

)1 denotes the

morphisms of the form (0, f 1). Here EndB(QZi
)0 ∼= EndRi

(k(x)) = k(x)m, where k(x)m

denotes the right multiplication by elements of k(x). Here B is a layered bocs, therefore a

morphism (f 0, f 1) is an isomorphism if and only if f 0 is an isomorphism, thus the elements

in EndB(QZi
)1 are the non-units in EndB(QZi

). Thus since the sum of non-units is again

non-unit, EndB(QZi
) is a local ring and its radical is EndB(QZi

)1. The image under Ξθ∗

of an element in EndB(QZi
)0 is of the form (idPHi

m(x), idQHi
m(x)), with m(x) ∈ k(x).

From here we obtain that the P (Λ)-k(x)-structure of Hi is admissible. Clearly, T̂i is a

realization of Hi.

In order to prove that T̂i is a good realization of Hi, we must prove conditions (i),

(ii) and (iii) of Definition 9.4. Condition (i) is clear. For proving condition (ii) take

εB : VB → B the counit of the bocs B. By Lemma 5.3 the functor (idB, εB)∗ : B-

Mod → B-Mod preserves indecomposables and isomorphism classes. Consider B̂i the full

subcategory ofB whose unique indecomposable object is Zi, then we have the composition

ηi of full and faithful functors:

Ri-Mod → B̂i-Mod → B-Mod.

The composition:

Ri-Mod
ηi→ B-Mod

(idB ,εB)∗→ B-Mod
θ∗→ D-Mod

Ξ→ P 1(Λ)

is isomorphic to T̂i ⊗Ri
−. Therefore the functor T̂i ⊗Ri

− preserves isomorphism classes

and indecomposable modules. The condition (iii) of Definition 9.4 is a consequence of

(iii) of Theorem 9.2.

Now, we may assume that L̂j = Ξθ∗(SZs+j
) for j = 1, ..., t is such that |L̂j| ≤ r.

(i) Take X an indecomposable object in p1(Λ) with |X| ≤ r, then by (i) of Theorem

9.2 there is an indecomposable object N in B-mod with Ξθ∗(N) ∼= X. Since N is

indecomposable, then N ∼= SZs+j
for some j = 1, ..., t and then either X ∼= L̂j , or

N ∼= M(Zi, p, n) for some i = 1, ..., s, some prime element p ∈ Ri and some positive

integer n, in this case by (iv) of Theorem 9.2 we have M(Zi, p, n) ∼= Bi⊗Ri
Ri/(p

n). Then

X ∼= Ξθ∗Bi ⊗Ri
Ri/(p

n) ∼= T̂i ⊗Ri
Ri/(p

n). Thus we have proved i).

(ii) Consider C the full subcategory of p1(Λ) whose objects are the objects of the

form T̂i ⊗Ri
Ri/(p

m). We have already proved that T̂i is a good realization of Hi, then
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by property (iii) of Definition 9.4 the category C consists of whole Auslander-Reiten

components of p1(Λ), thus C has property (A) of section 2, then by Corollary 2.4 for

X = T̂i ⊗Ri
Ri/(p

m), Y = T̂i ⊗Ri
Ri/(q

n), dimkrad∞
p1(Λ)(X, Y ) = dimkrad∞

C (X, Y ) =

dimkrad∞
B (M(Z, p,m),M(Z ′, q, n)).

We recall from the discussion at the beginning of section 6 that the full and faithful

functor θ∗ : B-Mod → A-Mod restricts to a full and faithful functor (θ∗)k(x) : B-k(x)-

Modp → D-k(x)-Modop. Then the first equality of (ii) follows from that of Proposition

6.5.

Observe that L̂
k(x)
u = Ξθ∗(SZs+u)k(x) ∼= Ξθ∗(Sk(x)

Zs+u
). The second and third equality of

(ii) follow from those of Proposition 6.5.

(iii) Follows from Corollary 5.11 and from Corollary 2.4. �

10 Hom-spaces in Λ-Mod

In this section we discuss the Hom-spaces in Λ-Mod for a tame algebra Λ and prove our

main result, Theorem 1.2. For X = fX : PX → QX ∈ p(Λ) we define |X| = |dimX| =

dimk(PX/radPX) + dimk(QX/radQX).

There is an integer l0 such that for any indecomposable non-injective Λ-module M ,

dimktrDM ≤ l0dimkM . Let d be any positive integer greater than dimkΛ, consider

d0 = d(1 + l0) take s(d0) = (dimk(Λ) + 1)d0. If M ∈ Λ-mod with dimkM ≤ d0 and X =

fX : PX → QX is a minimal projective presentation ofM , we have dimk(QX/radQX) ≤ d0

and dimk(PX/radPX) ≤ dimk(ImfX) ≤ dimkQX ≤ dimk(M/radM)dimkΛ ≤ d0dimkΛ,

so |X| ≤ s(d0). Taking the number r = s(d0)(1 + l) in Theorem 9.5 with l = max{l1, l2},
where l1 and l2 are the constants of Lemma 9.1, we obtain the generic objects in P (Λ),

H1, ..., Hs with admissible Λ-k(x) structures and the indecomposables in p1(Λ), L̂1, ..., L̂t.

For each i = 1, ..., s we have the realizations T̂i over Ri of Hi. We have the generic

Λ-modules Gi = Cok(Hi) and the following isomorphism of Λ-k(x)-bimodules, Gi =

Cok(Hi) ∼= Cok(T̂i ⊗Ri
k(x)) ∼= Cok(T̂i) ⊗Ri

k(x), with Ti = Cok(T̂i) a Λ-Ri-bimodule

finitely generated as right Ri-module. The Λ-k(x) structure of Hi is admissible, then

EndP (Λ)(Hi) = k(x)m ⊕ Ri with Ri a nilpotent ideal. Then, EndΛ(Gi) = k(x)idGi
⊕

radEndΛ(Gi), therefore, the endolength of Gi coincides with dimk(x)Gi. Consequently, Ti

is a realization of Gi.

Lemma 10.1. Gi and Ti satisfy the conditions (ii) and (iii) of Definition 1.1.

Proof. Take W ∈ Ri-Mod, we claim that T̂i ⊗Ri
W has not indecomposable direct

summands of the form Z(P ) = P → 0. Suppose some indecomposable Z(P ) is a direct

summand of T̂i ⊗Ri
W = Ξθ∗(W ′), with W ′ = (idB, εB)∗ηi(W ). Here Z(P ) is injective

in P 1(Λ), then Z(P ) = Ξθ∗(SZu) for some non-marked indecomposable object Zu ∈ B.

Since the functor Ξθ∗ is full and faithful, we have that SZu is direct summand of W ′, but

this is impossible because W ′(Zu) = 0. The above proves that T̂i ⊗Ri
W is in P 2(Λ), the

full subcategory of P 1(Λ) whose objects have not direct summands of the form Z(P ).
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Now the functor Cok : P 2(Λ) → Λ-Mod preserves indecomposables and isomorphism

classes (see (2) of Lemma 3.2 of [6]). Consequently, the functor Cok(T̂i⊗Ri
−) ∼= Ti⊗Ri

−
preserves indecomposables and isomorphism classes. This proves that Ti has property (ii)

of Definition 1.1.

For proving condition (iii) of Definition 1.1 take p a prime element in Ri. There is

an almost split sequence in p1(Λ) starting in T̂i ⊗Ri
Ri/(p

m), therefore this object is not

injective in p1(Λ) and therefore its cokernel is not zero. By Proposition 3.13 the image

under the functor Cok of the almost split sequence starting in T̂i⊗Ri
Ri/(p

m) is an almost

split sequence in Λ-mod. This proves that the Λ-Ri-bimodule Ti satisfies condition iii)

for all i ∈ {1, ..., s}. �

Lemma 10.2. Let Lj = Cok(L̂j) with j = 1, ..., t. If M is an indecomposable Λ-module

with dimkM ≤ d, then M has the form given in (i) of Theorem 1.2.

Proof. There is an indecomposable object X ∈ p1(Λ) with M ∼= Cok(X), since |X| ≤
s(d) ≤ r, X ∼= T̂i ⊗Ri

Ri/(p
m) or X ∼= L̂j . But then either M ∼= Cok(T̂i ⊗Ri

Ri/(p
m)) ∼=

Ti ⊗Ri
Ri/(p

m), or M ∼= Lj . This proves the first part of (i). For the second part of

(i), by Proposition 5.9 of [1] we have that if X is an indecomposable object in p1(Λ)

with Cok(X) non-simple injective, then there is an almost split sequence in p(Λ) starting

in X and ending in an injective object with all its terms in p1(Λ), so this is an almost

split sequence in p1(Λ). If Cok(X) is simple then X is injective in p1(Λ), if Cok(X) is

projective, then X is projective in p1(Λ). Now if X ∼= T̂i ⊗Ri
Ri/(p

m), since T̂i is a good

realization of Hi, there is an almost split sequence starting and ending in X. Therefore,

if M is an injective, projective or simple Λ-module, then M ∼= Lj for some j = 1, ..., t. �

Lemma 10.3. Let X = T̂i ⊗Ri
Ri/(p

n), Y = T̂i ⊗Ri
Ri/(p

m), M = CokX, N = CokY ,

then the functor Cok induces an isomorphism:

Cok : HomP 1(Λ)(X, Y )/rad∞(X, Y ) → HomΛ(M,N)/rad∞(M,N).

Proof. In fact, take a morphism u : X → Y such that Cok(u) = 0. Then by Proposition

3.3, u is a morphism which is a sum of compositions of the form u2u1 with u1 : X →W ,

u2 : W → Y and W an indecomposable injective in P (Λ). Then either W = Z(P ) =

(P
0→ 0) or W = J(P ) = (P

idP→ P ) for some indecomposable projective Λ-module P . In

the first case W is also an injective object in p1(Λ), then W is not in the Auslander-Reiten

component containing X, therefore u2u1 ∈ rad∞(X, Y ). Now, if W = J(P ), we recall

(see Lemma 3.6) that there is a right minimal almost split morphism σ(P ) : R(P ) →
J(P ), then u1 = σ(P )u′1, with u′1 : X → R(P ). Here R(P ) is injective in p1(Λ), then

u2u1 = u2σ(P )u′1 is in rad∞(X, Y ), therefore, u ∈ rad∞(X, Y ), proving our Lemma. �

Lemma 10.4. If M = Ti ⊗Ri
Ri/(p

m), N = Tj ⊗Rj
Rj/(q

n), L
k(x)
u = L

k(x)
u with i, j ∈

{1, ..., s}, u ∈ {1, ..., t}, p a prime element of Ri, q a prime element of Rj, then M,N,Lu

satisfy (iii) of Theorem 1.2.
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Proof. Let M = CokX,N = CokY , X, Y ∈ p1(Λ). If i = j and p = q by the first formula

in (iii) of Theorem 9.5 and Lemma 10.3 we obtain our result. If i �= j or (p) �= (q) we

have Homp1(Λ)(X, Y ) = rad∞
p1(Λ)(X, Y ), thus HomΛ(M,N) = rad∞

Λ (M,N). Moreover, the

third and fourth formula of (iii) of Theorem 9.5 gives HomΛ(Lu,M) = rad∞
Λ (Lu,M) and

HomΛ(M,Lu) = rad∞
Λ (M,Lu) respectively. �

Lemma 10.5. Let M = Ti ⊗Ri
Ri/(p

m), N = Tj ⊗Rj
Rj/(q

n), for i, j ∈ {1, ..., s}, p a

prime in Ri, q a prime in Rj. Then

dimkrad∞
Λ (M,N) = mndimk(x)radΛk(x)(Gi, Gj).

Proof. Suppose X = T̂i ⊗Ri
Ri/(p

m) and Y = T̂j ⊗Rj
Rj/(q

n) are minimal projective

presentations of M and N respectively. Then if zu = dimk(x)Hu for u = 1, ..., s, by (iv)

of Theorem 9.2 we have dimkX = mzi, dimkY = nzj.

Suppose now i �= j or i = j and (p) �= (q). In this case HomΛ(M,N) = rad∞
Λ (M,N)

and Homp1(Λ)(Y,X) = rad∞
p1(Λ)(Y,X). Here DtrN ∼= N , then by (3) of Proposition 3.14

and the first equality in (ii) of Theorem 9.5 we obtain

dimkHomΛ(M,N) = mn(dimk(x)radp1(Λk(x))(Hj, Hi) − gΛ(zj , zi)).

On the other hand, since DtrΛk(x)Gj
∼= Gj (see Proposition 6.5 of [2]) we have

dimk(x)HomΛk(x)(Gi, Gj) = dimk(x)Homp1(Λk(x))(Hj, Hi) − gΛk(x)(zj, zi).

We know from Corollary 2.3 of [2], that the indecomposable projective Λk(x)-modules are

of the form P ⊗k k(x), with P indecomposable projective Λ-module, then gΛ = gΛk(x).

Observe that if i �= j, radp1(Λk(x))(Hj, Hi) = Homp1(Λk(x))(Hj, Hi) and radΛk(x)(Gi, Gj) =

HomΛk(x)(Gi, Gj), moreover for i = j,

dimk(x)Endp1(Λk(x))(Hi) = 1 + dimk(x)radEndp1(Λk(x))(Hi) and

dimk(x)EndΛk(x)(Gi) = 1 + dimk(x)radEndΛk(x)(Gi). Thus we obtain:

dimk(x)radΛk(x)(Gi, Gj) = dimk(x)radp1(Λk(x))(Hj, Hi) − gΛ(zj , zi).

From here we obtain our equality for i �= j or i = j and (p) �= (q).

For i = j and p = q and the first equality of (iii) of Theorem 9.5 we obtain

dimkHomp1(Λ)(X, Y ) = min{m,n} +mndimk(x)radHomp1(Λk(x))(Hi, Hi),

therefore

dimkHomΛ(M,N) = min{m,n} +mndimk(x)radHomΛk(x)(Gi, Gi).

By Lemma 10.4 the first equality of (iii) Theorem 1.2 holds, then we have

dimkrad∞
Λ (M,N) = mndimk(x)radEndΛk(x)(Gi), obtaining our result. �

Lemma 10.6. Let M = Ti ⊗Ri
Ri/(p

m) for i ∈ {1, ..., s}, p a prime element in Ri,

Lu = Cok(L̂u), for some u ∈ {1, ..., t}. Then

dimkrad∞
Λ (Lu,M) = mdimk(x)radΛk(x)(Gi, L

k(x)
u ).



R. Bautista et al. / Central European Journal of Mathematics

In particular for Λe an indecomposable projective Λ-module there is a u ∈ {1, ..., t} such

that Λe ∼= Lu, then dimkeM = mdimk(x)eGi.

Proof. Consider lu = dimkL̂u = dimk(x)L̂
k(x)
u . We have DtrM ∼= M , then by (3) of

Proposition 3.14 and the second equality of (ii) of Theorem 9.5 we have:

dimkHomΛ(Lu,M) = mdimk(x)Homp1(Λk(x))(Hi, L̂
k(x)
u ) −mgΛ(zi, lu).

We have CokL̂
k(x)
u

∼= (CokL̂u)
k(x) = L

k(x)
u , thus again by 3) of Proposition 3.14, recalling

that DtrΛk(x)Gi
∼= Gi, we obtain:

dimk(x)HomΛk(x)(Lk(x)
u , Gi) = dimk(x)Homp1(Λk(x))(Hi, L̂

k(x)
u ) − gΛ(zi, lu).

From here we obtain the first part of our Lemma. For the second part of the Lemma,

observe that by assumption, dimkΛ ≤ d, then by Lemma 10.4 we obtain our result. �

Lemma 10.7. Let M = Ti⊗Ri
Ri/(p

m) for i ∈ {1, ..., s}, p a prime in Ri, Lu = Cok(L̂u)

for u ∈ {1, ..., t}. Then

dimkrad∞
Λ (M,Lu) = mdimk(x)radΛk(x)(Gi, L

k(x)
u ).

Proof. Assume first Lu is injective, then we may suppose Lu = D(eΛ). We have:

dimkHomΛ(M,D(eΛ)) = dimkHomΛop(eΛ, D(M)) = dimkD(M)e = dimk(eM)

= mdimk(x)HomΛk(x)(Gi, Dx((e⊗ 1)Λk(x))) = mdimk(x)HomΛk(x)(Gi, (D(eΛ)k(x))).

Where Dx(−) = Homk(x)(−, k(x)).
Now assume L is not injective. Consider an almost split sequence starting in L:

0 → L
f→ ⊕m

s=1Es
g→ L′ → 0,

with Es indecomposable for s = 1, ...,m.

By the choice of the integer d0, the objects Es and L′ are isomorphic to objects Lv

or Tj ⊗Rj
Rj/(p

m), but in this latter case L is in the component of an object of the form

Tj ⊗Rj
Rj/(p

m), which implies that L ∼= Tj ⊗Rj
Rj/(p

n) for some n, which is not the

case therefore L′ ∼= Lv for some v = 1, ..., t. Then L′ ∼= CokL̂v. Take lv = dimL̂v =

dimk(x)L̂
k(x)
v .

By (3) of Proposition 3.14 and the third equality of (iii) of Theorem 9.5 we obtain

dimkHomΛ(M,L) = m(dimk(x)Homp1(Λk(x))(L̂
k(x)
v , Hi) − gΛ(lv, zi)).

On the other hand, by Corollary 2.2 of [2] we have

DtrΛk(x)(Lk(x)
v ) ∼= (DtrLv)

k(x) ∼= Lk(x).

Then:

dimk(x)HomΛk(x)(Gi, L
k(x)) = dimk(x)Homp1(Λk(x))(L̂

k(x)
v , Hi) − gΛ(lv, zi).
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From here we obtain our Lemma. �

Lemma 10.8. Ti is a free right Ri-module, for i = 1, ...s.

Proof. Since Ti is a finitely generated right Ri-module if it is not a free right Ri-module

there is a primitive idempotent e of Λ such that eTi = C0⊕C1 with C0 free and C1 a torsion

Ri-module, then we may assume C1 = (⊕a
j=1Ri/(p

mj ))⊕C2 with a prime element p ∈ Ri,

positive integers mj , and C2
∼= ⊕bRi/(q

nb
b ), where p, qb are coprime in Ri. Suppose m =

min{m1, ..., ma}, C0
∼= Rl

i. Take M = Ti ⊗Ri
Ri/(p

m), then by the second part of Lemma

10.6, dimkeM = mdimk(x)eGi = mdimk(x)eTi ⊗k(x) k(x) = mdimC0 ⊗k(x) k(x) = ml. But

dimkeM = dimkeTi ⊗Ri
Ri/(p

m) = dimkC0 ⊗Ri
Ri/(p

m) + dimk(Ri/(p
m))a = ml + am, a

contradiction. Therefore, Ti is free as right Ri-module proving our result. �

Proof (of Theorem 1.2). The Λ-Ri-bimodule Ti is a good realization of Gi over Ri for

i = 1, ..., s by Lemma 10.8 and Lemma 10.1.

(i) of Theorem 1.2 follows from Lemma 10.2, (ii) follows from Lemma 10.5, Lemma

10.6 and Lemma 10.7. Finally (iii) follows from Lemma 10.4. �
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