ON HOMEOMORPHISMS PRESERVING PRINCIPAL DIVISORS

YOSEF STEIN

ABSTRACT. Let S_1 and S_2 be compact Riemann surfaces of genus g > 1. Let τ : $S_1 \to S_2$ be a continuous map. The map τ induces a group homomorphism from the group of divisors on S_1 into the group of divisors on S_2 . This group homomorphism will be denoted by the same letter τ throughout this paper. If $D = \sum_{i=1}^{n} m_i p_i$ is a divisor on S_1 , then $\tau(D) = \sum_{i=1}^{n} m_i \tau(p_i)$. If τ is a holomorphic or an anti-holomorphic homeomorphism, then $\tau(D)$ is a principal divisor on S_2 if D is a principal divisor on S_1 . To what extent is the converse of this statement true?

The answer to this question is provided by Theorem 1 of this paper: If $\tau(D)$ is a principal divisor on S_2 whenever D is a principal divisor on S_1 , then τ is either a holomorphic or an anti-holomorphic homeomorphism.

Let $\tau: S_1 \to S_2$ be a surjective continuous map between compact Riemann surfaces of genus $g \ge 1$. Let $J(S_1)$ and $J(S_2)$ denote the corresponding Jacobi varieties and let $j_1: S_1 \to J(S_1)$ and $j_2: S_2 \to J(S_2)$ be Jacobi maps with basepoints $p_0 \in S_1$ and $\tau(p_0) \in S_2$.

LEMMA 1. (1) The following statements are equivalent:

(i) $\tau(D)$ is a principal divisor on S_2 if D is a principal divisor on S_1 .

(ii) There is a group homomorphism $A: J(S_1) \to J(S_2)$ such that $A \circ j_1 = j_2 \circ \tau$.

(2) A group homomorphism A that satisfies (ii) is necessarily continuous, surjective and unique.

PROOF. (1) Assume that τ satisfies (i). A mapping A can be defined on the image $j_1(S_1) \subset J(S_1)$ as $j_2 \circ \tau \circ j_1^{-1}$. This mapping can be extended upon the group $J(S_1)$ by additivity since points of $j_1(S_1)$ generate $J(S_1)$ as a group. Now we have to prove that A is well defined. Let $\sum_{i=1}^{n} j_1(p_i) = \sum_{i=1}^{m} j_1(q_i)$ for p_i , $q_i \in S_1$. Then $p_1 + \cdots + p_n - q_1 - \cdots - q_m + (m - n)p_0$ is a principal divisor on S_1 . By our assumption this implies that $\tau(p_1) + \cdots + \tau(p_n) - \tau(q_1) - \cdots - \tau(q_m) + (m - n)\tau(p_0)$ is a principal divisor on S_2 . Therefore

$$A\left[\sum_{i=1}^{n} j_{1}(p_{i})\right] = \sum_{i=1}^{n} A j_{1}(p_{i}) = \sum_{i=1}^{n} j_{2}\tau(p_{i})$$
$$= \sum_{i=1}^{m} j_{2}\tau(q_{i}) = \sum_{i=1}^{m} A j_{1}(q_{i}) = A\left[\sum_{i=1}^{m} j_{1}(q_{i})\right].$$

Thus $A: J(S_1) \rightarrow J(S_2)$ is a well-defined group homomorphism.

Now assume that there exists a group homomorphism $A: J(S_1) \to J(S_2)$ satisfying (ii). Let $D = p_1 + \cdots + p_n - q_1 - \cdots - q_n$ be a principal divisor on S_1 .

1980 Mathematics Subject Classification. Primary 30F20; Secondary 32G15, 32G20.

© 1981 American Mathematical Society 0002-9939/81/0000-0526/\$02.50

Received by the editors August 25, 1980 and, in revised form, February 2, 1981.

Then $\sum_{i=1}^{n} j_1(p_i) - \sum_{i=1}^{n} j_1(q_i) = 0$. Applying A we obtain the following:

$$0 = A \left[\sum_{i=1}^{n} j_1(p_i) - \sum_{i=1}^{n} j_1(q_i) \right] = \sum_{i=1}^{n} A j_1(p_i) - \sum_{i=1}^{n} A j_1(q_i)$$
$$= \sum_{i=1}^{n} j_2 \tau(p_i) - \sum_{i=1}^{n} j_2 \tau(q_i).$$

This implies that $\tau(p_1) + \cdots + \tau(p_n) - \tau(q_1) - \cdots - \tau(q_n)$ is a principal divisor on S_2 .

(2) Let A satisfy (ii). Then the following is a commutative diagram:

Here

$$B(p_1, \ldots, p_g) = (\tau(p_1), \ldots, \tau(p_g)); \pi_1 \text{ and } \pi_2 \text{ are the natural maps induced by the Jacobi maps. Assume that A is discontinuous at $x_0 \in J(S_1)$. Then there exist an open set $V \subset J(S_2), V \ni A(x_0)$, and a sequence $\{x_n\}$ of points in $J(S_1)$ such that $\lim_{n\to\infty} x_n = x_0$ and $A(x_n) \notin V$ for all n. Since π_1 is surjective (by Jacobi Inversion Theorem) we can choose a sequence $\{t_n\}$ of points in S_1^g such that $\pi_1(t_n) = x_n$. Since S_1^g is compact, we can choose a converging subsequence $\{t_n\}$. Let $t_0 = \lim_{i\to\infty} t_n$. Then $\pi_1(t_0) = x_0$ since π_1 is continuous. Thus $\pi_2 \circ B(t_0) = A \circ \pi_1(t_0) = A(x_0)$. On the other hand$$

$$\lim_{i\to\infty}A(x_{n_i})=\lim_{i\to\infty}A\circ\pi_1(t_{n_i})=\lim_{i\to\infty}\pi_2\circ B(t_{n_i})=\pi_2\circ B(t_0)=A(x_0)$$

since $\pi_2 \circ B$ is a continuous map. This contradicts our earlier assumption that V does not contain elements of the sequence $A(x_{n_i})$. Hence A is a continuous group homomorphism. Moreover, A maps $j_1(S_1)$ onto $j_2(S_2)$ since j_1 and j_2 are homeomorphisms and τ is a surjective map. Therefore A maps $J(S_1)$ onto $J(S_2)$ since points of $j_2(S_2)$ generate $J(S_2)$ as a group. The same argument (applied to j_1 instead of j_2) proves the uniqueness of A.

COROLLARY 1. If τ satisfies (i), then τ is real-analytic.

PROOF. If τ satisfies (i), then by Lemma 1 there exists a continuous group homomorphism $A: J(S_1) \to J(S_2)$ such that $A \circ j_1 = j_2 \circ \tau$. This A can be lifted to a real linear map $\tilde{A}: \mathbb{R}^{2g} \to \mathbb{R}^{2g}$ which makes the following diagram commutative:

$$\begin{array}{ccc} \mathbf{R}^{2g} & \stackrel{A}{\rightarrow} & \mathbf{R}^{2g} \\ \pi_1 \downarrow & & \downarrow \pi_2 \\ J(S_1) & \stackrel{A}{\rightarrow} & J(S_2) \end{array}$$

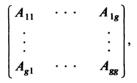
This is possible since \mathbb{R}^{2g} is the universal covering space for both $J(S_1)$ and $J(S_2)$, and since the only continuous group homomorphisms of \mathbb{R}^{2g} are linear maps.

Therefore A is real-analytic; and τ is real-analytic as well since $\tau = j_2^{-1} \circ A \circ j_1$ where both j_1 and j_2 are complex analytic homeomorphisms.

COROLLARY 2. Let S_1 and S_2 be compact Riemann surfaces of genus g = 1. Then there exists a homeomorphism $\tau: S_1 \to S_2$ such that τ and τ^{-1} satisfy (i).

PROOF. $J(S_1)$ and $J(S_2)$ are one-dimensional complex analytic tori. Let A be any continuous group isomorphism between them. Since $j_1(S_1) = J(S_1)$ and $j_2(S_2) = J(S_2)$, we can define $\tau: S_1 \to S_2$ to be $j_2^{-1} \circ A \circ j_1$. Then the pair (A, τ) will satisfy (ii) and, therefore, τ will satisfy (i). The same argument applies to τ^{-1} .

This corollary implies that for any pair of Riemann surfaces of genus g = 1, we can find a homeomorphism between them which preserves principal divisors. For $g \ge 2$ the situation is quite different. Let $\tau: S_1 \to S_2$ be a surjective continuous map between compact Riemann surfces of genus $g \ge 2$. The group homomorphism A that was introduced above can be lifted to a real $2g \times 2g$ matrix \tilde{A} as described in the proof of Corollary 1. We will identify \mathbb{R}^{2g} with \mathbb{C}^g in the following way: Let e_1, \ldots, e_g be the standard basis for \mathbb{C}^g , then the standard basis for \mathbb{R}^{2g} will be e_1, ie_1, \ldots, e_g . The matrix \tilde{A} can be considered thus as



where A_{ij} 's are real 2×2 matrices. Let $p \in S_1$ and let z denote a local analytic coordinate in a neighbourhood of p; let z = x + iy. Let w = u + iv be a local analytic coordinate in a neighbourhood of $\tau(p)$. The bases for holomorphic differentials $\{\omega_k\}$ and $\{\tilde{\omega}_k\}$ will be considered as column vectors

$$\omega = \begin{pmatrix} \omega_1 \\ \vdots \\ \vdots \\ \omega_g \end{pmatrix} \text{ and } \tilde{\omega} = \begin{pmatrix} \tilde{\omega}_1 \\ \vdots \\ \vdots \\ \tilde{\omega}_g \end{pmatrix}$$

(ω corresponds to S_1 and $\tilde{\omega}$ corresponds to S_2). With respect to the local coordinates z and w,

$$\omega_k = (f_k + ih_k)dz = (f_kdx - h_kdy) + i(h_kdx + f_kdy),$$

$$\tilde{\omega}_k = (\tilde{f}_k + i\tilde{h}_k)dw = (\tilde{f}_kdu - \tilde{h}_kdv) + i(\tilde{h}_kdu + \tilde{f}_kdv).$$

Here f_k , h_k , \tilde{f}_k and \tilde{h}_k are real-valued local functions. ω_k and $\tilde{\omega}_k$ can be considered thus as pairs of real-valued differential forms on the underlying differentiable structures of S_1 and S_2 . Let L_k denote a matrix

$$\begin{pmatrix} f_k & -h_k \\ h_k & f_k \end{pmatrix}$$
$$\begin{pmatrix} \tilde{f}_k & -\tilde{h}_k \\ \tilde{h}_k & \tilde{f}_k \end{pmatrix}.$$

Throughout this paper we will consider C as a subalgebra of the algebra of all real 2×2 matrices, and we will identify a complex number a + ib with the real matrix

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

Complex-valued functions will be considered as real matrix-valued functions. By Corollary 1 to Lemma 1 τ is real-analytic. Let

$$K = \begin{cases} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{cases}$$

be the local Jacobian matrix corresponding to τ and x, y, u and v.

LEMMA 2. Let $\tau: S_1 \to S_2$, A, ω and $\tilde{\omega}$ be as above. Then (1) for each k ($\tilde{L}_k \circ \tau$)K = $\sum_{s=1}^{g} A_{ks}L_s$. (2) A and τ are local homeomorphisms.

PROOF. (1) The Jacobi mappings j_1 and j_2 can be considered as real-analytic maps from the two-dimensional real surfaces S_1 and S_2 into $J(S_1)$ and $J(S_2)$ respectively. The Jacobian matrix of j_1 in terms of the local coordinates (x, y) is

$$\begin{bmatrix} L_1 \\ \vdots \\ \vdots \\ L_g \end{bmatrix}.$$

Similarly, the Jacobian matrix of j_2 in terms of the local coordinates (u, v) is

$$\begin{bmatrix} \tilde{L}_1 \\ \cdot \\ \cdot \\ \cdot \\ \tilde{L}_g \end{bmatrix}.$$

The Jacobian matrix of A is \tilde{A} and since $A \circ j_1 = j_2 \circ \tau$, we obtain

(1)
$$\begin{pmatrix} (\tilde{L}_1 \circ \tau)K \\ \vdots \\ (\tilde{L}_g \circ \tau)K \end{pmatrix} = \tilde{A} \begin{bmatrix} L_1 \\ \vdots \\ L_g \end{bmatrix}.$$

(2) A is surjective by Lemma 1. Therefore \tilde{A} is surjective and hence of rank 2g. Since

$$\operatorname{rk} \begin{bmatrix} L_1 \\ \vdots \\ L_g \end{bmatrix} = 2$$

at every point of S_1 and

$$\operatorname{rk} \begin{pmatrix} \tilde{L}_{1} \\ \vdots \\ \tilde{L}_{g} \end{pmatrix} = 2$$

at every point of S_2 , equation (1) implies that det K is never 0. Now we can prove the main theorem.

THEOREM 1. Let $\tau: S_1 \rightarrow S_2$ be a surjective continuous map between compact Riemann surfaces of genus $g \ge 2$. If $\tau(D)$ is a principal divisor on S_2 whenever D is a principal divisor on S_1 , then

(1) τ is either holomorphic or anti-holomorphic.

(2) τ is a homeomorphism.

PROOF. By assertion (1) of Lemma 2 we have g equations of the form $(\tilde{L}_k \circ \tau)K = \sum_{s=1}^{g} A_{ks}L_s$. These equations depend on our choice of the local coordinates x, y, u and v. To get rid of this we will multiply (from the right) $(\tilde{L}_k \circ \tau)K$ by $K^{-1}(\tilde{L}_1 \circ \tau)^{-1}$ and $\sum_{s=1}^{g} A_{ks}L_s$ by $(\sum_{s=1}^{g} A_{1s}L_s)^{-1}$. Then we obtain g - 1 equations of the form

$$(\tilde{L}_k \tilde{L}_1^{-1}) \circ \tau = \left(\sum_{s=1}^g A_{ks} L_s\right) \left(\sum_{s=1}^g A_{1s} L_s\right)^{-1}.$$

Perhaps some explanations are necessary at this point. First, $\tilde{L}_1 \circ \tau$ is a local map from S_1 into the algebra of real 2×2 matrices. $(\tilde{L}_1 \circ \tau)^{-1}$ means taking the inverse of a value of this matrix-valued function: $(\tilde{L}_1 \circ \tau)^{-1} = (\tilde{L}_1^{-1}) \circ \tau$. Second, the matrix \tilde{L}_1 is either invertible or 0; and we take the inverse at all points except those for which \tilde{L}_1 is 0 (such points form the divisor of $\tilde{\omega}_1$). Third, by assertion (2) of Lemma 2 det K is never 0 and K^{-1} always exists.

Returning to our proof, let us consider any one of the equations obtained above. The left part of it has the form $(\tilde{L}_k \tilde{L}_1^{-1}) \circ \tau$. But $\tilde{L}_k \tilde{L}_1^{-1} = \tilde{\omega}_k / \tilde{\omega}_1$ which is a global meromorphic function on S_2 . Let us denote this function by \tilde{F}_k . $(\tilde{L}_k \tilde{L}_1^{-1}) \circ \tau$ is, therefore, the pull-back of this function by τ . The right part of our equation is a matrix of the form $(\sum_{s=1}^g A_{ks} L_s)(\sum_{s=1}^g A_{1s} L_s)^{-1}$. But this matrix can be written as $(\sum_{s=1}^g A_{ks} L_s L_1^{-1})(\sum_{s=1}^g A_{1s} L_s L_1^{-1})^{-1}$. $L_s L_1^{-1}$ is a global meromorphic function on S_1 . Let us denote this function by F_s . Thus we have g - 1 equations of the form

(2)
$$\tilde{F}_k \circ \tau = \left(\sum_{s=1}^g A_{ks}F_s\right) \left(\sum_{s=1}^g A_{1s}F_s\right)^{-1}$$
 or $(\tilde{F}_k \circ \tau) \sum_{s=1}^g A_{1s}F_s = \sum_{s=1}^g A_{ks}F_s$.

It should be mentioned one more time that we consider complex numbers as a subalgebra of the algebra of real 2×2 matrices. These equations are considered in the point-wise sense; and they are valid for all points of S_1 that are not poles for any of F_k 's and such that their images in S_2 are not poles for any of \tilde{F}_k 's. Since τ is a local homeomorphism, there is only a finite set of such exceptional points.

Let us consider now a complex-valued real-linear functional T that can be defined on the algebra of real 2×2 matrices as follows:

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a - d + i(b + c).$$

This functional has the following property:

$$T\left[\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right] = (\alpha + i\beta)T\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and

$$T\left[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}\right] = (\alpha - i\beta)T\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Furthermore, the kernel of T consists of those matrices which correspond to complex numbers. Let us apply T to the equation (2). We obtain the following:

(3)
$$(\tilde{F}_k \circ \tau) \sum_{s=1}^g T(A_{1s}) \overline{F}_s = \sum_{s=1}^g T(A_{ks}) \overline{F}_s$$

Suppose that $T(A_{ks}) = 0$ for all indices k and s. Then all matrices A_{ks} are merely complex numbers c_{ks} and the equation (2) implies that

$$\tilde{F}_k \circ \tau = \frac{\sum_{s=1}^g c_{ks} F_s}{\sum_{s=1}^g c_{1s} F_s}.$$

This means that $\tilde{F}_k \circ \tau$ is a meromorphic function on S_1 and, therefore, τ is holomorphic. If not all of $T(A_{ks})$ are equal to 0, then the equation (3) implies that

$$\tilde{F}_k \circ \tau = \frac{\sum_{s=1}^g T(A_{ks})\overline{F}_s}{\sum_{s=1}^g T(A_{1s})\overline{F}_s}$$

 $(T(A_{ks})$ is a complex number). This means that τ is anti-holomorphic. Finally, since τ is either a holomorphic or an anti-holomorphic local homeomorphism it must be a global homeomorphism (since it has no branch points and g > 1).

COROLLARY. Let S_1 and S_2 be compact Riemann surfaces of genus $g \ge 2$ with Jacobi mappings j_1 and j_2 . Let $A: J(S_1) \rightarrow J(S_2)$ be a continuous group homomorphism such that $Aj(S_1) = j_2(S_2)$. Then

(1) A is either holomorphic or anti-holomorphic.

(2) A is a group isomorphism.

The proof is obvious.

BIBLIOGRAPHY

1. R. Gunning, Lectures on Riemann surfaces, Princeton Univ. Press, Princeton, N.J., 1967.

2. ____, Lectures on Riemann surfaces, Jacobi varieties, Princeton Univ. Press, Princeton, N. J., 1972.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA CRUZ, CALIFORNIA 95060

Current address: 25/13 Ha Thia Street, Rehovot, Israel