ON HOMOGENEOUS KÄHLER MANIFOLDS WITH NON-DEGENERATE CANONICAL HERMITIAN FORM OF SIGNATURE (2, 2(n-1))

Нігоніко SHIMA

(Received October 19, 1972)

We denote by M a connected homogeneous Kähler manifold of complex dimension n on which a connected Lie group G acts effectively as a group of holomorphic isometries, and by K an isotropy subgroup of G at a point o of M. Let v be the G-invariant volume element corresponding to the Kähler metric. In a local coordinate system $\{z_1, \dots, z_n\}$, v has an expression $v=i^nFdz_1\wedge\dots\wedge dz_n\wedge dz_1\wedge\dots\wedge dz_n$. The G-invariant hermitian form $h=\sum_{i,j}\frac{\partial^2\log F}{\partial z_i\partial z_j}dz_idz_j$ is called the canonical hermitian form of M=G/K. It is known that the Ricci tensor of the Kähler manifold M is equal to -h. The purpose of this paper is to prove the following:

Theorem 1. Let M=G/K be a simply connected homogeneous Kähler manifold with non-degenerate canonical hermitian form h of signature (2, 2(n-1)). Then, if either G is semi-simple or G contains a one parameter normal subgroup, M=G/K is a holomorphic fibre bundle whose base space is the unit disk $\{z \in C; |z| < 1\}$, and whose fibre is a homogeneous Kähler manifold of a compact sime-simple Lie group.

In the case of $\dim_{\mathbb{C}} G/K=2$, the assumption of Theorem 1 is fulfilled and we have

Theorem 2. Let M = G/K be a complex two dimensional homogeneous Kähler manifold with non-degenerate canonical hermitian form h of signature (2, 2). Then G is semi-simple or G contains a one parameter normal subgroup.

As an application of these Theorems, we obtain a classification of complex two dimensional homogeneous Kähler manifolds with non-degenerate canonical hermitian form.

1. Let (I, g) be the G-invariant Kähler structure on M, i.e., I is the G-invariant complex structure tensor on M and g is the G-invariant Kähler metric on M. Let g be the Lie algebra of all left invariant vector fields on G and let \mathfrak{k} be the subalgebra of g corresponding to K. We denote by π the canonical projection

from G onto M=G/K and denote by π_e the differential of π at the identity e of G. Let X_e , I_o and g_o be the values of X, I and g at e and $\pi(e)=o$ respectively. Then there exist a linear endomorphism J of $\mathfrak g$ and a skew symmetric bilinear form ρ on $\mathfrak g$ such that

$$\pi_e(JX)_e = I_o(\pi_e X_e), \quad \rho(X, Y) = g_o(\pi_e X_e, \pi_e Y_e),$$

for X, $Y \in \mathfrak{g}$. Then $(\mathfrak{g}, \mathfrak{k}, J, \rho)$ satisfies the following properties [2], [3].

(1.1)
$$J! \subset !$$
, $J^2 X \equiv -X \pmod{!}$,

$$(1.2) \quad [W, JX] \equiv J[W, X] \pmod{t},$$

(1.3)
$$[JX, JY] \equiv J[JX, Y] + J[X, JY] + [X, Y] \pmod{t}$$
,

(1.4)
$$\rho(W, X) = 0$$
,

(1.5)
$$\rho(JX, JY) = \rho(X, Y)$$
,

(1.6)
$$\rho(JX, X) > 0, X \oplus t$$
,

(1.7)
$$\rho([X, Y], Z) + \rho([Y, Z], X) + \rho([Z, X], Y) = 0$$
,

where $X, Y, Z \in \mathfrak{g}, W \in \mathfrak{k}$.

Then (g, t, J, ρ) will be called the Kahler algebra of M = G/K.

Koszul proved that the canonical hermitian form h of a homogeneous Kähler manifold G/K has the following expression [3]. Put

$$\eta(X, Y) = h_o(\pi_e X_e, \pi_e Y_e)$$
, and

(1.8)
$$\psi(X) = Tr_{\mathbf{g}/\mathbf{f}}(\operatorname{ad}(JX) - J\operatorname{ad}(X)),$$

it follows then

(1.9)
$$\eta(X, Y) = \frac{1}{2} \psi([JX, Y]),$$

for X, $Y \in \mathfrak{g}$. The form ψ satisfies the following properties:

$$\psi([W, X]) = 0,$$

(1.11)
$$\psi([JX, JY]) = \psi([X, Y]), \quad \text{for } X, Y \in \mathfrak{g}, W \in \mathfrak{k}.$$

Since G acts effectively on G/K, \mathfrak{k} contains no non-zero ideal of \mathfrak{g} and there exists an $ad(\mathfrak{k})$ -invariant inner product (,) on \mathfrak{g} . Henceforth, we assume that the canonical hermitian form h of G/K is non-degenerate, which is equivalent to the following condition:

Let
$$X \in \mathfrak{g}$$
. If $\eta(X, Y) = 0$ for all $Y \in \mathfrak{g}$, then $X \in \mathfrak{k}$.

2. We shall now prepare a few lemmas for later use. The following lemma is due to [2].

Lemma 2.1. For $E, X, Y \in \mathfrak{g}$,

$$\frac{d}{dt}\rho(\exp t \operatorname{ad}(JE)X, \exp t \operatorname{ad}(JE)Y)$$

$$= \rho(JE, \exp t \operatorname{ad}(JE)[X, Y]).$$

Lemma 2.2. The adjoint representation of g is faithful.

Proof. Put $a = \{X \in g; ad(X) = 0\}$, then a is an ideal of g. We have for $X \in a$

$$\begin{split} 2\eta(X,\ Y) &= \psi([JX,\ Y]) \\ &= -\psi([X,JY]) = 0 \ , \qquad \text{for all} \quad Y {\in} \mathfrak{g} \ . \end{split}$$

Since h is non-degenerate, we have $X \in \mathfrak{k}$, and hence $a \subset \mathfrak{k}$. By the effectiveness, we have $a = \{0\}$.

Q.E.D.

Lemma 2.3. Let \mathfrak{r} be a commutative ideal of \mathfrak{g} . Then, $\mathfrak{t} \cap \mathfrak{r} = \{0\}$, $\mathfrak{t} \cap J\mathfrak{r} = \{0\}$.

Proof. Let $A \in \mathfrak{k} \cap \mathfrak{r}$. Since \mathfrak{r} is a commutative ideal, we have $\operatorname{ad}(A)^2 = 0$. By the effectiveness, it follows that

$$(\operatorname{ad}(A)^2X, X)+(\operatorname{ad}(A)X, \operatorname{ad}(A)X)=0$$
, $(\operatorname{ad}(A)X, \operatorname{ad}(A)X)=0$,

for $X \in \mathfrak{g}$, with respect to the ad(\mathfrak{k})-invariant inner product (,) on \mathfrak{g} . Hence ad(A)X=0 for all $X \in \mathfrak{g}$, and A=0 by Lemma 2.2, which proves $\mathfrak{k} \cap \mathfrak{r} = \{0\}$. Q.E.D.

Lemma 2.4. Let \mathfrak{r} be a non-zero commutative ideal of \mathfrak{g} . Then $\psi \neq 0$ on \mathfrak{r} .

Proof, Assume $\psi = 0$ on \mathbf{r} . For $X \in \mathbf{r}$, we have $2\eta(X, Y) = -\psi([JY, X]) = 0$ for all $Y \in \mathfrak{g}$. Since h is non-degenerate, we have $X \in \mathfrak{k}$ and hence $\mathfrak{r} \subset \mathfrak{k}$, which contradicts to Lemma 2.3. Q.E.D.

Lemma 2.5. $Tr_{g/t}ad(W)=0$, for $W \in \mathfrak{k}$.

Proof. Using (1.4), (1.7), we have

$$\rho(W, [X, Y]) + \rho(X, [Y, W]) + \rho(Y, [W, X]) = 0,$$

$$\rho(X, [Y, W]) + \rho(Y, [W, X]) = 0,$$

for X, $Y \in \mathfrak{g}$. Hence it follows that

$$\rho(JX, [W, Y]) + \rho([W, JX], Y) = 0,$$

 $\rho(JX, [W, Y]) + \rho(J[W, X], Y) = 0,$

for X, $Y \in \mathfrak{g}$. This implies that the endomorphism of $\mathfrak{g}/\mathfrak{k}$ which is induced by

ad(W) is skew symmetric with respect to the inner product which is defined by $\rho(JX, Y)$. Therefore $Tr_{\mathfrak{g}/\mathfrak{t}}ad(W)=0$. Q.E.D.

Lemma 2.6. Let $\{E\}$ be a one dimensional ideal of \mathfrak{g} . Then [E, W] = 0, for $W \in \mathfrak{k}$. Moreover, there exists an endomorphism \tilde{J} of \mathfrak{g} such that $\tilde{J}X \equiv JX \pmod{\mathfrak{k}}$, $[\tilde{J}E, W] = 0$, for $X \in \mathfrak{g}$, $W \in \mathfrak{k}$.

Proof. Put $[E, W] = \lambda E$, $\lambda \in \mathbb{R}$. Using (1.10), we have $0 = \psi([E, W]) = \lambda \psi(E)$. Since $\psi(E) \neq 0$ by Lemma 2.4, it follows $\lambda = 0$ and hence [E, W] = 0. Put $\mathfrak{h} = \mathfrak{k} + \{JE\}$, then $[\mathfrak{k}, \mathfrak{h}] \subset \mathfrak{h}$. Let $\{L\}$ be the orthogonal complement of \mathfrak{k} in \mathfrak{h} with respect to the ad (\mathfrak{k}) -invariant inner product on \mathfrak{g} . Then $[\mathfrak{k}, \{L\}] \subset \{L\}$. We may assume that $L = W_0 + JE$ where $W_0 \in \mathfrak{k}$. Therefore we can choose a linear endomorphism \tilde{J} on \mathfrak{g} such that $\tilde{J}E = L$, $\tilde{J}X \equiv JX \pmod{\mathfrak{k}}$ for $X \in \mathfrak{g}$. Then it follows

$$[\tilde{J}E, t] = [L, t] \subset \{L\} ,$$
$$[\tilde{J}E, t] \subset [b, t] \subset t.$$

This implies $[\tilde{J}E, W] = 0$ for $W \in \mathfrak{k}$.

Q.E.D

Therefore, for any one dimensional ideal $\{E\}$ of g, we may assume that $[JE, t] = \{0\}$.

3. We shall prove the following theorem.

Theorem 1'. Let $(g, \mathfrak{k}, J, \rho)$ be the Kähler algebra of a homogeneous Kähler manifold G/K with non-degenerate canonical hermitian form h of signature (2, 2(n-1)). If there exists a one dimensional ideal \mathfrak{r} of \mathfrak{g} , then we have the following.

- 1) With suitable choice of $E \neq 0 \in \mathbb{r}$, we have [JE, E] = E.
- 2) Put $\mathfrak{p} = \{P \in \mathfrak{g}; [P, E] = [JP, E] = 0\}$. Then we have the decomposition $\mathfrak{g} = \{JE\} + \{E\} + \mathfrak{p} \text{ of } \mathfrak{g} \text{ into the direct sum of vector spaces.}$ We know also that \mathfrak{p} is a compact semi-simple J-invariant ideal of \mathfrak{g} and that the real parts of the eigenvalues of \mathfrak{g} d \mathfrak{g} on \mathfrak{p} are equal to \mathfrak{g} .

The first part of the proof of Theorem 1' is nearly the same as the previous one [6]. But, for the sake of completeness we carry out the proof.

Lemma 3.1. Let $\{E\}$ be a one dimensional ideal of \mathfrak{g} and put $\mathfrak{p} = \{P \in \mathfrak{g}; [P, E] = [JP, E] = 0\}$. Then we have

- t⊂p,
- 2) $J\mathfrak{p}\subset\mathfrak{p}$, $ad(JE)\mathfrak{p}\subset\mathfrak{p}$,
- 3) $\operatorname{ad}(JE)J \equiv J\operatorname{ad}(JE) \pmod{\mathfrak{k}}$ on \mathfrak{p} .

Proof. 1) follows from Lemma 2.6. For $P \in \mathfrak{p}$, we have

$$[JE, JP] = J[JE, P] + J[E, JP] + [E, P] + W_0$$

= $J[JE, P] + W_0$

for some $W_0 \in \mathfrak{k}$, and hence 3) is proved. For $P \in \mathfrak{p}$, it follows that

$$[[JE, P], E] = [[JE, E], P] + [JE, [P, E]] = 0,$$

 $[J[JE, P], E] = [[JE, JP] - W_0, E] = 0,$

where $W_0 \in \mathfrak{k}$. Therefore ad $(IE)P \in \mathfrak{p}$ for all $P \in \mathfrak{p}$, which proves 2).

Lemma 3.2. Let $\{E\}$ be a one dimensional ideal of \mathfrak{g} . Then $[JE, E] \neq 0$, therefore with suitable choice of $E \neq 0$, we have [JE, E] = E.

Proof. Assume that [JE, E]=0. For $X \in \mathfrak{g}$, we have $J[JE, X]=[JE, JX]-J[E, JX]-[E, X]+W_0=[JE, JX]-\lambda JE-\mu E+W_0$, where $\lambda, \mu \in \mathbb{R}$, $W_0 \in \mathfrak{k}$. We have

$$[[JE, X], E] = [[JE, E], X] + [JE, [X, E]] = 0,$$

$$[J[JE, X], E] = [[JE, JX], E] - \lambda [JE, E] - \mu [E, E]$$

$$+ [W_0, E] = 0,$$

which implies that $[JE, X] \in \mathfrak{p}$, and hence we have

$$(3.1) ad(JE)\mathfrak{g} \subset \mathfrak{p}.$$

Let $P \in \mathfrak{p}$. We have

$$\rho(JE, [JE, P]) = \rho(-E, J[JE, P])
= -\rho(E, [JE, JP])
= \rho(JE, [JP, E]) + \rho(JP, [E, JE])
= 0,$$

and it follows that for $X \in \mathfrak{g}$

$$\rho(JE, \operatorname{ad}(JE)^{2}X) = 0.$$

Applying Lemma 2.1, (3.2), we have for X, $Y \in \mathfrak{g}$

$$\frac{d^3}{dt^3} \rho(\exp t \operatorname{ad}(JE)X, \exp t \operatorname{ad}(JE)Y)$$

$$= \frac{d^2}{dt^2} \rho(JE, \exp t \operatorname{ad}(JE)[X, Y])$$

$$= \rho(JE, \operatorname{ad}(JE)^2 \exp t \operatorname{ad}(JE)[X, Y])$$

$$= 0.$$

Hence we may put

(3.3)
$$\rho(\exp t \operatorname{ad}(JE)X, \exp t \operatorname{ad}(JE)Y) = at^2 + bt + c$$

where a, b and c are real numbers not depending on t. Since $\operatorname{ad}(JE) \mathfrak{p} \subset \mathfrak{p}$, $\operatorname{ad}(JE) \mathfrak{k} = \{0\}$ by Lemma 2.6, (3.1), $\operatorname{ad}(JE)$ induces a linear endomorphism $\operatorname{ad}(JE)$ on $\mathfrak{p}/\mathfrak{k}$. Let $\alpha + i\beta(\alpha, \beta \in R)$ be an eigenvalue of $\operatorname{ad}(JE)$. As $\operatorname{ad}(JE)J \equiv J\operatorname{ad}(JE) \pmod{\mathfrak{k}}$ on \mathfrak{p} , there exists an element $P \in \mathfrak{p}$, $P \notin \mathfrak{k}$ such that $[JE, P] \equiv (\alpha + \beta J)P \pmod{\mathfrak{k}}$, and hence $\exp t \operatorname{ad}(JE)P \equiv \exp t(\alpha + \beta J)P \pmod{\mathfrak{k}}$. Therefore we have by Lemma 3.1,

$$\rho(\exp t \operatorname{ad}(JE)JP, \exp t \operatorname{ad}(JE)P)$$

$$= \rho(J \exp t \operatorname{ad}(JE)P, \exp t \operatorname{ad}(JE)P)$$

$$= \rho(J \exp t(\alpha + \beta J)P, \exp t(\alpha + \beta J)P)$$

$$= \rho(\exp t(\alpha + \beta J)JP, \exp t(\alpha + \beta J)P)$$

$$= e^{(\alpha + i\beta)t} \overline{e^{(\alpha + i\beta)t}} \rho(JP, P)$$

$$= e^{2\alpha t} \rho(JP, P).$$

From this and (3.3), we have

$$e^{2\omega t} \rho(JP, P) = at^2 + bt + c$$
.

Since $P \notin \mathfrak{k}$, $\rho(JP, P) > 0$ and hence $\alpha = 0$. This fact and $\operatorname{ad}(JE)\mathfrak{k} = \{0\}$ show that the real parts of the eigenvalues of $\operatorname{ad}(JE)$ on \mathfrak{p} are equal to 0. Therefore we have

$$\begin{split} \psi(E) &= Tr_{\mathfrak{g}/\mathfrak{t}}(\operatorname{ad}(JE) - J\operatorname{ad}(E)) \\ &= Tr_{\mathfrak{g}}(\operatorname{ad}(JE) - J\operatorname{ad}(E)) - Tr_{\mathfrak{t}}(\operatorname{ad}(JE) - J\operatorname{ad}(E)) \\ &= Tr_{\mathfrak{g}}\operatorname{ad}(JE) - Tr_{\mathfrak{g}}J\operatorname{ad}(E) \\ &= Tr_{\mathfrak{p}}\operatorname{ad}(JE) - Tr_{(JE)}J\operatorname{ad}(E) \\ &= 0. \end{split}$$

However this contradicts to $\psi \neq 0$ on $\{E\}$ by Lemma 2.4. Q.E.D.

Lemma 3.3 Let $\{E\}$ be a one dimensional ideal of g. Then we get the decomposition

$$\mathfrak{g} = \{JE\} + \{E\} + \mathfrak{p}$$

of g into the direct sum of vector spaces with the following properties:

- 1) [JE, E]=E.
- 2) The factors of the decomposition are mutually orthogonal with respect to the form η , and η is positive definite on $\{JE\} + \{E\}$.
 - 3) The real parts of the eigenvalues of ad(IE) on p are equal to 0 or 1/2.
 - 4) $\rho(JE, P)=0$ for $P \in \mathfrak{p}$.

Proof. By lemma 3.2, we may assume that E satisfies the condition [JE, E] = E. Since $\{E\}$ is a one dimensional ideal of \mathfrak{g} , we get $[X, E] = \alpha(X)E$, $[JX, E] = \beta(X)E$, for $X \in \mathfrak{g}$, where α , β are linear functions on \mathfrak{g} . It is easily seen that $P = X - \alpha(X)JE - \beta(X)E$ belongs to \mathfrak{p} for any $X \in \mathfrak{g}$. Therefore we have the decomposition $\mathfrak{g} = \{JE\} + \{E\} + \mathfrak{p}$. Now, by Lemma 2.1, we have for $P \in \mathfrak{p}$,

$$\frac{d}{dt}\rho(\exp t\operatorname{ad}(JE)E, \exp t\operatorname{ad}(JE)P)$$

$$= \rho(JE, \exp t\operatorname{ad}(JE)[E, P])$$

$$= 0.$$

Since exp t ad $(IE)E = e^tE$, we have

$$\rho(E, \exp t \operatorname{ad}(JE)P) = a'e^{-t}$$

where a' is a constant determined by P and independent of t. We have then

$$\rho(JE, \exp t \operatorname{ad}(JE)P) = -\rho(E, J \exp t \operatorname{ad}(JE)P)$$

$$= -\rho(E, \exp t \operatorname{ad}(JE)JP)$$

$$= ae^{-t}$$

where a is a constant determined by JP. Let $X=\lambda JE+\mu E+P\in\mathfrak{g}$, where $\lambda, \mu\in \mathbb{R}, P\in\mathfrak{p}$. Then we have

$$\rho(JE, \exp t \operatorname{ad}(JE)X) = \rho(JE, \lambda JE + \mu e^{t}E + \exp t \operatorname{ad}(JE)P)$$

$$= \mu \rho(JE, E) e^{t} + \rho(JE, \exp t \operatorname{ad}(JE)P)$$

$$= a e^{-t} + b e^{t}$$

where a, b are constants independent of t. This fact and Lemma 2.1 show that for $X, Y \in \mathfrak{g}$

$$\frac{d}{dt}\rho(\exp t \operatorname{ad}(JE)X, \exp t \operatorname{ad}(JE)Y)$$

$$= \rho(JE, \exp t \operatorname{ad}(JE)[X, Y])$$

$$= ae^{-t} + be^{t}.$$

Hence we obtain

$$\rho(\exp t \operatorname{ad}(JE)X, \exp t \operatorname{ad}(JE)Y)$$

$$= ae^{-t} + be^{t} + c,$$

where a, b and c are constants independent of t. Let $\alpha + i\beta$ be an eigenvalue of $\widetilde{\operatorname{ad}}(JE)$ on $\mathfrak{p}/\mathfrak{k}$. As $\operatorname{ad}(JE)J \equiv J\operatorname{ad}(JE) \pmod{\mathfrak{k}}$ on \mathfrak{p} , there exists an element $P \in \mathfrak{p}$, $P \in \mathfrak{k}$ such that $\operatorname{ad}(JE)P \equiv (\alpha + \beta J)P \pmod{\mathfrak{k}}$. Hence we have

$$\rho(\exp t \operatorname{ad}(JE)JP, \exp t \operatorname{ad}(JE)P)$$

$$= \rho(J \exp t \operatorname{ad}(JE)P, \exp t \operatorname{ad}(JE)P)$$

$$= \rho(J \exp t(\alpha + \beta J)P, \exp t(\alpha + \beta J)P)$$

$$= \rho(\exp t(\alpha + \beta J)JP, \exp t(\alpha + \beta J)P)$$

$$= e^{(\alpha + i\beta)t}e^{(\alpha + i\beta)t}\rho(JP, P)$$

$$= e^{2\alpha t}\rho(JP, P).$$

Therefore

(3.4)
$$e^{2\omega t} \rho(JP, P) = a e^{-t} + b e^{t} + c$$
.

Since $P \in \mathfrak{k}$ and $\rho(JP, P) > 0$, we have $\alpha = 0$ or 1/2 or -1/2. Let \tilde{J} be the linear endomorphism of $\tilde{\mathfrak{p}} = \mathfrak{p}/\tilde{\mathfrak{k}}$ which is induced by J and put for $\alpha, \beta \in \mathbb{R}$;

$$\begin{split} &\tilde{\mathfrak{p}}_{(\alpha+i\beta)} = \{\tilde{P} \in \tilde{\mathfrak{p}}; \, (\widetilde{\mathrm{ad}}(JE) - (\alpha+\beta\tilde{J}))^m \tilde{P} = 0 \} \; , \\ &\tilde{\mathfrak{p}}_{\alpha} = \sum_{\mathbf{g}} \tilde{\mathfrak{p}}_{(\alpha+i\beta)} \; . \end{split}$$

Then we have

$$\tilde{\mathfrak{p}} = \sum_{\alpha + i\beta} \tilde{\mathfrak{p}}_{(\alpha + i\beta)}$$

where $\alpha = 0$ or 1/2 or -1/2.

Let $\widetilde{P} \neq 0 \in \widetilde{\mathfrak{p}}_{(\alpha+i\beta)}$ and let $P \in \mathfrak{p}$ be a representation of \widetilde{P} . Then there exists a positive integer m such that $(\widetilde{\mathrm{ad}}(JE) - (\alpha + \beta \widetilde{J}))^m \widetilde{P} = 0$. Therefore we have

$$\exp t \widetilde{\operatorname{ad}}(JE) \widetilde{P} = \exp t(\alpha + \beta \widetilde{J}) \sum_{l=0}^{m-1} \frac{t^{l}}{l!} (\widetilde{\operatorname{ad}}(JE) - (\alpha + \beta \widetilde{J}))^{l} \widetilde{P}$$

$$= e^{\omega t} \{\cos \beta t \sum_{l=0}^{m-1} \frac{t^{l}}{l!} (\widetilde{\operatorname{ad}}(JE) - (\alpha + \beta \widetilde{J}))^{l} \widetilde{P}$$

$$+ \sin \beta t \sum_{l=0}^{m-1} \frac{t^{l}}{l!} (\widetilde{\operatorname{ad}}(JE) - (\alpha + \beta \widetilde{J}))^{l} \widetilde{J} \widetilde{P} \}.$$

This shows that

$$\exp t \operatorname{ad}(JE)P \equiv e^{\alpha t} \left\{ \cos \beta t \sum_{l=0}^{m-1} \frac{t^{l}}{l!} (\operatorname{ad}(JE) - (\alpha + \beta J))^{l} P + \sin \beta t \sum_{l=0}^{m-1} \frac{t^{l}}{l!} (\operatorname{ad}(JE) - (\alpha + \beta J))^{l} JP \right\} \pmod{\mathfrak{t}}.$$

Hence we have

$$\rho(JE, \exp t \operatorname{ad}(JE)P)$$

$$= e^{\alpha t} \{\cos \beta t \sum_{i=0}^{m-1} \frac{1}{i!} \rho(JE, (\operatorname{ad}(JE) - (\alpha + \beta J))^{i}P)t^{i} + \sin \beta t \sum_{i=0}^{m-1} \frac{1}{i!} \rho(JE, (\operatorname{ad}(JE) - (\alpha + \beta J))^{i}JP)t^{i}\}.$$

Put

$$h(t) = \sum_{l=0}^{m-1} \frac{1}{l!} \rho(JE, (ad(JE) - (\alpha + \beta J))^{l} P) t^{l},$$

$$k(t) = \sum_{l=0}^{m-1} \frac{1}{l!} \rho(JE, (ad(JE) - (\alpha + \beta J))^{l} JP) t^{l}.$$

Then h(t) and k(t) are polynomials of degree $\leq m-1$. We have then

$$h(t)\cos\beta t + k(t)\sin\beta t = ae^{-(1+\alpha)t},$$

$$\left|\frac{h(t)}{t^m}\cos\beta t + \frac{k(t)}{t^m}\sin\beta t\right| = \left|a\frac{t^{-(1+\alpha)t}}{t^m}\right|.$$

Assume that $a \neq 0$. Since $1+\alpha>0$ and since h(t) and k(t) are polynomials of degree $\leq m-1$, the left side of the above formula approaches to 0 and the right side to ∞ , when $t \rightarrow -\infty$. This is a contradiction, and we get a=0, which implies that

$$\rho(JE, \exp tad(JE)P) = 0$$

where P is a representative of $\tilde{P} \in \mathfrak{P}_{(a+i\beta)}$. Thus we have

$$\rho(JE, \exp t \operatorname{ad}(JE)P) = 0$$
, for all $P \in \mathfrak{p}$,

and hence

$$\rho(IE, P) = 0$$
, for all $P \in \mathfrak{p}$.

Therefore 4) is proved. Moreover the formula (3.4) is reduced to

$$(3.4)' e^{2\alpha t}\rho(JP, P) = be^t + c.$$

This implies that $\alpha=0$ or 1/2. Therefore we know that the real parts of the eigenvalues of ad(JE) on $\mathfrak p$ are equal to 0 or 1/2. Thus the assertion 3) is proved. Now we shall show 2). The assertion that the decomposition $\mathfrak g=\{JE\}+\{E\}+\mathfrak p$ is an orthogonal decomposition is clear. Put f=ad(JE)-Jad(E). Then we have f(W)=0 for $W\in\mathfrak k$, f(JE)=JE, f(E)=E and f(P)=[JE,P] for $P\in\mathfrak p$. Hence it follows that

$$\psi(E) = Tr_{\mathfrak{g}/\mathfrak{t}}(\operatorname{ad}(JE) - J\operatorname{ad}(E))$$

$$= Tr_{\mathfrak{g}}(\operatorname{ad}(JE) - J\operatorname{ad}(E))$$

$$= 2 + Tr_{\mathfrak{p}}\operatorname{ad}(JE)$$

$$> 0.$$

Therefore $2\eta(JE, JE) = 2\eta(E, E) = \psi(E) > 0$. Q.E.D.

For α , $\beta \in \mathbb{R}$, put

$$\begin{array}{l} \mathfrak{p}_{(\alpha+i\beta)} = \{P\!\in\!\mathfrak{p};\, (\mathrm{ad}\,(JE)\!-\!(\alpha\!+\!i\beta))^{\mathbf{m}}P = 0\} \;, \\ \mathfrak{p}_{\alpha} = \sum_{\mathbf{B}}\, \mathfrak{p}_{(\alpha\!+\!i\beta)} \;, \end{array}$$

and let π' be the canonical projection from g onto g/\bar{t} . Then we have

$$egin{aligned} & ar{\mathfrak{p}}_{(lpha+ieta)} = \pi'(\mathfrak{p}_{(lpha+ieta)})\,, & ar{\mathfrak{p}}_{lpha} = \pi'(\mathfrak{p}_{lpha})\,, \ & \mathfrak{p} = \mathfrak{p}_0 + \mathfrak{p}_{rac{1}{2}}\,, \ & J\mathfrak{p}_{lpha} \subset ar{\mathfrak{t}} + \mathfrak{p}_{lpha}\,, \ & \mathrm{ad}(JE)\mathfrak{p}_{lpha} \subset \mathfrak{p}_{lpha}\,. \end{aligned}$$

Lemma 3.4. The form η is positive definite on \mathfrak{p}_{*} .

Proof. We shall first prove that the decomposition $\mathfrak{p}_{\underline{i}} = \sum_{\beta} \mathfrak{p}_{(\underline{i}+i\beta)}$ is an orthogonal decomposition with respect to η . Let $P \neq 0 \in \mathfrak{p}_{(\underline{i}+i\beta)}$, $Q \neq 0 \in \mathfrak{p}_{(\underline{i}+i\beta')}$, and assume $\beta \neq \beta'$. Then we have

$$\begin{split} \exp t \, \mathrm{ad}(JE) P &\equiv \exp t \, (1/2 + \beta J) \sum_{l=0}^{r-1} \frac{t^l}{l!} (\mathrm{ad}(JE) - (1/2 + \beta J))^l P \, (\mathrm{mod} \, \, \mathfrak{k}) \, , \\ \exp t \, \mathrm{ad}(JE) Q &\equiv \exp \, (1/2 + \beta' J) \sum_{l=0}^{s-1} \frac{t^l}{l!} (\mathrm{ad}(JE) - (1/2 + \beta' J))^l Q \, (\mathrm{mod} \, \, \mathfrak{k}) \, . \end{split}$$

By Lemma 2.1, we have

(3.5)
$$\frac{d}{dt}\rho(\exp t \operatorname{ad}(JE)JP, \quad \exp t \operatorname{ad}(JE)Q)$$
$$= \rho(JE, \exp t \operatorname{ad}(JE)[JP, Q]).$$

The left side of this equation is equal to

$$\begin{split} \frac{d}{dt} \rho(J \exp t \operatorname{ad}(JE)P, & \exp t \operatorname{ad}(JE)Q) \\ &= \frac{d}{dt} \rho(J \exp t(1/2 + \beta J) \sum_{l=0}^{r-1} \frac{t^{l}}{l!} (\operatorname{ad}(JE) - (1/2 + \beta J))^{l}P, \\ & \exp t(1/2 + \beta' J) \sum_{l=0}^{s-1} \frac{t^{l}}{l!} (\operatorname{ad}(JE) - (1/2 + \beta' J))^{l}Q) \\ &= \frac{d}{dt} e^{t} \rho(\exp \beta t J \sum_{l=0}^{r-1} \frac{t^{l}}{l!} (\operatorname{ad}(JE) - (1/2 + \beta J))^{l}JP, \\ & \exp \beta' t J \sum_{l=0}^{s-1} \frac{t^{l}}{l!} (\operatorname{ad}(JE) - (1/2 + \beta' J))^{l}Q) \\ &= \frac{d}{dt} e^{t} \rho(\{\cos \beta t + (\sin \beta t)J\} u(t), \quad \{\cos \beta' t + (\sin \beta' t)J\} v(t)) \end{split}$$

$$= \frac{d}{dt} e^{t} \{ (\cos \beta t \cos \beta' t + \sin \beta t \sin \beta' t) \rho(u(t), v(t))$$

$$+ (\sin \beta t \cos \beta' t - \cos \beta t \sin \beta' t) \rho(Ju(t), v(t)) \}$$

$$= \frac{d}{dt} e^{t} \{ h(t) \cos (\beta - \beta') t + k(t) \sin (\beta - \beta') t \}$$

$$= e^{t} \{ a(t) \cos (\beta - \beta') t + b(t) \sin (\beta - \beta') t \} ,$$

where

$$u(t) = \sum_{l=0}^{r-1} \frac{t^{l}}{l!} (\operatorname{ad}(JE) - (1/2 + \beta J)^{l}) JP,$$

$$v(t) = \sum_{l=0}^{s-1} \frac{t^{l}}{l!} (\operatorname{ad}(JE) - (1/2 + \beta' J))^{l} Q,$$

$$h(t) = \rho(u(t), v(t)), \ h(t) = \rho(Ju(t), v(t)),$$

$$a(t) = h(t) + h'(t) + (\beta - \beta') h(t),$$

$$b(t) = h(t) + h'(t) - (\beta - \beta') h(t).$$

Hence a(t) and b(t) are polynomials. Since $[JP, Q] \in [t+\mathfrak{p}_i, \mathfrak{p}_i] \subset \{E\} + \mathfrak{p}_i$, we put $[JP, Q] = \lambda E + P'$, where $\lambda \in \mathbb{R}, P' \in \mathfrak{p}_i$. Using Lemma 3.3; 4), the right side of the equation (3.5) is equal to

$$\rho(JE, \exp t \operatorname{ad}(JE)[JP, Q])$$

$$= \rho(JE, \exp t \operatorname{ad}(JE)(\lambda E + P'))$$

$$= e^{t} \lambda \rho(JE, E) + \rho(JE, \exp t \operatorname{ad}(JE)P')$$

$$= e^{t} \lambda \rho(JE, E).$$

Therefore we have

$$a(t) \cos (\beta - \beta')t + b(t) \sin (\beta - \beta')t = \lambda \rho(JE, E)$$
.

Since $a(t) - \lambda \rho(JE, E)$ is a polynomial and since $a(t_n) - \lambda \rho(JE, E) = 0$ for $t_n = \frac{2n\pi}{\beta - \beta'}$, where *n* integer, it follows that a(t) is a constant *a*. Similarly b(t) is a constant *b*. Hence we have

$$a \cos (\beta - \beta')t + b \sin (\beta - \beta')t = \lambda \rho(JE, E)$$
.

By this formula, we have $(\beta - \beta')^2 \lambda \rho(JE, E) = 0$. Since $\beta - \beta' \neq 0$ and $\rho(JE, E) > 0$, we get $\lambda = 0$. Moreover ad (JE) is non-singular on $\mathfrak{p}_{\underline{1}}$ and so there exists an element $P'' \in \mathfrak{p}_{\underline{1}}$ such that P' = [JE, P'']. Thus we have

$$2\eta(P, Q) = \psi([JP, Q])$$

= $\psi(P')$
= $\psi([JE, P''])$
= $-\psi([E, JP''])$
= 0.

This shows that $\mathfrak{p}_{(\frac{1}{2}+i\beta)}$ and $\mathfrak{p}_{(\frac{1}{2}+i\beta')}$ are mutually orthogonal with respect to η . Now, let $P \neq 0 \in \mathfrak{p}_{(\frac{1}{2}+i\beta)}$. Then we have

$$\exp t \operatorname{ad}(JE)P \equiv \exp t(1/2 + \beta J)u(t) \pmod{\mathfrak{k}}$$
,

where $u(t) = \sum_{l=0}^{m-1} \frac{t^{l}}{l!} (ad(JE) - (1/2 + \beta J))^{l}P$. By Lemma 2.1, it follows that

(3.6)
$$\frac{d}{dt} \rho(\exp t \operatorname{ad}(JE)JP, \exp t \operatorname{ad}(JE)P)$$
$$= \rho(JE, \exp t \operatorname{ad}(JE)[JP, P])$$

The left side of the equation (3.6) is equal to

$$\frac{d}{dt} \rho(J \exp t \operatorname{ad}(JE)P, \exp t \operatorname{ad}(JE)P)$$

$$= \frac{d}{dt} \rho(J \exp t(1/2 + \beta J)u(t), \exp t(1/2 + \beta J)u(t))$$

$$= \frac{d}{dt} \rho(\exp t(1/2 + \beta J)Ju(t), \exp t(1/2 + \beta J)u(t))$$

$$= \frac{d}{dt} e^{(\frac{1}{2} + i\beta)t} e^{(\frac{1}{2} + i\beta)t} \rho(Ju(t), u(t))$$

$$= \frac{d}{dt} e^{t} \rho(Ju(t), u(t))$$

$$= e^{t} (h'(t) + h(t))$$

where $h(t) = \rho(Ju(t), u(t))$, and h(t) is a polynomial of degree $\leq 2m-2$. Since $[JP, P] = \lambda E + P'$, where $\lambda \in \mathbb{R}$, $P' \in \mathfrak{p}_{\frac{1}{2}}$, the right side of the equation (3.6) is equal to

$$\rho(JE, \exp t \operatorname{ad}(JE)(\lambda E + P'))$$

$$= e^{t} \lambda \rho(JE, E) + \rho(JE, \exp t \operatorname{ad}(JE)P')$$

$$= e^{t} \lambda \rho(JE, E).$$

Hence we have

$$h'(t)+h(t)=\lambda\rho(JE,E).$$

The solution of this equation is $h(t)=ce^{-t}+\lambda\rho(JE,E)$, where c is an arbitrary

constant. However, h(t) is a polynomial and so c=0. Hence we have

$$h(t) = \lambda \rho(JE, E)$$
,

and hence it follows that

$$\lambda = \frac{h(t)}{\rho(JE, E)} = \frac{h(0)}{\rho(JE, E)} = \frac{\rho(JP, P)}{\rho(JE, E)} > 0.$$

Therefore we have

$$2\eta(P, P) = \psi([JP, P])$$

$$= \lambda \psi(E) + \psi(P')$$

$$= \lambda \psi(E) > 0.$$

This shows that η is positive definite on $\mathfrak{p}_{(\frac{1}{2}+i\beta)}$ and hence on $\mathfrak{p}_{\frac{1}{2}} = \sum_{\beta} \mathfrak{p}_{(\frac{1}{2}+i\beta)}$.

Proof of Theorem 1'. Since η is positive definite on $\{JE\} + \{E\} + \mathfrak{p}_{\frac{1}{2}}$ and since the signature of h is (2, 2(n-1)), we have $\mathfrak{p}_{\frac{1}{2}} = \{0\}$, and hence $\mathfrak{p} = \mathfrak{p}_0$. Let $P, Q \in \mathfrak{p}$. Since $[P, Q] \in [\mathfrak{g}_0, \mathfrak{g}_0] \subset \mathfrak{g}_0$, where $\mathfrak{g}_0 = \{JE\} + \mathfrak{p}$, we put $[P, Q] = \lambda JE + P'$, where $\lambda \in \mathbb{R}$, $P' \in \mathfrak{p}$. It follows that $[E, [P, Q]] = [E, \lambda JE + P'] = -\lambda E$ and [E, [P, Q]] = [[E, P], Q] + [P, [E, Q]] = 0. This implies that $\lambda = 0$ and $[P, Q] \in \mathfrak{p}$. Therefore \mathfrak{p} is a subalgebra of \mathfrak{g} and also an ideal of \mathfrak{g} . Moreover we see easily that $(\mathfrak{p}, \mathfrak{k}, J, \rho)$ is an effective Kähler algebra. Since the decomposition $\mathfrak{g} = \{JE\} + \{E\} + \mathfrak{p}$ is orthogonal with respect to η and η is positive definite on $\{JE\} + \{E\}$ and since the signature of h is (2, 2(n-1)), we know that $\eta(P, P) < 0$, for $P \in \mathfrak{p}$, $P \in \mathfrak{k}$. Now, for $P, Q \in \mathfrak{p}$, put

$$\begin{split} \psi'(P) &= \mathit{Tr}_{\mathfrak{p}/\mathfrak{k}}(\mathrm{ad}(JP) - J\,\mathrm{ad}(P))\,,\\ 2\eta'(P,\,Q) &= \psi'([JP,\,Q])\,. \end{split}$$

For $P \in \mathfrak{p}$, $P \in \mathfrak{k}$, we have $(\operatorname{ad}(JP) - J\operatorname{ad}(P))E = 0$, $(\operatorname{ad}(JP) - J\operatorname{ad}(P))JE \equiv 0$ (mod \mathfrak{k}) and hence $\psi(P) = \psi'(P)$. This implies that

$$2\eta'(P, P) = \psi'([JP, P])$$

= $\psi([JP, P])$
= $2\eta(P, P) < 0$,

which proves that the canonical hermitian form of $(\mathfrak{p}, \mathfrak{k}, J, \rho)$ is negative definite. Therefore we know that \mathfrak{p} is a compact semi-simple subalgebra of \mathfrak{g} [5].

Q.E.D.

Proof of Theorem 1. When G is a semi-simple Lie group, our assertion follows from the results of Borel [1] and Koszul [3]. We shall show the case where G contains a one parameter normal subgroup of G. Let $\{E\}$ be the ideal

490 H. Shima

of g corresponding to the one parameter subgroup. With appropriate choice of J, we may assume that $J^2E=-E$. Put $g'=\{JE\}+\{E\}$. Then (g', J, ρ) is a Kähler algebra of the unit disk $\{z \in C; |z| < 1\}$. Now, for $X, Y \in \mathfrak{g}$, we define

$$\tilde{\rho}(X, Y) = \rho(X', Y')$$

where X', Y' are the g'-components of X, Y with respect to the decomposition $g=g'+\mathfrak{p}$ respectively. Then $(g,\mathfrak{p},J,\tilde{\rho})$ is a Kähler algebra. We denote by G' (resp. P) the connected subgroup of G corresponding to g' (resp. \mathfrak{p}). Since $(g,\mathfrak{p},J,\tilde{\rho})$ is a Kähler algebra, G/P admits an invariant Kähler structure and is holomorphically isomorphic to the G'-orbit passing through the origin o. We know by Theorem 1' that G/K is a holomorphic fibre bundle whose base space is $G/P \cong \{z \in C; |z| < 1\}$, and whose fibre is P/K. Q.E.D.

4. Proof of Theorem 2

Let $(g, \mathfrak{k}, J, \rho)$ be the Kähler algebra of G/K. We show that, if \mathfrak{g} is not semi-simple, then there exists a one dimensional ideal of \mathfrak{g} . Assume that \mathfrak{g} is not semi-simple. Then there exists a non-zero commutative ideal \mathfrak{r} of \mathfrak{g} . Consider a J-invariant subalgebra $\mathfrak{g}' = \mathfrak{k} + J\mathfrak{r} + \mathfrak{r}$. Then we have

Lemma 4.1. $dim_C g'/t=1$.

Since $\mathfrak{k} \cap \mathfrak{r} = \{0\}$ by Lemma 2.3 and $\dim_C \mathfrak{g}/\mathfrak{k} = 2$, $\dim_C \mathfrak{g}'/\mathfrak{k} = 1$ or 2. Suppose that $\dim_C \mathfrak{g}'/\mathfrak{k} = 2$. Then $\dim_C \mathfrak{g}/\mathfrak{k} = \dim_C \mathfrak{g}'/\mathfrak{k}$, $\dim \mathfrak{g} = \dim \mathfrak{g}'$ and hence $\mathfrak{g} = \mathfrak{k} + J\mathfrak{r} + \mathfrak{r}$. Since $\dim \mathfrak{g}'/\mathfrak{k} = 4$ and $\mathfrak{k} \cap \mathfrak{r} = \{0\}$, we have $2 \leq \dim \mathfrak{r} \leq 4$. Let \mathfrak{r}' be the projection from \mathfrak{g} onto $\mathfrak{g}/\mathfrak{k}$. Then it follows that

$$\dim \pi'(J\mathfrak{r}) \cap \pi'(\mathfrak{r}) = \dim \pi'(J\mathfrak{r}) + \dim \pi'(\mathfrak{r}) - \dim \pi'(\mathfrak{g})$$
$$= 2 \dim \mathfrak{r} - 4.$$

First, we shall show dim $r \neq 3$, 4. Suppose dim r = 3 or 4. Then dim $\pi'(Jr) \cap \pi'(r) > 0$, and so there exist $A \neq 0$, $B \neq 0 \in r$ and $W \in \mathfrak{k}$ such that JA = B + W. Therefore we have $2\eta(A, C) = \psi([JA, C]) = \psi([B+W, C]) = 0$ and $2\eta(A, JC) = \psi([JA, JC]) = \psi([A, C]) = 0$ for all $C \in r$. Since $g = \mathfrak{k} + Jr + r$, we know $\eta(A, X) = 0$ for all $X \in \mathfrak{g}$. This implies $A \in \mathfrak{k}$, which is a contradiction to Lemma 2.3. Next, we shall prove dim $r \neq 2$. Suppose dim r = 2. Then dim $\pi'(Jr) \cap \pi'(r) = 0$, and hence $g = \mathfrak{k} + Jr + r$ is a direct sum as vector spaces. Let A be an element in r such that $\eta(A, B) = 0$ for all $B \in r$. Since $g = \mathfrak{k} + Jr + r$ and $2\eta(A, JB) = \psi([JA, JB]) = \psi([A, B]) = 0$, we have $\eta(A, X) = 0$ for any $X \in \mathfrak{g}$, which implies $A \in \mathfrak{k}$, and hence A = 0 by Lemma 2.3. This shows that η is non-degenerate on r. Therefore there exists a unique non-zero element $E \in r$ such that $2\eta(E, A) = \psi(A)$ for all $A \in r$. We have then

$$[JE, E] = E,$$

$$\psi(E) \neq 0.$$

Indeed, for $A \in \mathfrak{r}$ we have

$$2\eta([JE, E], A) = \psi([J[JE, E], A])$$

$$= -\psi([[JE, E], JA])$$

$$= \psi([[E, JA], JE]) + \psi([[JA, JE], E])$$

$$= -\psi([E, JA]) + \psi([J[JA, E] + J[A, JE], E])$$

$$= \psi(A) + \psi([JA, E]) + \psi([A, JE])$$

$$= \psi(A).$$

This shows that [JE, E] = E. Let F be an element in \mathfrak{r} independent of E. Put $[JE, F] = \lambda E + \mu F$, where λ , $\mu \in \mathbb{R}$. Then $\psi(E) = Tr_{\mathfrak{g}/\mathfrak{r}}(\operatorname{ad}(JE) - J\operatorname{ad}(E)) = 2(1+\mu)$. We shall show $\psi(E) \neq 0$. Suppose $\psi(E) = 0$. Then $\mu = -1$ and $\psi(F) = 2\eta(E, F) = \psi([JE, F]) = \lambda \psi(E) - \psi(F) = -\psi(F)$. Therefore $\psi(F) = 0$, and hence $\psi = 0$ on \mathfrak{r} , which is a contradiction to Lemma 2.4.

(4.2) There exists an element F in \mathfrak{r} independent of E such that

$$[JE, E] = E$$
, $[JE, F] = \alpha F$,
 $[JF, E] = \beta F$, $[JF, F] = -E$,
 $\psi(F) = 0$,

where $\alpha, \beta \in \mathbb{R}$.

Proof. By $2\eta(E,E)=\psi(E)\pm 0$, there exists $\widetilde{F}\pm 0$ such that $2\eta(E,\widetilde{F})=\psi(\widetilde{F})=0$. Since η is non-degenerate on \mathfrak{r} and the signature is (1,1), we have $\eta(E,E)\eta(\widetilde{F},\widetilde{F})<0$. Put $[JE,\widetilde{F}]=\alpha\widetilde{F}+\alpha'E$, where $\alpha,\alpha'\in \mathbf{R}$. We have then $0=\psi(\widetilde{F})=2\eta(E,\widetilde{F})=\psi([JE,\widetilde{F}])=\alpha\psi(\widetilde{F})+\alpha'\psi(E)=\alpha'\psi(E)$, and hence $\alpha'=0$, and $[JE,\widetilde{F}]=\alpha\widetilde{F}$. Similarly we have $[J\widetilde{F},E]=\beta\widetilde{F}$. Now, we put $[J\widetilde{F},\widetilde{F}]=\gamma E+\delta\widetilde{F}$, where $\gamma,\delta\in\mathbf{R}$. Then we have $0=\psi(\widetilde{F})=T_{\mathrm{rg}/\mathrm{t}}(\mathrm{ad}(J\widetilde{F})-J\mathrm{ad}(\widetilde{F}))=2\delta$ and so $[J\widetilde{F},\widetilde{F}]=\gamma E$. Since $2\eta(\widetilde{F},\widetilde{F})=\psi([J\widetilde{F},\widetilde{F}])=\gamma\psi(E)=2\gamma\eta(E,E)$, it follows $\gamma=\frac{\eta(\widetilde{F},\widetilde{F})}{\eta(E,E)}<0$. Putting $F=\frac{1}{\sqrt{-\gamma}}\widetilde{F}$, we have [JF,F]=-E.

$$\mathbf{f} = \{0\} \ .$$

Proof. For $W \in I$, put $[W, E] = \lambda E + \mu F$. Since $0 = \psi([W, E]) = \lambda \psi(E) + \mu \psi(F) = \lambda \psi(E)$, $\lambda = 0$ and hence $[W, E] = \mu F$. We have $\psi([JF, [W, E]]) = -\mu \psi(E)$ and $\psi([JF, [W, E]]) = \psi([[JF, W], E]) + \psi([W, [JF, E]]) = \psi([JF, W], E]) = \psi([JF, W]) = 0$. Thus $\mu = 0$ and [W, E] = 0. Now, put $[W, F] = \lambda E + \mu F$. By $0 = \psi([W, F]) = \lambda \psi(E) + \mu \psi(F) = \lambda \psi(E)$,

we have $\lambda=0$ and $[W,F]=\mu F$. Hence it follows $\psi([JF,[W,F]])=-\mu\psi(E)$. On the other hand we have $\psi([JF,[W,F]])=\psi([[JF,W],F])+\psi([W,[JF,F]])=\psi([JF,W],F])=-\mu\psi([JF,F])=\mu\psi(E)$. Therefore $2\mu\psi(E)=0$, and hence $\mu=0$, [W,F]=0. Thus [t,r]=0. Since $[t,Jr]\subset t$, $[t,t]\subset t$ and g=t+Jr+r, we know that t is an ideal of g. By the effectiveness, we have $t=\{0\}$. Q.E.D.

$$(4.4) 2\alpha = \beta + 1.$$

Proof. Using Jacobi identity and (1.3), we have

$$0 = [[JE, JF], F] + [[JF, F], JE] + [[F, JE], JF]$$

$$= [[J[JE, F] + J[E, JF], F] + [[JF, F], JE] + [[F, JE], JE]$$

$$= (\alpha - \beta)[JF, F] - [E, JE] - \alpha[F, JF]$$

$$= (-2\alpha + \beta + 1)E.$$

Hence it follows $2\alpha = \beta + 1$.

Q.E.D.

By (1.7), (4.2) and (4.4), we have

$$0 = \rho([JE, F], JF) + \rho([F, JF], JE) + \rho([JF, JE], F)$$

$$= \alpha \rho(F, JF) + \rho(E, JE) - (\alpha - \beta)\rho(JF, F)$$

$$= (-2\alpha + \beta)\rho(JF, F) - \rho(JE, E)$$

$$= -\rho(JF, F) - \rho(JE, E).$$

This contradicts to $\rho(JE, E) > 0$, $\rho(JF, F) > 0$. Therefore dim $\mathfrak{r} \neq 2$ and hence $\dim_C \mathfrak{g}'/\mathfrak{t} \neq 2$. Thus we have proved $\dim_C \mathfrak{g}'/\mathfrak{t} = 1$, this completes the proof of Lemma 4.1. Q.E.D.

Let $r \neq \{0\}$ be a commutative ideal of g. Since dim g'/t=2 by Lemma 4.1 and $t \cap r = \{0\}$, it follows that dim r=1 or 2. Assume dim r=2. Then we have

$$\dim \pi'(J\mathfrak{r}) \cap \pi'(\mathfrak{r}) = \dim \pi'(J\mathfrak{r}) + \dim \pi'(\mathfrak{r}) - \dim (\pi'(J\mathfrak{r}) + \pi'(\mathfrak{r}))$$

$$= 2 \dim \mathfrak{r} - 2$$

$$= 2.$$

This implies $\pi'(J\mathfrak{r}) = \pi'(\mathfrak{r})$ and hence $J\mathfrak{r} \subset \mathfrak{k} + \mathfrak{r}$. For any $A \in \mathfrak{r}$, we have JA = A' + W, where $A' \in \mathfrak{r}$, $W \in \mathfrak{k}$. It follows then

$$\psi(A) = Tr_{\mathfrak{g}/\mathfrak{t}}(\operatorname{ad}(JA) - J\operatorname{ad}(A))$$

$$= Tr_{\mathfrak{g}/\mathfrak{t}}(\operatorname{ad}(A') - J\operatorname{ad}(A)) + Tr_{\mathfrak{g}/\mathfrak{t}}\operatorname{ad}(W)$$

$$= Tr_{\mathfrak{t}+\mathfrak{r}/\mathfrak{t}}(\operatorname{ad}(A') - J\operatorname{ad}(A))$$

$$= 0.$$

Hence $\psi = 0$ on \mathfrak{r} , which is a contradiction to Lemma 2.4. Thus \mathfrak{r} is a one dimensional ideal of \mathfrak{g} . Therefore Theorem 2 is proved. Q.E.D.

- 5. We shall classify two dimensional connected simply connected homogeneous Kähler manifolds with non-degenerate canonical hermitian form h. The signature of h is (4, 0) or (2, 2) or (0, 4).
- (i) The case (4, 0). Since h is positive definite, G/K is isomorphic to a homogeneous bounded domain. Hence G/K is either $\{z \in C; |z| < 1\} \times \{z \in C; |z| < 1\}$ or $\{(z_1, z_2) \in C^2; |z_1|^2 + |z_2|^2 < 1\}$.
- (ii) The case (0, 4). Since h is negative definite, G is a compact semi-simple Lie group by [5]. By a theorem in [4], G/K is a hermitian symmetric space. Hence G/K is either $P_1(C) \times P_1(C)$ or $P_2(C)$, where $P_n(C)$ is a complex n-dimensional projective space.
- (iii) The case (2, 2). Applying Theorem 1 and 2, we obtain that G/K is a holomorphic fibre bundle whose base space is the unit disk $\{z \in C; |z| < 1\}$, and whose fibre is $P_1(C)$.

YAMAGUCHI UNIVERSITY

References

- [1] A. Borel: Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. USA 40 (1954), 1147-1151.
- [2] S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: *Homogeneous Kähler manifolds*, "Geometry of Homogeneous Bounded Domains", Centro Int. Mat. Estivo, 3° Ciclo, Urbino, 1967.
- [3] J.L. Koszul: Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math. 7 (1955), 562-576.
- [4] A. Lichnerowicz: Espaces homogènes Kählériens, Colloque Géométrie Différentielle, Strasbourg, 1953, 171-201.
- [5] H. Shima: On homogeneous complex manifolds with negative definite canonical hermitian form, Proc. Japan Acad. 46 (1970), 209-211.
- [6] H. Shima: On homogeneous Kähler manifolds of solvable Lie groups, J. Math. Soc. Japan 25 (1973), 422-445.