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We denote by M a connected homogeneous Kihler manifold of complex
dimension # on which a connected Lie group G acts effectively as a group of
holomorphic isometries, and by K an isotropy subgroup of G at a point o of M.
Let v be the G-invariant volume element corresponding to the Kihler metric.

In a local coordinate system {z,, .-+, 2,}, © has an expression v=:"Fdz,A -+ A
2
dz, Nd2 N--ANdg, 'The G-invariant hermitian form A= 3} 66 log Fdz,- dz, is
ni 0z;0%,

called the canonical hermitian form of M=G/K. It is known that the Ricci
tensor of the Kahler manifold M is equal to —k. 'The purpose of this paper is
to prove the following:

Theorem 1. Let M=G/|K be a simply connected homogeneous Kdhler mani-
fold with non-degenerate canonical hermitian form h of signature (2,2(n—1)). Then,
if either G is semi-simple or G contains a one parameter normal subgroup, M=G|K
15 a holomorphic fibre bundle whose base space is the unit disk {z=C; |z| <1}, and
whose fibre is a homogeneous Kdhler manifold of a compact sime-simple Lie group.

In the case of dim; G/K=2, the assumption of Theorem 1 is fulfilled and
we have

Theorem 2. Let M= G|K be a complex two dimensional homogeneous Kahler
manifold with non-degenerate canonical hermitian form h of signature (2, 2). Then
G is semi-simple or G contains a one parameter normal subgroup.

As an application of these Theorems, we obtain a classification of complex
two dimensional homogeneous Kihler manifolds with non-degenerate canonical
hermitian form.

1. Let (I, g) be the G-invariant Kihler structure on M, i.e., I is the G-
invariant complex structure tensor on M and g is the G-invariant Kihler metric
on M. Let g be the Lie algebraof all left invariant vector fields on G and let £ be
the subalgebra of g corresponding to K. We denote by # the canonical projection
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from G onto M=G/K and denote by 7, the differential of = at the identity e of
G. Let X,, I, and g, be the values of X, I and g at e and z(e)=o0 respectively.
Then there exist a linear endomorphism J of g and a skew symmetric bilinear
form p on g such that

7 (JX)e = L7 X.), p(X, Y) =gz X, 7.Y,),
for X, Yeg. Then (g, t, ], p) satisfies the following properties [2], [3].
(1.1) jict, J’X=—X (modt),
(12) [, JX]=][W, X] (mod 1),
(13) [JX, JYI=JUJX, YI+HJIX, JY]+[X, Y] (mod?),
(14) p(W, X)=0,
(1.5) p(JX, JY)=p(X, Y),
(1.6) p(JX, X)>0, X<,
(L7 p(X, Y1, Z)+((Y, Z], X)+p(1Z, X1, ¥) =0,
where X, Y, Zeg, Wet.

Then (g, £, J, p) will be called the Kahler algebra of M=G/K.
Koszul proved that the canonical hermitian form A of a homogeneous Kihler
manifold G/K has the following expression [3]. Put

2X, Y)=hx,X, =,Y,), and

(18) Y(X) = Tryp(ad (JX)—Jad (X)),
it follows then
(1.9) WX, V)= H(JX, Y],

for X, Yeg. The form v satisfies the following properties:

(1.10) w([W, X)) =0,
(1.11)  W(JX, JY]) = ¥(X, Y]), for X, Yeg Wet.

Since G acts effectively on G/K, ¢ contains no non-zero ideal of g and there
exists an ad (f)-invariant inner product (, ) on g. Henceforth, we assume that
the canonical hermitian form & of G/K is non-degenerate, which is equivalent
to the following condition:

Let Xeg. If o(X, Y)=0 for all Y=g, then X <t

2. We shall now prepare a few lemmas for later use. The following
lemma is due to [2].
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Lemma 2.1. For E, X, Yeg,
—j; plexp tad (JE) X, exp tad (JE)Y)

— p(JE, exp tad (JE)[X, Y]).
Lemma 2.2. The adjoint representation of g is faithful.

Proof. Put a={X g; ad(X)=0}, then a is an ideal of g. We have for
Xea
29(X, Y)=¥([JX, Y])
= —Y([X, JY])=0, forall Yegq.

Since & is non-degenerate, we have X&#, and hence act. By the effectiveness,
we have a= {0}. Q.E.D.

Lemma 2.3. Let t be a commutative ideal of g. Then,tNt={0},¥N Jr=
{0}.
Proof. Let A=tNr. Sincer is a commutative ideal, we have ad (4)°’=0.
By the effectiveness, it follows that
(ad(4)y°X, X)+(ad(4)X, ad(4)X) =0,
(ad(4)X, ad(4)X) =0,
for X &g, with respect to the ad (f)-invariant inner product (, ) on g. Hence

ad(4)X=0 for all X&g, and A4=0 by Lemma 2.2, which proves ¥Nr= {0}.
tN Jr= {0} follows from fNr= {0}. Q.E.D.

Lemma 2.4. Let t be a non-zero commutative ideal of §. Then =0 on .

Proof, Assume Yr=0 on r. For X&t, we have 27(X, Y)=—({JY, X])=
Oforall Yeg. Sincekis non-degenerate, we have X &t and hence tC ¥, which
contradicts to Lemma 2.3. Q.E.D.

Lemma 2.5. Trgpad(W)=0, for Wet.

Proof. Using (1.4), (1.7), we have
p(W, [X, Y])+p(X, [Y, W+p(Y,[W, X])=0,
p(X, [Y, W])_("P(Y’ (W, X])=0,
for X, Yeg. Hence it follows that
for X, Yeq. This implies that the endomorphism of g/t which is induced by
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ad (W) is skew symmetric with respect to the inner product which is defined by
p(JX, Y). Therefore Trgrad (W)=0. Q.E.D.

Lemma 2.6. Let {E} be a one dimensional ideal of 3. Then [E, W]=0,
for WX, Moreover, there exists an endomorphism J of g such that JX=
JX(mod 1), [JE, W]=0, for Xg, WeL.

Proof. Put [E, W]=MAE, A€ R. Using (1.10), we have 0=V ([E, W])=
M(E). Since Y(E)=0 by Lemma 2.4, it follows A=0 and hence [E, W]=0.
Put h)=t+ {JE}, then [t, )]ch. Let {L} be the orthogonal complement of f
in § with respect to the ad (£)-invariant inner productong. Then {f, {L}]c {L}.
We may assume that L=W,+JE where W,&t. Therefore we can choose a
linear endomorphism J on g such that JE=L, JX=]JX (mod t) for X&g. Then
it follows

[JE, 1] = [L, t]c {L},
[JE, flc[p, fict.

This implies [ JE, W]=0 for Wet. Q.E.D

Therefore, for any one dimensional ideal {E} of g, we may assume that

[JE, t] = {0}.
3. We shall prove the following theorem.

Theorem 1. Let (g, ¥, ], p) be the Kdhler algebra of a homogeneous Kdhler
manifold G|K with non-degenerate canonical hermitian form h of signature
(2, 2(n—1)). If there exists a one dimensional ideal t of g, then we have the
Sollowing.

1) With suitable choice of E40&x, we have [ JE, E]=E.

2) Put p={Peg; [P, E]=[]JP, E]1=0}. Then we have the decomposition
a={JE}+ {E} +V of g into the direct sum of vector spaces. We know also that p
is a compact semi-simple J-invariant ideal of g and that the real parts of the eigen-
values of ad (JE) on b are equal to 0.

The first part of the proof of Theorem 1/ is nearly the same as the previous
one [6]. But, for the sake of completeness we carry out the proof.

Lemma 3.1. Let {E} be a one dimensional ideal of g and put p={Pecg;
[P, E]=[]JP, E]=0}. Then we have

1) tcp,

2) JpCp, ad(JE)pCh,

3) ad(JE)J=Jad(JE) (mod %) on p.

Proof. 1) follows from Lemma 2.6. For Py, we have
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[JE, JP] = J{JE, PI-+]JIE, JP1+IE, P]+ W,
= J[JE, P1+ W,

for some W,=t, and hence 3) is proved. For P&y, it follows that

[[]E) P]’ E] = [[]E’ E]» P]‘H:JE’ [P’ E]] =0,
[JIJE, P}, E] = [[JE, JP]—W, E]=0,

where W,&!. Therefore ad(JE)Pe<) for all Pep, which proves 2).

Lemma 3.2. Let {E} be a one dimensional ideal of g. Then [JE, E]=0,
therefore with suitable choice of E 50, we have [ JE, E]=E.

Proof. Assume that [JE, E]=0. For Xe&g, we have J[JE, X]=
[JE, JX]—JIE, JX]—[E, X}+W,=[JE, JX]—N\JE—pE+W,, where \, LER,
W,=f. We have

[([JE, X], E] = [[JE, E], X]+[JE, [X, E]] =0,
—l—[Wor E] =0 ’

which implies that [ JE, X]&p, and hence we have
3.1 ad(JE)gCVp.
Let Pep. We have
P(JE, [JE, P])= p(—E, JJE, P))
= —'P(E’ []E’ ]P])

= p(JE, [JP, ED+p(JP, [E, JE])
=0,

and it follows that for Xeg
(3.2) p(JE, ad(JEyX)=0.
Applying Lemma 2.1, (3.2), we have for X, Yeg

%}p(exp tad(JE)X, exp tad(JE)Y)

— & (B, exp tad (JEYIX, Y1)

= p(JE, ad(JEY exp tad (JE) [X, Y))
=90.

Hence we may put
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(3.3) plexp tad( JE)X, exp tad(JE)Y)
= af?-bt+c
where a, b and ¢ are real numbers not depending on 7. Since ad(JE)pCp,
ad(JE)f= {0} by Lemma 2.6, (3.1), ad(JE) induces a linear endomorphism
ga(jE) on p/t. Let a+iB(a, BER) be an eigenvalue of ad(JE). As
ad( JE)J= Jad(JE) (mod ) on b, there exists an element Pep, Pt such that
[JE, P]=(a+BJ)P(modt), and hence exp ¢ ad (JE)P=exp t(a-+ 3 J)P(mod ¥).
Therefore we have by Lemma 3.1,
p(exp tad(JE)JP, exp tad(JE)P)
= p(J exp tad( JE)P, exp tad(JE)P)
= p(J exp t(a+RBJ)P, exp t{a+B])P)
= p(exp H(a+B J)JP, exp Ha+BJ)P)
= BB p@ I o(JP, P)
— & p(JP, P).
From this and (3.3), we have
e p(JP, P) = at*}+bt+c.
Since P&, p(JP, P)>0 and hence a=0. This factand ad(JE)f= {0} show
that the real parts of the cigenvalues of ad(/E) on p are equal to 0. Therefore
we have
W(E) = Trgp(ad (JE)—Jad(E))
= Trg(ad(JE)— Jad(E))—Tri(ad (JE)— Jad(E))
= Trgad(JE)—TrgJad(E)
= Trpad (JE)—TrymJad(E)
=0.

However this contradicts to Y20 on {E} by Lemma 2.4. Q.E.D.

Lemma 3.3 Let {E} be a one dimensional ideal of . Then we get the

decomposition
g = {JE}+{E}+»

of g into the direct sum of vector spaces with the following properties:

1) [JE, E]=E.

2) The factors of the decomposition are mutually orthogonal with respect to
the form =, and 7 is positive definite on {JE}+ {E}.

3) The real parts of the eigenvalues of ad(JE) on p are equal to 0 or 1/2.

4) p(JE, P)=0 for Pep.
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Proof. By lemma 3.2, we may assume that E satisfies the condition
[JE, E]=E. Since {E} is a one dimensional ideal of g, we get [X, E]=a(X)E,
[JX, El=B(X)E, for X=g, where «, B are linear functions on g. It is easily
seen that P=X—a(X) JE—B(X)E belongs to p for any X €g. Therefore we
have the decomposition g={JE}+'{E}+p. Now, by Lemma 2.1, we have for
Pep,

%p(exp tad(JE)E, exp tad(JE)P)
— p(JE, exp tad (JE)E, P])
=0.
Since exp tad(JE)E=¢'E, we have
p(E, exp tad(JE)P) = d’e™*
where a’ is a constant determined by P and independent of . We have then
p(JE, exp tad(JE)P) = —p(E, J exp tad( JE)P)
— —p(E, exp tad (JE)JP)

f] ae_t

where @ is a constant determined by JP. Let X=\JE-+uE+Peg, where
N, nER, Pep. Then we have

p(JE, exp tad(JE)X) = p(JE, M JE+ pe'E+exp tad(JE)P)
= up(JE, E)é+p(JE, exp tad(JE)P)
= ae~*+bet

where a, b are constants independent of ¢. This fact and Lemma 2.1 show that
for X, Yeg

%p(exp tad(JE)X, exp tad(JE)Y)
= p(JE, exp tad(JE)[X, Y])
=ae t}-bet.

Hence we obtain
p(exp tad(JE)X, exp tad(JE)Y)
= ae~*+bef+c,

where a, b and ¢ are constants independent of . Let a+ 8 be an eigenvalue

of gl(]E) on p/t. As ad(JE)J=Jad(JE) (mod t) on p, there exists an
element Pep, P&t such that ad(JE)P=(a+BJ)P (mod ). Hence we have
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plexp tad(JE) JP, exp tad(JE)P)
= p(J exp tad(JE)P, exp tad(JE)P)
= p(/J exp {a+B])P, exp t(a+B])P)
= p(exp {a+BJ)JP, exp a+B])P)
— e(m+iﬂ)te(ﬂ+iﬁ)t p(JP’ P)
= ¢ p(JP, P).
Therefore

(3.4) & p(JP, P)= ae *+bé+c.

Since P&t and p(JP, P)>0, we have a=0 or 1/2 or —1/2. Let J be the
linear endomorphism of p=p/t which is induced by J and put for ¢, BE R;

Bearir = {PEP; (ad(JE)—(a+B])"P= 0},
5:» - ; 5(a+s‘ﬂ) .

Then we have

b= E Bewsin>
a+if

where a=0 or 1/2 or —1/2.
Let P=0EPu.is and let PEP be a representation of P. Then there exists a

positive integer m such that (ad(JE)—(a+BJ))"P=0. Therefore we have
exp tad (JEVP = exp ta+B]) 3 - Gd(JE)—(a+BT))P
— e {oos f1 31 L @(JE)—(a-+BI)'P
+sin Bt 3+ @A(JE)—(a+B]) P} .
This shows that
exp tad (JEVP = e {cos 1] - (ad (JE)—(a-+ 8] )P

+sin Bt 3] 4 (ad (JE)—(a-+A ) JP} (mod ).
Hence we have
P(JE, exp tad(JE)P)

= e {cos 13 p(JE, (d (JE)—(a+B ) P)

4sin Bt';i‘:;%! p(JE, (ad (JE)—(a+BJ)Y JP)H} .
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Put

Wt) = - pUE, (d(JE)~(a+B])P)

K) = 5] p(JE, (ad(JE)—(a+B])) JP)Y

Then A(t) and &(t) are polynomials of degree <m—1. We have then

h(t) cos Bt-+k(t) sin Bt = ae”¢+**,

h(z) cos ,8t+lf(—t) sin Bt’ =
[ "

t-—(1+d)t

tm

a

Assume that a:0. Since 14-a>0 and since A(#) and k(#) are polynomials of
degree < m—1, the left side of the above formula approaches to 0 and the right
side to oo, when —>—co. This is a contradiction, and we get a=0, which
implies that

p(JE, exp tad(JE)P) = 0

where P is a representative of PE,.i, . Thus we have

p(JE, exp tad(JE)P)=0, forall Pep,
and hence

p(JE, P)=0, forall Pep.
Therefore 4) is proved. Moreover the formula (3.4) is reduced to
(3.4 &p(JP, P) = bet+c.

This implies that =0 or 1/2. Therefore we know that the real parts of the
eigenvalues of ad(JE) on p are equal to 0 or 1/2. Thus the assertion 3) is
proved. Now we shall show 2). The assertion that the decomposition g=
{JE}+{E}+p is an orthogonal decomposition is clear. Put f=ad(JE)—
Jad(E). Then we have f(W)=0 for Wet, f(JE)=JE, f(E)=FE and f(P)=
[JE, P] for Pep. Hence it follows that

W(E) = Trgn(ad (JE)—Jad(E))
= Tro(ad(JE)—Jad(E))

= 24 Tryad (JE)
>0.
Therefore 2y9( JE, JE)=2n(E, E) = y(E)>0. Q.E.D.

For a, BER, put
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Pearipy = {P EP; (ad(JE)—(a+iB))"P = 0} ,
Ps = ; Deo+id> »

and let z” be the canonical projection from g onto g/f. Then we have

Pewrir = 7' (Pwsin) »  Pu = 7'(Pa)
P =P+,

JPaCl+p,,

ad(JE)pC P .

Lemma 3.4. The form » is positive definite on 9.

Proof. We shall first prove that the decomposition p;= ;pmis) is an

orthogonal decomposition with respect to 7. Let P3040, OF0E D485,
and assume 8% /3’. Then we have

exp tad(JE)P = expt (1/2+,8])T§_}1 %(ad(]E)—(l/Z—l—,@]))’P (mod T),

exp tad(JE)Q = exp (112+8')) 5} - d (JE)—(112+8')))'Q (mod ).

By Lemma 2.1, we have

(3.5) %—p(exp tad(JE)JP, exp tad(JE)Q)
= p(JE, exp tad (JE)[JP, Q]) .

The left side of this equation is equal to
2 p(J exp tad(JEVP, exp tad (JE)Q)
=2 p(J exp (12+8)) g L Gd(JE)—(112+B] )P,
exp Y(1/2+8')) - @d(JE)~(112+ ')V 0)
= L eofexp B3] LA (JE)-(11248)))JP,
exp (1) 3} L (@d (JE)-(1/2+6]))Q)

- %e‘p( {cos Bt-4-(sin B)J}u(t), {cos B't1(sin B'1)]}v (2))
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— _d‘ft_ef {(cos Bt cos B't+sin Bt sin BH)p(u(t), (2))
+4-(sin B¢ cos B't—cos Bt sin B'F)p( Ju(t), v(t))}

— L& {h(t) cos (8—R")1-+K() sin (8—A)}

= ¢*{a(?) cos (8—@')t+b(t) sin (8—F')t}

where

ut) = 5 L @d(JE)—(12+ 8] V)P,

o) = 5} - @dUE)-(12+ BIYQ,

h(t) = p(u(?t),, ©(2)) , k(t) = p(Ju(t), ©(2)),
a(t) = h(t)+H(t)+(B—B)k(1),
b(t) = k(H)+K (1) —(B— Bh(F) .

Hence a(t) and b(t) are polynomials. Since [JP, Q] [E-+b;, pi]C {E} 4y,
we put [JP, Q]=AE+P’, where A€ R,P’=p,. Using Lemma 3.3; 4), the
right side of the equation (3.5) is equal to

p(JE, exp tad(JE)LJP, Q1)

= p(JE, exp tad (JE)AE+P")

= enp(JE, E)+p(JE, exp tad(JE)P')
= e\p(JE, E).

Therefore we have
a(t) cos (B—B)t+b(f) sin (8—B')t = p(JE, E).

Since a(t)—Ap(JE, E) is a polynomial and since a(t,)—Mp(JE, E)=0 for t,=
2nm
B—B"

constant 5. Hence we have

where n integer, it follows that a(f) is a constant @. Similarly b(¢) is a

a cos (B—B)t+bsin (B— Bt = Ap(JE, E).

By this formula, we have (8—g8')Ap(JE, E)=0. Since B8—fB’+0 and
p(JE, E)>0, we get A=0. Moreover ad(JE) is non-singular on p, and so there
exists an element P” &y, such that P'=[ JE, P””]. 'Thus we have
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20(P, 0) = W(LJP, Q)
= W(P)
= W(JE, P"))
= —¥([E, JP"))
=0.

This shows that pg.;s and P, e, are mutually orthogonal with respect to 7.
Now, let P=£0& ;.. Then we have

exp tad(JE)P = exp #(1/2+ 8] )u(t) (mod 1),

where u(t)zml_zl 5—:(ad (JE)—(1/24+B]))'P. By Lemma 2.1, it follows that

(3.6) dit p(exp tad(JE)JP, exp tad(JE)P)
= p(JE, exp tad(JE)[JP, P])
The left side of the equation (3.6) is equal to

—ddTP(j exp tad(JE)P, exp tad(JE)P)
— (] exp 12+ 8 )u(), exp 11128, )u)

= 7;”t~f>(ce:<;> ¢(1/2+B] ) Jult), exp #(1[2-+BJYu(®))

— %e‘“-‘ﬂ»e@*“”‘p(]“(t)» )

= %e’p(]u(i), u(t))

= e (R'(2)+A(2))

where A(t)=p(Ju(t), u(t)), and A(¢) is a polynomial of degree <2m—2. Since
[JP, P]=AE+P’, where A& R, P'e},, the right side of the equation (3.6) is
equal to
P(JE, exp tad (JEYNE+P")
= e Xp(JE, E)+p(JE, exp tad (JE)P')
=e'Ap(JE, E) .
Hence we have

K (8)+h(t) = rp(JE, E).

The solution of this equation is A(t)=ce™*+\p(JE, E), where ¢ is an arbitrary
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constant. However, A(z) is a polynomial and so ¢c=0. Hence we have

h(t)= \p(JE, E),
and hence it follows that

__ M) _ K0 _ p(JP,P)
p(JE, E) p(JE, E) p(JE, E)

Therefore we have

29(P, P) = ([ JP, P])
= MAE)-+(P’)
= MHE)>0.

This shows that 7 is positive definite on Py, ;p, and hence on p,= > Peyrim-
B

Q.E.D.

Proof of Theorem 1’. Since 7 is positive definite on {JE}+ {E}-+p, and
since the signature of 4 is (2, 2(n—1)), we have p,= {0}, and hence p=p,. Let
P, Qep. Since [P, Q1<[80 8] 8, where g,={JE}+p, we put [P, Q]=
AJE+P’, where A& R, P’ep. It follows that [E, [P, Q]}]=[E, AJE+P']=
—AE and [E, [P, OQlI=|[E, P}, Q]+I[P, [E, Q]]=0. This implies that A=0
and [P, Q]ep. Therefore p is a subalgebra of g and also an ideal of . More-
over we see easily that (p, £, J, p) is an effective Kahler algebra. Since the
decomposition g={ JE} +- {E'} 4-p is orthogonal with respect to » and % is posi-
tive definite on {JE}+ {E} and since the signature of £ is (2, 2(n—1)), we
know that 7(P, P)<0, for P=p, P&t. Now, for P, Qep, put

V(P) = Tryp(ad(JP)—Jad(P)),
27'(P, Q) = ¥ (LJP, O)) .

For Pep, P&t, we have (ad(JP)—Jad(P))E=0, (ad(JP)—Jad(P))JE=0
(mod ?) and hence J»(P)=+(P). This implies that

27'(P, P) = ¥'([JP, P))
= ¥([JP, P])
= 27](P’ P)<O ’

which proves that the canonical hermitian form of (p, §, J, p) is negative definite.
Therefore we know that p is a compact semi-simple subalgebra of g [5].
Q.E.D.

Proof of Theorem 1. When G is a semi-simple Lie group, our assertion
follows from the results of Borel [1] and Koszul [3]. We shall show the case
where G contains a one parameter normal subgroup of G. Let {E} be the ideal
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of g corresponding to the one parameter subgroup. With appropriate choice of
J, we may assume that J’E=—E. Putg'={JE}+{E}. Then (¢, ], p)isa
Kzihler algebra of the unit disk {z€C; |2| <1}. Now, for X, Yeg, we define

PX, Y) = p(X", Y')

where X’, Y’ are the g’-components of X, Y with respect to the decomposition
g=g'+p respectively. Then (g, b, J, p) is a Kahler algebra. We denote by G’
(resp. P) the connected subgroup of G corresponding to ¢’ (resp. p). Since
(g, b, J, p) is a Kahler algebra, G/P admits an invariant Kahler structure and
is holomorphically isomorphic to the G’-orbit passing through the origin
o. We know by Theorem 1’ that G/K is a holomorphic fibre bundle whose
base space is G/P== {z=C; |z| <1}, and whose fibre is P/K. Q.E.D.

4. Proof of Theorem 2

Let (g, £, J, p) be the Kahler algebra of G/K. We show that, if g is not
semi-simple, then there exists a one dimensional ideal of g. Assume that g is
not semi-simple. Then there exists a non-zero commutative ideal ¢ of g. Con-
sider a J-invariant subalgebra g’=%-4 Jt-+t. Then we have

Lemma 4.1. dimc ¢’'[t=1.

Since tNr={0} by Lemma 2.3 and dim¢ g/t=2, dimcg’/f=10r2. Sup-
pose that dim. g'/f=2. Then dim; g/f=dim; ¢/f, dim g=dim ¢’ and hence
g=I+4 Jr4r. Since dim ¢’/f=4 and £t Nr= {0}, we have 2=dim t<4. Letn’
be the projection from g onto g/f. Then it follows that

dim #'(Jt) Nz’(t) = dim z’(Jt)+dim #/(t)—dim 7'(g)
— 2 dimt—4.

First, we shall show dim1+3, 4. Suppose dimt=3 or 4. Then dim #’(Jt)N
7'(t)>0, and so there exist A+0, B+0ct and Wt such that JA=B-+W.
Therefore we have 29(4, C)=+([JA4, C])=+([B+W. C])=0 and 27(4, JC)=
([ JA, JC)=+([4, C])=0 for all Cer. Since g=t+ Jr+r, we know
7(A4, X)=0forall Xeg. Thisimplies A=¥, whichisa contradiction to Lemma
2.3. Next, we shall prove dim r4=2. Suppose dim t=2. Then dim =’(Jr)N
7’'(t)=0, and hence g=%+ Jr+r is a direct sum as vector spaces. Let 4 be an
element in t such that 7(4, B)=0 for all Bex. Since g=f4Jr41r and
29(A, JB)=+([JA, JB])=+([A4, B])=0, we have n(4, X)=0 for any Xe&g,
which implies A<¥, and hence A=0 by Lemma 2.3. This shows that » is non-
degenerate on t. Therefore there exists a unique non-zero element E€t such

that 29(E, A)=+(4) for all Aer. We have then
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[JE, E]=

*D W(E)=0.

Indeed, for A=t we have

20(LJE, E], 4) = ([J[JE, E], 4])
= —v([[JE E], JA])
=V¥(([E, JA), JED)+¥([[J4, JE], E])
= —V([E, JA)+¥(J[J4, E]1+][4, JE], E])
= Y(A)+(J4, E])+¥([4, JE])
= ¥(4).

This shows that [ JE, E]=E. Let F be an element in T independent of E. Put
[JE, Fl=X\E+pF, where A\, p=R. Then V(E)=Trgt(ad(JE)—Jad(E))=
2(14p). We shall show y/(E)=+0. Suppose Y(E)=0. Then u=-—1 and
W(F)=29(E, F)=v([ JE, F)=Mr(E)—V(F)=—vY(F). Therefore y(F)=0,

and hence Y=0 on t, which is a contradiction to Lemma 2.4,
(4.2) 'There exists an element F in t independent of E such that

[JE,E]l=F, [JE, F1= aF,
[JF, El=BF, [JF,F]=—
¥(F)=0,

where o, BER.

Proof. By 2n(E, E)=v(E)=+0, there exists F=0 such that 27(E, F')=
Y(F)=0. Since 7 is non-degenerate on t and the signature is (1,1), we have
E, E)??(F F)<O Put [JE, Fl=aF+a’E, where a, o’ € R. We have then
0= (F)= =27(E, F) W([JE, F))= aw,b(FH—a "Y(E)=a'\p(E), and hence a’=0,
and []E Fl=qaF. Similarly we have [ JF, E]=8F. Now, we put []F Fl=
vE+4-8F, where v, S& R. Then we have 0= \b(F) Trg/r(ad(]F)—]ad(F)) 28
and so [JF, F] vE. Since 29(F, FY=+([JF, F])=vy(E)=2vn(E, E), it
follows '}'—yi(F F)<0 Putting F_——;F we have [ JF, F]l=—E.

7(E, E) V-
Q.E.D.
4.3) t= {0}.

Proof. For Wel, put [W, E]=AE+ uF. Since O=+([W, E])=2y(E)+
pir(F)=2y(E), A=0 and hence [W, E]=uF. We have ([ JF, [W, E]])=—
wH(E)  and  WW(JF, [W, ED=w(LJF, W1, ED+v(W, [JF, El)=
W(JIF, W], E))=v([JE, [F, W]))=v~([F, W])=0. Thus x=0and [¥, E]=0.
Now, put [W, F]=AE+uF. By 0=V([W, F])=MNE)+p(F)=AP(E),
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we have A=0 and [W, F]l=uF. Hence it follows ([ JF, [W, F]])=— py(E).
On the other hand we have ([JF, [W, F]))=+([[JF, W], F])+¥([W,
[JE, FI)=W(JIF, W], F])=—puI([JF, Fl)=p¥(E). Therefore 2uy(E)=0,
and hence p=0, [W, F]=0. Thus [, t]=0. Since [f, Jx]c?, [, ]Jct and
g=1-+Jr4r, weknow that tis anideal of g. By the effectiveness, we have = {0}.
Q.E.D.

4.4) 20 = B-+1.
Proof. Using Jacobi identity and (1.3), we have

0= [[JE, JF], FI+ILJF, F], JE]+IIF, JE], JF]
= [[JLJE, F1+JIE, JF], F1+[[JF, Fl, JEI+[[F, JE], JE]
= (a—B)[JF, F1—[E, JE]—alF, JF]
= (—2a+B+1)E.
Hence it follows 2a=8--1. Q.E.D.

By (1.7), (4.2) and (4.4), we have

0= o([JE, F], JE)+po(IF, JF), JE)+p(LJF, JE], F)
= ap(F, JF)+p(E, JE)—(a—B)p(JF, F)
= (—2a+B)p(JF, F)—p(JE, E)
= —p(JF, F)—p(JE, E). ,
This contradicts to p(JE, E)>0, p(JF, F)>0. Therefore dim t34-2 and hence

dim¢ g’/t+2. Thus we have proved dim ¢’/t=1, this completes the proof of
Lemma 4.1. Q.E.D.

Let r< {0} be a commutative ideal of g. Since dim ¢//f=2 by Lemma
4.1 and fNr= {0}, it follows that dimr=1 or 2. Assume dim t=2. Then we
have

dim 7/(JT) N z’(x) = dim z’(J¥)+dim z’(t)—dim (='(J¥)+7'(t))
= 2 dim t—2
=2.

This implies z'(Jt) = n’(tr) and hence JrCt+r. For any A<y, we have JA=
A+ W, where A’et, Wi, 1t follows then

W(4) = Trgt(ad(JA)—Jad(4))
= Tryt(ad(A')—Jad () Trgirad (W)
= Tre+yr(ad(A’)— Jad(4))
=0.
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Hence V=0 on r, which is a contradiction to Lemma 2.4. Thus t is a one
dimensional ideal of g. Therefore Theorem 2 is proved. Q.E.D.

5. We shall classify two dimensional connected simply connected homo-
geneous Kihler manifolds with non-degenerate canonical hermitian form 4.
The signature of £ is (4, 0) or (2, 2) or (0, 4).

(1) The case (4, 0). Since % is positive definite, G/K is isomorphic to a
homogeneous bounded domain. Hence G/K is either {zC; |2| <1} X
{==C; |21 <1} or {(z,, 2)ECY |31+ |%°<1}.

(i) The case (0,4). Since % is negative definite, G is a compact semi-
simple Lie group by [5]. By a theorem in [4], G/K is a hermitian symmetric
space. Hence G/K is either P,(C)x P,(C) or P,(C), where P,(C) is a complex
n-dimensional projective space.

(iii) The case (2, 2). Applying Theorem 1 and 2, we obtain that G/K is
a holomorphic fibre bundle whose base space is the unit disk {z=C; |2| <1},
and whose fibre is P, (C).
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