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Ultrametric spaces

Ultrametric space
Ultrametric space : definition and examples

Let R := [0,+∞[ and R∗ :=]0,+∞[.

Definition : Ultrametric space

An ultrametric space is a pair M = (X , d) with d : X × X → R s.t. :
1 d(x , y) = 0⇐⇒ x = y (separation).
2 d(x , y) = d(y , x) (symmetry).
3 d(x , z) = max{d(x , y), d(y , z)} (strong triangular inequality).

ℓ

L

L

A metric space is ultrametric if and only if its
triangles are isosceles acute, if and only if any two
meeting balls are comparable for inclusion.

Examples

1 (R ,max ), given by d(x , y) = max{x , y} if x 6= y and d(x , x) = 0.
2 Baire and Cantor spaces, Qp, etc.
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Ultrametric spaces

Ultrametric space
Ultrametric space : balls

Balls of radius r ∈ R centered at x ∈ X

B<(x , r) := {y ∈ X : d(x , y) < r} : open ball

B6(x , r) := {y ∈ X : d(x , y) 6 r} : closed ball

Basic properties

Open balls are clopen, as well as closed balls of non-zero radius.
Ultrametric spaces are totally-discontinuous.

Meeting balls are comparable w.r.t. inclusion.

Each point of a ball is a center : y ∈ B(x , r)⇒ B(x , r) = B(y , r).

The diameter of a ball is the least of its radii. In particular :
diam(B6(x , d(x , y))) = d(x , y).
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Ultrametric spaces

The R-labeled tree Nerve(M)
Nerve of an ultrametric space : definition

A ball attains its diameter if and only if it is of the form B6(x , d(x , y)).
The diameter of such a ball is the radius :
diam(B6(x , d(x , y))) = d(x , y).

Definition

The nerve of M is the collection of closed balls attaining their diameter :
Nerve(M) := {B6(x , d(x , y)) : x , y ∈ X}

This is a leafy tree for the relation of inclusion :
This is a join-semi-lattice, i.e., every pair of nodes has a supremum :
B6(x , r) ∨ B6(x

′, r ′) = B6(x ,max{r , r ′, d(x , x ′)})
Any two nodes greater than a third one are comparable.
Every node is a leaf or the join of two leaves :
B6(x , d(x , y)) = B6(x , 0) ∨ B6(y , 0) = {x} ∨ {y}

The distance of M is recoverable from the nerve equipped with its
diameter function diam : Nerve(M)→ R :

d(x , y) = diam({x} ∨ {y})
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Ultrametric spaces

Nerve of an ultrametric space. Sons
Nerve of an ultrametric space : definition

Given an inner node of the nerve, B of diameter r > 0,

y ∼ z :⇐⇒ d(y , z) < r

is an equivalence relation on B. Its classes are the open balls of radius r

centered in B.

Sons of an inner node of the nerve

∀x 6= y : SonsB6(x , d(x , y)) := {B<(z , d(x , y)) : z ∈ B6(x , d(x , y))}
The degree of a member of the nerve is the number of its sons.

A son of a node of Nerve(M) may fail to belong to Nerve(M). It is
indeed its son in the tree of all non-empty balls.
In (R ,max), Sons([0, 1]) = {[0, 1[, {1}}.
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Ultrametric spaces

Nerve of an ultrametric space
Nerve of an ultrametric space : examples
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Figure : A triangle and its nerve
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Figure : The nerve of (R,max )
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Ultrametric space
Examples : spaces of sequences and spaces of functions
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Ultrametric spaces

Ultrametric space
Cauchy- and spherical completeness

Spherical completeness

An ultrametric space M is spherically-complete if every chain of
non-empty balls has a non-empty intersection, if and only if every chain
of the nerve has a lower bound.

Requiring above that the infimum of the diameters of the members of the
chain be 0 yields Cauchy-completeness.

Example

(]1,∞[,max) is Cauchy- but not spherically-complete :
⋂

x>1 B6(x , x)
︸ ︷︷ ︸

]1,x[

= ∅.
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Ultrametric spaces

Motivation : indivisibility of UQ∩[0,1] ?

Definition (Indivisible metric space)

A metric space M is indivisible if it embeds in some class of each of its
finite partitions : (M→ [M]•k).

Question (Hjorth)

Is the bounded rational Urysohn space indivisible ?

Theorem (DLPS07 : no)

Every Cantor connected metric space is divisible.
Thus UQ∩[0,1] 6→ [UQ∩[0,1]]

•

k .
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Ultrametric spaces

Motivation : Totally Cantor disconnected metric space

Definition (totally Cantor disconnected metric space)

Two points x and y of a metric space M are ε-chainable (ε > 0) if there
is finite sequence of points (x = z0, z1, . . . , zn = y) such that
d(xi , xi+1) ≤ ε (0 ≤ i < n).
They are chainable if they are ε-chainable for every ε.
M is Cantor connected if any two points are chainable.
M is totally Cantor disconnected if any two points are unchainable.

Example : ultrametric spaces are totally Cantor disconnected.

Proposition (Lemin)

A metric space M is totally Cantor disconnected if and only if its distance
is ≥ a ultrametric one. In this case there is a greatest such ultrametric
distance : dUlt(x , y) is the supremum of the witnessing ε’s.

Proposition

If (X , d) is countable, homogenous and indivisble, then so is (X , dUlt).
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Ultrametric spaces

Homogeneous ultrametric spaces

A local isometry of a metric space (X , d) is an isometry form a finite
subspace of X into X .

The metric space is (ultra)-homogeneous if every local isometry
extends to a bijective isometry of X .

The metric space is transitive if the action of its isomorphy group is
transitive on points.

Proposition

An ultrametric space is homogeneous as soon as it is transitive.

The countable case is in [DLPS07], and the Polish case is
in [Malicki-Solecki09].
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Ultrametric spaces

Homogeneous ultrametric spaces

Proposition (Three equivalent formulations)

Consider an ultrametric space M = (X , d).

1 A local isometry extends to a bijective isometry of M, as soon as
each of its restrictions to singletons does.

2 (X ,X 2 d
−→ R ,X −→ X/Aut(M)) is homogeneous.

3 A mapping from a finite subset of X into X extends to an isometric
bijection of X , as soon as each of its restrictions to pairs does. (The
canonical action of the isometry group of M has arity 2.)

The Polish case is in [Malicki-Solecki09].

Corollary

An ultrametric space is homogeneous as soon as it is transitive.
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Ultrametric spaces

Extending a local isometry φ : A∪̇{c} → X

from extensions ψA ⊃ φ ↾ A and ψc ⊃ φ ↾ {c}

φ
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Ultrametric spaces

Extending a local isometry φ : A∪̇{c} → X

from extensions ψA ⊃ φ ↾ A and ψc ⊃ φ ↾ {c}

φ

c A

B := B6(c , r)r := d(c ,A)
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Ultrametric spaces

Extending a local isometry φ : A∪̇{c} → X

from extensions ψA ⊃ φ ↾ A and ψc ⊃ φ ↾ {c}

S ′ := B<(φ(c), r) = ψc [S ]

B ′ := B6(φ(c), r)

A

S := B<(c , r)

ψc

B := B6(c , r)r := d(c ,A)

S ′

c S

φ
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Ultrametric spaces

Extending a local isometry φ : A∪̇{c} → X

from extensions ψA ⊃ φ ↾ A and ψc ⊃ φ ↾ {c}

S ′′

S ′′′

A

S := B<(c , r)

ψc ψA

B := B6(c , r)r := d(c ,A)

S ′

c S

φ

B ′ := B6(φ(c), r)

S ′ := B<(φ(c), r) = ψc [S ]

S ′′ := ψ−1
A [S ′]

S ′′′ := ψA[S ]
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Extending a local isometry φ : A∪̇{c} → X

from extensions ψA ⊃ φ ↾ A and ψc ⊃ φ ↾ {c}

B ′ := B6(φ(c), r)
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Ultrametric spaces

Extending a local isometry φ : A∪̇{c} → X

from extensions ψA ⊃ φ ↾ A and ψc ⊃ φ ↾ {c}

ψ :

Å

S S ′′
elsewhere

ψc ψAψ
−1
c ψA ψA

ã

B ′ := B6(φ(c), r)

AS ′′

S ′′′

S := B<(c , r)

S ′ := B<(φ(c), r) = ψc [S ]

S ′′ := ψ−1
A [S ′]

S ′′′ := ψA[S ]

ψc ψA

B := B6(c , r)r := d(c ,A)

S ′

c S

φ
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Ultrametric spaces

Hereditarily decomposable symmetric binary structure

Remark

The homogeneity of (M,X −→ X/Aut(M)) holds more generally for every
hereditarily decomposable symmetric binary relational structure M.

A module of an irreflexive binary relational structure (X ,Ri : i ∈ I ) is a
set M of vertices of which the elements all look alike for each vertex
outside.
The empty set, the singletons, and the vertex set are trivially modules.
A structure is prime if it has at least three vertices and all its modules are
trivial.
A structure is hereditarily decomposable if it embeds no prime structure.

Notice that a linearly ordered set is hereditarily decomposable but
not symmetric.
The hereditarily decomposable simple graphs are those that embed
no path on four vertices.
The Random graph is prime.

Each binary relational structure has a modular decomposition tree from
which it is recoverable. For an ultrametric space, this is its nerve.
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Hereditary decomposable 2-structure
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Figure : Besides the balls, the modules of an ultrametric space look like this
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Ultrametric spaces

Spectrum and degree sequence of an ultrametric space

M = (X , d)

Spectrum

The spectrum of a point x ∈ X is the set of the distances that it realizes :
spec(x) := {d(x , y) : y ∈ X} ⊆ R

The spectrum of M is the set of all realized distances :
spec(M) := {d(x , y) : x , y ∈ X} = ∪{Spec(x) : x ∈ X}

Degree sequence

Dgr :

®

spec(M)→ CARD∗

r 7→ sup{card(Sons(B)) : B ∈ Nerve(M), diam(B) = r}

maps each element r of the spectrum to the supremum of the degrees of
nodes of Nerve(M) of diameter r .
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Ultrametric spaces

A necessary condition : sub-homogeneity

If an ultrametric space M = (X , d) is homogeneous, then :

its points have the same spectrum and

the number of sons of a member of the nerve depends only on its
diameter.

Say of such a space that it is sub-homogeneous.
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Ultrametric spaces

Ultrametric space M
I
ν

Definitions

Consider :
a subset V of R containing 0 and let V∗ := V \{0},
an ideal I of subsets of V∗ bounded above in R ,

Fin(V∗) : ideal of finite subsets of V∗

coWell(V∗) : ideal of co-well founded subsets W of V∗,

a (degree) function ν : V∗ → CARD∗ ⊂ ON∗.
For x and y in ON

V∗ , let :
∆(x , y) := {r ∈ V∗ : x(r) 6= y(r)},
supp(x) := ∆(x , 0) = {r ∈ V∗ : x(r) 6= 0}.

Proposition

Letting XI
ν := {x ∈ ON

V∗ : x < ν and supp(x) ∈ I} :

MI
ν := (XI

ν , sup∆) is a an ultrametric space ;
it is homogeneous and spherically complete.

spec(MI
ν ) = I

∨ := {supW : W ∈ I}.

If Fin(V∗) ⊆ I ⊆ coWell(V∗), then Dgr(MI
ν ) = ν.

MI
ν

Chy
= MℓI

ν : ℓI := {W ⊆ V∗ | ∀m > 0 : W ∩ [m,+∞[∈ I}.
25/35
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Ultrametric spaces

Embedding M into M
coWell(spec(M)∗)
Dgr(M)

Properties

Lemma

Each ultrametric space M = (X , d) embeds in M
coWell(V∗)
ν for

ν = Dgr(M) and V = spec(M).

Proof.

Consider a well-ordering < of X . For each inner node B of Spec(M),
define the well-ordering <B of Sons(B) :

S1 <B S2 :⇐⇒ min< S1 < min< S2.
Then let ρB map each son S of B to its rank
ρB(S) < deg(B) ≤ DgrM(B)(diam(B)) for this ordering.
Then map each x ∈ X to
s(x) := (ρB(son(B, x)) : B := B6(x , r), r ∈ spec(x)).
Observe that B ∈ supp(s(x)) 7→ min<(son(B, x)) ∈ X is decreasing for
⊃ and <.
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Ultrametric spaces

Consequences

M is homogeneous and countable (resp. and Polish) if and only if it

is isomorphic to M
Fin(V∗)
ν (resp. to M

ℓ Fin(V∗)
ν ) for some countable V

and ν ≤ ω.

(Feinberg) A spherically complete ultrametric space is homogeneous
if and only if it is sub-homogeneous.

M is spherically complete and homogeneous if and only if it is
isomorphic to some M

coWell(V∗)
ν .

(Delon) M
Fin(V∗)
ν embeds in every sub-homogeneous ultrametric

space M with V ⊆ spec(M) and ν ≤ Dgr(M).

(Lemin) If M has density at most κ and spectrum inlcuded in V ,

then it embeds in M
coWell(V∗)
κ .

For each ordinal ξ, let coWell(V∗, ξ) denote the ideal of those W of type
less than ωξ. If V ⊇ Q+ and ν ≥ 2, then the family
(M

coWell(V∗,ξ)
ν : ξ < ω1) is strictly increasing w.r.t. embeddability.
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Ultrametric spaces

Spec-homogeneity
Spec-homogeneity : definition

Definition (Local spec-isometry)

A local spec-isometry of M is a local automorphism of the enriched

structure (X ,X 2 d
−→ R ,X

spec
−−−→ ℘(R)).

Thus a local spec-isometry is a local isometry that maps each point to a
point with the same spectrum.

Definition (Spec-homogeneity)

The ultrametric space M = (X , d) is spec-homogeneous if every local
spec-isometry of M extends to a bijective isometry.

The ultrametric space M = (X , d) is spec-homogeneous if the enriched

structure (X ,X 2 d
−→ R ,X

spec
−−−→ ℘(R)) is homogeneous.
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Ultrametric spaces

Spectral homogeneity
Characterization

Definition (Similar balls)

Two balls of the same radius and type ("open" or "closed") B1 and B2

are similar if they have points with the same spectrum :
∃x1 ∈ B1, x2 ∈ B2 : spec(x1) = spec(x2).

Theorem

An ultrametric space is spectral-homogenous if and only if any two
similar balls are isomorphic.

Corollary

An ultrametric space is homogenous if and only if all points have the
same spectrum and any two balls of the same type ("open" or "closed")
and the same radius are isomorphic.

Corollary

The Cauchy-completion of a homogeneous ultrametric space is
homogeneous.
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Ultrametric spaces

Spectral homogeneity

Proposition

A countable ultrametric space is spectral-homogenous if and only if any
two similar members of the nerve are isomorphic.

Corollary

In particular a countable ultrametric space is spectral-homogenous if any
two members of the nerve with the same diameter are isomorphic.

Question

Can the countabitliy condition in the above statements be lifted ?

Proposition

A countable ultrametric space extends to a spec-homogeneous countable
ultrametric space.
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Ultrametric spaces

Orbits

Proposition

Every Aut(M)-orbit of an ultrametric space M = (X , d) is closed.

Therefore (C1,C2) 7→ dist(C1,C2) is an ultrametric distance on
X/Aut(M).

Proved by [Malecki-Solecki] in the Polish case.
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The Aut(M)-orbits are closed

0← · · · < d(∞, xn) = rn < · · · < d(∞, x0) = r0

0

0

φ0φ2 φ1

∞

∞

3 2 1

123

φn :

{

xn
φn
−→ xn+1

φn ↾ X\B6(xn, rn) = id

φ := · · · ◦ φn ◦ · · · ◦ φ0

φ(x0) = x∞

d(x , x0) > rn =⇒ φ(x) = φn−1 ◦ · · · ◦ φ0(x)
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