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Abstract: If S is a partially ordered monoid then a right S-poset is a poset A on which S acts from
the right in such a way that the action is compatible both with the order of S and A. By regular weak
injectivity properties we mean injectivity properties with respect to all regular monomorphisms (not
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homological classification results which generalize the corresponding results for (unordered) acts over
(unordered) monoids proved by Victoria Gould in the 1980’s.
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1 Introduction

In the 1980’s Victoria Gould characterized several classes of monoids using the injectivity
properties of acts (or systems) over them ([4],[5],[6]). Our aim is to prove the analogues
of those results in the case of ordered acts (S-posets) over ordered monoids. We make
use of regular weak injectivities by which we mean injectivities with respect to regular
monomorphisms from different types of ideals to the ordered monoid.
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After giving the necessary preliminaries, in Section 2 we prove, following [4], a result
that describes regular weak injectivity properties using systems of equations. In Section 3
we give a construction, that allows for a given S-poset A to construct a regularly divisible,
regularly principally weakly injective or regularly fg-weakly injective S-poset that contains
A as a regular S-subposet. This construction will be the main tool for obtaining the
desired homological classification results in Section 4.

2 Preliminaries

Throughout this paper S will denote a partially ordered monoid (shortly pomonoid), that
is, a monoid with a partial order relation < such that s <t implies su < tu and us < ut
for every s,t,u € S. A poset (A, <) together with a mapping A x S — A, (a,s) — as,
is called a right S-poset (and the notation Ag is used) if (1) a(st) = (as)t, (2) al = a,
(3) a < b implies as < bs, and (4) s < t implies as < at, for all a,b € A, s,t € S.
In this paper we only consider right S-posets, so we usually drop the word ‘right’. If A
satisfies conditions (1) and (2) then it is called a right S-act (see [7]) or a right S-system
(see, e.g., [4]). Definitions and results about S-acts, used in this paper, can be found
in [7]. Morphisms of S-posets are action and order preserving mappings. From [2] we
know that in the category of right S-posets monomorphisms are injective morphisms but
regular monomorphisms are embeddings, i.e. morphisms ¢ : Ag — Bg such that a < a’
if and only if t(a) < i(d'), a,a’ € A. So not every monomorphism of S-posets needs to
be regular. For every S-poset Ag and its element a, A\, : S — Ag will denote the right
S-poset morphism defined by A,(s) = as for every s € S.

A poset (A, <,) is called a (regular) S-subposet of a right S-poset (B, <p), if Ag is a
subact of Bg and <,C (<p N A?%) (resp. < = (<p N A?%)). By right ideals of S we mean
algebraic ideals, i.e. subsets I C S such that [ C I. When we consider a right ideal
as a right S-poset, we mean that its order is induced by the order of S.

For a binary relation o on an S-poset Ag, we write a < a’ if there exist ay,...,a, € A

o
such that

a<aoay <aso...oa, <a.

Such a sequence of elements is called an o-chain connecting a and a’. An S-poset congru-
ence (see [3]) on an S-poset Ag is an S-act congruence 6 on A, that satisfies the so-called
closed chains condition:

a<a <a= abd
o 0

for every a,a’ € A. If H C A x A is a subset then the S-poset congruence 0(H) on A
generated by H (see [1]) is defined by

a(H)d <= a % a % a, (1)

a,a’ € A, where p = p(H) is the S-act congruence on A generated by H. The factor
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S-poset A/O(H) is equipped with the order

[alogn < [@logn) == a < d’ (2)

This makes the canonical epimorphism A — A/0(H) a regular epimorphism (see [2]).

For a set I', one can consider the free right S-poset on T" (see [9]) as a set I' x .S with
the right S-action defined by (v, s)t = (7, st) and the order relation by (v,s) < (4,¢) if
and only if v = § and s < t, 7,0 € [, s,t € S. We shall write shortly vs instead of
(7,8) eI’ x S.

We call an element ¢ € S left po-cancellable if cs < ct implies s < t for all s, € S.
We denote the set of all left po-cancellable elements of S by C.

We write Ny = NU {0} for the set of nonnegative integers.

3 Regularly (a, R)-injective acts

We say that a subset R C S is closed under reqular monomorphisms if «(r) € R for every
r € R and regular monomorphism ¢ : S — S. It is easy to see that S and the set of all
left (po-)cancellable elements of S are closed under regular monomorphisms.

Let o be any cardinal greater than 1 and let R be a subset of S that is closed under
regular monomorphisms. We call a right ideal I of S a right («, R)-ideal, if I has a
generating set G C R of fewer than « elements. If R = S then we speak of just right
a-ideals. So the right (2, C')-ideals of S are principal right ideals generated by left po-
cancellable elements, right 2-ideals are principal right ideals and right Ny-ideals are finitely
generated right ideals.

We say that an S-poset Ag satisfies the (a, R)-Baer criterion (cf. [4]) if every S-poset
morphism f : [ — A, where [ is a right («, R)-ideal, is given by the left multiplication
by some element a € A, i.e. f= \,.

We say that an S-poset Ag is (reqularly) (o, R)-injective if for every right (o, R)-ideal
I of S, every (regular) monomorphism ¢ : I — S and every S-poset morphism f: [ — A
there exists an S-poset morphism g : S — A such that the diagram

I - S

is commutative. If R = S, we speak of (regular) a-injectivity. So (regularly) 2-injective
S-posets are (regularly) principally weakly injective S-posets and (regularly) Rg-injective
S-posets are (regularly) fg-weakly injective S-posets.

We say that an S-poset Ag is (reqularly) divisible (cf. [6]) if A = Ac for every left
(po-)cancellable element ¢ € S. The next lemma shows that regular divisibility can be
considered as an injectivity property.
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Lemma 3.1. The following conditions are equivalent for an S-poset Ag:
(i) As is reqularly (2, C)-injective,

(i1) Ag is reqularly (2,{1})-injective,

(111) As is reqularly divisible.

Proof. (i) = (ii). This is clear, because 1 € C.

(17) = (ii7). Let Ag be regularly (2,{1})-injective, let ¢ € S be a left po-cancellable
element and let a € A. Since, for every s,t € S, s < t if and only if ¢s < ct, the mapping
Ae 1 8§ — S is a regular monomorphism of S-posets.

Ss Ae Ss

Aa s 9

By the assumption, there exists an S-poset morphism g : S — A such that A\, = g\..
Hence

a = Ag(1) = gAe(1) = g(c) = g(1)c € Ac.

(13i) = (). Suppose that A is regularly divisible. Consider a left po-cancellable
element ¢, a regular monomorphism ¢ : ¢S — S and an S-poset morphism f : ¢S — A.
Then ¢ = «(c) € S is also a left po-cancellable element and hence f(c) = bc’ for some
b € A. Consequently, for every s € S,

Mot(es) = Ny(ds) = bd's = f(c)s = f(es).

So we have the following implications among regular weak injectivity properties of
S-posets:

regularly weakly injective = regularly fg-weakly injective =-
= regularly principally weakly injective = regularly divisible.

Our next aim is to describe regularly (o, R)-injective S-posets using systems of equa-
tions over them. A set ¥ of equations with constants from an S-poset Ag is called con-
sistent if 3 has a solution in some S-poset Bg that contains A as a regular S-subposet.
If o is any cardinal larger than that of ¥, if all equations in ¥ are of the form zs = a,
where s € R and a € A, and if the same unknown z appears in each equation then we
call ¥ an (a, R)-system over A.

The following two results are analogues of Lemma 3.2 and Proposition 3.3 of [4],
respectively.

Lemma 3.2. Let Ag be an S-poset, R C S a subset that is closed under reqular monomor-
phisms, a a cardinal, J a set with |J| < o and

Y={xs;=aqa;|je J s;jeR,a €A}
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an (a, R)-system over A. Then ¥ is consistent if and only if for allu,v € S andi,j € J,

Siu < 8 = a;u < a;v.

Proof. Necessity. If 3 is consistent then there is an S-poset (Bg, <p) and an element
b € B such that (Ag, <,) is a regular S-subposet of Bg and b is a solution of ¥. If now
siu < s;v, w,v €5, 4,7 € J, then a;u = bs;u <p bsjuv = a;v. Since A is a regular
S-subposet of B, we have a;u <4 a;v.

Sufficiency. Let z be a symbol which is not in A or S and consider the S-poset
Bgs = As 11 Fg, where Fs = (25)g is the free S-poset on {z} and the S-action and order
on disjoint union are defined componentwise. Let 6 be the S-poset congruence on B
generated by the set

H = {(aj,zs;) | j € J} € B?,
that is, for b,V € B,

bob <= b <l <0,
p p

where p = p(H) is the S-act congruence on Bg generated by H. Using the assumption,
one can show that bpb’ if and only if one of the following four cases is true:

(1) b, e AUF and b=10,

(2) b = zsju, b = zs;v € F and a;u = a;v for some u,v € S and i,j € J,

(3) b=ajuc AV = zs;u € F for some v € S and j € J,

(4) b= zsju € F,b' = aju € Afor some u e S and j € J.

Suppose that b < O’ where b, b’ € A. Using the above description of p we have either
P
b<b or

b < dipy; < yipdy < dopyy < yapds...dypy, < Ynpdna <V
plr plr PlF

where p|p = pN F?, for some n € N and elements d}, ..., d,, da, ..., dni1 € A, Yy, YL,
Y1, Yo € F. Since dpy. and y,pd, 1, for every r € {1,...,n} there exist k., [, € J
and ug,, v, € S such that d, = ay, ug,, y. = 2sk,u,, yr = 28,0, and d,1 = a;,vy,..
Now v/ < y, implies
plr
28k, U, = Yy < g1pht < gaphe < ... < gpph, <y, = 28,05,

for some p € N and ¢, by, € F, m € {1,...,p}. From the description of p we obtain

iy Jm € J, i, € S, m € {1,...,p}, such that g,, = zs; ., hm = 25;,0j,
and a;, u;, = a;,0;,,. Since hy, < gpi1, we have s; v;, < s u,,,, for every m €
{1,...,p—1}. Also y. < gy implies sp, up, < s;,u;, and h, <y, implies s;v;, < 51,0,
By assumption, ay, ug, < a;u;, a;,v;, < a,v;, and a;, v;, < a;,. U, for every m €

{1,...,p—1}. Hence
/
d, = ap,up, < ayUy = a;05 < AUy, = a505, <0< a, v, < ag vy, = deg

for every r € {1,....,n}. Sob < d} <dy < d, < ... <d,1 <V, and we have proved
that, for every b,V € A,
b<b < b<ld.
p
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It follows that if 7 : B — B/, b+ [b]y, is the natural S-poset morphism then 7|4 is
an embedding, thus we may identify the S-posets A and 7|4(A) = 7(A), and, moreover,
m(A) is a regular S-subposet of B. Since

a; = [ajlo = [z55]o = [2]0s;

for every j € J, [z]y is a solution of ¥ in B/6, so ¥ is consistent.

Proposition 3.3. The following conditions are equivalent for an S-poset Ag, a subset
R C S that is closed under reqular monomorphisms, and a cardinal o:
(i) every consistent («, R)-system over A has a solution in A,
(ii) A satisfies the (o, R)-Baer criterion,
(iii) A is regularly (o, R)-injective.

Proof. (i) = (ii). Let I be aright (o, R)-ideal of S, that is, I = [, t;5, where |J]| <
and t; € R for every j € J. Consider an S-poset morphism f : I — A. Then

for every 7,7 € J and u,v € S. By Lemma 3.2,

N=Aut; = ft;) [je T}

is a consistent («, R)-system over A. By assumption, ¥ has a solution a in A, which
means that f is given by left multiplication by a.

(¢) = (iii). Let I be a right (o, R)-ideal of S, that is, I = {J,c;1;5, where |J| <
and t; € R forevery j € J,let v : I — S be a regular monomorphism and let f : I — A be
an S-poset morphism. By assumption, there exists a € A such that f(¢;) = at; for every
j € J. Now o(I) = UU;c;t(t;)S is also a right (o, R)-ideal of S. We define a mapping
h:uI)— Aby

h(u(tj)s) = at;s,

for all j € J, s € S. Since, for every i,j € J and u,v € S,
Lt u < u(tj)v = w(tiu) < u(tjv) = tiu < tjv = f(tiu) < f(t;v) = atiu < atjv,

h is an order preserving and well-defined S-act morphism. By assumption, there exists
b € A such that h(c(t;)s) = bu(t;)s for every j € J and s € S. Hence

(Apt)(tjs) = bu(t;)s = h(u(t)s) = atjs = f(t;s)

forevery j € J, s € S, ie. A= f.
I . S
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(73i) = (7). Consider a consistent («, R)-system
E:{:psj:aj |jEJ,SjER,CLj€A}
where |J| < a and the right (a, R)-ideal I = {J,c; s;S of S. By Lemma 3.2,
Siu < SV = a;u < a;v

for every 7,5 € J and u,v € S. Hence the mapping f : I — A, s;s — a;s, is an S-poset
morphism. By assumption, there exists an S-poset morphism g : S — A such that gt = f
where ¢ : [ — S is the inclusion. Therefore

aj = f(s;) = gu(s;) = g(s;) = g(1)s;

for every j € J, and so ¢g(1) is a solution of ¥ in A.

Denote the directed kernel {(a,a’) € A* | f(a) < f(a')} of an S-poset morphism
—
f : As — Bs by Ker f (see [3]). Taking @ = 2 and R = S, from Lemma 3.2 and
Proposition 3.3 we obtain the following result.

Corollary 3.4. For an S-poset Ag, the following conditions are equivalent:
(i) Ag is reqularly principally weakly injective,
(ii) for every s € S and S-poset morphism [ : sS — Ag, there exists an element z € Ag
such that f(x) = zx for every x & SS,_>
(111) for every s € S,a € A with Ker \; C Ker \,, one has that a = zs for some z € A.

4 Regularly («, R)-injective extension of an S-poset

Construction 4.1. Let Ag be an arbitrary S-poset, let R C S be any subset that is
closed under regular monomorphisms, and let a be any cardinal with 1 < o < Xy. Our
aim is to give a construction of a regularly (o, R)-injective S-poset A(*) containing A
as a regular S-subposet. The first step in this direction is to define I') H,U(«, R, A) as
follows.

For every natural number n, where 1 < n < «, set

"= {((s1,a1),...,(Sn,a,)) € (R x A" |
for all u,v € S, and i,j € {1,...,n} s;u < s;v implies q;u < a;v}.
If v € I'™, we write «y; for the j-th component of the n-tuple v. Further we put

r=J

1<n<a«

FS = (F X S)S,

that is, F' is the free right S-poset on I' (we again write ~ys for the element (v, s) of F),
and

H :={(vsj,a;) |veI™1<n<a/ (sj,a) =7,7€{1,...,n}} C (FHA)Q.
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Let O(H) be the S-poset congruence on Fg Il Ag generated by H (see (1)) and define a
right S-poset
U(Oé, R, A)S = (FS I As)/(g(H)

First we need to examine the properties of the S-act congruence p(H) on Fg II Ag
generated by H.

Lemma 4.2. If yp(H)y' for y,y' € F then either y =y’ or there exist 1 < n,n’ < «,
je{l,....n}, i e{l,....n'},y €T, v €T, 5,8 €R, t,t' €S, a,d € A such that

y=nst At =y,

at = a't’
v = (s,a) and v}, = (s',d’).

Proof. Suppose that y,3’ € F and yp(H)y'. Then by Lemma 1.4.37 of [7] either y = 3/ or
there exist elements 1, ..., 2y, 2, ..., 2, € FIL A t,...,t, € S such that (z;,2}) € H
or (x},z;) € H for each 7 € {1,...,m} and

y = a1t xhty = x5t ... x tm =19,

/

!
IL‘ltl = ZL‘QtQ xm_ltm—l = IL‘mtm

where m € N is minimal. From y = z1¢t; € F' we get that 1 € F. Hence (21,2)) € H

and therefore z; = vs;, and @ = a;, for some n; < a, j; € {1,...,n1} and v € I'"* with
Vi = (81, aj,)-
If m > 2 then (24, 2), (v3,2%) € H, so there exist no,ng < a, jo € {1,...,n2},

Js€{l,...,n3}, 0 € I'" and v € I'™* such that 0, = (sj,,a;,), Vjs = (Sj5,aj,), Th = I5j,,
Ty = aj,, T3 = VSj, and 5 = aj,. Now the equality sty = x4ty = x3t5 = vs;,t3 implies
0 = v (hence ny = n3) and sj,to = sj,t3. By the definition of I'?, a;,ty = aj,t5. It follows
that 2t = xoty = aj,ts = aj,ts = 4ts, but this contradicts the minimality of m.

Obviously m # 1 because y,y’ € F. Som = 2, i.e. x),79 € A and there exist
n,n' < o, je{l,....,n}, j€{l,....,n'}, vy €I, ¥ € I'" such that z; = s and
xy = 7's" where v; = (s,27) and 7}, = (s, 2). Thus we have y = vysty, rit; = oty and
sty =y

The following lemma can be proved by an argument similar to that of [5], p. 76.
Lemma 4.3. If ap(H)d' for a,a’ € A then a = d'.

Lemma 4.4. If ap(H)y for a € A,y € F then there exist 1 <n < «, j € {1,...,n},
vyel™ seR, teS, be A such that a =bt, yst =y and v; = (s,b).

Proof. By using a proof, similar to that of Lemma 4.2, one has that a = x1t; and x{t; =y
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for some t; € S and (2, 21) € H. So z} = s; forsomen < a,ye€I™and j € {1,...,n}
such that v; = (s, 21).

Lemma 4.5. Suppose that

yi < yep(H)yy < -0 < ymp(H)yr, < Y (3)

where ypi1,Y), € F, yp £y}, for every k € {1,...,m}, and y| = vs't', ym+1 = ov for some
tveS nn <a,je{l,...,n},y €™, § €™ such that vy = (s',a’). Then

at <bs, zs<wv and & = (z,b)

for some s € S, z€ R,be Aandl € {1,...,n}. Moreover, if v = st for somet € S,
Jj€A{1l,...,n} such that 0; = (s,a) then a't’ < at.

Proof. If m = 1, that is, (3) has the form vs't' = y; < yo = dv then v = 9, s't' < v,
adt <d't'and §; = = (5, d).

Suppose that m > 1. By Lemma 4.2, for every k € {2,...,m} there exist ng, pr < a,
iv €{1,...,nek, gk € {1, ... pp}, ¥F € T, 6% € TP% uy, v, € S such that

k k / k k
Y = Y SpUk,  apup = by, 0"zpvp =y,  where Vi, = (Skaak>75jk = (2, br,).

Since ;. < Y41 in F', we conclude that OF = A*L pp = ngpyq and zpv < Spyq Uy for every
k€ {2,...,m—1}. By the definition of I'’* | byvy, < apiqugyq forevery k € {2,...,m—1}.
Moreover, vs't' = y} < yo = ¥2s9us and "2,V = Y. < Yme1 = 0v imply v = %
n' = ng, st < soug, 0" =0, pm = N, ZpUs, < v. The inequality s't’ < souy implies
a't’ < asuy by the definition of T, Now

a'th < agug = bovy < aguz = b3vs < ... < by,

where (2, by) = 07" = §;,,. If v = st for some ¢t € S and j € {1,...,n} such that
d; = (s,a) then z,v,, < st implies b,,v,, < at and hence a't’ < at.

Lemma 4.6. Ifa < d, where a,a’ € A, then a < d'.
p(H)

Proof. Let a < ad where a,a’ € A. Since the elements of A are incomparable to
p(H)
elements of F' and also having Lemma 4.3 in mind, there exist elements aj € A and

Uk, Yy € F, k€ {1,...,m} such that
a<ayp(H)y; < yip(H)ay < ayp(H)yy < yop(H)as ... ym1p(H)am < d,
p(H) p(H)
and for every k € {1,...,m — 1}, y,. and y, are connected by a p(H)-chain of the form
(3). By Lemma 4.4, for every k € {1,...,m — 1}, aj.p(H)y, and yxp(H )ay+1 imply that
there exist ng,pp < @, i, € {1,...,n}, jx € {1,...,pp}, ¥* € T, 6% € TP% up,vp € S
such that

/ / k / k / k k
ay, = bug, v spug = Yy, vi = (Sk,b,) and  agy1 = bk, 6" 250 = Yk, 0, = (2k, bi).
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By Lemma 4.5, y;, < vy implies b ux < byvy, for every k € {1,...,m — 1}. Hence
p(H)

a<ay=bu <bvy=ay <ay,="0bus <...<by 1Vyp 1 =a,<d.

From (1) and Lemma 4.6 we obtain the following result.
Corollary 4.7. If ad(H)d' for a,a’ € Ag then a = d.

Lemma 4.8. 1. Ifa < vy, wherea € A,y = ov € I, then a < bs and zs < v for
p(H)
somes €S, z€ R, be A, n<aandl € {l,...,n} such that §, = (z,b);

2. ify < a, wherey=0dv € F,a€ A, thenv < zs and bs < a for some s € S, z € R,
p(H)
beA, n<aandle{l,...,n} such that 6, = (z,b).

Proof. 1. Ifa < ywhereac A,y=0ve F,de™andn < «, then using Lemma 4.6
p(H)
we have a p(H )-chain

a<dp(H)y <y
p(H)
where a’ € A and the p(H )-chain connecting 3’ and y is of the form (3). By Lemma 4.4,
there exist n’ < a, j/ € {1,...,n'}, v € T, ' € S such that o’ = V't', vs't' = ¢/ and
vy = (s,b). By Lemma 4.5, b't" < bs, zs < v and 0, = (z,b) for some s € S, z € R,
be Aandl € {1,...,n}. Hence a <o =0t < bs.
2. The proof is symmetric to the case 1.

Proposition 4.9. Preserving the notations of Construction 4.1, let
m:FslTAs — U(a, R, A)g

be the canonical surjection. Then w|s : As — U(a, R, A)s is a reqular monomorphism,
that is, U(a, R, A)s is an extension of Ag.

Proof. Note that 7 is obviously an S-poset morphism and the fact that 7|4 : Ag —
U(a, R, A)g is a regular monomorphism follows from (2) and Lemma 4.6.

In what follows, we shall identify Ag with the regular S-subposet 7|4(A) of U(a, R, A).

Theorem 4.10. Let Ag be an S-poset, R C S a subset that is closed under regular
monomorphisms and « a cardinal with 1 < a < V. Set Ay = Ag and A; = U(o, R, A;i_1)s
for every i € N. Let
AR = | ] A
1€Np

and define a relation < on AR by

a<b<—a<,b
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where n € Ny is any number such that a,b € A,,, and <,, is the partial order in A,. Then
AR s g reqularly (o, R)-injective S-poset that contains A as a reqular S-subposet.

Proof. For every i € N, denote by F; := T'; x S the free S-poset, by H; C (F; IT A;)?
the set, by p; := p(H;) and 6; := 0(H;) the relations on F; II A; defined using A; as in
Construction 4.1. So A; 11 = (F; 11 A;)/0; and the order relation <;,; on A;; is defined
by
[z]; <ip1 [2]; = 2 < 2,
pi

z, 2 € F 11 A;, where [2]; is the #;-class of z. It is easy to understand that A® is an
S-poset and contains A as a regular S-subposet. Consider a consistent (o, R)-system

Y ={xs;=a;|j€Js;€Ra € AP}

where |J| < a. Since a < Xy, J is a finite set and we may assume that J = {1,...,n} for
some n € N with n < a. Hence there exists m € Ny such that a; € A, for every j € J.
By Lemma 3.2,

v =((s1,01), .., (s, an)) €7, C Iy,
so vl € F,, and [y1],, € Ay € AR Moreover, (vs;,a,) € H,, for every j € J, and
thus
ms; = [(VD)s5]m = [¥85]m = lajlm = a;,
i.e. [v1],, is a solution of ¥ in A,,,; and hence in AR - By Proposition 3.3, A®H is
(e, R)-injective.

We call the S-poset A(®%) (defined as in Theorem 4.10) the regularly (o, R)-injective
extension of A. We also write A®) = A% and A®) = AR0.9) and call them the regularly
principally weakly injective extension of A and the reqularly fg-weakly injective extension
of A, respectively. Since regular (2, C')-injectivity is by Lemma 3.1 the same as regular
divisibility, we call AZC) the reqularly divisible extension of A.

5 Homological classification

In this section we give descriptions of pomonoids over which all right S-posets with some
weaker regular weak injectivity property have some stronger regular weak injectivity

property.

5.1 When all S-posets are regularly divisible

Proposition 5.1. The following conditions are equivalent:
(i) All right S-posets are reqularly divisible,

(11) all right ideals of S are regqularly divisible,

(11i) Ss is regularly divisible,
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(iv) every left po-cancellable element of S is left invertible.

Proof. (i) = (ii) = (iii). These are obvious.
(791) = (iv). Suppose that Sg is regularly divisible and ¢ € S is a left po-cancellable

element. Then S = Sc implies that there exists s € S such that sc = 1, so c is left

invertible.

(tv) = (i). Let ¢ € S be a left po-cancellable element and Ag a right S-poset. By
(1v) there is an s € S satisfying sc = 1. So A = Asc = Ac.

5.2 When regularly divisible S-posets are regularly principally weakly

injective

In [6], Victoria Gould introduced the notion of a right almost regular monoid and proved

that these are precisely the monoids over which all divisible acts are principally weakly

injective. We shall prove an analogue of this result for S-posets.

Theorem 5.2. The following conditions are equivalent for a pomonoid S':

(i) all regularly divisible right S-posets are regqularly principally weakly injective,

(i1) for every element s € S there exist r,ry,... T, S1,..

po-cancellable elements cy, . .

., C, € 5 such that

151 <rs < 8
252 < 1951 < a8y < a8

353 < 1389 < 1355 < ¢354

CnSn < Tpsn—1 < 1Sy < ¢y

S =88, = Ss,

(i1i) for every element s € S there exist r,ry,...,Tp, S1,..

po-cancellable elements cq, ..

., Cp € 5 such that

151 <rs <8
259 < 1951 < C28h

c353 < 1r3sy < 384

/
CnSn S T'nSn—1 S CnS,

S = 88, = SSh,.

/
oy Sy Shs -

/
S’I’L

/
.,Sn,Sl,...

s, € S and left

,sh €S and left
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Proof. (i) = (i7). Assume that all regularly divisible right S-posets are regularly prin-
cipally weakly injective. For an element s € S, let 5S¢ be the regularly divisible
extension of sS obtained as in Construction 4.1. In our case

=T} ={(c,b) € C x (59); | forall u,v € S cu < cv implies bu <; bv},

)

:{(( b)c,b) € Fiy x A; | (¢,b) € T'i}.

Note that every element b = [d]g, , € (s5); = (Fi—1 11 (55);-1)/0i—1, d € F;_1 11 (sS);_1

i—1

can be presented in the form
b={(c,b")slp,_, where (c,t')eTl;_; andse€S. (6)

If d € F,_4, this is clear. If d € (s5);-1 then (1,d) € I';,_y, ((1,d)1,d) € H;_;, hence
(1,d)10;,_1d and b = [d]y,_, = [(1,d)1]e,_,

By assumption, sS*©) is regularly principally weakly injective. Thus there exists an
S-poset morphism ¢ : S — 55 such that the diagram

sS L S

commutes, where ¢ and f are the inclusion mappings. Then

s = [(s) = gu(s) = g(s) = g(1)s

where g(1) € 553, Let n € Ny be such that g(1) € (s5),. If n = 0 then g(1) € sS,
hence s € sSs, i.e. s is regular and therefore there exist ¢; = 1,r; = x,51 = §| = ws,
where s = sxs,x € S such that the inequalities and equalities in 4 are fulfilled.

Suppose that n > 0. Then, by (6), g(1) = [(c1,b1)r1]e, , € (8S), = (Fno1 I
(sS)n-1)/bp_1, where r; € S and (c1,b;) € I',,_q; in particular ¢; € C' and b € (55),_1.
Then s6,,_1(c1,b1)r1s, that is s < (¢1,b1)r1s < s. By Lemma 4.8,

Pn—1 Pn—1

§s <po1bisy, sy <rs, and  ris <), bis) <o,

for some s1,s) € S. Again by (6), by = [(cg,bg)rg]g where ry € S and (cg,by) € ') _o,

1 n—29
in particular, ¢, € C' and by € (s ) . Now s <,,_1 b1sy and bys] <,,_1 s mean that
s < (eg,by)ras1 and (cg, by)ras) < s. Lemma 4.8 implies that
Pn—2 Pn—2

§ <p-2 basa, Casy <1as1, and 7S] < casy, basy <, 98

for some ss,s, € S. Continuing in a similar manner, we finally obtain b, = sr € sS =
(sS)o, €n € C, 1y, Sp, s, € S such that

< s, srs, =bys, < s.

$ < bpSy = STSp,  CnSp < TpSp_1, and  rps,_
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Now c1s1 < 1ms < 8] implies s; < s, 289 < 1951 < 18] < o) implies so < s,

and so on. Finally we obtain s, < s/ and hence s < srs, srsl < s, which yields

<
< /

», and thus we have

s = srs, = srs,. The inequality s, < s/ also implies rs, rs

obtained

181 <rs <8

€282 < 1951 < o8y < a8

CnSn < TpSn1 < TSy < CoSy
L(rs,) <rs, <rs <1(rs))
s = s(rs,) = s(rs,).

(77) = (i77). This is clear.

(17i) = (4). Assume (i7i) holds. Let Ag be a regularly divisible right S-poset, s € S,
and f:s9 — A an S-poset morphism. Then for s we have inequalities and equalities as
in (5). Hence f(s) = f(s)s, = f(s)s,,. Using regular divisibility of A, there exists a; € A
such that f(s) = a;c,. Consequently,

f(S) = A1Cp Sy < A1TpSp—1 < alC"S;L = f(S),

and so f(s) = a1r,s,—1. Again, by the regular divisibility of A, a;r, = asc,_; for some
as € A. Thus

f(s) =ascn 15,1 < aarp 15,2 < aacp_18,_1 = f(s)

and f(s) = asr,_1S,—2. In this way we finally arrive at f(s) = a,rs for some a, € A,
ie. f= Ay So Ais regularly principally weakly injective by Proposition 3.3.

Definition 5.3. We say that an element s of a pomonoid S is regularly right almost
regular if there exist elements such that equalities and inequalities in (4) hold. We call
a pomonoid reqularly right almost reqular, if all its elements are regularly right almost
regular.

If s € S is a regular element then s = sxs for some z € S and hence we have

Is < (sx)s < 1s
H(zs) <xzs <as < 1(xs)
s = s(xzs) = s(xs).

So every regular element of a pomonoid is regularly right almost regular. It is also easy to
see that every left po-cancellable element of a pomonoid is regularly right almost regular.
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Corollary 5.4. For a pomonoid S, the following conditions are equivalent:
(i) all right S-posets are regularly principally weakly injective,
(11) all right ideals of S are regqularly principally weakly injective,
(111) all finitely generated right ideals of S are reqularly principally weakly injective,
(iv) all principal Tight ideals of S are regularly principally weakly injective,
(v) S is a reqular pomonoid.

Proof. (i) = (ii) = (iii) = (iv). These are clear.

(1v) = (v). For any s € S, by (iv), since sSg is regularly principally weakly injective,
there exists an S-poset morphism g : Sg — sSg such that g¢ = 1,5, where ¢ is the
inclusion mapping from sS to S and 1,¢ is the identity mapping of sS. Consequently,
one has that s = g(s) = g(1)s. Since ¢g(1) € s95, it follows that s is regular.

(v) = (¢). If S is regular then all right S-posets are regularly principally weakly
injective by Proposition 5.1 and Theorem 5.2.

It is known that every right almost regular monoid is a right PP monoid (see [8]). We
can prove an analogue of this result for commutative pomonoids. Recall that a pomonoid
S is a right PP monoid if and only if for every s € S there exists an idempotent e € S
such that s = se and su < sv implies eu < ev for all u,v € S (see Proposition 3.2 of [9]).

Lemma 5.5. If S s a regularly right almost reqular pomonoid then for every element
s € S there exist p,q € S such that s = sp = sq and su < sv implies pu < qu for all
u,v € S.

Proof. For every element s € S there exist elements as in (4). Suppose su < sv, u,v € S.
Then

crs1u < rysu < risv < ¢ 8v

implies sju < sjv. Next,

289U < Tos1u < 1r98tv < CaShu

implies sou < shv. Continuing in this manner we arrive at s,u < s v.

Corollary 5.6. Every commutative reqularly (right) almost reqular pomonoid is a (right)
PP pomonoid.

Proof. For an element s € S let p,q € S such that s = sp = sq and su < sv implies
pu < qu for all u,v € S. Denote e = pq. Then sq = s = s(p*q) and s(pg*) = s = sp imply
pq < qp?q and p*¢® < gp. Hence e = €2 by commutativity and s = se. If now su < sv
then s(qu) < s(pv) and hence eu = pqu < gpv = ev.
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5.3 When regularly principally weakly injective S-posets are regularly
fg-weakly injective

Lemma 5.7. Let Ag be an S-poset and let A® be constructed as in Construction 4.1. If
A CbS for somebe A,, n €N, then A C dS for somed € A,_;.

Proof. We may assume that b € A,\ A,,_1. Then b = [y],,_1 for some y = dv € F,,_; where
veSandd = (z,d) € I',_1. Forevery a € A, there exists t € S such that a = [dv],_1t. So

ab,_10vt, ie. a < dvt < a. By Lemma 4.8, there exist sq, 89, 21,20 € 5, by, by € A,
Pn—1 Pn—1
such that a < bysy, 2151 < vt, vt < 2389, basy < a and 0 = (21,b1) = (29,b). Hence

Z2 =21 = 2z, d = by = by, and zs1 = 2151 < 2989 = zs9 implies ds; < ds, because
§ € TL_,. Consequently, a < bys; = ds; < dsy = bysy < a, i.e. a=ds; € dS.

Theorem 5.8. Let S be a pomonoid and o > 1 a cardinal. Then all reqularly principally
weakly injective S-posets are regularly a-injective if and only if all right a-ideals are
principal.

Proof. Necessity. Consider a right a-ideal I = (J;;s;5, where |J| < a. By as-
sumption, its regularly principally weakly injective extension 1 is regularly a-injective.
Hence there exists an S-poset morphism ¢ : S — I such that the diagram

is commutative, where ¢+ : I — S and f : I — I® are inclusion mappings. Then, for
every j € J,

s; = [(s5) = gu(s5) = 9(s5) = g(1)s;,

and hence
I:USJS U (1)s;S C g(1)S.
jed jed
Now g¢(1) € I, for some n € Ny. If n = 0 then g(1) € I. Otherwise, by applying
Lemma 5.7 n times we obtain d € [ such that I C dS. So in both cases I C sS for some
s € I, which implies I = sS.
Sufficiency. This is obvious.

Corollary 5.9. Let a be any cardinal such that 2 < a < Vy. Then the following condi-
tions are equivalent for a pomonoid S':

(i) all reqularly principally weakly injective S-posets are reqularly fg-weakly injective,
(11) all reqularly principally weakly injective S-posets are regularly a-injective,
(111) all regularly principally weakly injective S-posets are reqularly 3-injective,
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(iv) all right 3-ideals are principal,
(v) all finitely generated right ideals of S are principal.

Proof. (i) = (i) = (di7), (iv) = (v). These are evident.
(1ii) = (iv), (v) = (7). These follow from Theorem 5.8.

Corollary 5.10. All regularly principally weakly injective S-posets are regularly weakly
ingective if and only if S is a principal right ideal pomonoid.

From Corollary 5.9 and Corollary 5.4 we obtain the following result.

Corollary 5.11. All S-posets are reqularly fg-weakly injective if and only if S is a reqular
pomonoid all of whose finitely generated right ideals are principal.

From Corollary 5.10 and Corollary 5.4 we obtain the following result.

Corollary 5.12. All S-posets are reqularly weakly injective if and only if S is a reqular
principal right ideal pomonoid.

5.4 When regularly fg-weakly injective S-posets are regularly weakly in-
jective

Lemma 5.13. Let A be an S-poset and let AR be constructed as in Construction 4.1.
If A is contained in a finitely generated S-subposet of A, for some n € N then A is
contained in a finitely generated S-subposet of A, _1.

Proof. Let n € N and by,...,b, € A, be such that A C [J" 0,5 If by,....b,, € A,y
then there is nothing to prove. Assume that r € {1,...,m} is such that by,...,b. €
A\ A1 and by, ... by € Ay—q. Then b; = [6;v;],—1 for some 6; € T',,_; and v; € S,
for every i € {1,...,r}. By the definition of T',,_y, for every i € {1,...,r} there exists
p; € N such that

51' - ((81'17 ail)? R (Sim’ aipi)) € Pzi—l'
We claim that

AC U aiS u( U sz) C A, .

1<i<r r<i<m
1<1<p;

Consider an element a € A. If a € ;S for some i € {1,...,r} then there exists t € S
such that a = [a],,_1 = [d;vit],—1. By Lemma 4.8, a < §;v;t and §;v;t < a imply that
Pn—1 Pn—1

a<p,_1bs,zs <wvit and wvit <25 Vs' <, 1a

for some s,5' 2,2 € S, bV € A,_1, where (§;); = (2,b) and (6;), = (2/,b") for some
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I,ke{l,...,p;}. Hence
sis = zs < vt < '8’ = 5,8,

which implies bs = a;s <,,_1 a;s’ = b's’. It follows that a <,,_; bs <, V's’ <,_1 a, and
thus a = bs = ays € agS C A,_1.

Theorem 5.14. Let S be a pomonoid and let a« > Ny be a cardinal. Then all regularly
fg-weakly injective S-posets are reqularly a-injective if and only if all right a-ideals of S
are finitely generated.

Proof. Necessity. Let I be a right a-ideal of S. Then I®) is an a-injective S-poset by
assumption. Thus there exists an S-poset morphism g : S — I®0) such that the diagram

}
JRo)

commutes, where ¢ and f are the inclusion mappings. If r € I then

r=f(r)=gur)=g(r) = g(Dr.

Hence I C g(1)S. If g(1) € I then I C ¢(1)S C IS C I and so I = g(1)S is a principal
right ideal. Otherwise g(1) € I,, \ I,,_1 for some n € N. Then ¢(1)S C I, and ¢g(1)S is
a finitely generated S-subposet of I,,. Applying Lemma 5.13 n times we conclude that
I is contained in a finitely generated S-subposet of I, but then I must also be finitely
generated.

Sufficiency. It is clear.

A pomonoid S is called right noetherian (see [7], Def. 4.3.5) if it satisfies the ascending
chain condition on right ideals. This is equivalent to all right ideals of S being finitely
generated.

From Theorem 5.14 we obtain the following result.

Corollary 5.15. All regularly fg-weakly injective S-posets are reqularly weakly injective
iof and only if S is right noetherian.

5.5 Summary

The homological classification results of this section can be summarized in the following
table (compare it with Table IV.2 of [7]).
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reg. princ. w. inj.| right ideals

are principal

f.g. right ideals

are principal

= reg. w. inj. | reg. fg-w. inj. |reg. princ. w. inj.|reg. divisible
reg. fg-w. inj. right
noetherian
Cor. 5.15

Cor. 5.10 Cor. 5.9
reg. divisible regularly right
almost regular
Thm. 5.2
All regular left po-canc.
=left inv.
Cor. 5.12 Cor. 5.11 Cor. 5.4 Prop. 5.1
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