On homological classification of pomonoids by regular weak injectivity properties of S-posets

Xia Zhang ${ }^{1 *}$, Valdis Laan ${ }^{2 \dagger}$
1 School of Mathematics and Computational Science, Sun Yat-sen University, 510275 Guangzhou, China
2 Institute of Pure Mathematics, University of Tartu, 50409 Tartu, Estonia

Received 20 June 2006; accepted 25 September 2006

Abstract

If S is a partially ordered monoid then a right S-poset is a poset A on which S acts from the right in such a way that the action is compatible both with the order of S and A. By regular weak injectivity properties we mean injectivity properties with respect to all regular monomorphisms (not all monomorphisms) from different types of right ideals of S to S. We give an alternative description of such properties which uses systems of equations. Using these properties we prove several so-called homological classification results which generalize the corresponding results for (unordered) acts over (unordered) monoids proved by Victoria Gould in the 1980's.

© Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.

Keywords: Ordered monoid, S-poset, weak injectivity
MSC (2000): 06F05, 20M30

1 Introduction

In the 1980's Victoria Gould characterized several classes of monoids using the injectivity properties of acts (or systems) over them ([4],[5],[6]). Our aim is to prove the analogues of those results in the case of ordered acts (S-posets) over ordered monoids. We make use of regular weak injectivities by which we mean injectivities with respect to regular monomorphisms from different types of ideals to the ordered monoid.

[^0]After giving the necessary preliminaries, in Section 2 we prove, following [4], a result that describes regular weak injectivity properties using systems of equations. In Section 3 we give a construction, that allows for a given S-poset A to construct a regularly divisible, regularly principally weakly injective or regularly fg-weakly injective S-poset that contains A as a regular S-subposet. This construction will be the main tool for obtaining the desired homological classification results in Section 4.

2 Preliminaries

Throughout this paper S will denote a partially ordered monoid (shortly pomonoid), that is, a monoid with a partial order relation \leq such that $s \leq t$ implies $s u \leq t u$ and $u s \leq u t$ for every $s, t, u \in S$. A poset (A, \leq) together with a mapping $A \times S \rightarrow A,(a, s) \mapsto a s$, is called a right S-poset (and the notation A_{S} is used) if (1) $a(s t)=(a s) t$, (2) $a 1=a$, (3) $a \leq b$ implies $a s \leq b s$, and (4) $s \leq t$ implies $a s \leq a t$, for all $a, b \in A, s, t \in S$. In this paper we only consider right S-posets, so we usually drop the word 'right'. If A satisfies conditions (1) and (2) then it is called a right S-act (see [7]) or a right S-system (see, e.g., [4]). Definitions and results about S-acts, used in this paper, can be found in [7]. Morphisms of S-posets are action and order preserving mappings. From [2] we know that in the category of right S-posets monomorphisms are injective morphisms but regular monomorphisms are embeddings, i.e. morphisms $\iota: A_{S} \rightarrow B_{S}$ such that $a \leq a^{\prime}$ if and only if $\iota(a) \leq \iota\left(a^{\prime}\right), a, a^{\prime} \in A$. So not every monomorphism of S-posets needs to be regular. For every S-poset A_{S} and its element $a, \lambda_{a}: S_{S} \rightarrow A_{S}$ will denote the right S-poset morphism defined by $\lambda_{a}(s)=a s$ for every $s \in S$.

A poset $\left(A, \leq_{A}\right)$ is called a (regular) S-subposet of a right S-poset $\left(B, \leq_{B}\right)$, if A_{S} is a subact of B_{S} and $\leq_{A} \subseteq\left(\leq_{B} \cap A^{2}\right)$ (resp. $\leq_{A}=\left(\leq_{B} \cap A^{2}\right)$). By right ideals of S we mean algebraic ideals, i.e. subsets $I \subseteq S$ such that $I S \subseteq I$. When we consider a right ideal I as a right S-poset, we mean that its order is induced by the order of S.

For a binary relation σ on an S-poset A_{S}, we write $a \underset{\sigma}{\leq} a^{\prime}$ if there exist $a_{1}, \ldots, a_{n} \in A$ such that

$$
a \leq a_{1} \sigma a_{2} \leq a_{3} \sigma \ldots \sigma a_{n} \leq a^{\prime}
$$

Such a sequence of elements is called an σ-chain connecting a and a^{\prime}. An S-poset congruence (see [3]) on an S-poset A_{S} is an S-act congruence θ on A, that satisfies the so-called closed chains condition:

$$
a \underset{\theta}{\leq} a^{\prime} \underset{\theta}{\leq} a \Longrightarrow a \theta a^{\prime}
$$

for every $a, a^{\prime} \in A$. If $H \subseteq A \times A$ is a subset then the S-poset congruence $\theta(H)$ on A generated by H (see [1]) is defined by

$$
\begin{equation*}
a \theta(H) a^{\prime} \Longleftrightarrow a \underset{\rho}{\leq} a_{\rho}^{\prime} \underset{\rho}{\leq} \tag{1}
\end{equation*}
$$

$a, a^{\prime} \in A$, where $\rho=\rho(H)$ is the S-act congruence on A generated by H. The factor
S-poset $A / \theta(H)$ is equipped with the order

$$
\begin{equation*}
[a]_{\theta(H)} \leq\left[a^{\prime}\right]_{\theta(H)} \Longleftrightarrow a \underset{\rho}{\leq} a^{\prime} \tag{2}
\end{equation*}
$$

This makes the canonical epimorphism $A \rightarrow A / \theta(H)$ a regular epimorphism (see [2]).
For a set Γ, one can consider the free right S-poset on Γ (see [9]) as a set $\Gamma \times S$ with the right S-action defined by $(\gamma, s) t=(\gamma, s t)$ and the order relation by $(\gamma, s) \leq(\delta, t)$ if and only if $\gamma=\delta$ and $s \leq t, \gamma, \delta \in \Gamma, s, t \in S$. We shall write shortly γs instead of $(\gamma, s) \in \Gamma \times S$.

We call an element $c \in S$ left po-cancellable if $c s \leq c t$ implies $s \leq t$ for all $s, t \in S$. We denote the set of all left po-cancellable elements of S by C.

We write $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ for the set of nonnegative integers.

3 Regularly (α, R)-injective acts

We say that a subset $R \subseteq S$ is closed under regular monomorphisms if $\iota(r) \in R$ for every $r \in R$ and regular monomorphism $\iota: r S \rightarrow S$. It is easy to see that S and the set of all left (po-)cancellable elements of S are closed under regular monomorphisms.

Let α be any cardinal greater than 1 and let R be a subset of S that is closed under regular monomorphisms. We call a right ideal I of S a right (α, R)-ideal, if I has a generating set $G \subseteq R$ of fewer than α elements. If $R=S$ then we speak of just right α-ideals. So the right $(2, C)$-ideals of S are principal right ideals generated by left pocancellable elements, right 2 -ideals are principal right ideals and right \aleph_{0}-ideals are finitely generated right ideals.

We say that an S-poset A_{S} satisfies the (α, R)-Baer criterion (cf. [4]) if every S-poset morphism $f: I \rightarrow A$, where I is a right (α, R)-ideal, is given by the left multiplication by some element $a \in A$, i.e. $f=\lambda_{a}$.

We say that an S-poset A_{S} is (regularly) (α, R)-injective if for every right (α, R)-ideal I of S, every (regular) monomorphism $\iota: I \rightarrow S$ and every S-poset morphism $f: I \rightarrow A$ there exists an S-poset morphism $g: S \rightarrow A$ such that the diagram

is commutative. If $R=S$, we speak of (regular) α-injectivity. So (regularly) 2-injective S-posets are (regularly) principally weakly injective S-posets and (regularly) \aleph_{0}-injective S-posets are (regularly) fg-weakly injective S-posets.

We say that an S-poset A_{S} is (regularly) divisible (cf. [6]) if $A=A c$ for every left (po-)cancellable element $c \in S$. The next lemma shows that regular divisibility can be considered as an injectivity property.

Lemma 3.1. The following conditions are equivalent for an S-poset A_{S} :
(i) A_{S} is regularly $(2, C)$-injective,
(ii) A_{S} is regularly $(2,\{1\})$-injective,
(iii) A_{S} is regularly divisible.

Proof. $(i) \Rightarrow(i i)$. This is clear, because $1 \in C$.
(ii) \Rightarrow (iii). Let A_{S} be regularly $(2,\{1\})$-injective, let $c \in S$ be a left po-cancellable element and let $a \in A$. Since, for every $s, t \in S, s \leq t$ if and only if $c s \leq c t$, the mapping $\lambda_{c}: S \rightarrow S$ is a regular monomorphism of S-posets.

By the assumption, there exists an S-poset morphism $g: S \rightarrow A$ such that $\lambda_{a}=g \lambda_{c}$. Hence

$$
a=\lambda_{a}(1)=g \lambda_{c}(1)=g(c)=g(1) c \in A c
$$

(iii) $\Rightarrow($ $)$. Suppose that A is regularly divisible. Consider a left po-cancellable element c, a regular monomorphism $\iota: c S \rightarrow S$ and an S-poset morphism $f: c S \rightarrow A$. Then $c^{\prime}=\iota(c) \in S$ is also a left po-cancellable element and hence $f(c)=b c^{\prime}$ for some $b \in A$. Consequently, for every $s \in S$,

$$
\lambda_{b} \iota(c s)=\lambda_{b}\left(c^{\prime} s\right)=b c^{\prime} s=f(c) s=f(c s) .
$$

So we have the following implications among regular weak injectivity properties of S-posets:

$$
\text { regularly weakly injective } \Rightarrow \text { regularly fg-weakly injective } \Rightarrow
$$

\Rightarrow regularly principally weakly injective \Rightarrow regularly divisible.
Our next aim is to describe regularly (α, R)-injective S-posets using systems of equations over them. A set Σ of equations with constants from an S-poset A_{S} is called consistent if Σ has a solution in some S-poset B_{S} that contains A as a regular S-subposet. If α is any cardinal larger than that of Σ, if all equations in Σ are of the form $x s=a$, where $s \in R$ and $a \in A$, and if the same unknown x appears in each equation then we call Σ an (α, R)-system over A.

The following two results are analogues of Lemma 3.2 and Proposition 3.3 of [4], respectively.

Lemma 3.2. Let A_{S} be an S-poset, $R \subseteq S$ a subset that is closed under regular monomorphisms, α a cardinal, J a set with $|J|<\alpha$ and

$$
\Sigma=\left\{x s_{j}=a_{j} \mid j \in J, s_{j} \in R, a_{j} \in A\right\}
$$

an (α, R)-system over A. Then Σ is consistent if and only if for all $u, v \in S$ and $i, j \in J$,

$$
s_{i} u \leq s_{j} v \Longrightarrow a_{i} u \leq a_{j} v
$$

Proof. Necessity. If Σ is consistent then there is an S-poset (B_{S}, \leq_{B}) and an element $b \in B$ such that $\left(A_{S}, \leq_{A}\right)$ is a regular S-subposet of B_{S} and b is a solution of Σ. If now $s_{i} u \leq s_{j} v, u, v \in S, i, j \in J$, then $a_{i} u=b s_{i} u \leq_{B} b s_{j} v=a_{j} v$. Since A is a regular S-subposet of B, we have $a_{i} u \leq_{A} a_{j} v$.

Sufficiency. Let z be a symbol which is not in A or S and consider the S-poset $B_{S}=A_{S} \amalg F_{S}$, where $F_{S}=(z S)_{S}$ is the free S-poset on $\{z\}$ and the S-action and order on disjoint union are defined componentwise. Let θ be the S-poset congruence on B generated by the set

$$
H=\left\{\left(a_{j}, z s_{j}\right) \mid j \in J\right\} \subseteq B^{2}
$$

that is, for $b, b^{\prime} \in B$,

$$
b \theta b^{\prime} \Longleftrightarrow b \underset{\rho}{\leq} b^{\prime} \underset{\rho}{\leq} b
$$

where $\rho=\rho(H)$ is the S-act congruence on B_{S} generated by H. Using the assumption, one can show that $b \rho b^{\prime}$ if and only if one of the following four cases is true:
(1) $b, b^{\prime} \in A \cup F$ and $b=b^{\prime}$,
(2) $b=z s_{i} u, b^{\prime}=z s_{j} v \in F$ and $a_{i} u=a_{j} v$ for some $u, v \in S$ and $i, j \in J$,
(3) $b=a_{j} u \in A, b^{\prime}=z s_{j} u \in F$ for some $u \in S$ and $j \in J$,
(4) $b=z s_{j} u \in F, b^{\prime}=a_{j} u \in A$ for some $u \in S$ and $j \in J$.

Suppose that $b \underset{\rho}{\leq} b^{\prime}$ where $b, b^{\prime} \in A$. Using the above description of ρ we have either $b \leq b^{\prime}$ or

$$
b \leq d_{1}^{\prime} \rho y_{1}^{\prime} \underset{\left.\rho\right|_{F}}{\leq} y_{1} \rho d_{2} \leq d_{2}^{\prime} \rho y_{2}^{\prime} \underset{\left.\rho\right|_{F}}{\leq} y_{2} \rho d_{3} \ldots d_{n}^{\prime} \rho y_{n}^{\prime} \underset{\left.\rho\right|_{F}}{\leq} y_{n} \rho d_{n+1} \leq b^{\prime},
$$

where $\left.\rho\right|_{F}=\rho \cap F^{2}$, for some $n \in \mathbb{N}$ and elements $d_{1}^{\prime}, \ldots, d_{n}^{\prime}, d_{2}, \ldots, d_{n+1} \in A, y_{1}^{\prime}, \ldots, y_{n}^{\prime}$, $y_{1}, \ldots, y_{n} \in F$. Since $d_{r}^{\prime} \rho y_{r}^{\prime}$ and $y_{r} \rho d_{r+1}$, for every $r \in\{1, \ldots, n\}$ there exist $k_{r}, l_{r} \in J$ and $u_{k_{r}}, v_{k_{r}} \in S$ such that $d_{r}^{\prime}=a_{k_{r}} u_{k_{r}}, y_{r}^{\prime}=z s_{k_{r}} u_{k_{r}}, y_{r}=z s_{l_{r}} v_{l_{r}}$ and $d_{r+1}=a_{l_{r}} v_{l_{r}}$.

Now $y_{r}^{\prime} \underset{\left.\rho\right|_{F}}{\leq} y_{r}$ implies

$$
z s_{k_{r}} u_{k_{r}}=y_{r}^{\prime} \leq g_{1} \rho h_{1} \leq g_{2} \rho h_{2} \leq \ldots \leq g_{p} \rho h_{p} \leq y_{r}=z s_{l_{r}} v_{l_{r}}
$$

for some $p \in \mathbb{N}$ and $g_{m}, h_{m} \in F, m \in\{1, \ldots, p\}$. From the description of ρ we obtain $i_{m}, j_{m} \in J, u_{i_{m}}, v_{j_{m}} \in S, m \in\{1, \ldots, p\}$, such that $g_{m}=z s_{i_{m}} u_{i_{m}}, h_{m}=z s_{j_{m}} v_{j_{m}}$ and $a_{i_{m}} u_{i_{m}}=a_{j_{m}} v_{j_{m}}$. Since $h_{m} \leq g_{m+1}$, we have $s_{j_{m}} v_{j_{m}} \leq s_{i_{m+1}} u_{i_{m+1}}$ for every $m \in$ $\{1, \ldots, p-1\}$. Also $y_{r}^{\prime} \leq g_{1}$ implies $s_{k_{r}} u_{k_{r}} \leq s_{i_{1}} u_{i_{1}}$ and $h_{p} \leq y_{r}$ implies $s_{j_{p}} v_{j_{p}} \leq s_{l_{r}} v_{l_{r}}$. By assumption, $a_{k_{r}} u_{k_{r}} \leq a_{i_{1}} u_{i_{1}}, a_{j_{p}} v_{j_{p}} \leq a_{l_{r}} v_{l_{r}}$ and $a_{j_{m}} v_{j_{m}} \leq a_{i_{m+1}} u_{i_{m+1}}$ for every $m \in$ $\{1, \ldots, p-1\}$. Hence

$$
d_{r}^{\prime}=a_{k_{r}} u_{k_{r}} \leq a_{i_{1}} u_{i_{1}}=a_{j_{1}} v_{j_{1}} \leq a_{i_{2}} u_{i_{2}}=a_{j_{2}} v_{j_{2}} \leq \ldots \leq a_{j_{p}} v_{j_{p}} \leq a_{l_{r}} v_{l_{r}}=d_{r+1}
$$

for every $r \in\{1, \ldots, n\}$. So $b \leq d_{1}^{\prime} \leq d_{2} \leq d_{2}^{\prime} \leq \ldots \leq d_{n+1} \leq b^{\prime}$, and we have proved that, for every $b, b^{\prime} \in A$,

$$
b \underset{\rho}{\leq} b^{\prime} \Longleftrightarrow b \leq b^{\prime}
$$

It follows that if $\pi: B \rightarrow B / \theta, b \mapsto[b]_{\theta}$, is the natural S-poset morphism then $\left.\pi\right|_{A}$ is an embedding, thus we may identify the S-posets A and $\left.\pi\right|_{A}(A)=\pi(A)$, and, moreover, $\pi(A)$ is a regular S-subposet of B. Since

$$
a_{j} \equiv\left[a_{j}\right]_{\theta}=\left[z s_{j}\right]_{\theta}=[z]_{\theta} s_{j}
$$

for every $j \in J,[z]_{\theta}$ is a solution of Σ in B / θ, so Σ is consistent.

Proposition 3.3. The following conditions are equivalent for an S-poset A_{S}, a subset $R \subseteq S$ that is closed under regular monomorphisms, and a cardinal α :
(i) every consistent (α, R)-system over A has a solution in A,
(ii) A satisfies the (α, R)-Baer criterion,
(iii) A is regularly (α, R)-injective.

Proof. $(i) \Rightarrow(i i)$. Let I be a right (α, R)-ideal of S, that is, $I=\bigcup_{j \in J} t_{j} S$, where $|J|<\alpha$ and $t_{j} \in R$ for every $j \in J$. Consider an S-poset morphism $f: I \rightarrow A$. Then

$$
t_{i} u \leq t_{j} v \Longrightarrow f\left(t_{i}\right) u \leq f\left(t_{j}\right) v
$$

for every $i, j \in J$ and $u, v \in S$. By Lemma 3.2,

$$
\Sigma=\left\{x t_{j}=f\left(t_{j}\right) \mid j \in J\right\}
$$

is a consistent (α, R)-system over A. By assumption, Σ has a solution a in A, which means that f is given by left multiplication by a.
$(i i) \Rightarrow(i i i)$. Let I be a right (α, R)-ideal of S, that is, $I=\bigcup_{j \in J} t_{j} S$, where $|J|<\alpha$ and $t_{j} \in R$ for every $j \in J$, let $\iota: I \rightarrow S$ be a regular monomorphism and let $f: I \rightarrow A$ be an S-poset morphism. By assumption, there exists $a \in A$ such that $f\left(t_{j}\right)=a t_{j}$ for every $j \in J$. Now $\iota(I)=\bigcup_{j \in J} \iota\left(t_{j}\right) S$ is also a right (α, R)-ideal of S. We define a mapping $h: \iota(I) \rightarrow A$ by

$$
h\left(\iota\left(t_{j}\right) s\right)=a t_{j} s
$$

for all $j \in J, s \in S$. Since, for every $i, j \in J$ and $u, v \in S$,

$$
\iota\left(t_{i}\right) u \leq \iota\left(t_{j}\right) v \Longrightarrow \iota\left(t_{i} u\right) \leq \iota\left(t_{j} v\right) \Longrightarrow t_{i} u \leq t_{j} v \Longrightarrow f\left(t_{i} u\right) \leq f\left(t_{j} v\right) \Longrightarrow a t_{i} u \leq a t_{j} v
$$

h is an order preserving and well-defined S-act morphism. By assumption, there exists $b \in A$ such that $h\left(\iota\left(t_{j}\right) s\right)=b \iota\left(t_{j}\right) s$ for every $j \in J$ and $s \in S$. Hence

$$
\left(\lambda_{b} \iota\right)\left(t_{j} s\right)=b \iota\left(t_{j}\right) s=h\left(\iota\left(t_{j}\right) s\right)=a t_{j} s=f\left(t_{j} s\right)
$$

for every $j \in J, s \in S$, i.e. $\lambda_{b} \iota=f$.

$($ iii $) \Rightarrow(i)$. Consider a consistent (α, R)-system

$$
\Sigma=\left\{x s_{j}=a_{j} \mid j \in J, s_{j} \in R, a_{j} \in A\right\}
$$

where $|J|<\alpha$ and the right (α, R)-ideal $I=\bigcup_{j \in J} s_{j} S$ of S. By Lemma 3.2,

$$
s_{i} u \leq s_{j} v \Longrightarrow a_{i} u \leq a_{j} v
$$

for every $i, j \in J$ and $u, v \in S$. Hence the mapping $f: I \rightarrow A, s_{j} s \mapsto a_{j} s$, is an S-poset morphism. By assumption, there exists an S-poset morphism $g: S \rightarrow A$ such that $g \iota=f$ where $\iota: I \rightarrow S$ is the inclusion. Therefore

$$
a_{j}=f\left(s_{j}\right)=g \iota\left(s_{j}\right)=g\left(s_{j}\right)=g(1) s_{j}
$$

for every $j \in J$, and so $g(1)$ is a solution of Σ in A.

Denote the directed kernel $\left\{\left(a, a^{\prime}\right) \in A^{2} \mid f(a) \leq f\left(a^{\prime}\right)\right\}$ of an S-poset morphism $f: A_{S} \rightarrow B_{S}$ by $\overrightarrow{\operatorname{Ker}} f$ (see [3]). Taking $\alpha=2$ and $R=S$, from Lemma 3.2 and Proposition 3.3 we obtain the following result.

Corollary 3.4. For an S-poset A_{S}, the following conditions are equivalent:
(i) A_{S} is regularly principally weakly injective,
(ii) for every $s \in S$ and S-poset morphism $f: s S \rightarrow A_{S}$, there exists an element $z \in A_{S}$ such that $f(x)=z x$ for every $x \in s S$,
(iii) for every $s \in S, a \in A$ with $\overrightarrow{\operatorname{Ker}} \lambda_{s} \subseteq \overrightarrow{\operatorname{Ker}} \lambda_{a}$, one has that $a=z$ s for some $z \in A$.

4 Regularly (α, R)-injective extension of an S-poset

Construction 4.1. Let A_{S} be an arbitrary S-poset, let $R \subseteq S$ be any subset that is closed under regular monomorphisms, and let α be any cardinal with $1<\alpha \leq \aleph_{0}$. Our aim is to give a construction of a regularly (α, R)-injective S-poset $A^{(\alpha, R)}$ containing A as a regular S-subposet. The first step in this direction is to define $\Gamma, H, U(\alpha, R, A)$ as follows.

For every natural number n, where $1 \leq n<\alpha$, set

$$
\begin{aligned}
\Gamma^{n}:= & \left\{\left(\left(s_{1}, a_{1}\right), \ldots,\left(s_{n}, a_{n}\right)\right) \in(R \times A)^{n} \mid\right. \\
& \text { for all } \left.u, v \in S, \text { and } i, j \in\{1, \ldots, n\} \quad s_{i} u \leq s_{j} v \text { implies } a_{i} u \leq a_{j} v\right\} .
\end{aligned}
$$

If $\gamma \in \Gamma^{n}$, we write γ_{j} for the j-th component of the n-tuple γ. Further we put

$$
\begin{aligned}
\Gamma & :=\bigcup_{1 \leq n<\alpha} \Gamma^{n}, \\
F_{S} & :=(\Gamma \times S)_{S},
\end{aligned}
$$

that is, F is the free right S-poset on Γ (we again write γs for the element (γ, s) of F), and

$$
H:=\left\{\left(\gamma s_{j}, a_{j}\right) \mid \gamma \in \Gamma^{n}, 1 \leq n<\alpha,\left(s_{j}, a_{j}\right)=\gamma_{j}, j \in\{1, \ldots, n\}\right\} \subseteq(F \amalg A)^{2} .
$$

Let $\theta(H)$ be the S-poset congruence on $F_{S} \amalg A_{S}$ generated by H (see (1)) and define a right S-poset

$$
U(\alpha, R, A)_{S}:=\left(F_{S} \amalg A_{S}\right) / \theta(H) .
$$

First we need to examine the properties of the S-act congruence $\rho(H)$ on $F_{S} \amalg A_{S}$ generated by H.

Lemma 4.2. If $y \rho(H) y^{\prime}$ for $y, y^{\prime} \in F$ then either $y=y^{\prime}$ or there exist $1 \leq n, n^{\prime}<\alpha$, $j \in\{1, \ldots, n\}, j^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}, \gamma \in \Gamma^{n}, \gamma^{\prime} \in \Gamma^{n^{\prime}}, s, s^{\prime} \in R, t, t^{\prime} \in S, a, a^{\prime} \in A$ such that

$$
\begin{gathered}
y=\gamma s t \quad \gamma^{\prime} s^{\prime} t^{\prime}=y^{\prime} \\
a t=a^{\prime} t^{\prime}
\end{gathered}
$$

$\gamma_{j}=(s, a)$ and $\gamma_{j^{\prime}}^{\prime}=\left(s^{\prime}, a^{\prime}\right)$.
Proof. Suppose that $y, y^{\prime} \in F$ and $y \rho(H) y^{\prime}$. Then by Lemma 1.4.37 of $[7]$ either $y=y^{\prime}$ or there exist elements $x_{1}, \ldots, x_{m}, x_{1}^{\prime}, \ldots, x_{m}^{\prime} \in F \amalg A, t_{1}, \ldots, t_{m} \in S$ such that $\left(x_{i}, x_{i}^{\prime}\right) \in H$ or $\left(x_{i}^{\prime}, x_{i}\right) \in H$ for each $i \in\{1, \ldots, m\}$ and

$$
\begin{gathered}
y=x_{1} t_{1} \quad x_{2}^{\prime} t_{2}=x_{3} t_{3} \ldots \\
x_{1}^{\prime} t_{1}=x_{2} t_{2}
\end{gathered} \quad x_{m-1}^{\prime} t_{m-1}^{\prime}=x_{m} t_{m}=y^{\prime},
$$

where $m \in \mathbb{N}$ is minimal. From $y=x_{1} t_{1} \in F$ we get that $x_{1} \in F$. Hence $\left(x_{1}, x_{1}^{\prime}\right) \in H$ and therefore $x_{1}=\gamma s_{j_{1}}$ and $x_{1}^{\prime}=a_{j_{1}}$ for some $n_{1}<\alpha, j_{1} \in\left\{1, \ldots, n_{1}\right\}$ and $\gamma \in \Gamma^{n_{1}}$ with $\gamma_{j_{1}}=\left(s_{j_{1}}, a_{j_{1}}\right)$.

If $m>2$ then $\left(x_{2}^{\prime}, x_{2}\right),\left(x_{3}, x_{3}^{\prime}\right) \in H$, so there exist $n_{2}, n_{3}<\alpha, j_{2} \in\left\{1, \ldots, n_{2}\right\}$, $j_{3} \in\left\{1, \ldots, n_{3}\right\}, \delta \in \Gamma^{n_{2}}$ and $\nu \in \Gamma^{n_{3}}$ such that $\delta_{j_{2}}=\left(s_{j_{2}}, a_{j_{2}}\right), \nu_{j_{3}}=\left(s_{j_{3}}, a_{j_{3}}\right), x_{2}^{\prime}=\delta s_{j_{2}}$, $x_{2}=a_{j_{2}}, x_{3}=\nu s_{j_{3}}$ and $x_{3}^{\prime}=a_{j_{3}}$. Now the equality $\delta s_{j_{2}} t_{2}=x_{2}^{\prime} t_{2}=x_{3} t_{3}=\nu s_{j_{3}} t_{3}$ implies $\delta=\nu$ (hence $n_{2}=n_{3}$) and $s_{j_{2}} t_{2}=s_{j_{3}} t_{3}$. By the definition of $\Gamma^{n_{2}}, a_{j_{2}} t_{2}=a_{j_{3}} t_{3}$. It follows that $x_{1}^{\prime} t_{1}=x_{2} t_{2}=a_{j_{2}} t_{2}=a_{j_{3}} t_{3}=x_{3}^{\prime} t_{3}$, but this contradicts the minimality of m.

Obviously $m \neq 1$ because $y, y^{\prime} \in F$. So $m=2$, i.e. $x_{1}^{\prime}, x_{2} \in A$ and there exist $n, n^{\prime}<\alpha, j \in\{1, \ldots, n\}, j^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}, \gamma \in \Gamma^{n}, \gamma^{\prime} \in \Gamma^{n^{\prime}}$ such that $x_{1}=\gamma s$ and $x_{2}^{\prime}=\gamma^{\prime} s^{\prime}$ where $\gamma_{j}=\left(s, x_{1}^{\prime}\right)$ and $\gamma_{j^{\prime}}^{\prime}=\left(s^{\prime}, x_{2}\right)$. Thus we have $y=\gamma s t_{1}, x_{1}^{\prime} t_{1}=x_{2} t_{2}$ and $\gamma^{\prime} s^{\prime} t_{2}=y^{\prime}$.

The following lemma can be proved by an argument similar to that of [5], p. 76.
Lemma 4.3. If $a \rho(H) a^{\prime}$ for $a, a^{\prime} \in A$ then $a=a^{\prime}$.
Lemma 4.4. If $a \rho(H) y$ for $a \in A, y \in F$ then there exist $1 \leq n<\alpha, j \in\{1, \ldots, n\}$, $\gamma \in \Gamma^{n}, s \in R, t \in S, b \in A$ such that $a=b t, \gamma s t=y$ and $\gamma_{j}=(s, b)$.

Proof. By using a proof, similar to that of Lemma 4.2, one has that $a=x_{1} t_{1}$ and $x_{1}^{\prime} t_{1}=y$
for some $t_{1} \in S$ and $\left(x_{1}^{\prime}, x_{1}\right) \in H$. So $x_{1}^{\prime}=\gamma s_{j}$ for some $n<\alpha, \gamma \in \Gamma^{n}$ and $j \in\{1, \ldots, n\}$ such that $\gamma_{j}=\left(s_{j}, x_{1}\right)$.

Lemma 4.5. Suppose that

$$
\begin{equation*}
y_{1}^{\prime} \leq y_{2} \rho(H) y_{2}^{\prime} \leq \ldots \leq y_{m} \rho(H) y_{m}^{\prime} \leq y_{m+1} \tag{3}
\end{equation*}
$$

where $y_{k+1}, y_{k}^{\prime} \in F, y_{k} \neq y_{k}^{\prime}$ for every $k \in\{1, \ldots, m\}$, and $y_{1}^{\prime}=\gamma s^{\prime} t^{\prime}, y_{m+1}=\delta v$ for some $t^{\prime}, v \in S, n, n^{\prime}<\alpha, j^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}, \gamma \in \Gamma^{n^{\prime}}, \delta \in \Gamma^{n}$ such that $\gamma_{j^{\prime}}=\left(s^{\prime}, a^{\prime}\right)$. Then

$$
a^{\prime} t^{\prime} \leq b s, \quad z s \leq v \quad \text { and } \quad \delta_{l}=(z, b)
$$

for some $s \in S, z \in R, b \in A$ and $l \in\{1, \ldots, n\}$. Moreover, if $v=$ st for some $t \in S$, $j \in\{1, \ldots, n\}$ such that $\delta_{j}=(s, a)$ then $a^{\prime} t^{\prime} \leq a t$.

Proof. If $m=1$, that is, (3) has the form $\gamma s^{\prime} t^{\prime}=y_{1}^{\prime} \leq y_{2}=\delta v$ then $\gamma=\delta, s^{\prime} t^{\prime} \leq v$, $a^{\prime} t^{\prime} \leq a^{\prime} t^{\prime}$ and $\delta_{j^{\prime}}=\gamma_{j^{\prime}}=\left(s^{\prime}, a^{\prime}\right)$.

Suppose that $m>1$. By Lemma 4.2, for every $k \in\{2, \ldots, m\}$ there exist $n_{k}, p_{k}<\alpha$, $i_{k} \in\left\{1, \ldots, n_{k}\right\}, j_{k} \in\left\{1, \ldots, p_{k}\right\}, \gamma^{k} \in \Gamma^{n_{k}}, \delta^{k} \in \Gamma^{p_{k}}, u_{k}, v_{k} \in S$ such that

$$
y_{k}=\gamma^{k} s_{k} u_{k}, \quad a_{k} u_{k}=b_{k} v_{k}, \quad \delta^{k} z_{k} v_{k}=y_{k}^{\prime} \quad \text { where } \gamma_{i_{k}}^{k}=\left(s_{k}, a_{k}\right), \delta_{j_{k}}^{k}=\left(z_{k}, b_{k}\right) .
$$

Since $y_{k}^{\prime} \leq y_{k+1}$ in F, we conclude that $\delta^{k}=\gamma^{k+1}, p_{k}=n_{k+1}$ and $z_{k} v_{k} \leq s_{k+1} u_{k+1}$ for every $k \in\{2, \ldots, m-1\}$. By the definition of $\Gamma^{p_{k}}, b_{k} v_{k} \leq a_{k+1} u_{k+1}$ for every $k \in\{2, \ldots, m-1\}$. Moreover, $\gamma s^{\prime} t^{\prime}=y_{1}^{\prime} \leq y_{2}=\gamma^{2} s_{2} u_{2}$ and $\delta^{m} z_{m} v_{m}=y_{m}^{\prime} \leq y_{m+1}=\delta v$ imply $\gamma=\gamma^{2}$, $n^{\prime}=n_{2}, s^{\prime} t^{\prime} \leq s_{2} u_{2}, \delta^{m}=\delta, p_{m}=n, z_{m} v_{m} \leq v$. The inequality $s^{\prime} t^{\prime} \leq s_{2} u_{2}$ implies $a^{\prime} t^{\prime} \leq a_{2} u_{2}$ by the definition of $\Gamma^{n^{\prime}}$. Now

$$
a^{\prime} t^{\prime} \leq a_{2} u_{2}=b_{2} v_{2} \leq a_{3} u_{3}=b_{3} v_{3} \leq \ldots \leq b_{m} v_{m}
$$

where $\left(z_{m}, b_{m}\right)=\delta_{j_{m}}^{m}=\delta_{j_{m}}$. If $v=s t$ for some $t \in S$ and $j \in\{1, \ldots, n\}$ such that $\delta_{j}=(s, a)$ then $z_{m} v_{m} \leq s t$ implies $b_{m} v_{m} \leq a t$ and hence $a^{\prime} t^{\prime} \leq a t$.

Lemma 4.6. If $a \underset{\rho(H)}{\leq} a^{\prime}$, where $a, a^{\prime} \in A$, then $a \leq a^{\prime}$.
Proof. Let $a \underset{\rho(H)}{\leq} a^{\prime}$ where $a, a^{\prime} \in A$. Since the elements of A are incomparable to elements of F and also having Lemma 4.3 in mind, there exist elements $a_{k}^{\prime} \in A$ and $y_{k}, y_{k}^{\prime} \in F, k \in\{1, \ldots, m\}$ such that

$$
a \leq a_{1}^{\prime} \rho(H) y_{1}^{\prime} \underset{\rho(H)}{\leq} y_{1} \rho(H) a_{2} \leq a_{2}^{\prime} \rho(H) y_{2}^{\prime} \underset{\rho(H)}{\leq} y_{2} \rho(H) a_{3} \ldots y_{m-1} \rho(H) a_{m} \leq a^{\prime}
$$

and for every $k \in\{1, \ldots, m-1\}, y_{k}^{\prime}$ and y_{k} are connected by a $\rho(H)$-chain of the form (3). By Lemma 4.4, for every $k \in\{1, \ldots, m-1\}, a_{k}^{\prime} \rho(H) y_{k}^{\prime}$ and $y_{k} \rho(H) a_{k+1}$ imply that there exist $n_{k}, p_{k}<\alpha, i_{k} \in\left\{1, \ldots, n_{k}\right\}, j_{k} \in\left\{1, \ldots, p_{k}\right\}, \gamma^{k} \in \Gamma^{n_{k}}, \delta^{k} \in \Gamma^{p_{k}}, u_{k}, v_{k} \in S$ such that

$$
a_{k}^{\prime}=b_{k}^{\prime} u_{k}, \gamma^{k} s_{k} u_{k}=y_{k}^{\prime}, \gamma_{i_{k}}^{k}=\left(s_{k}, b_{k}^{\prime}\right) \quad \text { and } \quad a_{k+1}=b_{k} v_{k}, \delta^{k} z_{k} v_{k}=y_{k}, \delta_{j_{k}}^{k}=\left(z_{k}, b_{k}\right)
$$

By Lemma 4.5, $y_{k}^{\prime} \underset{\rho(H)}{\leq} y_{k}$ implies $b_{k}^{\prime} u_{k} \leq b_{k} v_{k}$ for every $k \in\{1, \ldots, m-1\}$. Hence

$$
a \leq a_{1}^{\prime}=b_{1}^{\prime} u_{1} \leq b_{1} v_{1}=a_{2} \leq a_{2}^{\prime}=b_{2}^{\prime} u_{2} \leq \ldots \leq b_{m-1} v_{m-1}=a_{m} \leq a^{\prime}
$$

From (1) and Lemma 4.6 we obtain the following result.

Corollary 4.7. If $a \theta(H) a^{\prime}$ for $a, a^{\prime} \in A_{S}$ then $a=a^{\prime}$.
Lemma 4.8. 1. If $a \underset{\rho(H)}{\leq} y$, where $a \in A, y=\delta v \in F$, then $a \leq b s$ and $z s \leq v$ for some $s \in S, z \in R, b \in A, n<\alpha$ and $l \in\{1, \ldots, n\}$ such that $\delta_{l}=(z, b)$;
2. if $y \underset{\rho(H)}{\leq} a$, where $y=\delta v \in F, a \in A$, then $v \leq z s$ and $b s \leq a$ for some $s \in S, z \in R$, $b \in A, n<\alpha$ and $l \in\{1, \ldots, n\}$ such that $\delta_{l}=(z, b)$.

Proof. 1. If $a \underset{\rho(H)}{\leq} y$ where $a \in A, y=\delta v \in F, \delta \in \Gamma^{n}$ and $n<\alpha$, then using Lemma 4.6 we have a $\rho(H)$-chain

$$
a \leq a^{\prime} \rho(H) y^{\prime} \underset{\rho(H)}{\leq} y
$$

where $a^{\prime} \in A$ and the $\rho(H)$-chain connecting y^{\prime} and y is of the form (3). By Lemma 4.4, there exist $n^{\prime}<\alpha, j^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}, \gamma \in \Gamma^{n^{\prime}}, t^{\prime} \in S$ such that $a^{\prime}=b^{\prime} t^{\prime}, \gamma s^{\prime} t^{\prime}=y^{\prime}$ and $\gamma_{j^{\prime}}=\left(s^{\prime}, b^{\prime}\right)$. By Lemma 4.5, $b^{\prime} t^{\prime} \leq b s, z s \leq v$ and $\delta_{l}=(z, b)$ for some $s \in S, z \in R$, $b \in A$ and $l \in\{1, \ldots, n\}$. Hence $a \leq a^{\prime}=b^{\prime} t^{\prime} \leq b s$.
2. The proof is symmetric to the case 1 .

Proposition 4.9. Preserving the notations of Construction 4.1, let

$$
\pi: F_{S} \amalg A_{S} \rightarrow U(\alpha, R, A)_{S}
$$

be the canonical surjection. Then $\left.\pi\right|_{A}: A_{S} \rightarrow U(\alpha, R, A)_{S}$ is a regular monomorphism, that is, $U(\alpha, R, A)_{S}$ is an extension of A_{S}.

Proof. Note that π is obviously an S-poset morphism and the fact that $\left.\pi\right|_{A}: A_{S} \rightarrow$ $U(\alpha, R, A)_{S}$ is a regular monomorphism follows from (2) and Lemma 4.6.

In what follows, we shall identify A_{S} with the regular S-subposet $\left.\pi\right|_{A}(A)$ of $U(\alpha, R, A)$.

Theorem 4.10. Let A_{S} be an S-poset, $R \subseteq S$ a subset that is closed under regular monomorphisms and α a cardinal with $1<\alpha \leq \aleph_{0}$. Set $A_{0}=A_{S}$ and $A_{i}=U\left(\alpha, R, A_{i-1}\right)_{S}$ for every $i \in \mathbb{N}$. Let

$$
A^{(\alpha, R)}:=\bigcup_{i \in \mathbb{N}_{0}} A_{i}
$$

and define a relation \leq on $A^{(\alpha, R)}$ by

$$
a \leq b \Longleftrightarrow a \leq_{n} b
$$

where $n \in \mathbb{N}_{0}$ is any number such that $a, b \in A_{n}$, and \leq_{n} is the partial order in A_{n}. Then $A^{(\alpha, R)}$ is a regularly (α, R)-injective S-poset that contains A as a regular S-subposet.

Proof. For every $i \in \mathbb{N}$, denote by $F_{i}:=\Gamma_{i} \times S$ the free S-poset, by $H_{i} \subseteq\left(F_{i} \amalg A_{i}\right)^{2}$ the set, by $\rho_{i}:=\rho\left(H_{i}\right)$ and $\theta_{i}:=\theta\left(H_{i}\right)$ the relations on $F_{i} \amalg A_{i}$ defined using A_{i} as in Construction 4.1. So $A_{i+1}=\left(F_{i} \amalg A_{i}\right) / \theta_{i}$ and the order relation \leq_{i+1} on A_{i+1} is defined by

$$
[x]_{i} \leq_{i+1}\left[x^{\prime}\right]_{i} \Longleftrightarrow x \underset{\rho_{i}}{\leq} x^{\prime}
$$

$x, x^{\prime} \in F_{i} \amalg A_{i}$, where $[x]_{i}$ is the θ_{i}-class of x. It is easy to understand that $A^{(\alpha, R)}$ is an S-poset and contains A as a regular S-subposet. Consider a consistent (α, R)-system

$$
\Sigma=\left\{x s_{j}=a_{j} \mid j \in J, s_{j} \in R, a_{j} \in A^{(\alpha, R)}\right\},
$$

where $|J|<\alpha$. Since $\alpha \leq \aleph_{0}, J$ is a finite set and we may assume that $J=\{1, \ldots, n\}$ for some $n \in \mathbb{N}$ with $n<\alpha$. Hence there exists $m \in \mathbb{N}_{0}$ such that $a_{j} \in A_{m}$ for every $j \in J$. By Lemma 3.2,

$$
\gamma=\left(\left(s_{1}, a_{1}\right), \ldots,\left(s_{n}, a_{n}\right)\right) \in \Gamma_{m}^{n} \subseteq \Gamma_{m},
$$

so $\gamma 1 \in F_{m}$ and $[\gamma 1]_{m} \in A_{m+1} \subseteq A^{(\alpha, R)}$. Moreover, $\left(\gamma s_{j}, a_{j}\right) \in H_{m}$ for every $j \in J$, and thus

$$
[\gamma 1]_{m} s_{j}=\left[(\gamma 1) s_{j}\right]_{m}=\left[\gamma s_{j}\right]_{m}=\left[a_{j}\right]_{m} \equiv a_{j},
$$

i.e. $[\gamma 1]_{m}$ is a solution of Σ in A_{m+1} and hence in $A^{(\alpha, R)}$. By Proposition 3.3, $A^{(\alpha, R)}$ is (α, R)-injective.

We call the S-poset $A^{(\alpha, R)}$ (defined as in Theorem 4.10) the regularly (α, R)-injective extension of A. We also write $A^{(2)}=A^{(2, S)}$ and $A^{\left(\aleph_{0}\right)}=A^{\left(\aleph_{0}, S\right)}$ and call them the regularly principally weakly injective extension of A and the regularly $f g$-weakly injective extension of A, respectively. Since regular $(2, C)$-injectivity is by Lemma 3.1 the same as regular divisibility, we call $A^{(2, C)}$ the regularly divisible extension of A.

5 Homological classification

In this section we give descriptions of pomonoids over which all right S-posets with some weaker regular weak injectivity property have some stronger regular weak injectivity property.

5.1 When all S-posets are regularly divisible

Proposition 5.1. The following conditions are equivalent:
(i) All right S-posets are regularly divisible,
(ii) all right ideals of S are regularly divisible,
(iii) S_{S} is regularly divisible,
(iv) every left po-cancellable element of S is left invertible.

Proof. $(i) \Rightarrow(i i) \Rightarrow(i i i)$. These are obvious.
(iii) $\Rightarrow($ iv $)$. Suppose that S_{S} is regularly divisible and $c \in S$ is a left po-cancellable element. Then $S=S c$ implies that there exists $s \in S$ such that $s c=1$, so c is left invertible.
$(i v) \Rightarrow(i)$. Let $c \in S$ be a left po-cancellable element and A_{S} a right S-poset. By (iv) there is an $s \in S$ satisfying $s c=1$. So $A=A s c=A c$.

5.2 When regularly divisible S-posets are regularly principally weakly injective

In [6], Victoria Gould introduced the notion of a right almost regular monoid and proved that these are precisely the monoids over which all divisible acts are principally weakly injective. We shall prove an analogue of this result for S-posets.

Theorem 5.2. The following conditions are equivalent for a pomonoid S:
(i) all regularly divisible right S-posets are regularly principally weakly injective,
(ii) for every element $s \in S$ there exist $r, r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{n}, s_{1}^{\prime}, \ldots, s_{n}^{\prime} \in S$ and left po-cancellable elements $c_{1}, \ldots, c_{n} \in S$ such that

$$
\begin{gather*}
c_{1} s_{1} \leq r_{1} s \leq c_{1} s_{1}^{\prime} \\
c_{2} s_{2} \leq r_{2} s_{1} \leq r_{2} s_{1}^{\prime} \leq c_{2} s_{2}^{\prime} \\
c_{3} s_{3} \leq r_{3} s_{2} \leq r_{3} s_{2}^{\prime} \leq c_{3} s_{3}^{\prime} \tag{4}\\
\cdots \\
c_{n} s_{n} \leq r_{n} s_{n-1} \leq r_{n} s_{n-1}^{\prime} \leq c_{n} s_{n}^{\prime} \\
s=s s_{n}=s s_{n}^{\prime},
\end{gather*}
$$

(iii) for every element $s \in S$ there exist $r, r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{n}, s_{1}^{\prime}, \ldots, s_{n}^{\prime} \in S$ and left po-cancellable elements $c_{1}, \ldots, c_{n} \in S$ such that

$$
\begin{gather*}
c_{1} s_{1} \leq r_{1} s \leq c_{1} s_{1}^{\prime} \\
c_{2} s_{2} \leq r_{2} s_{1} \leq c_{2} s_{2}^{\prime} \\
c_{3} s_{3} \leq r_{3} s_{2} \leq c_{3} s_{3}^{\prime} \tag{5}\\
\ldots \\
c_{n} s_{n} \leq r_{n} s_{n-1} \leq c_{n} s_{n}^{\prime} \\
s=s s_{n}=s s_{n}^{\prime} .
\end{gather*}
$$

Proof. $(i) \Rightarrow(i i)$. Assume that all regularly divisible right S-posets are regularly principally weakly injective. For an element $s \in S$, let $s S^{(2, C)}$ be the regularly divisible extension of $s S$ obtained as in Construction 4.1. In our case

$$
\begin{aligned}
\Gamma_{i} & =\Gamma_{i}^{1}=\left\{(c, b) \in C \times(s S)_{i} \mid \text { for all } u, v \in S c u \leq c v \text { implies } b u \leq_{i} b v\right\}, \\
H_{i} & =\left\{((c, b) c, b) \in F_{i} \times A_{i} \mid(c, b) \in \Gamma_{i}\right\} .
\end{aligned}
$$

Note that every element $b=[d]_{\theta_{i-1}} \in(s S)_{i}=\left(F_{i-1} \amalg(s S)_{i-1}\right) / \theta_{i-1}, d \in F_{i-1} \amalg(s S)_{i-1}$ can be presented in the form

$$
\begin{equation*}
b=\left[\left(c, b^{\prime}\right) s\right]_{\theta_{i-1}} \quad \text { where } \quad\left(c, b^{\prime}\right) \in \Gamma_{i-1} \quad \text { and } s \in S \tag{6}
\end{equation*}
$$

If $d \in F_{i-1}$, this is clear. If $d \in(s S)_{i-1}$ then $(1, d) \in \Gamma_{i-1},((1, d) 1, d) \in H_{i-1}$, hence $(1, d) 1 \theta_{i-1} d$ and $b=[d]_{\theta_{i-1}}=[(1, d) 1]_{\theta_{i-1}}$.

By assumption, $s S^{(2, C)}$ is regularly principally weakly injective. Thus there exists an S-poset morphism $g: S \rightarrow s S^{(2, C)}$ such that the diagram

commutes, where ι and f are the inclusion mappings. Then

$$
s=f(s)=g \iota(s)=g(s)=g(1) s
$$

where $g(1) \in s S^{(2, C)}$. Let $n \in \mathbb{N}_{0}$ be such that $g(1) \in(s S)_{n}$. If $n=0$ then $g(1) \in s S$, hence $s \in s S s$, i.e. s is regular and therefore there exist $c_{1}=1, r_{1}=x, s_{1}=s_{1}^{\prime}=x s$, where $s=s x s, x \in S$ such that the inequalities and equalities in 4 are fulfilled.

Suppose that $n>0$. Then, by (6), $g(1)=\left[\left(c_{1}, b_{1}\right) r_{1}\right]_{\theta_{n-1}} \in(s S)_{n}=\left(F_{n-1} \amalg\right.$ $\left.(s S)_{n-1}\right) / \theta_{n-1}$, where $r_{1} \in S$ and $\left(c_{1}, b_{1}\right) \in \Gamma_{n-1}$; in particular $c_{1} \in C$ and $b_{1} \in(s S)_{n-1}$. Then $s \theta_{n-1}\left(c_{1}, b_{1}\right) r_{1} s$, that is $s \underset{\rho_{n-1}}{\leq}\left(c_{1}, b_{1}\right) r_{1} s \underset{\rho_{n-1}}{\leq} s$. By Lemma 4.8,

$$
s \leq_{n-1} b_{1} s_{1}, \quad c_{1} s_{1} \leq r_{1} s, \quad \text { and } \quad r_{1} s \leq c_{1} s_{1}^{\prime}, \quad b_{1} s_{1}^{\prime} \leq_{n-1} s,
$$

for some $s_{1}, s_{1}^{\prime} \in S$. Again by (6), $b_{1}=\left[\left(c_{2}, b_{2}\right) r_{2}\right]_{\theta_{n-2}}$, where $r_{2} \in S$ and $\left(c_{2}, b_{2}\right) \in \Gamma_{n-2}$, in particular, $c_{2} \in C$ and $b_{2} \in(s S)_{n-2}$. Now $s \leq_{n-1} b_{1} s_{1}$ and $b_{1} s_{1}^{\prime} \leq_{n-1} s$ mean that $s \underset{\rho_{n-2}}{\leq}\left(c_{2}, b_{2}\right) r_{2} s_{1}$ and $\left(c_{2}, b_{2}\right) r_{2} s_{1}^{\prime} \underset{\rho_{n-2}}{\leq} s$. Lemma 4.8 implies that

$$
s \leq_{n-2} b_{2} s_{2}, \quad c_{2} s_{2} \leq r_{2} s_{1}, \quad \text { and } \quad r_{2} s_{1}^{\prime} \leq c_{2} s_{2}^{\prime}, \quad b_{2} s_{2}^{\prime} \leq_{n-2} s
$$

for some $s_{2}, s_{2}^{\prime} \in S$. Continuing in a similar manner, we finally obtain $b_{n}=s r \in s S=$ $(s S)_{0}, c_{n} \in C, r_{n}, s_{n}, s_{n}^{\prime} \in S$ such that

$$
s \leq b_{n} s_{n}=s r s_{n}, \quad c_{n} s_{n} \leq r_{n} s_{n-1}, \quad \text { and } \quad r_{n} s_{n-1}^{\prime} \leq c_{n} s_{n}^{\prime}, \quad s r s_{n}^{\prime}=b_{n} s_{n}^{\prime} \leq s
$$

Now $c_{1} s_{1} \leq r_{1} s \leq c_{1} s_{1}^{\prime}$ implies $s_{1} \leq s_{1}^{\prime}, c_{2} s_{2} \leq r_{2} s_{1} \leq r_{2} s_{1}^{\prime} \leq c_{2} s_{2}^{\prime}$ implies $s_{2} \leq s_{2}^{\prime}$, and so on. Finally we obtain $s_{n} \leq s_{n}^{\prime}$ and hence $s \leq s r s_{n} \leq s r s_{n}^{\prime} \leq s$, which yields $s=s r s_{n}=s r s_{n}^{\prime}$. The inequality $s_{n} \leq s_{n}^{\prime}$ also implies $r s_{n} \leq r s_{n}^{\prime}$, and thus we have obtained

$$
\begin{gathered}
c_{1} s_{1} \leq r_{1} s \leq c_{1} s_{1}^{\prime} \\
c_{2} s_{2} \leq r_{2} s_{1} \leq r_{2} s_{1}^{\prime} \leq c_{2} s_{2}^{\prime} \\
\cdots \\
c_{n} s_{n} \leq r_{n} s_{n-1} \leq r_{n} s_{n-1}^{\prime} \leq c_{n} s_{n}^{\prime} \\
1\left(r s_{n}\right) \leq r s_{n} \leq r s_{n}^{\prime} \leq 1\left(r s_{n}^{\prime}\right) \\
s=s\left(r s_{n}\right)=s\left(r s_{n}^{\prime}\right)
\end{gathered}
$$

$(i i) \Rightarrow(i i i)$. This is clear.
(iii) $\Rightarrow(i)$. Assume (iii) holds. Let A_{S} be a regularly divisible right S-poset, $s \in S$, and $f: s S \rightarrow A$ an S-poset morphism. Then for s we have inequalities and equalities as in (5). Hence $f(s)=f(s) s_{n}=f(s) s_{n}^{\prime}$. Using regular divisibility of A, there exists $a_{1} \in A$ such that $f(s)=a_{1} c_{n}$. Consequently,

$$
f(s)=a_{1} c_{n} s_{n} \leq a_{1} r_{n} s_{n-1} \leq a_{1} c_{n} s_{n}^{\prime}=f(s)
$$

and so $f(s)=a_{1} r_{n} s_{n-1}$. Again, by the regular divisibility of $A, a_{1} r_{n}=a_{2} c_{n-1}$ for some $a_{2} \in A$. Thus

$$
f(s)=a_{2} c_{n-1} s_{n-1} \leq a_{2} r_{n-1} s_{n-2} \leq a_{2} c_{n-1} s_{n-1}^{\prime}=f(s)
$$

and $f(s)=a_{2} r_{n-1} s_{n-2}$. In this way we finally arrive at $f(s)=a_{n} r_{1} s$ for some $a_{n} \in A$, i.e. $f=\lambda_{a_{n} r_{1}}$. So A is regularly principally weakly injective by Proposition 3.3.

Definition 5.3. We say that an element s of a pomonoid S is regularly right almost regular if there exist elements such that equalities and inequalities in (4) hold. We call a pomonoid regularly right almost regular, if all its elements are regularly right almost regular.

If $s \in S$ is a regular element then $s=s x s$ for some $x \in S$ and hence we have

$$
\begin{gathered}
1 s \leq(s x) s \leq 1 s \\
1(x s) \leq x s \leq x s \leq 1(x s) \\
s=s(x s)=s(x s)
\end{gathered}
$$

So every regular element of a pomonoid is regularly right almost regular. It is also easy to see that every left po-cancellable element of a pomonoid is regularly right almost regular.

Corollary 5.4. For a pomonoid S, the following conditions are equivalent:
(i) all right S-posets are regularly principally weakly injective,
(ii) all right ideals of S are regularly principally weakly injective,
(iii) all finitely generated right ideals of S are regularly principally weakly injective,
(iv) all principal right ideals of S are regularly principally weakly injective,
(v) S is a regular pomonoid.

Proof. $(i) \Rightarrow(i i) \Rightarrow(i i i) \Rightarrow(i v)$. These are clear.
$(i v) \Rightarrow(v)$. For any $s \in S$, by $(i v)$, since $s S_{S}$ is regularly principally weakly injective, there exists an S-poset morphism $g: S_{S} \rightarrow s S_{S}$ such that $g \iota=1_{s S}$, where ι is the inclusion mapping from $s S$ to S and $1_{s S}$ is the identity mapping of $s S$. Consequently, one has that $s=g(s)=g(1) s$. Since $g(1) \in s S$, it follows that s is regular.
$(v) \Rightarrow(i)$. If S is regular then all right S-posets are regularly principally weakly injective by Proposition 5.1 and Theorem 5.2.

It is known that every right almost regular monoid is a right PP monoid (see [8]). We can prove an analogue of this result for commutative pomonoids. Recall that a pomonoid S is a right PP monoid if and only if for every $s \in S$ there exists an idempotent $e \in S$ such that $s=s e$ and $s u \leq s v$ implies $e u \leq e v$ for all $u, v \in S$ (see Proposition 3.2 of [9]).

Lemma 5.5. If S is a regularly right almost regular pomonoid then for every element $s \in S$ there exist $p, q \in S$ such that $s=s p=s q$ and $s u \leq s v$ implies $p u \leq q v$ for all $u, v \in S$.

Proof. For every element $s \in S$ there exist elements as in (4). Suppose $s u \leq s v, u, v \in S$. Then

$$
c_{1} s_{1} u \leq r_{1} s u \leq r_{1} s v \leq c_{1} s_{1}^{\prime} v
$$

implies $s_{1} u \leq s_{1}^{\prime} v$. Next,

$$
c_{2} s_{2} u \leq r_{2} s_{1} u \leq r_{2} s_{1}^{\prime} v \leq c_{2} s_{2}^{\prime} v
$$

implies $s_{2} u \leq s_{2}^{\prime} v$. Continuing in this manner we arrive at $s_{n} u \leq s_{n}^{\prime} v$.

Corollary 5.6. Every commutative regularly (right) almost regular pomonoid is a (right) PP pomonoid.

Proof. For an element $s \in S$ let $p, q \in S$ such that $s=s p=s q$ and $s u \leq s v$ implies $p u \leq q v$ for all $u, v \in S$. Denote $e=p q$. Then $s q=s=s\left(p^{2} q\right)$ and $s\left(p q^{2}\right)=s=s p$ imply $p q \leq q p^{2} q$ and $p^{2} q^{2} \leq q p$. Hence $e=e^{2}$ by commutativity and $s=s e$. If now $s u \leq s v$ then $s(q u) \leq s(p v)$ and hence $e u=p q u \leq q p v=e v$.

5.3 When regularly principally weakly injective S-posets are regularly fg-weakly injective

Lemma 5.7. Let A_{S} be an S-poset and let $A^{(2)}$ be constructed as in Construction 4.1. If $A \subseteq b S$ for some $b \in A_{n}, n \in \mathbb{N}$, then $A \subseteq d S$ for some $d \in A_{n-1}$.

Proof. We may assume that $b \in A_{n} \backslash A_{n-1}$. Then $b=[y]_{n-1}$ for some $y=\delta v \in F_{n-1}$ where $v \in S$ and $\delta=(z, d) \in \Gamma_{n-1}$. For every $a \in A$, there exists $t \in S$ such that $a=[\delta v]_{n-1} t$. So $a \theta_{n-1} \delta v t$, i.e. $a \underset{\rho_{n-1}}{\leq} \delta v t \underset{\rho_{n-1}}{\leq} a$. By Lemma 4.8, there exist $s_{1}, s_{2}, z_{1}, z_{2} \in S, b_{1}, b_{2} \in A_{n-1}$ such that $a \leq b_{1} s_{1}, z_{1} s_{1} \leq v t$, vt $\leq z_{2} s_{2}, b_{2} s_{2} \leq a$ and $\delta=\left(z_{1}, b_{1}\right)=\left(z_{2}, b_{2}\right)$. Hence $z=z_{1}=z_{2}, d=b_{1}=b_{2}$, and $z s_{1}=z_{1} s_{1} \leq z_{2} s_{2}=z s_{2}$ implies $d s_{1} \leq d s_{2}$ because $\delta \in \Gamma_{n-1}^{1}$. Consequently, $a \leq b_{1} s_{1}=d s_{1} \leq d s_{2}=b_{2} s_{2} \leq a$, i.e. $a=d s_{1} \in d S$.

Theorem 5.8. Let S be a pomonoid and $\alpha>1$ a cardinal. Then all regularly principally weakly injective S-posets are regularly α-injective if and only if all right α-ideals are principal.

Proof. Necessity. Consider a right α-ideal $I=\bigcup_{j \in J} s_{j} S$, where $|J|<\alpha$. By assumption, its regularly principally weakly injective extension $I^{(2)}$ is regularly α-injective. Hence there exists an S-poset morphism $g: S \rightarrow I^{(2)}$ such that the diagram

is commutative, where $\iota: I \rightarrow S$ and $f: I \rightarrow I^{(2)}$ are inclusion mappings. Then, for every $j \in J$,

$$
s_{j}=f\left(s_{j}\right)=g \iota\left(s_{j}\right)=g\left(s_{j}\right)=g(1) s_{j},
$$

and hence

$$
I=\bigcup_{j \in J} s_{j} S=\bigcup_{j \in J} g(1) s_{j} S \subseteq g(1) S
$$

Now $g(1) \in I_{n}$ for some $n \in \mathbb{N}_{0}$. If $n=0$ then $g(1) \in I$. Otherwise, by applying Lemma $5.7 n$ times we obtain $d \in I$ such that $I \subseteq d S$. So in both cases $I \subseteq s S$ for some $s \in I$, which implies $I=s S$.

Sufficiency. This is obvious.

Corollary 5.9. Let α be any cardinal such that $2<\alpha \leq \aleph_{0}$. Then the following conditions are equivalent for a pomonoid S :
(i) all regularly principally weakly injective S-posets are regularly fg-weakly injective,
(ii) all regularly principally weakly injective S-posets are regularly α-injective,
(iii) all regularly principally weakly injective S-posets are regularly 3-injective,
(iv) all right 3-ideals are principal,
(v) all finitely generated right ideals of S are principal.

Proof. $(i) \Rightarrow(i i) \Rightarrow(i i i),(i v) \Rightarrow(v)$. These are evident.
$(i i i) \Rightarrow(i v),(v) \Rightarrow(i)$. These follow from Theorem 5.8.

Corollary 5.10. All regularly principally weakly injective S-posets are regularly weakly injective if and only if S is a principal right ideal pomonoid.

From Corollary 5.9 and Corollary 5.4 we obtain the following result.

Corollary 5.11. All S-posets are regularly fg-weakly injective if and only if S is a regular pomonoid all of whose finitely generated right ideals are principal.

From Corollary 5.10 and Corollary 5.4 we obtain the following result.

Corollary 5.12. All S-posets are regularly weakly injective if and only if S is a regular principal right ideal pomonoid.

5.4 When regularly fg-weakly injective S-posets are regularly weakly injective

Lemma 5.13. Let A be an S-poset and let $A^{\left(\aleph_{0}\right)}$ be constructed as in Construction 4.1. If A is contained in a finitely generated S-subposet of A_{n} for some $n \in \mathbb{N}$ then A is contained in a finitely generated S-subposet of A_{n-1}.

Proof. Let $n \in \mathbb{N}$ and $b_{1}, \ldots, b_{m} \in A_{n}$ be such that $A \subseteq \bigcup_{i=1}^{m} b_{i} S$. If $b_{1}, \ldots, b_{m} \in A_{n-1}$ then there is nothing to prove. Assume that $r \in\{1, \ldots, m\}$ is such that $b_{1}, \ldots, b_{r} \in$ $A_{n} \backslash A_{n-1}$ and $b_{r+1}, \ldots, b_{m} \in A_{n-1}$. Then $b_{i}=\left[\delta_{i} v_{i}\right]_{n-1}$ for some $\delta_{i} \in \Gamma_{n-1}$ and $v_{i} \in S$, for every $i \in\{1, \ldots, r\}$. By the definition of Γ_{n-1}, for every $i \in\{1, \ldots, r\}$ there exists $p_{i} \in \mathbb{N}$ such that

$$
\delta_{i}=\left(\left(s_{i 1}, a_{i 1}\right), \ldots,\left(s_{i p_{i}}, a_{i p_{i}}\right)\right) \in \Gamma_{n-1}^{p_{i}}
$$

We claim that

$$
A \subseteq\left(\bigcup_{\substack{1 \leq i \leq r \\ 1 \leq l \leq p_{i}}} a_{i l} S\right) \cup\left(\bigcup_{r<i \leq m} b_{i} S\right) \subseteq A_{n-1} .
$$

Consider an element $a \in A$. If $a \in b_{i} S$ for some $i \in\{1, \ldots, r\}$ then there exists $t \in S$ such that $a \equiv[a]_{n-1}=\left[\delta_{i} v_{i} t\right]_{n-1}$. By Lemma 4.8, $a \underset{\rho_{n-1}}{\leq} \delta_{i} v_{i} t$ and $\delta_{i} v_{i} t \underset{\rho_{n-1}}{\leq} a$ imply that

$$
a \leq_{n-1} b s, z s \leq v_{i} t \quad \text { and } \quad v_{i} t \leq z^{\prime} s^{\prime}, b^{\prime} s^{\prime} \leq_{n-1} a
$$

for some $s, s^{\prime}, z, z^{\prime} \in S, b, b^{\prime} \in A_{n-1}$, where $\left(\delta_{i}\right)_{l}=(z, b)$ and $\left(\delta_{i}\right)_{k}=\left(z^{\prime}, b^{\prime}\right)$ for some
$l, k \in\left\{1, \ldots, p_{i}\right\}$. Hence

$$
s_{i l} s=z s \leq v_{i} t \leq z^{\prime} s^{\prime}=s_{i k} s^{\prime},
$$

which implies $b s=a_{i l} s \leq_{n-1} a_{i k} s^{\prime}=b^{\prime} s^{\prime}$. It follows that $a \leq_{n-1} b s \leq_{n-1} b^{\prime} s^{\prime} \leq_{n-1} a$, and thus $a=b s=a_{i l} s \in a_{i l} S \subseteq A_{n-1}$.

Theorem 5.14. Let S be a pomonoid and let $\alpha \geq \aleph_{0}$ be a cardinal. Then all regularly fg-weakly injective S-posets are regularly α-injective if and only if all right α-ideals of S are finitely generated.

Proof. Necessity. Let I be a right α-ideal of S. Then $I^{\left(\aleph_{0}\right)}$ is an α-injective S-poset by assumption. Thus there exists an S-poset morphism $g: S \rightarrow I^{\left(\aleph_{0}\right)}$ such that the diagram

commutes, where ι and f are the inclusion mappings. If $r \in I$ then

$$
r=f(r)=g \iota(r)=g(r)=g(1) r .
$$

Hence $I \subseteq g(1) S$. If $g(1) \in I$ then $I \subseteq g(1) S \subseteq I S \subseteq I$ and so $I=g(1) S$ is a principal right ideal. Otherwise $g(1) \in I_{n} \backslash I_{n-1}$ for some $n \in \mathbb{N}$. Then $g(1) S \subseteq I_{n}$ and $g(1) S$ is a finitely generated S-subposet of I_{n}. Applying Lemma $5.13 n$ times we conclude that I is contained in a finitely generated S-subposet of I, but then I must also be finitely generated.

Sufficiency. It is clear.
A pomonoid S is called right noetherian (see [7], Def. 4.3.5) if it satisfies the ascending chain condition on right ideals. This is equivalent to all right ideals of S being finitely generated.

From Theorem 5.14 we obtain the following result.

Corollary 5.15. All regularly fg-weakly injective S-posets are regularly weakly injective if and only if S is right noetherian.

5.5 Summary

The homological classification results of this section can be summarized in the following table (compare it with Table IV. 2 of [7]).

Acknowledgements

Research of the second author is supported by the Estonian Science Foundation grant no. 6238.

The authors thank Prof. Sydney Bulman-Fleming for giving an idea that has improved the definition of a right almost regular element of a monoid.

References

[1] S. Bulman-Fleming and V. Laan: "Lazard's theorem for S-posets", Math. Nachr., Vol. 278(15), (2005), pp. 1743-1755.
[2] S. Bulman-Fleming and M. Mahmoudi: "The category of S-posets", Semigroup Forum, Vol. 71, (2005), pp. 443-461.
[3] G. Czédli and A. Lenkehegyi: "On classes of ordered algebras and quasiorder distributivity", Acta Sci. Math. (Szeged), Vol. 46, (1983), pp. 41-54.
[4] V.A.R. Gould: "The characterization of monoids by properties of their S-systems", Semigroup Forum, Vol. 32, (1985), pp. 251-265.
[5] V.A.R. Gould: "Coperfect monoids", Glasg. Math. J., Vol. 29, (1987), pp. 73-88.
[6] V.A.R. Gould: "Divisible S-systems and R-modules", Proc. Edinburgh Math. Soc. II, Vol. 30, (1987), pp. 187-200.
[7] M. Kilp, U. Knauer and A. Mikhalev: Monoids, Acts and Categories, Walter de Gruyter, Berlin, New York, 2000.
[8] V. Laan: "When torsion free acts are principally weakly flat", Semigroup Forum, Vol. 60, (2000), pp. 321-325.
[9] X. Shi, Z. Liu, F. Wang and S. Bulman-Fleming: "Indecomposable, projective and flat S-posets", Comm. Algebra, Vol. 33(1), (2005), pp. 235-251.

[^0]: * E-mail: xiazhang_1@yahoo.com
 \dagger E-mail: valdis.laan@ut.ee

