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the right in such a way that the action is compatible both with the order of S and A. By regular weak

injectivity properties we mean injectivity properties with respect to all regular monomorphisms (not

all monomorphisms) from different types of right ideals of S to S. We give an alternative description

of such properties which uses systems of equations. Using these properties we prove several so-called

homological classification results which generalize the corresponding results for (unordered) acts over

(unordered) monoids proved by Victoria Gould in the 1980’s.
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1 Introduction3

In the 1980’s Victoria Gould characterized several classes of monoids using the injectivity4

properties of acts (or systems) over them ([4],[5],[6]). Our aim is to prove the analogues5

of those results in the case of ordered acts (S-posets) over ordered monoids. We make6

use of regular weak injectivities by which we mean injectivities with respect to regular7

monomorphisms from different types of ideals to the ordered monoid.8
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After giving the necessary preliminaries, in Section 2 we prove, following [4], a result9

that describes regular weak injectivity properties using systems of equations. In Section 310

we give a construction, that allows for a given S-poset A to construct a regularly divisible,11

regularly principally weakly injective or regularly fg-weakly injective S-poset that contains12

A as a regular S-subposet. This construction will be the main tool for obtaining the13

desired homological classification results in Section 4.14

2 Preliminaries15

Throughout this paper S will denote a partially ordered monoid (shortly pomonoid), that16

is, a monoid with a partial order relation ≤ such that s ≤ t implies su ≤ tu and us ≤ ut17

for every s, t, u ∈ S. A poset (A,≤) together with a mapping A × S → A, (a, s) 7→ as,18

is called a right S-poset (and the notation AS is used) if (1) a(st) = (as)t, (2) a1 = a,19

(3) a ≤ b implies as ≤ bs, and (4) s ≤ t implies as ≤ at, for all a, b ∈ A, s, t ∈ S.20

In this paper we only consider right S-posets, so we usually drop the word ‘right’. If A21

satisfies conditions (1) and (2) then it is called a right S-act (see [7]) or a right S-system22

(see, e.g., [4]). Definitions and results about S-acts, used in this paper, can be found23

in [7]. Morphisms of S-posets are action and order preserving mappings. From [2] we24

know that in the category of right S-posets monomorphisms are injective morphisms but25

regular monomorphisms are embeddings, i.e. morphisms ι : AS → BS such that a ≤ a′
26

if and only if ι(a) ≤ ι(a′), a, a′ ∈ A. So not every monomorphism of S-posets needs to27

be regular. For every S-poset AS and its element a, λa : SS → AS will denote the right28

S-poset morphism defined by λa(s) = as for every s ∈ S.29

A poset (A,≤A) is called a (regular) S-subposet of a right S-poset (B,≤B), if AS is a30

subact of BS and ≤A⊆ (≤B ∩ A2) (resp. ≤A= (≤B ∩ A2)). By right ideals of S we mean31

algebraic ideals, i.e. subsets I ⊆ S such that IS ⊆ I. When we consider a right ideal I32

as a right S-poset, we mean that its order is induced by the order of S.33

For a binary relation σ on an S-poset AS, we write a ≤
σ

a′ if there exist a1, . . . , an ∈ A

such that

a ≤ a1σa2 ≤ a3σ . . . σan ≤ a′.

Such a sequence of elements is called an σ-chain connecting a and a′. An S-poset congru-

ence (see [3]) on an S-poset AS is an S-act congruence θ on A, that satisfies the so-called

closed chains condition:

a ≤
θ

a′ ≤
θ

a =⇒ aθa′

for every a, a′ ∈ A. If H ⊆ A × A is a subset then the S-poset congruence θ(H) on A

generated by H (see [1]) is defined by

aθ(H)a′ ⇐⇒ a ≤
ρ

a′ ≤
ρ

a, (1)

a, a′ ∈ A, where ρ = ρ(H) is the S-act congruence on A generated by H . The factor
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S-poset A/θ(H) is equipped with the order

[a]θ(H) ≤ [a′]θ(H) ⇐⇒ a ≤
ρ

a′. (2)

This makes the canonical epimorphism A → A/θ(H) a regular epimorphism (see [2]).34

For a set Γ, one can consider the free right S-poset on Γ (see [9]) as a set Γ × S with35

the right S-action defined by (γ, s)t = (γ, st) and the order relation by (γ, s) ≤ (δ, t) if36

and only if γ = δ and s ≤ t, γ, δ ∈ Γ, s, t ∈ S. We shall write shortly γs instead of37

(γ, s) ∈ Γ × S.38

We call an element c ∈ S left po-cancellable if cs ≤ ct implies s ≤ t for all s, t ∈ S.39

We denote the set of all left po-cancellable elements of S by C.40

We write N0 = N ∪ {0} for the set of nonnegative integers.41

3 Regularly (α, R)-injective acts42

We say that a subset R ⊆ S is closed under regular monomorphisms if ι(r) ∈ R for every43

r ∈ R and regular monomorphism ι : rS → S. It is easy to see that S and the set of all44

left (po-)cancellable elements of S are closed under regular monomorphisms.45

Let α be any cardinal greater than 1 and let R be a subset of S that is closed under46

regular monomorphisms. We call a right ideal I of S a right (α, R)-ideal, if I has a47

generating set G ⊆ R of fewer than α elements. If R = S then we speak of just right48

α-ideals. So the right (2, C)-ideals of S are principal right ideals generated by left po-49

cancellable elements, right 2-ideals are principal right ideals and right ℵ0-ideals are finitely50

generated right ideals.51

We say that an S-poset AS satisfies the (α, R)-Baer criterion (cf. [4]) if every S-poset52

morphism f : I → A, where I is a right (α, R)-ideal, is given by the left multiplication53

by some element a ∈ A, i.e. f = λa.54

We say that an S-poset AS is (regularly) (α, R)-injective if for every right (α, R)-ideal

I of S, every (regular) monomorphism ι : I → S and every S-poset morphism f : I → A

there exists an S-poset morphism g : S → A such that the diagram

I

A

f

��
??

??
??

??
??

??
??

I Sι // S

A

g

���
�

�
�

�
�

�

is commutative. If R = S, we speak of (regular) α-injectivity. So (regularly) 2-injective55

S-posets are (regularly) principally weakly injective S-posets and (regularly) ℵ0-injective56

S-posets are (regularly) fg-weakly injective S-posets.57

We say that an S-poset AS is (regularly) divisible (cf. [6]) if A = Ac for every left58

(po-)cancellable element c ∈ S. The next lemma shows that regular divisibility can be59

considered as an injectivity property.60
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Lemma 3.1. The following conditions are equivalent for an S-poset AS:61

(i) AS is regularly (2, C)-injective,62

(ii) AS is regularly (2, {1})-injective,63

(iii) AS is regularly divisible.64

Proof. (i) ⇒ (ii). This is clear, because 1 ∈ C.65

(ii) ⇒ (iii). Let AS be regularly (2, {1})-injective, let c ∈ S be a left po-cancellable

element and let a ∈ A. Since, for every s, t ∈ S, s ≤ t if and only if cs ≤ ct, the mapping

λc : S → S is a regular monomorphism of S-posets.

SS

AS

λa

��
??

??
??

??
??

??
?

SS SS
λc // SS

AS

g

���
�

�
�

�
�

�

By the assumption, there exists an S-poset morphism g : S → A such that λa = gλc.

Hence

a = λa(1) = gλc(1) = g(c) = g(1)c ∈ Ac.

(iii) ⇒ (i). Suppose that A is regularly divisible. Consider a left po-cancellable

element c, a regular monomorphism ι : cS → S and an S-poset morphism f : cS → A.

Then c′ = ι(c) ∈ S is also a left po-cancellable element and hence f(c) = bc′ for some

b ∈ A. Consequently, for every s ∈ S,

λbι(cs) = λb(c
′s) = bc′s = f(c)s = f(cs).

So we have the following implications among regular weak injectivity properties of

S-posets:

regularly weakly injective ⇒ regularly fg-weakly injective ⇒

⇒ regularly principally weakly injective ⇒ regularly divisible.

Our next aim is to describe regularly (α, R)-injective S-posets using systems of equa-66

tions over them. A set Σ of equations with constants from an S-poset AS is called con-67

sistent if Σ has a solution in some S-poset BS that contains A as a regular S-subposet.68

If α is any cardinal larger than that of Σ, if all equations in Σ are of the form xs = a,69

where s ∈ R and a ∈ A, and if the same unknown x appears in each equation then we70

call Σ an (α, R)-system over A.71

The following two results are analogues of Lemma 3.2 and Proposition 3.3 of [4],72

respectively.73

Lemma 3.2. Let AS be an S-poset, R ⊆ S a subset that is closed under regular monomor-

phisms, α a cardinal, J a set with |J | < α and

Σ = {xsj = aj | j ∈ J, sj ∈ R, aj ∈ A}



X. Zhang, V. Laan / Central European Journal of Mathematics 5(1) 2007 1–20 5

an (α, R)-system over A. Then Σ is consistent if and only if for all u, v ∈ S and i, j ∈ J ,

siu ≤ sjv =⇒ aiu ≤ ajv.

Proof. Necessity. If Σ is consistent then there is an S-poset (BS,≤B) and an element74

b ∈ B such that (AS,≤A) is a regular S-subposet of BS and b is a solution of Σ. If now75

siu ≤ sjv, u, v ∈ S, i, j ∈ J , then aiu = bsiu ≤B bsjv = ajv. Since A is a regular76

S-subposet of B, we have aiu ≤A ajv.77

Sufficiency. Let z be a symbol which is not in A or S and consider the S-poset

BS = AS ∐ FS, where FS = (zS)S is the free S-poset on {z} and the S-action and order

on disjoint union are defined componentwise. Let θ be the S-poset congruence on B

generated by the set

H = {(aj , zsj) | j ∈ J} ⊆ B2,

that is, for b, b′ ∈ B,

bθb′ ⇐⇒ b ≤
ρ

b′ ≤
ρ

b,

where ρ = ρ(H) is the S-act congruence on BS generated by H . Using the assumption,78

one can show that bρb′ if and only if one of the following four cases is true:79

(1) b, b′ ∈ A ∪ F and b = b′,80

(2) b = zsiu, b′ = zsjv ∈ F and aiu = ajv for some u, v ∈ S and i, j ∈ J ,81

(3) b = aju ∈ A, b′ = zsju ∈ F for some u ∈ S and j ∈ J ,82

(4) b = zsju ∈ F, b′ = aju ∈ A for some u ∈ S and j ∈ J .83

Suppose that b ≤
ρ

b′ where b, b′ ∈ A. Using the above description of ρ we have either

b ≤ b′ or

b ≤ d′
1ρy′

1 ≤
ρ|F

y1ρd2 ≤ d′
2ρy′

2 ≤
ρ|F

y2ρd3 . . . d′
nρy′

n ≤
ρ|F

ynρdn+1 ≤ b′,

where ρ|F = ρ∩ F 2, for some n ∈ N and elements d′
1, . . . , d

′
n, d2, . . . , dn+1 ∈ A, y′

1, . . . , y
′
n,84

y1, . . . , yn ∈ F . Since d′
rρy′

r and yrρdr+1, for every r ∈ {1, . . . , n} there exist kr, lr ∈ J85

and ukr
, vkr

∈ S such that d′
r = akr

ukr
, y′

r = zskr
ukr

, yr = zslrvlr and dr+1 = alrvlr .86

Now y′
r ≤

ρ|F

yr implies

zskr
ukr

= y′
r ≤ g1ρh1 ≤ g2ρh2 ≤ . . . ≤ gpρhp ≤ yr = zslrvlr

for some p ∈ N and gm, hm ∈ F , m ∈ {1, . . . , p}. From the description of ρ we obtain

im, jm ∈ J , uim, vjm
∈ S, m ∈ {1, . . . , p}, such that gm = zsimuim, hm = zsjm

vjm

and aimuim = ajm
vjm

. Since hm ≤ gm+1, we have sjm
vjm

≤ sim+1
uim+1

for every m ∈

{1, . . . , p − 1}. Also y′
r ≤ g1 implies skr

ukr
≤ si1ui1 and hp ≤ yr implies sjp

vjp
≤ slrvlr .

By assumption, akr
ukr

≤ ai1ui1, ajp
vjp

≤ alrvlr and ajm
vjm

≤ aim+1
uim+1

for every m ∈

{1, . . . , p − 1}. Hence

d′
r = akr

ukr
≤ ai1ui1 = aj1vj1 ≤ ai2ui2 = aj2vj2 ≤ . . . ≤ ajp

vjp
≤ alrvlr = dr+1

for every r ∈ {1, . . . , n}. So b ≤ d′
1 ≤ d2 ≤ d′

2 ≤ . . . ≤ dn+1 ≤ b′, and we have proved

that, for every b, b′ ∈ A,

b ≤
ρ

b′ ⇐⇒ b ≤ b′.
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It follows that if π : B → B/θ, b 7→ [b]θ, is the natural S-poset morphism then π|A is

an embedding, thus we may identify the S-posets A and π|A(A) = π(A), and, moreover,

π(A) is a regular S-subposet of B. Since

aj ≡ [aj ]θ = [zsj ]θ = [z]θsj

for every j ∈ J , [z]θ is a solution of Σ in B/θ, so Σ is consistent.87

Proposition 3.3. The following conditions are equivalent for an S-poset AS, a subset88

R ⊆ S that is closed under regular monomorphisms, and a cardinal α:89

(i) every consistent (α, R)-system over A has a solution in A,90

(ii) A satisfies the (α, R)-Baer criterion,91

(iii) A is regularly (α, R)-injective.92

Proof. (i) ⇒ (ii). Let I be a right (α, R)-ideal of S, that is, I =
⋃

j∈J tjS, where |J | < α

and tj ∈ R for every j ∈ J . Consider an S-poset morphism f : I → A. Then

tiu ≤ tjv =⇒ f(ti)u ≤ f(tj)v

for every i, j ∈ J and u, v ∈ S. By Lemma 3.2,

Σ = {xtj = f(tj) | j ∈ J}

is a consistent (α, R)-system over A. By assumption, Σ has a solution a in A, which93

means that f is given by left multiplication by a.94

(ii) ⇒ (iii). Let I be a right (α, R)-ideal of S, that is, I =
⋃

j∈J tjS, where |J | < α

and tj ∈ R for every j ∈ J , let ι : I → S be a regular monomorphism and let f : I → A be

an S-poset morphism. By assumption, there exists a ∈ A such that f(tj) = atj for every

j ∈ J . Now ι(I) =
⋃

j∈J ι(tj)S is also a right (α, R)-ideal of S. We define a mapping

h : ι(I) → A by

h(ι(tj)s) = atjs,

for all j ∈ J , s ∈ S. Since, for every i, j ∈ J and u, v ∈ S,

ι(ti)u ≤ ι(tj)v =⇒ ι(tiu) ≤ ι(tjv) =⇒ tiu ≤ tjv =⇒ f(tiu) ≤ f(tjv) =⇒ atiu ≤ atjv,

h is an order preserving and well-defined S-act morphism. By assumption, there exists

b ∈ A such that h(ι(tj)s) = bι(tj)s for every j ∈ J and s ∈ S. Hence

(λbι)(tjs) = bι(tj)s = h(ι(tj)s) = atjs = f(tjs)

for every j ∈ J , s ∈ S, i.e. λbι = f .

I

A

f

��
??

??
??

??
??

??
??

I Sι // S

A

λb

���
�

�
�

�
�

�
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(iii) ⇒ (i). Consider a consistent (α, R)-system

Σ = {xsj = aj | j ∈ J, sj ∈ R, aj ∈ A}

where |J | < α and the right (α, R)-ideal I =
⋃

j∈J sjS of S. By Lemma 3.2,

siu ≤ sjv =⇒ aiu ≤ ajv

for every i, j ∈ J and u, v ∈ S. Hence the mapping f : I → A, sjs 7→ ajs, is an S-poset

morphism. By assumption, there exists an S-poset morphism g : S → A such that gι = f

where ι : I → S is the inclusion. Therefore

aj = f(sj) = gι(sj) = g(sj) = g(1)sj

for every j ∈ J , and so g(1) is a solution of Σ in A.95

Denote the directed kernel {(a, a′) ∈ A2 | f(a) ≤ f(a′)} of an S-poset morphism96

f : AS → BS by
−−→
Ker f (see [3]). Taking α = 2 and R = S, from Lemma 3.2 and97

Proposition 3.3 we obtain the following result.98

Corollary 3.4. For an S-poset AS, the following conditions are equivalent:99

(i) AS is regularly principally weakly injective,100

(ii) for every s ∈ S and S-poset morphism f : sS → AS, there exists an element z ∈ AS101

such that f(x) = zx for every x ∈ sS,102

(iii) for every s ∈ S, a ∈ A with
−−→
Ker λs ⊆

−−→
Ker λa, one has that a = zs for some z ∈ A.103

4 Regularly (α, R)-injective extension of an S-poset104

Construction 4.1. Let AS be an arbitrary S-poset, let R ⊆ S be any subset that is105

closed under regular monomorphisms, and let α be any cardinal with 1 < α ≤ ℵ0. Our106

aim is to give a construction of a regularly (α, R)-injective S-poset A(α,R) containing A107

as a regular S-subposet. The first step in this direction is to define Γ, H, U(α, R, A) as108

follows.109

For every natural number n, where 1 ≤ n < α, set110

Γn := {((s1, a1), . . . , (sn, an)) ∈ (R × A)n |

for all u, v ∈ S, and i, j ∈ {1, . . . , n} siu ≤ sjv implies aiu ≤ ajv}.

If γ ∈ Γn, we write γj for the j-th component of the n-tuple γ. Further we put111

Γ :=
⋃

1≤n<α

Γn,

FS := (Γ × S)S,

that is, F is the free right S-poset on Γ (we again write γs for the element (γ, s) of F ),

and

H := {(γsj, aj) | γ ∈ Γn, 1 ≤ n < α, (sj, aj) = γj, j ∈ {1, . . . , n}} ⊆ (F ∐ A)2.



8 X. Zhang, V. Laan / Central European Journal of Mathematics 5(1) 2007 1–20

Let θ(H) be the S-poset congruence on FS ∐ AS generated by H (see (1)) and define a

right S-poset

U(α, R, A)S := (FS ∐ AS)/θ(H).

First we need to examine the properties of the S-act congruence ρ(H) on FS ∐ AS112

generated by H .113

Lemma 4.2. If yρ(H)y′ for y, y′ ∈ F then either y = y′ or there exist 1 ≤ n, n′ < α,

j ∈ {1, . . . , n}, j′ ∈ {1, . . . , n′}, γ ∈ Γn, γ′ ∈ Γn′

, s, s′ ∈ R, t, t′ ∈ S, a, a′ ∈ A such that

y = γst γ′s′t′ = y′,

at = a′t′

γj = (s, a) and γ′
j′ = (s′, a′).114

Proof. Suppose that y, y′ ∈ F and yρ(H)y′. Then by Lemma 1.4.37 of [7] either y = y′ or

there exist elements x1, . . . , xm, x′
1, . . . , x

′
m ∈ F ∐A, t1, . . . , tm ∈ S such that (xi, x

′
i) ∈ H

or (x′
i, xi) ∈ H for each i ∈ {1, . . . , m} and

y = x1t1 x′
2t2 = x3t3 . . . x′

mtm = y′,

x′
1t1 = x2t2 x′

m−1tm−1 = xmtm

where m ∈ N is minimal. From y = x1t1 ∈ F we get that x1 ∈ F . Hence (x1, x
′
1) ∈ H115

and therefore x1 = γsj1 and x′
1 = aj1 for some n1 < α, j1 ∈ {1, . . . , n1} and γ ∈ Γn1 with116

γj1 = (sj1, aj1).117

If m > 2 then (x′
2, x2), (x3, x

′
3) ∈ H , so there exist n2, n3 < α, j2 ∈ {1, . . . , n2},118

j3 ∈ {1, . . . , n3}, δ ∈ Γn2 and ν ∈ Γn3 such that δj2 = (sj2, aj2), νj3 = (sj3, aj3), x′
2 = δsj2 ,119

x2 = aj2, x3 = νsj3 and x′
3 = aj3. Now the equality δsj2t2 = x′

2t2 = x3t3 = νsj3t3 implies120

δ = ν (hence n2 = n3) and sj2t2 = sj3t3. By the definition of Γn2, aj2t2 = aj3t3. It follows121

that x′
1t1 = x2t2 = aj2t2 = aj3t3 = x′

3t3, but this contradicts the minimality of m.122

Obviously m 6= 1 because y, y′ ∈ F . So m = 2, i.e. x′
1, x2 ∈ A and there exist123

n, n′ < α, j ∈ {1, . . . , n}, j′ ∈ {1, . . . , n′}, γ ∈ Γn, γ′ ∈ Γn′

such that x1 = γs and124

x′
2 = γ′s′ where γj = (s, x′

1) and γ′
j′ = (s′, x2). Thus we have y = γst1, x′

1t1 = x2t2 and125

γ′s′t2 = y′.126

The following lemma can be proved by an argument similar to that of [5], p. 76.127

Lemma 4.3. If aρ(H)a′ for a, a′ ∈ A then a = a′.128

Lemma 4.4. If aρ(H)y for a ∈ A, y ∈ F then there exist 1 ≤ n < α, j ∈ {1, . . . , n},129

γ ∈ Γn, s ∈ R, t ∈ S, b ∈ A such that a = bt, γst = y and γj = (s, b).130

Proof. By using a proof, similar to that of Lemma 4.2, one has that a = x1t1 and x′
1t1 = y131
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for some t1 ∈ S and (x′
1, x1) ∈ H . So x′

1 = γsj for some n < α, γ ∈ Γn and j ∈ {1, . . . , n}132

such that γj = (sj , x1).133

Lemma 4.5. Suppose that

y′
1 ≤ y2ρ(H)y′

2 ≤ . . . ≤ ymρ(H)y′
m ≤ ym+1 (3)

where yk+1, y
′
k ∈ F , yk 6= y′

k for every k ∈ {1, . . . , m}, and y′
1 = γs′t′, ym+1 = δv for some

t′, v ∈ S, n, n′ < α, j′ ∈ {1, . . . , n′}, γ ∈ Γn′

, δ ∈ Γn such that γj′ = (s′, a′). Then

a′t′ ≤ bs, zs ≤ v and δl = (z, b)

for some s ∈ S, z ∈ R, b ∈ A and l ∈ {1, . . . , n}. Moreover, if v = st for some t ∈ S,134

j ∈ {1, . . . , n} such that δj = (s, a) then a′t′ ≤ at.135

Proof. If m = 1, that is, (3) has the form γs′t′ = y′
1 ≤ y2 = δv then γ = δ, s′t′ ≤ v,136

a′t′ ≤ a′t′ and δj′ = γj′ = (s′, a′).137

Suppose that m > 1. By Lemma 4.2, for every k ∈ {2, . . . , m} there exist nk, pk < α,

ik ∈ {1, . . . , nk}, jk ∈ {1, . . . , pk}, γk ∈ Γnk , δk ∈ Γpk , uk, vk ∈ S such that

yk = γkskuk, akuk = bkvk, δkzkvk = y′
k where γk

ik
= (sk, ak), δ

k
jk

= (zk, bk).

Since y′
k ≤ yk+1 in F , we conclude that δk = γk+1, pk = nk+1 and zkvk ≤ sk+1uk+1 for every

k ∈ {2, . . . , m−1}. By the definition of Γpk , bkvk ≤ ak+1uk+1 for every k ∈ {2, . . . , m−1}.

Moreover, γs′t′ = y′
1 ≤ y2 = γ2s2u2 and δmzmvm = y′

m ≤ ym+1 = δv imply γ = γ2,

n′ = n2, s′t′ ≤ s2u2, δm = δ, pm = n, zmvm ≤ v. The inequality s′t′ ≤ s2u2 implies

a′t′ ≤ a2u2 by the definition of Γn′

. Now

a′t′ ≤ a2u2 = b2v2 ≤ a3u3 = b3v3 ≤ . . . ≤ bmvm,

where (zm, bm) = δm
jm

= δjm
. If v = st for some t ∈ S and j ∈ {1, . . . , n} such that138

δj = (s, a) then zmvm ≤ st implies bmvm ≤ at and hence a′t′ ≤ at.139

Lemma 4.6. If a ≤
ρ(H)

a′, where a, a′ ∈ A, then a ≤ a′.140

Proof. Let a ≤
ρ(H)

a′ where a, a′ ∈ A. Since the elements of A are incomparable to

elements of F and also having Lemma 4.3 in mind, there exist elements a′
k ∈ A and

yk, y
′
k ∈ F , k ∈ {1, . . . , m} such that

a ≤ a′
1ρ(H)y′

1 ≤
ρ(H)

y1ρ(H)a2 ≤ a′
2ρ(H)y′

2 ≤
ρ(H)

y2ρ(H)a3 . . . ym−1ρ(H)am ≤ a′,

and for every k ∈ {1, . . . , m − 1}, y′
k and yk are connected by a ρ(H)-chain of the form

(3). By Lemma 4.4, for every k ∈ {1, . . . , m − 1}, a′
kρ(H)y′

k and ykρ(H)ak+1 imply that

there exist nk, pk < α, ik ∈ {1, . . . , nk}, jk ∈ {1, . . . , pk}, γk ∈ Γnk , δk ∈ Γpk, uk, vk ∈ S

such that

a′
k = b′kuk, γ

kskuk = y′
k, γ

k
ik

= (sk, b
′
k) and ak+1 = bkvk, δ

kzkvk = yk, δ
k
jk

= (zk, bk).



10 X. Zhang, V. Laan / Central European Journal of Mathematics 5(1) 2007 1–20

By Lemma 4.5, y′
k ≤

ρ(H)
yk implies b′kuk ≤ bkvk for every k ∈ {1, . . . , m − 1}. Hence

a ≤ a′
1 = b′1u1 ≤ b1v1 = a2 ≤ a′

2 = b′2u2 ≤ . . . ≤ bm−1vm−1 = am ≤ a′.

From (1) and Lemma 4.6 we obtain the following result.141

Corollary 4.7. If aθ(H)a′ for a, a′ ∈ AS then a = a′.142

Lemma 4.8. 1. If a ≤
ρ(H)

y, where a ∈ A, y = δv ∈ F , then a ≤ bs and zs ≤ v for143

some s ∈ S, z ∈ R, b ∈ A, n < α and l ∈ {1, . . . , n} such that δl = (z, b);144

2. if y ≤
ρ(H)

a, where y = δv ∈ F, a ∈ A, then v ≤ zs and bs ≤ a for some s ∈ S, z ∈ R,145

b ∈ A, n < α and l ∈ {1, . . . , n} such that δl = (z, b).146

Proof. 1. If a ≤
ρ(H)

y where a ∈ A, y = δv ∈ F , δ ∈ Γn and n < α , then using Lemma 4.6

we have a ρ(H)-chain

a ≤ a′ρ(H)y′ ≤
ρ(H)

y

where a′ ∈ A and the ρ(H)-chain connecting y′ and y is of the form (3). By Lemma 4.4,147

there exist n′ < α, j′ ∈ {1, . . . , n′}, γ ∈ Γn′

, t′ ∈ S such that a′ = b′t′, γs′t′ = y′ and148

γj′ = (s′, b′). By Lemma 4.5, b′t′ ≤ bs, zs ≤ v and δl = (z, b) for some s ∈ S, z ∈ R,149

b ∈ A and l ∈ {1, . . . , n}. Hence a ≤ a′ = b′t′ ≤ bs.150

2. The proof is symmetric to the case 1.151

Proposition 4.9. Preserving the notations of Construction 4.1, let

π : FS ∐ AS → U(α, R, A)S

be the canonical surjection. Then π|A : AS → U(α, R, A)S is a regular monomorphism,152

that is, U(α, R, A)S is an extension of AS.153

Proof. Note that π is obviously an S-poset morphism and the fact that π|A : AS →154

U(α, R, A)S is a regular monomorphism follows from (2) and Lemma 4.6.155

In what follows, we shall identify AS with the regular S-subposet π|A(A) of U(α, R, A).156

Theorem 4.10. Let AS be an S-poset, R ⊆ S a subset that is closed under regular

monomorphisms and α a cardinal with 1 < α ≤ ℵ0. Set A0 = AS and Ai = U(α, R, Ai−1)S

for every i ∈ N. Let

A(α,R) :=
⋃

i∈N0

Ai

and define a relation ≤ on A(α,R) by

a ≤ b ⇐⇒ a ≤n b
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where n ∈ N0 is any number such that a, b ∈ An, and ≤n is the partial order in An. Then157

A(α,R) is a regularly (α, R)-injective S-poset that contains A as a regular S-subposet.158

Proof. For every i ∈ N, denote by Fi := Γi × S the free S-poset, by Hi ⊆ (Fi ∐ Ai)
2

the set, by ρi := ρ(Hi) and θi := θ(Hi) the relations on Fi ∐ Ai defined using Ai as in

Construction 4.1. So Ai+1 = (Fi ∐ Ai)/θi and the order relation ≤i+1 on Ai+1 is defined

by

[x]i ≤i+1 [x′]i ⇐⇒ x ≤
ρi

x′,

x, x′ ∈ Fi ∐ Ai, where [x]i is the θi-class of x. It is easy to understand that A(α,R) is an

S-poset and contains A as a regular S-subposet. Consider a consistent (α, R)-system

Σ = {xsj = aj | j ∈ J, sj ∈ R, aj ∈ A(α,R)},

where |J | < α. Since α ≤ ℵ0, J is a finite set and we may assume that J = {1, . . . , n} for

some n ∈ N with n < α. Hence there exists m ∈ N0 such that aj ∈ Am for every j ∈ J .

By Lemma 3.2,

γ = ((s1, a1), . . . , (sn, an)) ∈ Γn
m ⊆ Γm,

so γ1 ∈ Fm and [γ1]m ∈ Am+1 ⊆ A(α,R). Moreover, (γsj , aj) ∈ Hm for every j ∈ J , and

thus

[γ1]msj = [(γ1)sj]m = [γsj ]m = [aj]m ≡ aj ,

i.e. [γ1]m is a solution of Σ in Am+1 and hence in A(α,R). By Proposition 3.3, A(α,R) is159

(α, R)-injective.160

We call the S-poset A(α,R) (defined as in Theorem 4.10) the regularly (α, R)-injective161

extension of A. We also write A(2) = A(2,S) and A(ℵ0) = A(ℵ0,S) and call them the regularly162

principally weakly injective extension of A and the regularly fg-weakly injective extension163

of A, respectively. Since regular (2, C)-injectivity is by Lemma 3.1 the same as regular164

divisibility, we call A(2,C) the regularly divisible extension of A.165

5 Homological classification166

In this section we give descriptions of pomonoids over which all right S-posets with some167

weaker regular weak injectivity property have some stronger regular weak injectivity168

property.169

5.1 When all S-posets are regularly divisible170

Proposition 5.1. The following conditions are equivalent:171

(i) All right S-posets are regularly divisible,172

(ii) all right ideals of S are regularly divisible,173

(iii) SS is regularly divisible,174
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(iv) every left po-cancellable element of S is left invertible.175

Proof. (i) ⇒ (ii) ⇒ (iii). These are obvious.176

(iii) ⇒ (iv). Suppose that SS is regularly divisible and c ∈ S is a left po-cancellable177

element. Then S = Sc implies that there exists s ∈ S such that sc = 1, so c is left178

invertible.179

(iv) ⇒ (i). Let c ∈ S be a left po-cancellable element and AS a right S-poset. By180

(iv) there is an s ∈ S satisfying sc = 1. So A = Asc = Ac.181

5.2 When regularly divisible S-posets are regularly principally weakly182

injective183

In [6], Victoria Gould introduced the notion of a right almost regular monoid and proved184

that these are precisely the monoids over which all divisible acts are principally weakly185

injective. We shall prove an analogue of this result for S-posets.186

Theorem 5.2. The following conditions are equivalent for a pomonoid S:187

(i) all regularly divisible right S-posets are regularly principally weakly injective,188

(ii) for every element s ∈ S there exist r, r1, . . . , rn, s1, . . . , sn, s′1, . . . , s
′
n ∈ S and left

po-cancellable elements c1, . . . , cn ∈ S such that

c1s1 ≤ r1s ≤ c1s
′
1

c2s2 ≤ r2s1 ≤ r2s
′
1 ≤ c2s

′
2

c3s3 ≤ r3s2 ≤ r3s
′
2 ≤ c3s

′
3

. . .

cnsn ≤ rnsn−1 ≤ rns′n−1 ≤ cns′n

s = ssn = ss′n,

(4)

(iii) for every element s ∈ S there exist r, r1, . . . , rn, s1, . . . , sn, s′1, . . . , s
′
n ∈ S and left

po-cancellable elements c1, . . . , cn ∈ S such that

c1s1 ≤ r1s ≤ c1s
′
1

c2s2 ≤ r2s1 ≤ c2s
′
2

c3s3 ≤ r3s2 ≤ c3s
′
3

. . .

cnsn ≤ rnsn−1 ≤ cns′n

s = ssn = ss′n.

(5)
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Proof. (i) ⇒ (ii). Assume that all regularly divisible right S-posets are regularly prin-189

cipally weakly injective. For an element s ∈ S, let sS(2,C) be the regularly divisible190

extension of sS obtained as in Construction 4.1. In our case191

Γi = Γ1
i = {(c, b) ∈ C × (sS)i | for all u, v ∈ S cu ≤ cv implies bu ≤i bv},

Hi = {((c, b)c, b) ∈ Fi × Ai | (c, b) ∈ Γi}.

Note that every element b = [d]θi−1
∈ (sS)i = (Fi−1 ∐ (sS)i−1)/θi−1, d ∈ Fi−1 ∐ (sS)i−1

can be presented in the form

b = [(c, b′)s]θi−1
where (c, b′) ∈ Γi−1 and s ∈ S. (6)

If d ∈ Fi−1, this is clear. If d ∈ (sS)i−1 then (1, d) ∈ Γi−1, ((1, d)1, d) ∈ Hi−1, hence192

(1, d)1θi−1d and b = [d]θi−1
= [(1, d)1]θi−1

.193

By assumption, sS(2,C) is regularly principally weakly injective. Thus there exists an

S-poset morphism g : S → sS(2,C) such that the diagram

sS

sS(2,C)

f

��
??

??
??

??
??

??
?sS Sι // S

sS(2,C)

g

���
�

�
�

�
�

�

commutes, where ι and f are the inclusion mappings. Then

s = f(s) = gι(s) = g(s) = g(1)s

where g(1) ∈ sS(2,C). Let n ∈ N0 be such that g(1) ∈ (sS)n. If n = 0 then g(1) ∈ sS,194

hence s ∈ sSs, i.e. s is regular and therefore there exist c1 = 1, r1 = x, s1 = s′1 = xs,195

where s = sxs, x ∈ S such that the inequalities and equalities in 4 are fulfilled.196

Suppose that n > 0. Then, by (6), g(1) = [(c1, b1)r1]θn−1
∈ (sS)n = (Fn−1 ∐

(sS)n−1)/θn−1, where r1 ∈ S and (c1, b1) ∈ Γn−1; in particular c1 ∈ C and b1 ∈ (sS)n−1.

Then sθn−1(c1, b1)r1s, that is s ≤
ρn−1

(c1, b1)r1s ≤
ρn−1

s. By Lemma 4.8,

s ≤n−1 b1s1, c1s1 ≤ r1s, and r1s ≤ c1s
′
1, b1s

′
1 ≤n−1 s,

for some s1, s
′
1 ∈ S. Again by (6), b1 = [(c2, b2)r2]θn−2

, where r2 ∈ S and (c2, b2) ∈ Γn−2,

in particular, c2 ∈ C and b2 ∈ (sS)n−2. Now s ≤n−1 b1s1 and b1s
′
1 ≤n−1 s mean that

s ≤
ρn−2

(c2, b2)r2s1 and (c2, b2)r2s
′
1 ≤

ρn−2

s. Lemma 4.8 implies that

s ≤n−2 b2s2, c2s2 ≤ r2s1, and r2s
′
1 ≤ c2s

′
2, b2s

′
2 ≤n−2 s

for some s2, s
′
2 ∈ S. Continuing in a similar manner, we finally obtain bn = sr ∈ sS =

(sS)0, cn ∈ C, rn, sn, s
′
n ∈ S such that

s ≤ bnsn = srsn, cnsn ≤ rnsn−1, and rns′n−1 ≤ cns′n, srs′n = bns′n ≤ s.
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Now c1s1 ≤ r1s ≤ c1s
′
1 implies s1 ≤ s′1, c2s2 ≤ r2s1 ≤ r2s

′
1 ≤ c2s

′
2 implies s2 ≤ s′2,

and so on. Finally we obtain sn ≤ s′n and hence s ≤ srsn ≤ srs′n ≤ s, which yields

s = srsn = srs′n. The inequality sn ≤ s′n also implies rsn ≤ rs′n, and thus we have

obtained

c1s1 ≤ r1s ≤ c1s
′
1

c2s2 ≤ r2s1 ≤ r2s
′
1 ≤ c2s

′
2

. . .

cnsn ≤ rnsn−1 ≤ rns′n−1 ≤ cns′n

1(rsn) ≤ rsn ≤ rs′n ≤ 1(rs′n)

s = s(rsn) = s(rs′n).

(ii) ⇒ (iii). This is clear.197

(iii) ⇒ (i). Assume (iii) holds. Let AS be a regularly divisible right S-poset, s ∈ S,

and f : sS → A an S-poset morphism. Then for s we have inequalities and equalities as

in (5). Hence f(s) = f(s)sn = f(s)s′n. Using regular divisibility of A, there exists a1 ∈ A

such that f(s) = a1cn. Consequently,

f(s) = a1cnsn ≤ a1rnsn−1 ≤ a1cns′n = f(s),

and so f(s) = a1rnsn−1. Again, by the regular divisibility of A, a1rn = a2cn−1 for some

a2 ∈ A. Thus

f(s) = a2cn−1sn−1 ≤ a2rn−1sn−2 ≤ a2cn−1s
′
n−1 = f(s)

and f(s) = a2rn−1sn−2. In this way we finally arrive at f(s) = anr1s for some an ∈ A,198

i.e. f = λanr1
. So A is regularly principally weakly injective by Proposition 3.3.199

Definition 5.3. We say that an element s of a pomonoid S is regularly right almost200

regular if there exist elements such that equalities and inequalities in (4) hold. We call201

a pomonoid regularly right almost regular, if all its elements are regularly right almost202

regular.203

If s ∈ S is a regular element then s = sxs for some x ∈ S and hence we have

1s ≤ (sx)s ≤ 1s

1(xs) ≤ xs ≤ xs ≤ 1(xs)

s = s(xs) = s(xs).

So every regular element of a pomonoid is regularly right almost regular. It is also easy to204

see that every left po-cancellable element of a pomonoid is regularly right almost regular.205
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Corollary 5.4. For a pomonoid S, the following conditions are equivalent:206

(i) all right S-posets are regularly principally weakly injective,207

(ii) all right ideals of S are regularly principally weakly injective,208

(iii) all finitely generated right ideals of S are regularly principally weakly injective,209

(iv) all principal right ideals of S are regularly principally weakly injective,210

(v) S is a regular pomonoid.211

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). These are clear.212

(iv) ⇒ (v). For any s ∈ S, by (iv), since sSS is regularly principally weakly injective,213

there exists an S-poset morphism g : SS → sSS such that gι = 1sS, where ι is the214

inclusion mapping from sS to S and 1sS is the identity mapping of sS. Consequently,215

one has that s = g(s) = g(1)s. Since g(1) ∈ sS, it follows that s is regular.216

(v) ⇒ (i). If S is regular then all right S-posets are regularly principally weakly217

injective by Proposition 5.1 and Theorem 5.2.218

It is known that every right almost regular monoid is a right PP monoid (see [8]). We219

can prove an analogue of this result for commutative pomonoids. Recall that a pomonoid220

S is a right PP monoid if and only if for every s ∈ S there exists an idempotent e ∈ S221

such that s = se and su ≤ sv implies eu ≤ ev for all u, v ∈ S (see Proposition 3.2 of [9]).222

Lemma 5.5. If S is a regularly right almost regular pomonoid then for every element223

s ∈ S there exist p, q ∈ S such that s = sp = sq and su ≤ sv implies pu ≤ qv for all224

u, v ∈ S.225

Proof. For every element s ∈ S there exist elements as in (4). Suppose su ≤ sv, u, v ∈ S.

Then

c1s1u ≤ r1su ≤ r1sv ≤ c1s
′
1v

implies s1u ≤ s′1v. Next,

c2s2u ≤ r2s1u ≤ r2s
′
1v ≤ c2s

′
2v

implies s2u ≤ s′2v. Continuing in this manner we arrive at snu ≤ s′nv.226

Corollary 5.6. Every commutative regularly (right) almost regular pomonoid is a (right)227

PP pomonoid.228

Proof. For an element s ∈ S let p, q ∈ S such that s = sp = sq and su ≤ sv implies229

pu ≤ qv for all u, v ∈ S. Denote e = pq. Then sq = s = s(p2q) and s(pq2) = s = sp imply230

pq ≤ qp2q and p2q2 ≤ qp. Hence e = e2 by commutativity and s = se. If now su ≤ sv231

then s(qu) ≤ s(pv) and hence eu = pqu ≤ qpv = ev.232
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5.3 When regularly principally weakly injective S-posets are regularly233

fg-weakly injective234

Lemma 5.7. Let AS be an S-poset and let A(2) be constructed as in Construction 4.1. If235

A ⊆ bS for some b ∈ An, n ∈ N, then A ⊆ dS for some d ∈ An−1.236

Proof. We may assume that b ∈ An\An−1. Then b = [y]n−1 for some y = δv ∈ Fn−1 where237

v ∈ S and δ = (z, d) ∈ Γn−1. For every a ∈ A, there exists t ∈ S such that a = [δv]n−1t. So238

aθn−1δvt, i.e. a ≤
ρn−1

δvt ≤
ρn−1

a. By Lemma 4.8, there exist s1, s2, z1, z2 ∈ S, b1, b2 ∈ An−1239

such that a ≤ b1s1, z1s1 ≤ vt, vt ≤ z2s2, b2s2 ≤ a and δ = (z1, b1) = (z2, b2). Hence240

z = z1 = z2, d = b1 = b2, and zs1 = z1s1 ≤ z2s2 = zs2 implies ds1 ≤ ds2 because241

δ ∈ Γ1
n−1. Consequently, a ≤ b1s1 = ds1 ≤ ds2 = b2s2 ≤ a, i.e. a = ds1 ∈ dS.242

Theorem 5.8. Let S be a pomonoid and α > 1 a cardinal. Then all regularly principally243

weakly injective S-posets are regularly α-injective if and only if all right α-ideals are244

principal.245

Proof. Necessity. Consider a right α-ideal I =
⋃

j∈J sjS, where |J | < α. By as-

sumption, its regularly principally weakly injective extension I(2) is regularly α-injective.

Hence there exists an S-poset morphism g : S → I(2) such that the diagram

I

I(2)

f

��
??

??
??

??
??

??
?I Sι // S

I(2)

g

���
�

�
�

�
�

�

is commutative, where ι : I → S and f : I → I(2) are inclusion mappings. Then, for

every j ∈ J ,

sj = f(sj) = gι(sj) = g(sj) = g(1)sj,

and hence

I =
⋃

j∈J

sjS =
⋃

j∈J

g(1)sjS ⊆ g(1)S.

Now g(1) ∈ In for some n ∈ N0. If n = 0 then g(1) ∈ I. Otherwise, by applying246

Lemma 5.7 n times we obtain d ∈ I such that I ⊆ dS. So in both cases I ⊆ sS for some247

s ∈ I, which implies I = sS.248

Sufficiency. This is obvious.249

Corollary 5.9. Let α be any cardinal such that 2 < α ≤ ℵ0. Then the following condi-250

tions are equivalent for a pomonoid S:251

(i) all regularly principally weakly injective S-posets are regularly fg-weakly injective,252

(ii) all regularly principally weakly injective S-posets are regularly α-injective,253

(iii) all regularly principally weakly injective S-posets are regularly 3-injective,254
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(iv) all right 3-ideals are principal,255

(v) all finitely generated right ideals of S are principal.256

Proof. (i) ⇒ (ii) ⇒ (iii), (iv) ⇒ (v). These are evident.257

(iii) ⇒ (iv), (v) ⇒ (i). These follow from Theorem 5.8.258

Corollary 5.10. All regularly principally weakly injective S-posets are regularly weakly259

injective if and only if S is a principal right ideal pomonoid.260

From Corollary 5.9 and Corollary 5.4 we obtain the following result.261

Corollary 5.11. All S-posets are regularly fg-weakly injective if and only if S is a regular262

pomonoid all of whose finitely generated right ideals are principal.263

From Corollary 5.10 and Corollary 5.4 we obtain the following result.264

Corollary 5.12. All S-posets are regularly weakly injective if and only if S is a regular265

principal right ideal pomonoid.266

5.4 When regularly fg-weakly injective S-posets are regularly weakly in-267

jective268

Lemma 5.13. Let A be an S-poset and let A(ℵ0) be constructed as in Construction 4.1.269

If A is contained in a finitely generated S-subposet of An for some n ∈ N then A is270

contained in a finitely generated S-subposet of An−1.271

Proof. Let n ∈ N and b1, . . . , bm ∈ An be such that A ⊆
⋃m

i=1 biS. If b1, . . . , bm ∈ An−1

then there is nothing to prove. Assume that r ∈ {1, . . . , m} is such that b1, . . . , br ∈

An \ An−1 and br+1, . . . , bm ∈ An−1. Then bi = [δivi]n−1 for some δi ∈ Γn−1 and vi ∈ S,

for every i ∈ {1, . . . , r}. By the definition of Γn−1, for every i ∈ {1, . . . , r} there exists

pi ∈ N such that

δi = ((si1, ai1), . . . , (sipi
, aipi

)) ∈ Γpi

n−1.

We claim that

A ⊆







⋃

1≤i≤r
1≤l≤pi

ailS






∪

(

⋃

r<i≤m

biS

)

⊆ An−1.

Consider an element a ∈ A. If a ∈ biS for some i ∈ {1, . . . , r} then there exists t ∈ S

such that a ≡ [a]n−1 = [δivit]n−1. By Lemma 4.8, a ≤
ρn−1

δivit and δivit ≤
ρn−1

a imply that

a ≤n−1 bs, zs ≤ vit and vit ≤ z′s′, b′s′ ≤n−1 a

for some s, s′, z, z′ ∈ S, b, b′ ∈ An−1, where (δi)l = (z, b) and (δi)k = (z′, b′) for some
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l, k ∈ {1, . . . , pi}. Hence

sils = zs ≤ vit ≤ z′s′ = siks
′,

which implies bs = ails ≤n−1 aiks
′ = b′s′. It follows that a ≤n−1 bs ≤n−1 b′s′ ≤n−1 a, and272

thus a = bs = ails ∈ ailS ⊆ An−1.273

Theorem 5.14. Let S be a pomonoid and let α ≥ ℵ0 be a cardinal. Then all regularly274

fg-weakly injective S-posets are regularly α-injective if and only if all right α-ideals of S275

are finitely generated.276

Proof. Necessity. Let I be a right α-ideal of S. Then I(ℵ0) is an α-injective S-poset by

assumption. Thus there exists an S-poset morphism g : S → I(ℵ0) such that the diagram

I

I(ℵ0)

f

��
??

??
??

??
??

??
?I Sι // S

I(ℵ0)

g

���
�

�
�

�
�

�

commutes, where ι and f are the inclusion mappings. If r ∈ I then

r = f(r) = gι(r) = g(r) = g(1)r.

Hence I ⊆ g(1)S. If g(1) ∈ I then I ⊆ g(1)S ⊆ IS ⊆ I and so I = g(1)S is a principal277

right ideal. Otherwise g(1) ∈ In \ In−1 for some n ∈ N. Then g(1)S ⊆ In and g(1)S is278

a finitely generated S-subposet of In. Applying Lemma 5.13 n times we conclude that279

I is contained in a finitely generated S-subposet of I, but then I must also be finitely280

generated.281

Sufficiency. It is clear.282

A pomonoid S is called right noetherian (see [7], Def. 4.3.5) if it satisfies the ascending283

chain condition on right ideals. This is equivalent to all right ideals of S being finitely284

generated.285

From Theorem 5.14 we obtain the following result.286

Corollary 5.15. All regularly fg-weakly injective S-posets are regularly weakly injective287

if and only if S is right noetherian.288

5.5 Summary289

The homological classification results of this section can be summarized in the following290

table (compare it with Table IV.2 of [7]).291
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⇒ reg. w. inj. reg. fg-w. inj. reg. princ. w. inj. reg. divisible

reg. fg-w. inj. right

noetherian

Cor. 5.15

reg. princ. w. inj. right ideals f.g. right ideals

are principal are principal

Cor. 5.10 Cor. 5.9

reg. divisible regularly right

almost regular

Thm. 5.2

All regular left po-canc.

⇒left inv.

Cor. 5.12 Cor. 5.11 Cor. 5.4 Prop. 5.1
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