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Abstract

In this paper we consider the problem of deciding which of two populations 71"1 and 71"2

has the larger location parameter. We base this decision - which is a choice between
"71"1", "71"2" and "71"1 or 71"2" - on summary statistics Xl and X 2 , obtained from indepen
dent samples from the two populations. Our loss function contains a penalty for the
absence of a "good" population as well as for the presence of a "bad" one among those
chosen. We show that, for our class of decision rules (see (1.2)), the one that chooses the
population with the largest observed value of Xi minimizes the expected loss. It also,
obviously, minimizes the expected number of chosen populations. We give conditions
under which the expected loss has a unique maximum and, for several examples where
these conditions are satisfied, we also show that the expected loss is, for each ((}ll (}2),

strictly decreasing in the (common) sample size n. For the case of normal populations
Bechhofer (1954) proposed and studied this decision rule where he chose n to lower
bound the probability of a correct selection. Several new results on distributions having
increasing failure rate, needed for our results, are of independent interest, as are new
results on the peakedness of location estimators.

Keywords: Decision theory; two-sample problem; selection; loss function; good popu
lations; bad populations; location parameter; failure rate; peakedness
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1 Introduction

Consider two populations 1T"1 and 1T"2 and let Xl and X 2 be independent summary statis
tics obtained from samples from 1T"1 and 1T"2 respectively, where Xi has distribution func
tion G(x - Oi), i = 1,2, and G is known and continuous. The problem considered in this
paper is one of deciding, on the basis of (Xl, X 2 ), which of the parameters ()l and O2 is
the larger one, where we allow for the possibility of deciding that we do not know which
one is larger. Our loss function contains a penalty for not including at least one "good"
population among our can'didates for the larger Oi as well as a penalty for including a
"bad" one. Here the population 1T"i is "good" (resp. "bad") when, for a given c ~ 0,
()[2] - Oi :::; c (resp. 0[2] - Oi > c) where 0[1] < 0[2]. In van del' Laan and van Eeden (1998) a
loss function is used where penalties are given only for losses due to the absence of good
populations in the ,selected subset and not for losses due to the presence of bad ones. In
the case where ()[2] - ()[l] :::; c, both populations are good and we take the loss to be zero,
no matter which decision is taken. In the case where ()[2] - 0[1] > c, the penalty when
choosing only Oi with Oi i= 0[2] is (0[2] - Oi - c)P, where p is a given positive constant. If
the decision taken is that we do not know which is the larger one then the penalty for
this case is (0[2] - 0[1] - c)P. More formally, our loss function L((), d) is defined by ,

o for all d

2

L(O, d) = L: (()[2] - ()i - crI(d = di )I(()[2] - ()i > c)
i=l

(1.1 )

where () = (()l' ()2), d is the decision taken, di , i = 1,2, is the decision that ()i is the larger
of ()l and ()2 and d12 is the decision that we do not know which of ()l and ()2 is the larger
one.

The selection rule be is given by

d = di when (Xi = X[2j, X j < X[2] - e,j = 1, 2,j i= i), i = 1,2,
(1.2)

where X[l] :::; X[2] are the ordered Xi's and e is a non-negative constant.

In Section 2 it will be shown that the rule with e = 0 minimizes, uniformly in J.L = 1()2-()11,
the expected loss. It obviously also minimizes the number of chosen populations, be
cause e = 0 means that we decide that the population whose summary statistic has the
largest observed value is the one with the largest ()i. We also show there that, when the
distribution of Xl - ()l - (X2 - ()2) has nondecreasing failure rate (IFR), the expected
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loss has a unique maximum which is attained. In Section 3 we give several examples of
populations and summary statistics for which the condition of IFR is satisfied. In these
examples it is also shown that the expected loss is strictly decreasing in the (common)
sample size. Section 4 contains some auxiliary (known, but not easy to find in the lit
erature) results needed for some of our results.

2 Some properties of the risk function

The following Theorem 2.1 gives the risk funcion R(B, Dc, c) = £(}L(B, Dc(X)) of the
decision rule Dc.

Theorem 2.1 The risk function of the rule Dc is given by

where Zl = Xl - e1 and Z2 = X2 - e2 are independent and identically distributed random
variables with distribution function G and fJ, = 181 - 82 1.

Proof. Assume without loss of generality that 82 > 81 , Then

from which the result follows immediately. 0

From Theorem 2.1 it folows that R(O, Dc, c) is, for each fJ, > c, nondecreasing in c. So,
the rule Dc with c = 0 minimizes, uniformly in fJ" the expected loss. This rule Do is given
by

which is equivalent to the rule

select, as the best population, the one }
which gives the largest observed value of Xi.

3
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This rule is Bechhofer's selection rule (se~ e.g. Bechhofer (1954)). He considers the case
of k (k 2': 2) normal populations with a 0-1 loss function, where the loss is zero if and
only if the selected population is the one with the largest fh For samples of equal sizes
n, he chooses n in such a way that, for O[k] - O[k-l] 2': 0*, Po(correct selection) 2': P* for
given 0* > 0 and k- 1 < P* < 1.

We use the loss function (1.1) and want to choose the (common) sample size n such that,
for all (01, ( 2), £oL(O, (0) :::; Ro for a given Ro > O. Whether this is possible depends
upon the shape of the risk function as a function of JL = 0[2] - 0[1] and n.

Some properties of the risk function as a function of JL are given in Theorem 2.2, where
we assume that the following Conditions A(I) and A(2) are satisfied.

A(1) The distribution of Z2 - Zl has IFR.

Note that, under Condition A(1), the support of Z2 - ZI is an interval, [-a,a] say for
some a> O.

A(2) The distribution function H of Z2 - Zl has a derivative h which is continuous on
(-a,a).

From Theorem 2.1 it is seen that the risk function of 00 is zero for all JL when c 2': a.
This can also be seen directly by noting that

JL > C ====? JL > a when c 2': a

and that JL > a implies that

PO(X2 - Xl < 0) = 1 for all () with ()2 - ()l < -a,

PO(X2 - Xl > 0) = 1 for all () with ()2 - ()l > a.

So, when c 2': a, the rule 00 always selects the population with the largest location
parameter. Given that G, and thus H, is known, a is known, so one knows whether or
not the chosen c satisfies c 2': a. In what follows we suppose that c < a.

Theorem 2.2 Under the conditions A(l) and A(2), the risk function of the decision
rule 00 is strictly unimodal in JL.

Proof. First note that (see Theorem 2.1) the risk function of 00 is zero for JL :::; c as well
as for JL 2': a. For c < JL < a

(2.4)

4



(2.5)
P 1'· f h(Ji-) 0---lmm <.

a - t: J.L-+a 1 - H(Ji-)

Now note that 1 - H(Ji-) > 0 for all Ji- E [0, a) and that, by Condition A(2), h(Ji-) < 00

for all Ji- E [O,a). So, (djdJi-)10gR«(),50 ,t:) is strictly decreasing in Ji- for Ji- E (t:,a) with

lim dd 10gR«(),50 ,t:) 00,
J.L-+e Ji-

lim sup dd log R(0,50 , t:)
J.L-+a Ji-

The inequality in the se~ond line of (2.5) follows, for a = 00, from the fact that h(Ji-) j (1
H(Ji-)) ~ h(O)j(l- H(O)) > 0 for all Ji- E (-00,00). To prove the inequality for a < 00,
first note that, by Condition A(2),

-log(l - H(Ji-)) = -log(l - H(Ji-o)) + lJ.L h(t)() dt for - a < Ji-o < Ji- < a. (2.6)
J.Lo 1 - H t

The left hand side of (2.6) converges to infinity as Ji- -+- a, so the second term in its
righthand side converges to infinity as Ji- -+- a, which implies, by Condition A(l), that
h(Ji-)j(l - H(Ji-)) -+- 00 as Ji- -+- a. Thus, by the continuity of h(Ji-)j(l - H(Ji-)) for
-a < Ji- < a (see Condition A(2)),

(djdJi-)R(O,50 ,t:) = 0

has exactly one solution in Ji- E (t:, a), which (together with 2.5) proves the result. 0

The next section contains some examples where the conditions A(l) and A(2) are sat
isfied and the risk function is, for each Ji- E (t:, a), strictly decreasing in n. By Theorem
2.2 the sample size can, for such examples, be chosen such that R(0,50 , c) ~ Ro for a
given Ro > O.

3 Examples

For each of the examples below we have chosen the summary statistics and the density f
such that the Zi have a symmetric distribution and we will show that, for each example,
Z2 - Zl has a nondecreasing failure rate (IFR), i.e. we show that

h(x)
F Rh(x) = ( )1-H x

(3.1)

is nondecreasing on {x IH (x) < I}. We also show that, in each case, the risk function
is, for each Il, strictly decreasing in the common sample size n.
For these proofs we need the notions of, and the relationships between, IFR, logconcav
ity of a density, P6lya frequency functions, strong unimodality of a distribution function
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and peakedness of a random variable. We have assembled what we need about this, with
references to the relevant literature, in Section 4.

In the proofs of the IFR of Z2 - Z1 we use, several times, the fact that, if W 1 and W 2
are independent and each have IFR, then W1 + W2 has IFR. This result can be found
e.g. in Barlow, Marshall and Proschan ((1963), p. 380).
Because in each of our examples the Zi have a distribution which is symmetric around
zero, Z2 - Z1 and Z2 + Z1 have the same distribution. So, by this Barlow-Marshall
Proschan result, we have

Lemma 3.1 If the Zi'S have symmetric distributions then

a) Z2 - Zl has IFR when each of Zl and Z2 has IFR;

b) When the Zi'S are sample means 2:7=1 Xi,j/n, Z2 - Zl has IFR when the Xi,j have
IFR.

In the case where the summary statistic is the median of a sample of an odd number of
observations, the IFR of Xi is a special case of the following result.

Lemma 3.2 The kth order statistic Yk:n of a sample 11, ... ,Yn from a distribution with
a Lebesgue density has, when n is odd, IFR when the Yi have IFR.

Proof. The distribution function of Yk:n is given by

where f and F are, respectively, the density and distribution function of the Yi.
So,

k-l ( )1 - P(Yk:n ::; y) =:L ~ (F(y))i(1 - F(y)r-i .
i=o ~

Further, the density of Yk:n is given by

,
(k _ 1)7('n _ k)!f(y)(F(y))k-1(1 - F(y)r-

k
,

So, the failure rate of Yk :n is given by

J{ f(y)
n 1-F(y)

1
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where J{n is a positive constant. Further, f(y)/(l- F(y)) is nondecreasing in y because
Y1 has IFR and

is nonincreasing in y. 0

The result proved in Lemma 3.2 is stated, without proof, in Szekli's (1995) problem D,
p.28.

For the IFR of the midrange the following result holds for a sample from a uniform
distribution.

Lemma 3.3 For a sample Yi, ... ,Yn from a uniform distribution on the interval [-1, 1],
the midrange

T = ~(min Yi + max Yi)
2 l~i~n 19~n

has [FR.

Proof. The joint density of min1~i~n Yi and max19~n Yi at (x, y) is, for n ~ 2, given by

So,

n(n - 1)( )n-2v-x2n

P ( min Yi + max Yi < 2t) =
l~i~n l~i~n-

-lS;x<yS;l.

n(n - 1) jt 12t - x (1 + t)n
dx (y - x t-2 dy = -'----

2n -1 x 2

and, for 0 < t S; 1,

. (l-t)n
P( mm Yi + max Yi < 2t) = 1 - P( min Yi + max Yi < -2t) = 1 - -'-----'-

l~i~n l~i~n - l~i~n l~i~n - 2

Therefore, the density of T is given by

{

~(1 + t)n-1
g(t) =

~(1 - t)n-1

for - 1 S; t S; 0;

for 0 < t S; 1.

This shows that g( t) is strictly increasing on (-1,0), which proves that FRg is strictly
increasing on (-1, 0). Further,

g(t)

1 - G(t)
n

1 - t

7
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which shows that FRg is strictly increasing on (0,1). The result then follows from the
fact that FRg is continuous on (-1, 1). 0

For the influence of the sample size on the risk function we need the notion of peakedness
about zero of a random variable. From its definition in Section 4 it follows that the risk
function of the rule 80 can be written as

(3.2)

where PZ2-Z1 (J-L), J-L > 0, is the peakedness of Z2 - Zl about zero. (In what follows we
will leave off the "about zero"). So, for a given choice of Zl and Z2' the risk function
of 80 is strictly decreasing in the common sample size n if the peakedness of Z2 - Zl is
strictly increasing in n.

The result of Birnbaum (1948) quoted in Lemma 4.1 reduces the behaviour of the
peakedness Z2 - Zl as a function of n to that of Zl and Z2' More specifically we have

Lemma 3.4 When the Zi'S have symmetric unimodal distributions, the peakedness of
Zz - Zl is strictly increasing in n when the peakedness of each of Zl and Zz is strictly
increasing in n.

The question of when a summary statistic has increasing peakedness in n was, for the
sample mean, answered by Proschan ((1965), Corollary 2.4). He proved the following
result.

Lemma 3.5 Let f be a PFz (P6lya frequency function of order 2) density, f(y) = J( -y)
for all y, Yi, ... ,~ independently distributed with density f. Then (1/n) I:i:l Ii is
strictly increasing in peakedness as n increases.

The equivalences (4.4) in Section 4 tell us that a PFz density f is strictly unimodal and
therefore unimodal. So, by the lemmas 3.4 and 3.5, in cases where the Xi are sample
means, the risk function is for each J-L E (e:, a) strictly decreasing in n when f is PF2 · Or,
equivalently, strictly unimodal, or logconcave on the interior of the support of F. Also,
from (4.4), each of these properties implies that the Xi,j, and thus the sample mean,
have IFR.

Nothing seems to be known about the behaviour of the peakedness of the median or the
midrange as a function of n. We obtained the following two results.

Lemma 3.6 Let Yi, ... ,Yn be independent and identically distributed with density f
and let n be odd. Further, let J\![n be the sample median and let .1\1{ = [mI, mz] be the set
of medians of F. Then, for x such that ~ < F(m + x) < 1, the peakedness of J\1n - m
is, for m E .;\.1, strictly increasing in n.
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Proof. Assume without loss of generality that m = O. First note that, for x E (-00,00),

(n-l)/2 (n). . 1 faF(X) n-l n-l

P(iVln>x)= L . F(x)'(I-F(x)t-'=I- ( ) t-2 (l-t)-2 dt.. z B n+l n+l 0
,=0 2 ' 2

So, as a function of Y = F(x), 0 < Y < 1,
n-1 n-l

~P(M > x) _ _ y-2 (1- y)-2
dy n - B (nil, n~l )

Putting Qn(Y) = P(iVln > x) - P(Mn+2 > x), this gives

~Qn(X) _ (n +2)! y~(1- )~ _ n! y n;-1 (1 _ y)";-1
dy ((n~l)!f y ((n;l)!f

n-l n-l n! ( (n + 1)2)
= y-2 (l-y)-2 ((n~l)!f (n+l)(n+2)y(1-y)- -2- .

This last expression is, for 0 < y < 1, > 0, = 0, < 0 if and only if

Cry) = -y' + y - 4~:12) = 4(n~ 2) - (y - ~)2 { ; } 0,

which is equivalent to

Iy - ~ I{ : } c = ~J(n +2)-1

So, Qn(Y) is increasing on (t - c, t + c) and decreasing on (0, t - c) and on (t + c, 1).
Combining this with the fact that, for all n,

1 for y = 0

P(Mn>x)= ; fory=~

o for y = 1,

shows that

P(Mn > x) - P(Mn+2 > x) {

which proves the result. 0

> 0 for x such that ~ < F(x) < 1

< 0 for x such that 0 < F(x) < t,

For the midrange the following result holds.
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Lemma 3.7 For a sample Yi, ... ,Yn from a uniform distribution on the interval [-1, 1L
the peakedness of the midrange

T = !( min Yi + max Yi)
2 l;:;i;:;n l;:;i;:;n

is strictly increasing in n.

Proof. The result follows immediately from the proof of Lemma 3.3. 0

Examples of cases where the density f is PF2 are the normal, the double exponential, the
uniform on the interval (a, b) and the logistic distribution. Given that these distributions
are all symmetric and given the equivalences (4.4), Condition A(l) is satisfied when the
sample means or the sample medians with n odd are used as summary statistics. This
follows from the lemmas 3.1 and 3.2. It can easily be seen that Condition A(2) is also
satisfied in these cases.
For the uniform distribution when using the midrange, Condition A(l) is satisfied by
the lemmas 3.1 (part a)) and 3.3. That Condition A(2) is also satisfied is easily verified.
Note that, for the case where the: medians (with n odd) are used as summary statistics,
Condition A(l) is satisfied when F is symmetric and has IFR. This follows from the
lemmas 3.1 (part a)) and 3.2. As noted by Barlow, Marshall and Proschan (1963, p.
379), there do exist distributions F which have IFR but whose density f is not logconcave
on the interior of the support of F. So, for this case, weaker conditions apply.

4 Logconcavity, P61ya frequency functions, strong
unimodality, peakedness and IFR

In this section, definitions and results are assembled concerning the notions of logeon
cavity, P6lya frequency functions, total positivity, strong unimodality, peakedness and
IFR.
We start with total positivity and P6lya frequency functions of order 2. These are de
fined as follows (see Schoenberg (1951)). Let I«x, y) be defined on A x B where A and
B are subsets of R. Then I< is TP2 (totally positive of order 2) if I«x, y) 2: 0 for all
x E A, y E B and, for all Xl ~ X2, YI ~ Y2, Xi E A, Yi E B, i = 1,2,

2: o.
!{(X2,YI) !{(X2,Y2)

Schoenberg (1951) shows that L(x - y) = I«x,y) is TP2 if and only if

L(t) 2: 0 and log L(t) is logconcave on R.

10
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Here "logconcave on R" means, for a density f and corresponding distribution function
F, that log f is concave on the interior of the support of F. A TP 2 function is also
called a PF2 (P6lya frequency function of order 2).
The notion of strong unimodality was introduced by Ibragimov (1956). He called a dis
tribution function strongly unimodal if its convolution with every unimodal distribution
function is unimodal, where a distribution function F is unimodal with mode m if F(x)
is convex for x < m and concave for x > m. Ibragimov showed that a distribution
function is strongly unimodal if and only if it is either degenerate or it is absolutely
continuous with respect to Lebesgue measure and its density has a version which is
logconcave (on the interior of the support of F).
Finally, if a density f is logconcave on the interior of the support of F, then the distri
bution function F has IFR. A proof of this can, e.g., be found in Marshall and Olkin
(1979, p. 493).
Summarizing the above we get

f is logconcave on the interior of the support of F <=>

f is strongly unimodal <=> f is PF2

=? f has IFR.

(4.4)

The notion of "peakedness of a random variable W (about 0)" was introduced and
studied by Birnbaum (1948). It is defined by

pw(r) = P(IWI :5 r) r > o.

Further, vVl is more peaked about 0 than W2 if

Birnbaum (1948) proved the following result.

Lemma 4.1 Let Wi, 1 = 1, ... ,4) be random variables with Lebesgue densities ii, i =
1, ... ,4) respectively which are symmetric around 0 and such that

i) For i=l, 3, Wi and Wi+1 are independent;

ii) h(w) and h(w) are nondecreasing in w for w > 0;

iii) For i = 1,2) Wi is more peaked about 0 than Wi+2 .

Then ~Vl + ~V2 is more peaked about 0 than W 3 + vV4 •
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