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On hydromagnetic waves of finite amplitude 
in a cold plasma 

By P. G. SAFFMAN 

King’s College, London 

(Received 21 April 1961) 

The existence of steady, one-dimensional, finite-amplitude waves in a cold 

collision-free plasma is investigated for the case in which the plasma and the 

magnetic field are uniform far ahead of the wave. It is supposed that the magnetic 

field at infinity is inclined a t  an angle ,8 to the direction normal to the plane of the 

waves (0 6 ,8 6 Qn-). It is shown that the problem is equivalent to determining 

the orbits of a particle in a uniformly rotating field of force. 

Two types of waves are found to exist for ,8 + 0:  solitary waves and quasi- 

shocks. In  a quasi-shock, the plasma and magnetic field oscillate irregularly 

behind the wave front about mean values, which are different from the values 

ahead of the wave. The width of the wave front is of the order of the ion gyro- 

radius. The quasi-shocks resemble oblique magnetohydrodynamic shock-waves. 

For the case ,8 = 0, only solitary waves exist, which have already been described 

(Saffman 1961). 

The stability of the waves is considered, and it is concluded that the quasi- 

shocks are stable but that the solitary waves for p =+ 0 are unstable. 

1. Introduction 

The existence of steady one-dimensional hydromagnetic solitary waves of 

finite amplitude in a cold plasma has been demonstrated by Adlam & Allen (1958), 

Davis, Lust & Schliiter (1958), and the author (1961). The two former sets of 

authors examined the transverse case in which the magnetic field lies in the plane 

of the wave and is perpendicular to the direction in which the wave propagates. 

The present author considered the longitudinal case in which the magnetic field 

ahead of and behind the wave is parallel to the direction of propagation and 

perpendicular to the plane of the wave. 

An obvious extension of this work is to consider the case in which the magnetic 

field is inclined at an acute angle to the plane of the wave. In  the present paper, 

we shall set up the equations for such waves and discuss the general nature of their 

solutions. It is found that the problem is equivalent to determining the orbits of 

a particle in a uniformly rotating field of force. (The motion is also analogous to 

that of a particle in a smooth spinning bowl of a particular shape.) The equations 

are non-linear, and it has not proved possible to find exact solutions. However, 

general properties of the orbits can be obtained by using general theorems for the 
motion of dynamical systems. 

It transpires that there is a fundamental difference between the oblique waves 
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and the longitudinal ones. Whereas, in the latter case, the equations only admit of 

a unique solution, there may be infinitely many solutions for oblique waves (and 

also for the transverse case with /3 = +n). Moreover, there are strong indications 

(although rigorous proofs are lacking) that some of the solutions represent 

solitary waves, and that the others describe waves or oscillations of semi-infinite 

extent. That is, there exist solutions in which the plasma is uniform ahead of a 

wave front, and its properties vary with distance behind the front in an oscil- 
latory but non-periodic fashion. It is possible to calculate the mean values of the 

velocities and of the magnetic field behind the wave front (or at least reduce the 

problem to quadrature), and since the change is essentially irreversible we have 

quantitative information about a flow which resembles an oblique collision-free 

magnetohydrodynamic shock-wave. 

It is also shown in Q 8 that none of the oblique solitary waves (including the 

transverse case but excluding the longitudinal one) are likely to be physically 
significant because they are all unstable. 

2. The equations of motion 

We shall now set up the equations describing steady one-dimensional hydro- 
magnetic waves in ZL cold plasma. A frame of reference moving with the waves is 

chosen, so that all variables are functions of only one space co-ordinate, x say. In  

the present work, we shall only consider the case in which the plasma and the 

magnetic field ahead of the waves (at x = -GO) are uniform. There are then three 
possibilities for any waves which we may obtain. They may be solitary waves in 

which conditions behind the wave (at x = +GO) are uniform and the same as those 

ahead of the wave; or true shocks in which conditions at x = + 00 are uniform but 

different from those at x = -GO;  or waves of semi-infinite extent in which the 
plasma behind the wave does not return to a uniform state but the variables 

oscillate with x in some manner. This last possibility we shall term a quasi-shock. 

We denote by U the component of the velocity of the ions and electrons in the 

x-direction (i.e. normal to the plane of the wave) at  infinity ahead of the wave, and 

the number density of the ions and electrons at x = - co by N .  
We suppose that the magnetic field ahead of the wave is of strength H, and 

inclined a t  an angle /3 to the x-axis. Moreover, without loss of generality we may 

superpose any velocity in the y- or z-directions (i.e. in the plane of the wave), and 

we do this so that the electric field ahead of the wave is zero. This implies that the 

velocity and magnetic field are parallel (see figure 1). 

The equations of motion can be made non-dimensional (as in Saffman 1961) by 

normalizing the variables with respect to the velocity U ,  the number density N ,  
the magnetic intensity H,, and the length 

1 = ac ,/(mi m,)/eH,. (2.1) 

In (2.1), a is the Alfvkn velocity H0/{4nN(mi+m,)}*, c is the velocity of light, e is 

the electronic charge, and mi, m, are the masses of the ions and electrons, 
respectively. Gaussian units are employed. 

We make the usual quasi-neutral approximation, appropriate to hydro- 

magnetic waves, that the number densities of ions and electrons are equal, 
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from which it follows by the equation of continuity that the x-components of 
the ion and electron velocities are equal. Some immediate deductions from 

Maxwell's equations for the electromagnetic field can also be made. They are 

that the x-component of the magnetic field is constant, and that only the x-com- 

ponent of the electric field is non-zero. Then the dimensionless magnetic field 

is h = (cos,~, h,, h3) and the dimensionless electric field is E = ( E ,  0,O). The 

dimensionless velocity of the ions is ui = (u, vi, wi) and that of the electrons is 

Ue = (u, ve, we)* 

I 

I 
I 
I 
I 
I IY 

U tan /z 

I__/ U 
lHO 

ru 

I: c 

I ?  
/ 
z 

I 
I 

1 
I 

FIGURE 1. Sketch of the geometry. 

The (dimensionless) equations of motion for these variables take the form (see 

Montgomery 1959; or Saffman 1961) 

M u  du, 

y a x '  
___ = E+UiAh, 

and 

Here y2 = me/m,, and M = U/a  is the Alfv6n Mach number based on the velocity 

of the plasma normal to the wave. 
These equations are valid provided the x-component of the plasma velocity 

does not vanish, so that the particle trajectories do not loop back upon themselves. 

We now search for solutions which satisfy u + 1, E + 0, hz+ hg += sin2/3 a0 
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x -+ - co. Clearly, we can without loss of generality replace the last condition by 

h, -+ sinp, h, -+ 0. The cases of the transverse and longitudinal waves can be 

obtained by putting /3 = and p = 0, respectively. 

3. Reduction of the equations 

In  the present problem it is convenient to follow the method of Montgomery 

(1959), who considered periodic waves of infinite extent rather than that 

previously employed by the author. We introduce a (dimensionless) time t by 

dxldt = u(x), (3.1) 

and henceforth use t as the independent variable. Differentiation with respect 

to t, which we denote by a dot, is differentiation following a particle. 

It is easy to show, by adding (2.2) to (2.3) and using (2.4), that the equations 
possess three first integrals. These are 

(3.2) y-lvi+yve- (y+y-l)  M-2h,cos/3 = (y+y-') tanP(1 -M-2~os2/3), 

7-lW.I + ywe - (7 + 7-l) M-2h3 COB p = 0,  

u + +M-2(hi + hi) = 1 + @f-2 sin2p. 

(3.3) 

(3.4) 

The arbitrary constants have been fixed by the conditions at x = -co. These 
equations express the conservation of momentum. 

Combining (3.2) and (3.3) with (2.4), we obtain the transverse velocities in 
terms of the magnetic field and its derivatives. Thus, 

vi = h, M-, cos B-yh, M-1+ tan/?( 1 - M-, cos ,/B), 
v, = h, M-, cos p + y-lh, M-l+ tan /3( 1 - M-,  cos2 /I), 

wi = h, M-, cos /3 + yh, M-1, 

we = h, M-2 cos p - y-lh, M-l. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

We now substitute these expressions into (2.2) and (2.3) to obtain 

k,  + (7-l- y )  M-lh, cosp - h,(u - M-ZCOS~B)  = - sin/3( 1 - M-, cos2/3), (3.9) 

f l , - (7-l- y )  M-lh, cos p - h,(u - M-, C O S ~ / ~ )  = 0. (3.10) 

Here, u is given by (3.4) in terms of h, and h,, and we are interested in solutions 

which satisfy h, -+ sinp, h, -+ 0 as t + - co, and which are such that u is always 

positive. Once h, and h, are known, the other variables follow immediately. 

Necessary but (and it is important to stress) not sufficient conditions for a 

solution to exist can be determined by investigating the form of the equations 
when linearized in h, - sin /3 = c,, say, and h, = Q, say, i.e. near t or x = - co. The 

linearized equations are 

< 2 + h t 3 - & 2  = O, t 3 - h c 2 e v < 3  = '> (3.11) 

where h = (y-l- y )  M-l cosp, ,u = 1 - M-2, v = 1 - M-, cos2/3. 

t There is an apparent difficulty about p = in, as with the present geometry it makes 
the velocity, in the plane of the wave, infinite. However, this trouble is not real, and is 
overcome by dropping the requirement that E vanishes at infinity. The final equations ( 5  3) 
are in fact independent of the particular value of E at 5 = - co, and we take E = 0 simply 
for convenience. 

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
19

 N
ov

 2
01

8 
at

 2
3:

57
:0

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s .

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

61
00

07
2X

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S002211206100072X


556 P. G. Saffman 

If we try solutions in which c2 and c3 are proportional to e p t ,  we obtain the 
quadratic for p2:  

p2 +pup-2 = p + u - A2. (3.12) 

There are various cases depending on the relative magnitudes of p, v and A. 
Case (i). v > 0 > p, or cosp < M < 1. The quadratic for p 2  then has two real 

roots, one positive and the other negative. The negative root gives pure imaginary 

values for p which cannot satisfy the condition that the solution vanishes as 

t --f - 00. Hence, in this case there is at  most a unique solution describing the 
waves. (The arbitrary constant in the solution can be absorbed into the position 

of the origin of t and, equivalently, x.) It will be a valid solution if it satisfies 

u > 0 everywhere, but this is a very much more difficult question which we shall 
leave for the moment. 

Case (ii). v > p > 0, or M > 1. The quadratic for p z  has two positive roots if 

,LL + v - h2 > 2 J(,uv), and two complex roots if 2 ,/(,uv) > ,u + u - A2 > - 2 J(pv). 

In  either case, there are two values of p with positive real part, and there may be 

therefore an infinite number of solutions depending upon the relative values of 

the coefficients of the two exponential terms. 

On substituting for p, v and A, we find that there are two cases according as 

cost/? < (1 + (y-1-y)2}-1, i.e. t anp  > y-I-y, (3.13 a) 

or coszp > (1 + (7-1 - y)2}-1. (3.13 b) 

In  the former case, p 2  has two positive roots for 1 < M < MI, and two complex 

roots for M > Ml. In  the latter case, p 2  has two complex roots provided M > il!fl 
and two negative roots for M < MI. Here 

(3.14) 

(These results follow without difficulty from a consideration of the roots of 

/ G  + u - h2 = 2 ,/(,uu). These changes in the nature of the solutions for particular 

values of /? and M are puzzling, and the author has not seen any obvious physical 

interpretation.) 

Case (iii). p = u > 0, or p = 0 ,  M > 1. The values of p are complex with non- 
zero real part if > h2, i.e. M > &y-l+ y) .  Otherwise they are pure imaginary. 
There are infinitely many solutions, but they are all essentially the same and 

can be obtained from one another by rotating about the normal to the wave 

plane. 

Case (iv). p = 0 or M = 1. One of the roots of the quadratic for p 2  is zero, and 
the corresponding solution must be zero. The other root is positive if (3.13a) is 

satisfied, in which case there is a unique solution; and is negative if (3.13b) is 

satisfied in which case there is no non-trivial solution. 

Case (v). 0 > v > p, or M < cosp. The quadratic has two negative roots, so the 
only solution is the trivial one in which all variables are constant. 

To summarize the conclusions of this section, we have obtained the basic 
equations for finite amplitude waves and determined the conditions for solutions 

to exist which initially grow exponentially from a uniform state. These are 
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necessary, but not sufficient, for the solutions must be bounded for all t and must 

also satisfy u > 0 if they are going to represent finite amplitude waves with a real 
physical meaning. For this purpose it is useful to notice that the basic equa- 

tions (3.9) and (3.10) describe the motion of a particle in a uniformly rotating 

field of force, which is the superposition of a central force and a constant accelera- 

tion, and we shall for the sake of clarity discuss the equations in terms of this 

analogy. This is, in fact, a particular form of the restricted three-body problem. 

4. Analogy with the motion of a particle in a uniformly rotating field 
of force 

I f  we write X = h,, Y = h,, then, from (3.9) and (3.10), X, Yare the co-ordinates 

of a particle of unit mass moving in a plane under a conservative field of force 

with potential 

V = $M--2(X2+ Y2-sin2P)2- 4(1 -M-, cos2p) {(X-sinP)2+ Yz},  (4.1) 

and subject to a Coriolis force of amount h times its velocity, where 

h = (Y-l-y)M-lcosp. 

The point X = sinp, Y = 0 is a point of equilibrium (the arbitrary constant in 

V has been chosen so that V = 0 there) and corresponds to the uniform state 

at upstream infinity. 
The motion has an energy integral 

*(X:"+ P2) + V = 0, ( 4 4  

where the total energy is zero for particles at  the equilibrium point at  t = - co. 
The particle orbit is confined to the region V < 0, and it is clear from inspection 

that this region is bounded and of finite extent. Hence, all solutions of the 

equations are bounded. 
The curve V = 0 is sketched in figure 2. There are three cases, corresponding 

with cases (i), (ii) and (iii) of the previous section. A is the point of equilibrium, 

and B and C are the other intersections of V = 0 with the X-axis. The curves are 

symmetrical about this axis. 
In  case (i), there is a unique orbit starting from A .  In  case (ii), there areinfinitely 

many orbits or none, depending upon the values of ,8 and M [see (3.13) and (3.14)]. 

I n  case (iii) (longitudinal waves) the solution is essentially unique if it  exists. 
The number of exact solutions which have so far been obtained is very limited. 

Case (iii) has been solved completely (Saffman 1961). Solutions for case (ii) can be 
obtained if h = 0 (zero Coriolis force), which occurs if /3 = $ 7 ~  (transverse waves) 

or y = 1 (i.e. mi = mJ. In  these, Y = 0 and the orbit is from A to B and back 

again. For the case /3 = &T, these solutions were found by Adlam & Allen (1958) 

and Davis et al. (1958); the orbit from A to C and back again, which entails a 

reversal in the magnetic field, is not a possible solution because it violates, as 

we shall see later, the condition u > 0. 
It may be mentioned here in passing that the equations governing the motion 

of the particle, (3.9) and (3.10) with X = h, and Y = ha, are invariant under the 

transformation t -+ - t', X -+ X ' ,  Y + - Y'. Hence, symmetrical solutions exist 
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Y 

(ii) M >  1 

I I’ 

C 

(iii) f l  7 0, M > 1 

and (iii). All orbits start from the point A .  
FIGURE 2. Sketch of the accessible portions of the ( X ,  Y)-plane for cages (i), (ii) 
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if and only if X and Y vanish together for some value oft. In  terms of the plasma 

waves, the condition for symmetrical waves is that a plane should exist on which 

dh2/dz and h, vanish together. The exact solutions just mentioned are sym- 

metrical waves. 

5. Oblique solitary waves in a plasma with mass ratio unity 

For the sake of completeness, we shall describe briefly the oblique solitary 

waves in a plasma withm, = me, since they (although perhaps mainly of academic 

interest) have not apparently been reported before. The equations admit of a 

solution for all M > 1 withY = h, = 0;  and (4.2) becomes 

4x2 = pM-2(X - sin /3)2 {4(M2 - 1) - 4 sin P(X - sin /3) - (X - sin /3)”>. (5.1) 

Hence, 

The plus sign corresponds to the orbit from A to B, and the minus sign with that 
from A to C .  These solutions are symmetrical about t = 0 and therefore describe 

solitary waves. 

We must now consider the value of u, to determine whether the solution has 
physical validity. By (3.4), 

u = 1 + &M-2sin2/3- QM-2X2, 

and the minimum value of u occurs a t  B and C ,  which have co-ordinates 

X, = -sinp+2(M2-cos2/3)*, (5.3) 

X, = -sin~-2(M~-cos2/3)~. (5.4) 

Then u(B) = - 1 + 2M-2~os2p+ 2M-2sin/3(M2- cos2/3)&, (5 .5)  

u(C) = - 1+2M-2cos2/3-2M-2sin/3(M2-cos2/3)~. (5.6) 

M2 < 2+2sin$. (5.7) 

Examination of these expressions shows that u(B) > 0 if 

On the other hand, u(C) < 0 for all M ( >  1) if 

cos2/3 < 4, i.e. ~3 > Hn. 

M2 < 2-2sinB. 
But if /3 < Qn, u(C) > 0 for 

Thus, if /3 > Qn, only the solution corresponding to the path from A to B, which 

means that the magnetic field increases, is physically relevant. But if /3 < Qn, the 

other solution from A to C in which the direction of the transverse magnetic field 

reverses may also be valid, and there is more than one possible solitary wave. The 
values of all the other variables can be found from (5.2) and the equations of $3. 

We note now for future use that the results (5.3) to (5.9) hold generally for 

case (ii) (M > 1) whatever the value of the Coriolis effect A. Moreover, if u(C) > 0,  

then u > 0 everywhere in ‘V < 0. This completes the discussion of exact solutions, 

and we now consider the general case. 
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6. General properties of the orbits 

The solutions of the equations are repesented by orbits which leave the point A 
of figure 2 and are contained within the region V < 0. The orbits can be of two 

types, closed or open. By a closed orbit we mean one that returns to A as t -+ + co, 
and by an open one we mean an orbit that never returns to A but wanders 
indefinitely through the permissible region of the plane. The closed orbits would 

give solitary waves, with conditions the same a t  upstream and downstream 

infinity. (There is no a pr ior i  reason for saying that the structure of the solitary 

waves is symmetrical.) The open orbits would give a motion in which the variables 

oscillate indefinitely as t -+ + 00, which is what we have called a quasi-shock. 

A true shock would require the existence of another equilibrium point with V = 0 

to  which the particle would tend as t -+ + co, and such a point is easily shown not 

to exist. Unfortunately, it  is a very difficult question to determine which orbits 
are open or closed. However, this type of problem has been examined by workers 

in classical dynamics (see, for example, Birkhoff 1927; Khinchin 1947) and it 

is a very plausible assumption that the quasi-ergodic theorem applies to the 

dynamical system we are considering. 

The consequence of making this plausible assumption is that closed orbits 

may exist but there are not more than an enumerable infinity of them. The open 

orbits, if they exist, are such that the trajectories in four-dimensional phase space 

( X ,  Y ,  X ,  Y )  lie on the three-dimensional manifold X 2  +- Y2 + 2 7  = 0 and go 

infinitely near any point of it an infinite number of times, and their density in 

phase space is asymptotically uniform. Thus an average over a sufficiently large 
time is equivalent to an average over the accessible region of phase space. 

Consider now our three cases. For case (i), there is a unique solution which may 

be a solitary wave or a quasi-shock. For case (ii), the number of orbits is a non- 

enumerable infinity (since an orbit is determined by the ratio of two arbitrary 

parameters), and there probably are solitary waves, but there will be quasi-shocks. 

For case (iii), there is essentially one solution which is a solitary wave. [The 

longitudinal waves of case (iii) are fundamentally different from cases (i) and (ii) 
(0 < /? < &r) and are included here for the sake of completeness. The reason is 

that when /? = 0 the equations have another integral because the angular momen- 
tum (relative to a certain frame) is conserved. The motion therefore has only one 

degree of freedom as opposed to cases (i) and (ii) where there are two degrees of 
freedom.] Note that by the quasi-ergodic theorem, time averages following a 

particle are the same for each quasi-shock (for given M and p, of course). 

It remains now to consider which, if any, of these possible orbits will satisfy 

u > 0, which is necessary if our equations are to be a valid description of the flow. 

We have from (3.4) that u > 0 if 

i.e. provided the particle remains inside a circle of radius (2M2 + sin2/?)*. This 

circle contains the point A ,  so all solitary waves which stay sufficiently close to 
A will be possible. The necessary conditions for the case of the waves in 9 5 and the 

longitudinal waves, we already know. More than this we cannot find for the 

solitary waves. 

X 2 +  Y 2  < 2M2+sin2P, (6- 1) 
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Hydromagnetic waves in a cold plasma 561 

However, the problem is easily solved for the quasi-shocks, since then the 

orbits go almost everywhere, and the condition reduces to u(C) > 0 since C is the 

point farthest from the origin in the region V < 0. 

For case (i), with cosp < M < 1, it follows from (5.6) that u(C) > 0 for 

M2 < 2 - 2 sinp which is (5.9). (Note that 2 - 2 sinj3 > coszp.) Thus for case (i), 

whatever the solution, i.e. whether or not it is a solitary waveora quasi-shock, it is 

physically significent if the Alfvh Mach number lies between cosj3 and the 
smaller of (2 - 2 sin /3)* and 1. 

Case (ii) is more difficult. As shown a t  the end of Q 5, u(C) > 0 only if p < &r and 

M2 < 2- 2sinp. However, the conditions expressed by (3.13) and (3.14) for the 
orbit to leave the vicinity of A must also be satisfied, and these depend upon the 

value of the mass ratio of the ions and electrons. If y2 = me/mi > (7 - 413)/6, 

then (3.13~)  is satisfied, and quasi-shocks exist, for the range of values of p which 

satisfy (3.13~). For smaller p, they exist only if 

(2-2sinp)t > M > MI. (6.2) 

If y2 < (7-,/13)/6, which is the case for Hydrogen, they exist only if (6.2) is 
Satisfied (with /3 < &r). We can show that it is impossible to satisfy (6.2) if 

y < 4 2  - 1, which means that quasi-shocks with M > 1 do not exist for Hydrogen, 

although they may for a plasma with mass-ratio closer to unity. 

We shall now calculate in the next section the mean properties of the plasma 

behind a quasi-shock for case (i). It should be noted, incidentally, that if the 

electric field ahead of the wave is taken to be zero, the total velocity of the 

plasma is U sec p, and the Alfvbn Mach number based on this velocity, M* say, 

is equal to Msecp. Thus, for quasi-shocks in case (i), 

1 < M* < seep if 0 < $ < &r, 

1 < M* < (2/(1+sin,8)}* if &r < /3 < in. 

The maximum permissible value of M* occurs for j3 = &r and is 2/43. In  any 

case, M* is greater than one, so we are not really finding shock-like motions with 

Alfvh Mach number less than one. 

7. Mean values behind a quasi-shock 

It seems plausible that in case (i), where there is a unique solution of the 

equations and of the conditions at t = - 00, that it will depend upon the particular 

values of y, M andp whether the waveis asolitary wave or a quasi-shock. That is to 
say, it is not likely that the solution will always be a solitary wave. For suppose one 

orbit is closed, and we change the force field slightly by putting a small bump in 

the path. Then the particle is deflected and will wander around. It seems unlikely 

that subsequent passages across the bump can have the effect of putting it back 

on to an orbit which returns exactly to the starting-point A .  Thus, we expect the 

open orbit to be the rule, and the closed orbit to be the exception. A further 

supporting argument for considering quasi-shocks will be given in 5 8. 

Now we cannot calculate the detailed properties of the quasi-shock, but by the 
quasi-ergodic theorem we can calculate the mean values following a particle, 

these being the mean values over the phase space, and we can deduce space 
36 Fluid Mech. 11 
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averages for the plasma waves. This is, of course, entirely sufficient for our 
purposes, for such mean values are all that could be observed. 

The trajectory in phase space of the particle in the mechanical analogue lies on 
a hyper-surface of constant energy in four-dimensional phase space. For given 
s and p, the surfaces of constant energy are circles in the X ,  Y-plane. The appro- 
priate way of taking phase averages of a function of the phase-space co-ordinates 
is to integrate it over the volume of phase space between the hyper-surfaceof 
constant energy and a neighbouring one, divide the integral by the volume of 
integration to obtain an average, and take the limit as the distance between the 
hyper-surfaces tends to zero. (For a full discussion of the method of taking 
averages, see Khinchin 1947.) It follows that the phase average, which will be 
denoted by angle brackets, of a function f (X, Y )  independent of 2 and p, is 

the integration being over the region V < 0 of the X ,  Y-plane (see figure 2(i)), 
Phase averages of functions involving the velocity in the orbit are 

etc. (7.2) (Sf) = (Pf ) = 0, (Xzf ) = (Pzf ) = - (Vf), 
In  terms of the plasma waves, these phase averages give the asymptotic time 

averages behind the wave front following the motion of a particle (ion or electron). 
These will be the appropriate ones for the average energy and momentum per 
particle. However, the particles are moving with variable velocity u in the 
2-direction; and the time averages will not be simply proportional to the space 
averages over 2, which will be more appropriate in the case of the magnetic field. 
The velocity u is given by (3.4) in terms of X and Y ,  and the relation between 
space averages and time averages is (an over bar denoting space averages) 

J =  <fu>l(u>. (7.3) 

For the physical quantities of most interest, i.e. the velocities and the magnetic 
field, f is a polynomial in X and Y. The double integral can then be evaluated by 
using polar co-ordinates centred on A (see figure 2 (i)), and by first integrating 
with respect to the distance from A .  In  these co-ordinates, defined by 

5inB-X = rcos8, Y = rsin8, 

the bounding curves V = 0 have the equations 

r = 2 cos 8 sins 2(M2- cos2/3)*. (7.4) 

The integrations are now straightforward, but long and tedious, and the final 
expressions are not at all simple. They are indeed too complicated for general use, 
and it was not thought worth while working them out in full. For our present 
purpose of determining the general features of quasi-shocks, it is sufficient to give 
the results for the two limiting cases at the ends of the range for which case (i) 
applies: these are case (a)  0 < M-cos/3 << 1, and case (b )  0 < 1 - M  4 1 (note 
that case (b)  requires /3 < hn). 

for giving the correct method of taking phase averages. 
t I a m  indebted t o  Dr F. D. Kahn for pointing out an error here in an earlier draft and 
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Hydromagnetic waves in a cold plasma 563 

Case (a). M + cosp. We find that 

(h,) = (X) + -isin,!?, (h,) = ( Y )  = 0. (7.5) 

(hg) .i. &sin2,!?, (h;) + &sin2,!?. (7.6) 

(7.7) 

Then from (3.5) to (3.8), we have that 

(vj) = (v,) .I. -Qtan/3, (wj) = (we) = 0. 

Also, u = 1,so that to this order of approximation, space and time averages are 
the same. The mean-square variations of the velocities are 

( 7 4  1 
((a- (u>)2) = 0, 

( ( V ~ - ( V ~ ) ) ~ )  = ( ( V ~ - ( V ~ ) ) ~ )  = g t a n 2 p ,  

( ( W ~ - ( W ~ ) ) ~ )  + ( ( W ~ - ( W ~ ) ) ~ )  +&tan”. 

Thus, for M sufficiently close to cos ,!?, there is no difference in the mean properties 
of the ion and electron velocities. 

If we interpret these mean-square variations of velocity as a temperature, they 
imply that the temperature behind the quasi-shock is non-isotropic, with zero 
temperature in the direction of the wave normal and maximum temperature in 
the direction in which there is no mean magnetic field. (It is to be remembered 
that the above velocities are non-dimensional.) Owing to the greeter mass of the 
ions, most of the ‘heat’ is carried by the ions. The orientation of the mean flow 
and magnetic fields is shown in figure 3 (a). The mean flow is turned back through 
the angle /3+p, where t a n p  = 8 tan,!?. 

Case ( b ) .  M = 1(,!? < in). We find that: 

(7.9) 

(7.10) 

1 
(u) = 1 -$sin2/3, 

(vi) = (v,) = -gsin,!?cosB(l-$tan2/3), 

(Wj) = (we) = 0. 

The time average of the magnetic field is 

(h,)  = -#sinB, (h,) = 0. 

The space average of the magnetic field is different and is 
- - 
h2 = -#sinB(l -Qsin2/3), h, = 0. (7.11) 

It is interesting that the mean direction of the particles is not parallel to either of 

the magnetic field averages (see figure 3 ( b ) ) .  
The mean-square time averages of the particle velocities are: 

(v,“) + $sin2p cos2/3+sin4@ tan2/3-Qsin4/3+& ~ - ~ s i n ~ , 8 ,  

(u2) + l+&sin2/3+$sin4p, 

(v:) = g sin2 p cos2 ,!? + sin4 ,!? tan2 - Q sin4 ,!? + 

(wt> + fsin2p eos2p+& y2sin4,8, 

(w,”) = f sin2 ,B cos2 ,!? + & y-2 sin4 8. 

(7.12) 

36-2 

I 
y2 sin4 /3, 
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The expressions for cases (a)  and (b )  are generally of the same order of magni- 

tude. The exception is the velocity fluctuations of the electrons. Remembering 

that y2 = m,/m, is a small quantity for a real plasma, we see that the transverse 
fluctuations of the electron velocity are y-1 times larger than the other velocities. 

It follows that the 'temperature ' of the transverse electron motion is comparable 

a cos p 
Velocity 

4 Ho sin 

Magnetic field 

(a) M i cos /z 

a tan /3 

I 
a sec /I ka 

H, sin B 

LHo H, cos p 

(b)  M + 1 

1 
I 
I 
I 
I 
1% 
I; 
I4 

'6 
I 
I 
I 
I 
I 
I 
I 

m 

I 
I 
I 
I 
I 
1 
1 %  

I 3 

I 
I 
I 
I 
I 
1 
I 

I +  

16 

+a sin p 

H, cos B 

1 
+H,, sin P 

I=- 

+ 
3Ho sin p (1 -d sin2 /3) 

FIGURE 3. The mean flow behind a quasi-shock, for the cases (a )  when the upstream 
velocity is just  greater than the Alfv6n velocity a, and ( b )  when it is just leas than a sec p. 
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Hydromagnetic waves in a cold plasma 565 

with that of the ions. This effect will disappear only when M is close to cosp. 

The temperature of the longitudinal velocity fluctuations (i.e. in the x-direction) 

is much greater for the ions than for the electrons. 

The quasi-shocks are essentially irreversible motions which transform a 

uniform state into an irregularly varying one, and provide an example of a 

dissipation mechanism in a cold collision-free plasma, which does not invoke 

collisions, electrostatic oscillations, or require the plasma ahead of the wave to be 

warm. It is to be emphasized that there is no spread of velocity a t  a fixed point of 

space, so that strictly speaking the plasma remains cold on passing through a 
quasi-shock, but an observer on a scale large compared with the ion gyro-radius 

would appear to see random motions superposed on a uniform state, i.e. the 

plasma would look warm. 

An estimate of the width of the quasi-shock or more precisely the transition 

region can be obtained by considering the rate at  which the disturbance to the 

uniform state grows, as was done in $3.  In  dimensional quantities, we can define 

the width as d = lip, where p is given by (3.12) and 1 is the geometric mean of the 

ion and electron gyro-radii. For hydrogen, y is small and 

(7.13) 

Thus d is of the order of the ion gyro-radius. 

The features of the oscillation behind the transition region are difficult to 

establish with certainty. From an inspection of (3.9) and (3.10), it  can be seen 

that the largest term in each equation is the second or ‘ Coriolis ’ term involving h 

(see 3.11). I n  general, this will balance either the first term in each equation, 

giving fast oscillations with dldt cc h (i.e. at the electron gyro-frequency), or the 
last term giving slow oscillations with d /d t  cc A-1 (i.e. at the ion gyro-frequency). 

The fast ones must be of small amplitude O(h-1) in the magnetic field, in order 

that the ‘energy’ integral (4.2) be satisfied; and it follows from (3.5) to (3.8) that 

they mainly affect the electrons, giving the electrons energies comparable with 

that of the ions in the slow oscillations. Thus the general picture seems to be one 

of velocity oscillations of Dhe ions and electrons with comparable amplitude at  the 

ion gyro-frequency, the energy being carried by the ions, on which are superposed 
oscillations of the electrons a t  the electron gyro-frequency with a comparable 

amount of energy. 

The relation of the present theory to experiment is limited of course by the fact 

that areal plasma would have a non-zero temperature, but it is not clear at present 

exactly how this would change the waves described here. Amongst other things, 

Landau damping in a hot plasma would possibly become important and have 

to be taken into account, providing an extra dissipative process. 

8. Stability of the waves 

We have seen that the waves can be represented by the orbits of a particle in 
a uniformly rotating field of force, and that there are two types of orbit, open or 

closed, if /3 > 0. Now the effect of small disturbances will be to introduce small 
perturbations on the right-hand side of the equations of motion (3.9) and (3.10) 
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which will cause the particle to move slowly from one orbit to a neighbouring orbit 

in phase space. Now the number of closed orbits is enumerable, and there are 

infinitely more open orbits. Thus even if the conditions a t  t = - oc) are such that 

the particle is initially on a closed orbit, any small disturbance (except those of a 

very special kind) will put it on to an open orbit, and a disturbance to a particle 

on an open orbit will in general put it on to another open orbit. Thus the closed 

orbits are unstable. The mean properties of the open orbits are all the same, by 

the quasi-ergodic hypothesis, so even though an individual open orbit is unstable, 

the mean properties of particles on open orbits are stable in the sense that they 
are unaffected by small disturbances. 

In  terms of the waves, this means that the solitary-wave solutions are unstable 

and very much the exception, whereas the quasi-shocks are stable in mean, and 
will be the rule. (This is why the analysis of 3 7 is physically significant, even if the 

exact solution is a solitary wave.) In  particular, the transverse solitary waves 

(/3 = &i-) are unstable and would not be expected to occur or be physically 

significant. The difficulty now is that quasi-shocks cannot be constructed which 

satisfy the condition u > 0 when M > 1, unless /3 < &TT and the mass ratio is 

sufficiently close to unity, which rules out Hydrogen. Thus the only physically 
significant solutions, which satisfy the condition that the ion and electron paths 

are not looped, are the quasi-shocks of 3 7 and the longitudinal solitary waves 

(Saffman 1961). For these latter waves correspond to a dynamical system with one 

degree of freedom, and small disturbances will only perturb or distort the orbit 

and not change its character. 

It should be noted that the stability concept employed here is different from 

that usually understood in fluid mechanics, but resembles that sometimes 

employed in the theory of differential equations. We are not considering whether 
a small disturbance of the steady basic flow will grow or decay with time, but 

rather the question whether the steady solution can exist in a slightly perturbed 

form if steady external disturbances are present. The boundary conditions at 
x = - 00 (the uniform state) are supposed fixed. Then the introduction of a small 

steady external disturbance does not affect the solution at  upstream infinity, but 

in general has considerable effect on the solution at  downstream infinity, and it is 

in this sense that the solitary-wave solutions with /3 4 0 are unstable. An 

individual quasi-shock is likewise unstable, but since they all have, in general, 

the same average properties, we can say that they are stable in mean. 
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