On hyperbolic groups

Abderezak OULD HOUCINE
Institut Girard Desargues Université Claude Bernard Lyon-1
Bâtiment Braconnier, 21 Avenue Claude Bernard, 69622 Villeurbanne Cedex, France. ould@igd.univ-lyon1.fr

Abstract

We prove that a δ-hyperbolic group for $\delta<\frac{1}{2}$ is a free product $F *$ $G_{1} * \ldots * G_{n}$ where F is a free group of finite rank and each G_{i} is a finite group.

1 Introduction and main result

Let (X, d) be a metric space. The Gromov product $(x \cdot y)_{v}$ of two points $x, y \in X$ with respect to a point $v \in X$ is defined by

$$
(x \cdot y)_{v}=\frac{1}{2}(d(x, v)+d(y, v)-d(x, y))
$$

X is termed δ-hyperbolic, where δ is positif reel number, if for any $x, y, z, v \in$ X,

$$
(x \cdot y)_{v} \geq \min \left\{(x \cdot z)_{v},(y \cdot z)_{v}\right\}-\delta
$$

If H is a group generated by a set S, the Cayley graph $\operatorname{Cay}(H, S)$ is a metric space with the path metric and with edges of length one.

A group H is δ-hyperbolic, where $\delta \geq 0$, if H is generated by a finite set S such that the Cayley graph $\operatorname{Cay}(H, S)$ is δ-hyperbolic as a metric space. H is termed hyperbolic if H is δ-hyperbolic for some $\delta \geq 0$. It is well-known [1, 2] that being hyperbolic does not depend on a particular generating set S, but δ depends on S.

We define $\delta_{0}(H)$ to be the infimum of δ for which H is δ-hyperbolic. It is a natural question to ask when we can have $\delta_{0}(H)=0$? We show that in general we must have $\delta_{0}(H) \geq \frac{1}{2}$. The main result of this paper is the following.

Theorem 1.1 Let H be a δ-hyperbolic group for some $\delta<\frac{1}{2}$. Then H is a free product $F * G_{1} * \ldots * G_{n}$ where F is a free group of finite rank and each G_{i} is a finite group.

Let H be a group generated by a finite set S. For an element $h \in H$ we denote by $\ell_{S}(g)$ the shortest word w in the alphabet $S^{ \pm 1}$ such that $h=w$ in H. For $u, v \in H$ we let $c(u, v)=\frac{1}{2}\left(\ell_{S}(u)+\ell_{S}(v)-\ell_{S}\left(u v^{-1}\right)\right)$. We say that ℓ_{S} is δ-hyperbolic, if

$$
c(u, v) \geq \min \{c(u, z), c(z, v)\}-\delta, \quad \text { for all } u, v, z \in H
$$

For $u, v \in H$ we let $d_{S}(u, v)=\ell_{S}\left(u v^{-1}\right)$. It is well-known [1, 2] that the metric space $\left(H, d_{S}\right)$ is isometrically embedded in the Cayley graph Cay (H, S). Therefore if $\operatorname{Cay}(H, S)$ is δ-hyperbolic then ℓ_{S} is δ-hyperbolic.

If $\operatorname{Cay}(H, S)$ is δ-hyperbolic for some $\delta<\frac{1}{2}$ then, actually, ℓ_{S} is 0 -hyperbolic. Indeed. Since

$$
c(u, v)-\min \{c(u, z), c(z, v)\} \geq-\delta>-\frac{1}{2}, \quad \text { for all } u, v, z \in H
$$

and since the number $c(u, v)-\min \{c(u, z), c(z, v)\}$ is an integer or a half of integer we get

$$
c(u, v)-\min \{c(u, z), c(z, v)\} \geq 0, \quad \text { for all } u, v, z \in H,
$$

and thus ℓ_{S} is 0-hyperbolic.
Therefore Theorem 1.1 is a consequence of the following one.
Theorem 1.2 Let H be a group generated by a finite set S such that the word length ℓ_{S} is 0-hyperbolic. Then H is a free product $F * G_{1} * \ldots * G_{n}$ where F is a free group of finite rank and each G_{i} is a finite group.

Note that when $H=F * G_{1} * \ldots * G_{n}$ where F is free group with basis X and each G_{i} is a finite group, if we let $S=X \cup G_{1} \ldots \cup G_{n}$ then the word length ℓ_{S} is 0-hyperbolic.

To prove Theorem 1.2 we follow the general line of the argument used by R.C. Lyndon in [3]. The paper is organized as follows. We end this section by a general lemma about hyperbolic groups. In the next section we prove preparatory lemmas in the particular case when ℓ_{S} is 0 -hyperbolic. In the last section we prove Theorem 1.2.

We end this section by the following.
Lemma 1.3 Let H be a group generated by a finite set S such that the word length ℓ_{S} (denoted simply ℓ) is δ-hyperbolic for some $\delta \geq 0$. Let h_{1}, h_{2}, h_{3} be elements of H satisfying

$$
c\left(h_{1}, h_{2}^{-1}\right)+c\left(h_{2}, h_{3}^{-1}\right)<\ell\left(h_{2}\right)-\delta .
$$

Then

$$
\left|\ell\left(h_{1} h_{2} h_{3}\right)-\left(\sum_{i=1}^{3} \ell\left(h_{i}\right)-2 \sum_{i=1}^{2} c\left(h_{i}, h_{i+1}^{-1}\right)\right)\right| \leq 2 \delta .
$$

In particuliar if $\delta<\frac{1}{2}$ then

$$
\ell\left(h_{1} h_{2} h_{3}\right)=\sum_{i=1}^{3} \ell\left(h_{i}\right)-2 \sum_{i=1}^{2} c\left(h_{i}, h_{i+1}^{-1}\right) .
$$

Proof

We have

$$
\begin{gathered}
c\left(h_{2}, h_{3}^{-1}\right)=\frac{1}{2}\left(\ell\left(h_{2}\right)+\ell\left(h_{3}\right)-\ell\left(h_{2} h_{3}\right)\right) \\
=\frac{1}{2}\left(\ell\left(h_{2}\right)+\ell\left(h_{2}\right)-\ell\left(h_{2}\right)+\ell\left(h_{3}\right)-\ell\left(h_{2} h_{3}\right)\right) \\
=\ell\left(h_{2}\right)-\frac{1}{2}\left(\ell\left(h_{2}\right)+\ell\left(h_{2} h_{3}\right)-\ell\left(h_{3}\right)\right) \\
=\ell\left(h_{2}\right)-c\left(h_{2}^{-1},\left(h_{2} h_{3}\right)^{-1}\right) .
\end{gathered}
$$

From the hypothesis $c\left(h_{1}, h_{2}^{-1}\right)+c\left(h_{2}, h_{3}^{-1}\right)<\ell\left(h_{2}\right)-\delta$ we get

$$
\begin{equation*}
c\left(h_{1}, h_{2}^{-1}\right)<c\left(h_{2}^{-1},\left(h_{2} h_{3}\right)^{-1}\right)-\delta . \tag{1}
\end{equation*}
$$

By the δ-hyperbolicity of ℓ we have

$$
c\left(h_{1}, h_{2}^{-1}\right) \geq \min \left\{c\left(h_{1},\left(h_{2} h_{3}\right)^{-1}\right), c\left(h_{2}^{-1},\left(h_{2} h_{3}\right)^{-1}\right)\right\}-\delta
$$

and by (1) we get

$$
c\left(h_{1}, h_{2}^{-1}\right) \geq c\left(h_{1},\left(h_{2} h_{3}\right)^{-1}\right)-\delta,
$$

therefore

$$
\ell\left(h_{1}\right)+\ell\left(h_{2}\right)-\ell\left(h_{1} h_{2}\right) \geq \ell\left(h_{1}\right)+\ell\left(h_{2} h_{3}\right)-\ell\left(h_{1} h_{2} h_{3}\right)-2 \delta,
$$

and thus

$$
\ell\left(h_{1} h_{2} h_{3}\right) \geq \ell\left(h_{2} h_{3}\right)-\ell\left(h_{2}\right)+\ell\left(h_{1} h_{2}\right)-2 \delta .
$$

But we have

$$
\begin{gather*}
\sum_{i=1}^{3} \ell\left(h_{i}\right)-2 \sum_{i=1}^{2} c\left(h_{i}, h_{i+1}^{-1}\right) \\
=\sum_{i=1}^{3} \ell\left(h_{i}\right)-\left(\left(\ell\left(h_{1}\right)+\ell\left(h_{2}\right)-\ell\left(h_{1} h_{2}\right)\right)+\left(\ell\left(h_{2}\right)+\ell\left(h_{3}\right)-\ell\left(h_{2} h_{3}\right)\right)\right) \\
=\ell\left(h_{2} h_{3}\right)-\ell\left(h_{2}\right)+\ell\left(h_{1} h_{2}\right) \tag{2}
\end{gather*}
$$

Therefore

$$
\begin{equation*}
\ell\left(h_{1} h_{2} h_{3}\right) \geq \sum_{i=1}^{3} \ell\left(h_{i}\right)-2 \sum_{i=1}^{2} c\left(h_{i}, h_{i+1}^{-1}\right)-2 \delta . \tag{3}
\end{equation*}
$$

An other side, by the δ-hyperbolicity

$$
c\left(h_{1},\left(h_{2} h_{3}\right)^{-1}\right) \geq \min \left\{c\left(h_{1}, h_{2}^{-1}\right), c\left(h_{2}^{-1},\left(h_{2} h_{3}\right)^{-1}\right)\right\}-\delta,
$$

and by (1) we find

$$
c\left(h_{1},\left(h_{2} h_{3}\right)^{-1}\right) \geq c\left(h_{1}, h_{2}^{-1}\right)-\delta .
$$

Therefore

$$
\ell\left(h_{1}\right)+\ell\left(h_{2} h_{3}\right)-\ell\left(h_{1} h_{2} h_{3}\right) \geq \ell\left(h_{1}\right)+\ell\left(h_{2}\right)-\ell\left(h_{1} h_{2}\right)-2 \delta,
$$

and thus

$$
\ell\left(h_{2} h_{3}\right)-\ell\left(h_{1} h_{2} h_{3}\right) \geq \ell\left(h_{2}\right)-\ell\left(h_{1} h_{2}\right)-2 \delta,
$$

thus by (2) we get

$$
\begin{equation*}
\ell\left(h_{1} h_{2} h_{3}\right) \leq \sum_{i=1}^{3} \ell\left(h_{i}\right)-2 \sum_{i=1}^{2} c\left(h_{i}, h_{i+1}^{-1}\right)+2 \delta . \tag{4}
\end{equation*}
$$

By (3) and (4) we conclude

$$
\left|\ell\left(h_{1} h_{2} h_{3}\right)-\left(\sum_{i=1}^{3} \ell\left(h_{i}\right)-2 \sum_{i=1}^{2} c\left(h_{i}, h_{i+1}^{-1}\right)\right)\right| \leq 2 \delta .
$$

Now the last assertion of the lemma follows from the fact that $\delta<\frac{1}{2}$ and that $\ell\left(h_{1} h_{2} h_{3}\right)-\left(\sum_{i=1}^{3} \ell\left(h_{i}\right)-2 \sum_{i=1}^{2} c\left(h_{i}, h_{i+1}^{-1}\right)\right)$ is an integer.

Assumption In the rest of this paper we let H to be a group generated by a finite set S such that the word length ℓ_{S} is 0 -hyperbolic. To simplify notations we denote by ℓ the word length ℓ_{S}. For convenience we suppose also that $1 \notin S$ and $S=S^{-1}$.

2 Preparatory lemmas

Definition 2.1 We define a relation \sim on S by

$$
s \sim t \text { if and only if } c(s, t) \geq \frac{1}{2} .
$$

Lemma 2.2 The relation \sim is an equivalence relation on S.

Proof

Clearly \sim is reflexive and symmetric. Let $s, t, u \in S$ such that $s \sim t$ and $t \sim u$. Then

$$
c(s, t) \geq \frac{1}{2}, \quad c(t, u) \geq \frac{1}{2} .
$$

Since ℓ is 0 -hyperbolic we get $c(s, u) \geq \frac{1}{2}$ and thus $s \sim u$.

Notation. For $s \in S$ we denote by $q(s)$ the equivalence class of s under \sim. We let

$$
S_{1}=\left\{s \in S \mid s \sim s^{-1}\right\}, \quad S_{2}=S \backslash S_{1} .
$$

Lemma 2.3 For each $s \in S_{1}$ the set $H(s)=\left(q(s) \cap S_{1}\right) \cup\{1\}$ is a finite subgroup of H.

Proof

Let $u, v \in H(s)$ and prove that $u v^{-1} \in H(s)$. Clearly if $u=1$ or $v=1$ or $u=v$ then $u v^{-1} \in H(s)$. Thus we may assume that $u \neq 1, v \neq 1$ and $u \neq v$; thus $u, v \in q(s) \cap S_{1}$ and $u v^{-1} \neq 1$.

Since $u \sim v$ we have $c(u, v) \geq \frac{1}{2}$ and a simplification shows $\ell\left(u v^{-1}\right) \leq 1$. As $u v^{-1} \neq 1$ we get $\ell\left(u v^{-1}\right)=1$ and thus $u v^{-1} \in S$.

We first prove that $u v^{-1} \in q(s)$. We have

$$
\begin{gathered}
c\left(s, v^{-1}\right) \geq \frac{1}{2}, \quad \text { as } s \sim v \text { and } v \sim v^{-1}, \\
c\left(v^{-1}, u v^{-1}\right)=\frac{1}{2}\left(\ell(v)+\ell\left(u v^{-1}\right)-\ell\left(u^{-1}\right)\right)=\frac{1}{2} \ell\left(u v^{-1}\right) \geq \frac{1}{2} .
\end{gathered}
$$

Therefore $s \sim v^{-1}$ and $v^{-1} \sim u v^{-1}$. Thus $s \sim u v^{-1}$, so $u v^{-1} \in q(s)$.
We prove now that $u v^{-1} \in S_{1}$. From $u \sim u^{-1}$ and $u \sim u v^{-1}$ we conclude $u^{-1} \sim u v^{-1}$. An another side

$$
c\left(u^{-1},\left(u v^{-1}\right)^{-1}\right)=\frac{1}{2}\left(\ell(u)+\ell\left(u v^{-1}\right)-\ell\left(v^{-1}\right)\right) \geq \frac{1}{2} .
$$

Therefore $u^{-1} \sim u v^{-1}$ and $u^{-1} \sim\left(u v^{-1}\right)^{-1}$. Thus $u v^{-1} \sim\left(u v^{-1}\right)^{-1}$ and so $u v^{-1} \in S_{1}$.

Now since $H(s) \subseteq S \cup\{1\}$ and S is finite, $H(s)$ is a finite subgroup.
Lemma 2.4 Let \leq be a well ordering of the set of equivalence classes of S under ~. Then there is a well ordering \preceq of S satisfying the following conditions:
(i) if $q(s)<q(t)$ then $s \prec t$,
(ii) if $q(s)=q(t)$ and $q\left(s^{-1}\right)<q\left(t^{-1}\right)$ then $s \prec t$.

Proof

For an equivalence class $q(s)$ we let $\preceq_{q(s)}$ be a well ordering of $q(s)$. We define \preceq on S by

$$
s \prec t \text { if and only if } \begin{cases}q(s)<q(t), & \text { or; } \\ q(s)=q(t), q\left(s^{-1}\right)<q\left(t^{-1}\right), & \text { or; } \\ q(s)=q(t), q\left(s^{-1}\right)=q\left(t^{-1}\right), s \prec_{q(s)} t & \end{cases}
$$

The verification that \preceq is a well ordering is left to the reader.

Assemption. We assume henceforth that the set of equivalence classes of S is well ordered by a fixed ordering \leq and S is well ordered by a fixed ordering \preceq satisfying the conditions $(i)-(i i)$ of the above lemma.

Definition 2.5 For each $s \in S$ we define $K(s)$ to be the subgroup generated by the set $\{t \in S \mid t \prec s\}$. We let $U=\{s \in S \mid s \notin K(s)\}$.

Lemma 2.6 U generates H.
Proof
Let L be the subgroup generated by U. Suppose that $L \neq H$ and let s be the least element of S which is not in L. Then $\{t \in S \mid t \prec s\} \subseteq L$ and thus $K(s) \subseteq L$. Hence $s \notin K(s)$. Therefore $s \in U$, a contradiction.

Notation. For $s \in S$ we denote by \bar{s} the earlier in the order \preceq of S of s and s^{-1}.

We note that $u \in U^{ \pm 1}$ if and only if $\bar{u} \in U$. Indeed, if $u \in U$ then $u \preceq u^{-1}$ (as if $u^{-1} \prec u$ then $u \in K(u)$ contradicting $u \in U$) and thus $\bar{u}=u \in U$; if $u \in U^{-1}$ then $u^{-1} \in U$, as before, $u^{-1} \preceq u$ and thus $\bar{u}=u^{-1} \in U$. Clearly if $\bar{u} \in U$ then $u \in U^{ \pm 1}$.

We let

$$
U_{1}=\bigcup\left\{H(s) \mid s \in U \cap S_{1}\right\}, \quad U_{2}=\left(U \cap S_{2}\right)^{ \pm 1}
$$

Lemma 2.7 If u, v are non-trivial elements of $U_{1} \cup U_{2}$ and $\ell(u v)=1$ then $q\left(v^{-1}\right) \leq q(v)$.

Proof

We begin with the following claim.
Claim. We may assume $v \in U_{2}$ and $\bar{u} \in U$.
Proof. If $v \in U_{1}$ then $v \in H(s)$ for some $s \in U \cap S_{1}$. Since $H(s)=$ $q(s) \cap S_{1} \cup\{1\}$ and v is non-trivial we get $v \in q(s) \cap S_{1}$. Thus $v \sim v^{-1}$, hence $q(v)=q\left(v^{-1}\right)$. So we may assume $v \in U_{2}$.

We prove now that we may assume $\bar{u} \in U$. If $\bar{u} \notin U$ then $u \notin U_{2}$ and thus $u \in H(s)=q(s) \cap S_{1} \cup\{1\}$ for some $s \in U \cap S_{1}$. We prove that $\ell(s v)=1$.

Since $u \in H(s)$ and u is non-trivial, $u \in q(s) \cap S_{1}$. Therefore we have

$$
\begin{equation*}
c(u, s) \geq \frac{1}{2} \tag{1}
\end{equation*}
$$

By $\ell(u v)=1$, we get

$$
\begin{equation*}
c\left(u, v^{-1}\right)=\frac{1}{2}(\ell(u)+\ell(v)-\ell(u v)) \geq \frac{1}{2} . \tag{2}
\end{equation*}
$$

By (1)-(2) we get $c\left(s, v^{-1}\right) \geq \frac{1}{2}$. After simplifications $\ell(s v) \leq 1$. Since $v \notin U_{1}$ we have $s v \neq 1$ and thus $\ell(s v)=1$. Thus replacing u by s if necessary we assume that $\bar{u} \in U$.

This ends the proof of our claim.
Thus we suppose $v \in U_{2}$ and $\bar{u} \in U$. Suppose now towards a contradiction $q(v)<q\left(v^{-1}\right)$. By $\ell(u v)=1$ we have

$$
\begin{gathered}
c\left(u, v^{-1}\right)=\frac{1}{2} \\
c(u v, v)=\frac{1}{2}(\ell(u v)+\ell(v)-\ell(u))=\frac{1}{2} \\
c\left((u v)^{-1}, u^{-1}\right)=\frac{1}{2}(\ell(u v)+\ell(u)-\ell(v))=\frac{1}{2},
\end{gathered}
$$

so $u \sim v^{-1}, u v \sim v,(u v)^{-1} \sim u^{-1}$.
Since $q(u v)=q(v)<q\left(v^{-1}\right)=q(u)$, by the conditions $(i)-(i i)$ of Lemma 2.4, we have

$$
\begin{equation*}
u v \prec u, \quad v \prec v^{-1} . \tag{3}
\end{equation*}
$$

Since $v \prec v^{-1}$ and $v \in U_{2}$ we get

$$
\begin{equation*}
v \in U \tag{4}
\end{equation*}
$$

Since $q\left((u v)^{-1}\right)=q\left(u^{-1}\right)$ and $q(u v)<q(u)$, by the conditions $(i)-(i i)$ of Lemma 2.4, we have

$$
\begin{equation*}
(u v)^{-1} \prec u^{-1} . \tag{5}
\end{equation*}
$$

Thus, by (3)-(4)-(5), we conclude

$$
u v \prec u, \quad v \prec v^{-1}, \quad v \in U, \quad(u v)^{-1} \prec u^{-1} .
$$

Since $u v \prec u$ and $(u v)^{-1} \prec u^{-1}$ we get $\overline{u v} \prec \bar{u}$.
Now we treat the following cases:

- If $v=\bar{u}$ then either $u=v$ or $u=v^{-1}$. Therefore either $\ell(u v)=\ell\left(v^{2}\right)=1$ and thus $v \in U_{1}$, or $\ell(u v)=\ell\left(v^{-1} v\right)=0$. In both cases we have a contradiction as $v \in U_{2}$ and $\ell(u v)=1$.
- If $v \prec \bar{u}$ then, since $\overline{u v} \prec \bar{u}$, we get $\bar{u} \in K(\bar{u})$. Contradiction with $\bar{u} \in U$.
- If $\bar{u} \prec v$ then, since $\overline{u v} \prec \bar{u} \prec v$, we get $v \in K(v)$. Contradiction with $v \in U$.

So our supposition is false. Thus $q\left(v^{-1}\right) \leq q(v)$.
Lemma 2.8 Let s, t, u be non-trivial elements of $U_{1} \cup U_{2}$ such that $\ell(s t)=1$, $\ell(t u)=1$. Then $t \sim t^{-1}$ and thus $t \in U_{1}$.

Proof

Since $\ell(s t)=1$, by Lemma 2.7 we have $q\left(t^{-1}\right) \leq q(t)$. Since $\ell\left(u^{-1} t^{-1}\right)=1$, by the same lemma we have $q(t) \leq q\left(t^{-1}\right)$. Therefore $q(t)=q\left(t^{-1}\right)$.

Lemma 2.9 Let $s, u \in U_{2}, t \in U_{1} \cup U_{2} \backslash\{1\}$ such that $\ell(s t)=1, \ell(t u)=1$. Then $\ell(s t u)=1$.

Proof
Claim 1. $\quad \ell(s t u) \leq 1$.
Proof. We have

$$
\begin{gather*}
c\left(s, t^{-1}\right)=\frac{1}{2}(\ell(s)+\ell(t)-\ell(s t))=\frac{1}{2}, \tag{1}\\
c\left(t^{-1},(t u)^{-1}\right)=\frac{1}{2}(\ell(t)+\ell(t u)-\ell(u))=\frac{1}{2},
\end{gather*}
$$

so

$$
c\left(s,(t u)^{-1}\right) \geq \frac{1}{2}
$$

Thus $s \sim(t u)^{-1}$. A simple count shows $\ell(s t u) \leq 1$ as claimed.
Claim 2. $s \in U, u^{-1} \in U, t \prec s$.
Proof. We first prove

$$
q(s)<q\left(s^{-1}\right), \quad q\left(u^{-1}\right)<q(u) .
$$

Since $\ell\left(t^{-1} s^{-1}\right)=1$, by Lemma 2.7, we get $q(s) \leq q\left(s^{-1}\right)$. If $q(s)=q\left(s^{-1}\right)$ then we get $s \sim s^{-1}$ and thus $\ell\left(s^{2}\right) \leq 1$. Therefore $s \in S_{1}$ contradicting the fact that $s \in U_{2}=\left(U \cap S_{2}\right)^{ \pm 1} \subseteq S_{2}^{ \pm 1}$. Therefore $q(s)<q\left(s^{-1}\right)$.

Since $\ell(t u)=1$, by Lemma 2.7, we have $q\left(u^{-1}\right) \leq q(u)$. If $q(u)=q\left(u^{-1}\right)$ then we get $u \sim u^{-1}$ and thus $\ell\left(u^{2}\right) \leq 1$. Therefore $u \in S_{1}$ contradicting the fact that $u \in U_{2}=\left(U \cap S_{2}\right)^{ \pm 1} \subseteq S_{2}^{ \pm 1}$. Therefore $q\left(u^{-1}\right)<q(u)$.

Since $q(s)<q\left(s^{-1}\right), \quad q\left(u^{-1}\right)<q(u)$, by conditions (i)-(ii) of Lemma 2.4 we get $s \prec s^{-1}$ and $u^{-1} \prec u$. Therefore $s \in U$ and $u^{-1} \in U$.

By Lemma 2.8 we have $q(t)=q\left(t^{-1}\right)$. By (1) we have $q(s)=q\left(t^{-1}\right)$. Now since

$$
q(s)=q(t)=q\left(t^{-1}\right), q\left(t^{-1}\right)=q(s)<q\left(s^{-1}\right)
$$

we get, by conditions (i)-(ii) of Lemma 2.4, $t \prec s$.
This ends the proof of our claim.
By Claim 1 we have $\ell(s t u)=0$ or $\ell(s t u)=1$. Suppose towards a contradiction that $\ell(s t u)=0$; thus $s t u=1$.

Since $t \neq 1$ we have $s \neq u^{-1}$.

- If $s \prec u^{-1}$, then, since $t \prec s$ and $u^{-1}=s t$, we get $u^{-1} \in K\left(u^{-1}\right)$. Contradiction with $u^{-1} \in U$.
- If $u^{-1} \prec s$, then, since $t \prec s$ and $s=u^{-1} t^{-1}$, we get $s \in K(s)$. Contradiction with $s \in U$.

Therefore our supposition is false and thus $\ell(s t u)=1$.
Lemma 2.10 Let u_{1}, u_{2}, u_{3} be non-trivial elements of $U_{1} \cup U_{2}$ such that $\ell\left(u_{1} u_{2}\right)=$ $1, \ell\left(u_{2} u_{3}\right)=1, u_{1} \nsim u_{2}$ and $u_{2} \nsim u_{3}$. Then $u_{1}, u_{3} \in U_{2}, u_{2} \in U_{1}$ and $\ell\left(u_{1} u_{2} u_{3}\right)=1$.

Proof

By Lemma 2.8, $u_{2} \in U_{1}$.
Prove $u_{1} \in U_{2}$ and $u_{3} \in U_{2}$. Suppose towards a contradiction $u_{1} \in U_{1}$. Then, since $\ell\left(u_{1} u_{2}\right)=1$, a simple count shows $c\left(u_{1}, u_{2}^{-1}\right) \geq \frac{1}{2}$. Thus $u_{1} \sim u_{2}^{-1}$. Since $u_{2} \in U_{1}$ we have $u_{2} \sim u_{2}^{-1}$. Therefore $u_{1} \sim u_{2}$. Contradiction as $u_{1} \not \nsim u_{2}$. Thus $u_{1} \in U_{2}$. By the same argument we get $u_{3} \in U_{2}$.

By Lemma 2.9 we get $\ell\left(u_{1} u_{2} u_{3}\right)=1$.

Definition 2.11 A sequence $\left(u_{1}, \ldots, u_{n}\right)$ of $U_{1} \cup U_{2}$ is said to be pseudoreduced if it satisfies the following conditions:
(i) $u_{i} \neq 1, u_{i} u_{i+1} \neq 1$,
(ii) $u_{i}, u_{i+1} \in U_{1} \Rightarrow u_{i} \nsim u_{i+1}$.

Lemma 2.12 If $\left(u_{1}, \ldots, u_{n}\right), n \geq 2$, is a pseudo-reduced sequence of $U_{1} \cup U_{2}$ then

$$
\ell\left(u_{1} \cdots u_{n}\right)=\sum_{i=1}^{n} \ell\left(u_{i}\right)-2 \sum_{i=1}^{n-1} c\left(u_{i}, u_{i+1}^{-1}\right) .
$$

Proof

The proof is by induction on n. The lemma is trivial for $n=2$.
For $n=3$. We consider the following two cases.
Case 1. $\ell\left(u_{1} u_{2}\right)=1$ and $\ell\left(u_{2} u_{3}\right)=1$.
By Lemma $2.8 u_{2} \in U_{1}$. Since the sequence $\left(u_{1}, u_{2}, u_{3}\right)$ is pseudo-reduced, $u_{1} \nsim u_{2}$ and $u_{2} \nsim u_{3}$. Thus, by Lemma 2.9, we have $\ell\left(u_{1} u_{2} u_{3}\right)=1$. Therefore

$$
\ell\left(u_{1} u_{2} u_{3}\right)=1=\ell\left(u_{1}\right)+\ell\left(u_{2}\right)+\ell\left(u_{3}\right)-2\left(c\left(u_{1}, u_{2}^{-1}\right)+c\left(u_{2}, u_{3}^{-1}\right)\right)
$$

and we find the desired conclusion.
Case 2. $\ell\left(u_{1} u_{2}\right)=2$ or $\ell\left(u_{2} u_{3}\right)=2$.
Then $c\left(u_{1}, u_{2}^{-1}\right)=0$ or $c\left(u_{2}, u_{3}^{-1}\right)=0$. Therefore

$$
c\left(u_{1}, u_{2}^{-1}\right)+c\left(u_{2}, u_{3}^{-1}\right) \leq \frac{1}{2} .
$$

Since $\frac{1}{2}<\ell\left(u_{2}\right)-\delta=1$ (as $\delta=0$), by Lemma 1.3, we get the desired conclusion.
We go from n to $n+1$. We treat the two following cases.
Case 1. $\ell\left(u_{1} u_{2}\right)=1$ and $\ell\left(u_{2} u_{3}\right)=1$. Put

$$
a=u_{1} u_{2}, \quad b=u_{3}, \quad d=u_{4} \cdots u_{n+1}
$$

We claim $c\left(b, d^{-1}\right)=c\left(u_{3}, u_{4}^{-1}\right)$. We have

$$
\begin{equation*}
c\left(b, d^{-1}\right)=\frac{1}{2}\left(\ell\left(u_{3}\right)+\ell\left(u_{4} \cdots u_{n+1}\right)-\ell\left(u_{3} \cdots u_{n+1}\right)\right) . \tag{1}
\end{equation*}
$$

By induction we have

$$
\begin{aligned}
& \ell\left(u_{3} \cdots u_{n+1}\right)=\sum_{i=3}^{n+1} \ell\left(u_{i}\right)-2 \sum_{i=3}^{n} c\left(u_{i}, u_{i+1}^{-1}\right), \\
& \ell\left(u_{4} \cdots u_{n+1}\right)=\sum_{i=4}^{n+1} \ell\left(u_{i}\right)-2 \sum_{i=4}^{n} c\left(u_{i}, u_{i+1}^{-1}\right) .
\end{aligned}
$$

By replacing in (1) we get

$$
c\left(b, d^{-1}\right)=\frac{1}{2}\left(\ell\left(u_{3}\right)-\ell\left(u_{3}\right)+2 c\left(u_{3}, u_{4}^{-1}\right)\right)=c\left(u_{3}, u_{4}^{-1}\right),
$$

as claimed.
We claim $\ell\left(u_{3} u_{4}\right)=2$ and $\ell\left(u_{1} u_{2} u_{3}\right)=1$. Since the sequence $\left(u_{1}, u_{2}, u_{3}\right)$ is pseudo-reduced and $\ell\left(u_{1} u_{2}\right)=\ell\left(u_{2} u_{3}\right)=1$, by Lemma 2.10, $\ell\left(u_{1} u_{2} u_{3}\right)=1$ and $u_{3} \in U_{2}$.

Suppose that $\ell\left(u_{3} u_{4}\right)=1$. Since $\ell\left(u_{2} u_{3}\right)=1$ we get, by Lemma 2.8, $u_{3} \in U_{1}$. Contradiction with $u_{3} \in U_{2}$. This ends the proof of our claim.

Since $\ell\left(u_{3} u_{4}\right)=2$ we have $c\left(u_{3}, u_{4}^{-1}\right)=0$ and thus $c\left(b, d^{-1}\right)=0$. Therefore

$$
c\left(a, b^{-1}\right)+c\left(b, d^{-1}\right)=\frac{1}{2}\left(\ell\left(u_{1} u_{2}\right)+\ell\left(u_{3}\right)-\ell\left(u_{1} u_{2} u_{3}\right)\right)=\frac{1}{2} .
$$

Since $\frac{1}{2}<\ell(b)-\delta=1$ (as $\left.\delta=0\right)$, by Lemma 1.3, we get

$$
\begin{equation*}
\ell(a b c)=\ell(a)+\ell(b)+\ell(c)-2\left(c\left(a, b^{-1}\right)+c\left(b, d^{-1}\right)\right) . \tag{2}
\end{equation*}
$$

By induction we have

$$
\ell(c)=\sum_{i=4}^{n+1} \ell\left(u_{i}\right)-2 \sum_{i=4}^{n} c\left(u_{i}, u_{i+1}^{-1}\right) .
$$

By replacing in (2), and since $c\left(b, d^{-1}\right)=c\left(u_{3}, u_{4}^{-1}\right), \ell\left(u_{1} \cdots u_{n+1}\right)$ is equal to

$$
\ell\left(u_{1} u_{2}\right)+\ell\left(u_{3}\right)+\sum_{i=4}^{n+1} \ell\left(u_{i}\right)-2 \sum_{i=4}^{n} c\left(u_{i}, u_{i+1}^{-1}\right)-2\left(c\left(u_{1} u_{2}, u_{3}^{-1}\right)+c\left(u_{3}, u_{4}^{-1}\right)\right) .
$$

But, since $\ell\left(u_{1} u_{2} u_{3}\right)=1$, a simple count shows

$$
\ell\left(u_{1} u_{2}\right)+\ell\left(u_{3}\right)-2 c\left(u_{1} u_{2}, u_{3}^{-1}\right)=\ell\left(u_{1} u_{2} u_{3}\right)=\sum_{i=1}^{3} \ell\left(u_{i}\right)-2 \sum_{i=1}^{2} c\left(u_{i}, u_{i+1}^{-1}\right) .
$$

Therefore we find

$$
\ell\left(u_{1} \cdots u_{n+1}\right)=\sum_{i=1}^{3} \ell\left(u_{i}\right)-2 \sum_{i=1}^{2} c\left(u_{i}, u_{i+1}^{-1}\right)+\sum_{i=4}^{n+1} \ell\left(u_{i}\right)-2 \sum_{i=4}^{n} c\left(u_{i}, u_{i+1}^{-1}\right)-2 c\left(u_{3}, u_{4}^{-1}\right)
$$

$$
=\sum_{i=1}^{n+1} \ell\left(u_{i}\right)-2 \sum_{i=1}^{n} c\left(u_{i}, u_{i+1}^{-1}\right)
$$

Case 2. $\ell\left(u_{1} u_{2}\right)=2$ or $\ell\left(u_{2} u_{3}\right)=2$.
Put

$$
a=u_{1}, \quad b=u_{2}, \quad d=u_{3} \cdots u_{n+1}
$$

We claim $c\left(b, d^{-1}\right)=c\left(u_{2}, u_{3}^{-1}\right)$. We have

$$
c\left(b, d^{-1}\right)=\frac{1}{2}\left(\ell\left(u_{2}\right)+\ell\left(u_{3} \cdots u_{n+1}\right)-\ell\left(u_{2} \cdots u_{n+1}\right)\right) .
$$

By induction

$$
\begin{aligned}
& \ell\left(u_{3} \cdots u_{n+1}\right)=\sum_{i=3}^{n+1} \ell\left(u_{i}\right)-2 \sum_{i=3}^{n} c\left(u_{i}, u_{i+1}^{-1}\right), \\
& \ell\left(u_{2} \cdots u_{n+1}\right)=\sum_{i=2}^{n+1} \ell\left(u_{i}\right)-2 \sum_{i=2}^{n} c\left(u_{i}, u_{i+1}^{-1}\right),
\end{aligned}
$$

after calculating, as in the precedent case, we get $c\left(b, d^{-1}\right)=c\left(u_{2}, u_{3}^{-1}\right)$.
Since $\ell\left(u_{1} u_{2}\right)=2$ or $\ell\left(u_{2} u_{3}\right)=2$, then $c\left(u_{1}, u_{2}^{-1}\right)=0$ or $c\left(u_{2}, u_{3}^{-1}\right)=0$.
Thus

$$
c\left(u_{1}, u_{2}^{-1}\right)+c\left(u_{2}, u_{3}^{-1}\right) \leq \frac{1}{2}
$$

We have

$$
c\left(a, b^{-1}\right)+c\left(b, d^{-1}\right)=c\left(u_{1}, u_{2}^{-1}\right)+c\left(u_{2}, u_{3}^{-1}\right) \leq \frac{1}{2}
$$

Therefore, as in the above case, by Lemma 1.3 we get

$$
\ell(a b c)=\ell(a)+\ell(b)+\ell(c)-2\left(c\left(a, b^{-1}\right)+c\left(b, d^{-1}\right)\right),
$$

thus
$\ell\left(u_{1} \cdots u_{n+1}\right)=\ell\left(u_{1}\right)+\ell\left(u_{2}\right)+\sum_{i=3}^{n+1} \ell\left(u_{i}\right)-2 \sum_{i=3}^{n} c\left(u_{i}, u_{i+1}^{-1}\right)-2\left(c\left(u_{1}, u_{2}^{-1}\right)+c\left(u_{2}, u_{3}^{-1}\right)\right)$.
Thus we have the desired conclusion.

3 Proof of Theorem 1.2

We have

$$
\begin{gathered}
U_{1}=\bigcup\left\{H(s) \mid s \in U \cap S_{1}\right\}, \quad U_{2}=\left(U \cap S_{2}\right)^{ \pm 1} \\
H(s)=q(s) \cap S_{1} \cup\{1\}
\end{gathered}
$$

By Lemma 2.3, $H(s)$ is a finite subgroup.
The set U_{1} can be written in the following manner

$$
U_{1}=H\left(s_{1}\right) \cup \ldots \cup H\left(s_{n}\right),
$$

where s_{1}, \ldots, s_{n} are in $U \cap S_{1}$ and $s_{i} \nsim s_{j}$ for $i \neq j$.
Let F be the subgroup generated by U_{2}. We are going to prove that H is the free product $H\left(s_{1}\right) * \cdots * H\left(s_{n}\right) * F$ and that F is free with basis $U \cap S_{2}$.

As $U=\left(U \cap S_{1}\right) \cup\left(U \cap S_{2}\right) \subseteq U_{1} \cup U_{2}, H$ is generated by $H\left(s_{1}\right) \cup \ldots \cup$ $H\left(s_{n}\right) \cup U_{2}$.

Now to prove that $H=H\left(s_{1}\right) * \cdots * H\left(s_{n}\right) * F$ and that $U \cap S_{2}$ is a basis of F we must show that if $\left(u_{1}, \ldots, u_{n}\right)$ is a sequence of $H\left(s_{1}\right) \cup \ldots \cup H\left(s_{n}\right) \cup U_{2}$ satisfying:
(i) $u_{i} \neq 1, u_{i} u_{i+1} \neq 1$,
(ii) if $u_{i} \in H\left(s_{j}\right)$ then $u_{i+1} \notin H\left(s_{j}\right)$,
then $u_{1} \cdots u_{n} \neq 1$.
To this end we must prove that if $\left(u_{1}, \ldots, u_{n}\right)$ is a sequence of $U_{1} \cup U_{2}$ satisfying the conditions:
(i) $u_{i} \neq 1, u_{i} u_{i+1} \neq 1$,
(ii) $u_{i}, u_{i+1} \in U_{1} \Rightarrow u_{i} \nsim u_{i+1}$,
then $u_{1} \cdots u_{n} \neq 1$.
Thus we must prove that if $\left(u_{1}, \ldots, u_{n}\right)$ is a pseudo-reduced sequence of $U_{1} \cup U_{2}$ then $u_{1} \cdots u_{n} \neq 1$.

Now if $\left(u_{1}, \ldots, u_{n+1}\right)$ is a pseudo-reduced sequence of $U_{1} \cup U_{2}$ then, by Lemma 2.12, we have

$$
\begin{gathered}
\ell\left(u_{1} \cdots u_{n+1}\right)=\sum_{i=1}^{n+1} \ell\left(u_{i}\right)-2 \sum_{i=1}^{n} c\left(u_{i}, u_{i+1}^{-1}\right) \\
=\sum_{i=1}^{n} \ell\left(u_{i}\right)-2 \sum_{i=1}^{n-1} c\left(u_{i}, u_{i+1}^{-1}\right)+\ell\left(u_{n+1}\right)-2 c\left(u_{n}, u_{n+1}\right) \\
=\ell\left(u_{1} \cdots u_{n}\right)+\ell\left(u_{n} u_{n+1}\right)-\ell\left(u_{n}\right)
\end{gathered}
$$

Since $\ell\left(u_{n} u_{n+1}\right)-\ell\left(u_{n}\right) \geq 0$ we get

$$
\ell\left(u_{1} \cdots u_{n+1}\right) \geq \ell\left(u_{1} \cdots u_{n}\right)
$$

Therefore by induction on n we get $\ell\left(u_{1} \cdots u_{n}\right) \geq \ell\left(u_{1}\right)$. Since $\ell\left(u_{1}\right) \neq 0$ then $\ell\left(u_{1} \cdots u_{n}\right) \neq 0$ and thus $u_{1} \cdots u_{n} \neq 1$.

Acknowledgements. Many thanks to Tuna Altinel to have read an earlier version of this paper and to Gilbert Levitt for his remarks and improvements.

References

[1] M. Coornaert, T. Delzant and A. Papadopoulos. Géométrie et théorie des groupes (Lecture Notes in Mathematics, Springer-Verlag, 1990).
[2] M. Gromov. Hyperbolic groups. In Essays in Group Theory (S. M. Gersten, ed.), M.S.R.I. Pub. 8, Springer, 1987.
[3] R.C. Lyndon. Length functions in groups. Math. Scand. 12 (1963), 209-234.

