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Reversible Markov operators

On a probability space pS ,S, µq, a self-adjoint operator
M : L2pµq Ñ L

2pµq is said to be Markovian if µ-almost surely,

@ f P L
2pµq, f ě 0 ñ Mrf s ě 0

Mr1s “ 1

So M admits a spectral decomposition: there exists a
projection-valued measure pEl qlPr´1,1s such that

M “
ż

1

´1

l dEl

and M is said to be ergodic if

@ f P L
2pµq, Mf “ f ñ f P Vectp1q

namely if pE1 ´ E1´qrL2pµqs “ Vectp1q.



Hyperboundedness

Stronger requirement: M has a spectral gap if there exists λ ą 0
such that pE1 ´ E1´λqrL2pµqs “ Vectp1q. Spectral gap: the
supremum of such λ.
The Markov operator M is hyperbounded if there exists p ą 2 such
that

}M}
L2pµqÑLppµq ă `8

Theorem

A self-adjoint ergodic and hyperbounded Markovian operator
admits a spectral gap.

This result was conjectured by Høegh-Krohn and Simon [1972], in
the context of Markovian semi-groups.



Semi-groups

A reversible Markovian semi-group pPtqtě0: a continuous family of
self-adjoint Markovian operators on L

2pµq satisfying P0 “ Id and

@ t, s ě 0, PtPs “ Pt`s

Ergodic if for any f P L
2pµq, Pt rf s Ñ µrf s1 in L

2pµq. Admits a
spectral gap: this convergence is uniform over the unit ball of
L
2pµq. It corresponds to a spectral gap of the associated generator

L.
The semi-group pPtqtě0 is said to be hyperbounded, if there exists
a time T ě 0 such that the Markov operator PT is hyperbounded.
It follows from the previous result, applied to M “ PT , that a
reversible ergodic hyperbounded Markov semi-group admits a
spectral gap.



Hypercontractivity

The semi-group pPtqtě0 is said to be hypercontractive, if there
exist p ą 2 and a time T ě 0 such that the norm of PT from
L
2pµq to L

ppµq is 1.
The Høegh-Krohn and Simon’s conjecture is easy to solve for a
hypercontractive Markov semi-group, since not only its generator
admits a spectral gap, but it also satisfies a logarithmic Sobolev
inequality, property in fact equivalent to hypercontractivity.
It is known that hyperboundedness is itself equivalent to a
non-tight logarithmic Sobolev inequality and that the existence of
a spectral gap enables to tight such an inequality.
Thus the previous theorem shows that for semi-groups,
hyperboundedness is equivalent of hypercontractivity.



Finite Cheeger inequality
Finite setting: S is a finite set whose points are given a positive
probability by µ. We start with a Markovian generator L: a matrix
pLpx , yqqx ,yPS whose off-diagonal entries are non-negative and
whose lines sum up to zero. We assume that the operator L is
symmetric in L

2pµq. It is well-known to be non-positive definite, let

0 “ λ1 ď λ2 ď ¨ ¨ ¨ ď λN

be the spectrum of ´L.
Cheeger’s inequality relates λ2 to an isoperimetric quantity. The
conductance associated to any subset A Ă S with A ­“ H:

jpAq ≔ µp1ALp1Acqq
µpAq

The connectivity constant of L is defined by

ι2 ≔ min
A­“H,S

maxtjpAq, jpAcqu “ min
A : 0ăµpAqď1{2

jpAq

With |L| ≔ maxxPS |Lpx , xq|, the Cheeger’s inequality states that

ι2
2

8 |L| ď λ2 ď ι2



Connectivity spectrum

What for the other eigenvalues λ3, ..., λN? Introduce the
connectivity spectrum pιnqnPJNK. For n P N, let Dn be the set of
n-tuples pA1, ...,Anq of disjoint and non-empty subsets of S and

ιn ≔ min
pA1,...,AnqPDn

max
kPJnK

jpAkq

Clearly ι1 “ 0 “ λ1 and for n “ 2 the two definitions of ι2 coincide.
We conjectured that there exists a mapping c : N Ñ R

˚
` such that

for all pS , µ, Lq as above,

cpnq ι
2
n

|L| ď λn ď ιn (1)

The second inequality is immediate, it amounts to consider the
vector space generated by the indicator functions of n disjoints
subsets in the variational characterization of λn through Rayleigh
quotients.



Higher order Cheeger inequalities

The first inequality was recently obtained by Lee, Gharan and
Trevisan [2011], in the context of weighted finite graphs pS ,E , ωq:
E is a set of undirected edges (which may contain loops) weighted
through ω : E Ñ R`. It can be transcripted for finite Markovian
generator, taking

@ e P E , ωpeq ≔
"

µpxqLpx , yq , if e “ tx , yu with x ­“ y
|L| ` Lpx , xq , if e “ tx , xu

It follows

Theorem (Lee, Gharan and Trevisan)

There exists a universal constant η ą 0 such that (1) is satisfied
with

@ n P N, cpnq ≔ η

n8



A hyperboundedness estimate

Hyperboundedness does not look very pertinent in the finite
setting, let us nevertheless derive from the above theorem a
quantitative bound for this property. On the finite set S , consider
a Markov kernel M symmetric in L

2pµq and denote its spectrum by

1 “ θ1 ě θ2 ě ¨ ¨ ¨ ě θN ě ´1

Proposition

Assume that for some n P JNK, N “ cardpSq, we have
θn ě 1 ´ cpnq{4. Then we have that for any p ą 2,

}M}p
L2pµqÑLppµq

ě p1 ´ 2δnqp
2

n
p
2

´1

where δn ≔
a

p1 ´ θnq{cpnq ď 1{2.



Proof (1)

Introduce the Markovian generator L “ M ´ Id, the eigenvalues of
´L are λm “ 1 ´ θm, m P JNK. Next consider n P JNK as in the
proposition. According to Theorem [LGT], we have

ιn ď
a

|L|λn{cpnq ď
a

λn{cpnq “ δn

so we can find pA1, ...,Anq P Dn satisfying,

@ k P JnK, δnµpAkq ě µr1Ak
Lr1Ac

k
ss

Taking into account that

Lr1Ac

k
s “ 1Ak

´ Mr1Ak
s

we deduce that for any k P JnK,

p1 ´ δnqµpAkq ď µr1Ak
Mr1Ak

ss



Proof (2)

For any k P JnK, consider the set

Bk ≔ tx P Ak : Mr1Ak
spxq ě 1 ´ 2δnu

We compute that

µr1Ak
Mr1Ak

ss “ µr1Bk
Mr1Ak

ss ` µr1AkzBk
Mr1Ak

ss
ď µpBkq ` p1 ´ 2δnqpµpAkq ´ µpBkqq

It follows from the two last bounds that

1

2
µpAkq ď µpBkq ď µpAkq

Since the sets A1, ..., An are disjoint, there exists k P JnK such that
µpAkq ď 1{n. Consider f “ 1Ak

, it appears that

µrf 2s “ µpAkq



Proof (3)

and since by assumption 1 ´ 2δn ě 0, we get by definition of Bk ,

µr|Mrf s|ps ě p1 ´ 2δnqpµpBkq

ě p1 ´ 2δnqp
2

µpAkq

In particular, we obtain that

}M}p
L2pµqÑLppµq

ě µr|Mrf s|ps
µrf 2s p

2

ě p1 ´ 2δnqp

2µpAkq p
2

´1

ě p1 ´ 2δnqp
2

n
p
2

´1

as announced.
�



On the spectral Theorem

We come back to the Høegh-Krohn and Simon’s conjecture
framework and approximate it by finite sets.
We need a preliminary consequence of the spectral Theorem:

Lemma

The ergodic self-adjoint Markov operator M has no spectral gap if
and only if for any λ ą 0, pE1 ´ E1´λqrL2pµqs is of infinite
dimension.

Indeed, the mapping r0, 2s Q λ ÞÑ dimppE1 ´ E1´λqrL2pµqsq is
non-decreasing. So if for some λ P p0, 2s, we have that
dimppE1 ´ E1´λqrL2pµqsq ă `8, it appears that the Z`-valued
mapping r0, λs Q l ÞÑ dimpE1 ´ E1´l q has a finite number of jumps,
which correspond to eigenvalues.



A contradictory argument (1)

Assume that the ergodic self-adjoint Markov operator M has no
spectral gap. For any n P N, let 0 ă ǫn ă 1 ^ pcpnq{32q be given,
where cpnq is defined in Theorem [LGT]. By the above lemma, we
can find f1, ..., fn P L

2pµq, which are normalized, mutually
orthogonal and so that

µrfiMfj s
"

“ 0 , if i ­“ j
ě p1 ´ ǫnq , if i “ j

To come back to the finite case, consider a non-decreasing family
pSNqNPN of finite sub-σ-algebras of S such that

ł

NPN

SN “ σpf1, ..., fnq



A contradictory argument (2)

Fixing N P N, we consider µN the restriction of µ to SN , IN the
natural injection of L2pµNq into L

2pµq and EN the conditional
expectation (projection operator) with respect to SN . Define
furthermore MN ≔ ENMIN , which is a reversible Markov kernel on
pSN ,SN , µNq, where SN is the finite set of atoms of SN .
It follows from Jensen’s inequality, we have for any p ą 2

}MN}p
L2pµN qÑLppµN q

ď }M}p
L2pµqÑLppµq

Furthermore by the martingale convergence theorem, for any
f P L

2pσpf1, ..., fnq, µq, we have in L
2pµq,

lim
NÑ8

ENrf s “ f



A contradictory argument (3)

It can be deduced from the choice of f1, ..., fn that for N
sufficiently large, MN has n eigenvalues above 1 ´ 2ǫn. We can
then apply our finite hyperboundedness estimate with
δn ≔

a
2ǫn{cpnq ď 1{4, to get

}MN}p
L2pµN qÑLppµN q

ě p1 ´ 2δnqp
2

n
p
2

´1

ě 2´p´1n
p
2

´1

It follows that

}M}p
L2pµqÑLppµq

ě }MN}p
L2pµN qÑLppµN q

ě 2´p´1n
p
2

´1

and since this is true for all n P N, M cannot be hyperbounded.



Extension of definitions

The previous approximation procedure also leads to the extension
of Cheeger’s inequalities to the general setting of self-adjoint
Markov operators in L

2pµq. For any n P N, define

λnpMq ≔ inf
H : dimpHq“n

max

"
µrf pId ´ Mqrf ss

µrf 2s : f P Hzt0u
*

(in the general framework, these quantities are no longer
necessarily counting the ordered eigenvalues of Id ´ M). The
definition of conductance can also be extended to all non-negligible
and measurable A P S:

jpAq ≔ µp1AMp1Acqq
µpAq

so that the connectivity spectrum pιnpMqqnPN can be defined as
before.



Markovian higher order Cheeger’s inequalities

Proposition

With η ą 0 the universal constant of Theorem [LGT], we have

@ n P N,
η

n8
ι2npMq

|M| ď λnpMq ď ιnpMq

Extension to Markovian generators? Let L be the generator of
self-adjoint Markovian semi-group pPtqtě0. If we define for any
n P N,

λnpLq ≔ inf
H : dimpHq“n

max

"
µrf p´Lqrf ss

µrf 2s : f P Hzt0u
*

then we have

@ n P N, λnpLq “ lim
tÑ0`

1 ´ expp´tλnpLqq
t

“ lim
tÑ0`

λnpPtq
t



Dirichlet connectivity spectrum

A similar definition of the connectivity spectrum pιnpLqqnPN

through approximation via small times doesn’t work properly. It is
convenient to introduce the Dirichlet connectivity spectrum,
intermediary between the usual spectrum and the connectivity
spectrum. We come back to a general self-adjoint Markov operator
M. To any non-negligible A P S, we associate its first Dirichlet
eigenvalue λ0pM,Aq given by

#
λ0pM,Aq ≔ inff PDpAq

µrf pId´Mqrf ss
µrf 2s

DpAq ≔
 
f P L

2pµq : f “ 0 µ-a.s. on Ac
(

The Dirichlet connectivity spectrum pΛnpMqqnPN of M is defined by

@ n P N, ΛnpMq ≔ min
pA1,...,AnqPDn

max
kPJnK

λ0pM,Akq



Usual and Dirichlet connectivity spectra

In the finite setting, Lee, Gharan and Trevisan also proved:

Theorem (Lee, Gharan and Trevisan)

There exists a universal constant pη ą 0 such that for any finite
self-adjoint Markov operator M, we have

@ n P N,
pη
n6

ΛnpMq ď λnpMq ď ΛnpMq

There is no difficulty in applying the spatial approximation
procedure to the Dirichlet connectivity spectrum, so that the
finiteness assumption can be indeed removed.
But due to its spectral features, the Dirichlet connectivity
spectrum also well-behaves under small times approximations.



Dirichlet conditions

For any non-negligible A P S, resorting to the Dirichlet semi-group

@ t ě 0, PA,t : L2pµq Q f ÞÑ 1APtr1Af s

it can be proven that

lim
tÑ0`

ΛnpPtq
t

“ ΛnpLq

≔ min
pA1,...,AnqPDn

max
kPJnK

λ0pL,Akq

where
#

λ0pL,Aq ≔ inff PDpL,Aq
µrf p´Lqrf ss

µrf 2s

DpL,Aq ≔ tf P DpLq : f “ 0 µ-a.s. on Acu

With these definitions, Theorem [LGT2] extends to the generator
L.



Riemannian setting

Let us return to the Riemannian setting of Cheeger [1970]. The
state space S is a compact Riemannian manifold and L is the
associated Laplacian △ operator. Due to the regularizing
properties of the corresponding heat semi-group, Dn can be
restricted to contain only subsets with smooth boundaries. If A is
such a subset, a minimizer function exists for λ0pL,Aq, so going
through the proof of original Cheeger’s inequality, via co-area
formula, it appears that we can find a subset B Ă A with smooth
boundary BB such that

ˆ
σpBBq
µpBq

˙
2

ď 4λ0p△,Aq

σ is the pdimpSq ´ 1q-dimensional measure associated to µ, the
Riemannian probability. This observation leads to define the
connectivity spectrum pιnp△qqnPN of △ through

@ n P JNK, ιnp△q ≔ min
pA1,...,AnqP pDn

max
kPJnK

σpBAkq
µpAkq



Cheeger inequalities

The Riemannian higher order Cheeger inequalities follow:

Theorem

There exists a universal constant pη ą 0 such that for any compact
Riemannian manifold S, we have

@ n P N, λnp△q ě pη
n6

ι2np△q

To get corresponding Buser [1982] inequalities, we would need a
lower bound on the curvature of the boundaries of minimizing
elements for the Dirichlet spectrum.



Witten Laplacian

But it seems that the inequalities of Theorem [LGT2] are more
interesting that those of Cheeger. For instance they can be used to
deduce the exponential behavior of the small eigenvalues of Witten
Laplacians at small temperature. Still on a compact Riemannian
manifold, Witten Laplacians have the form Lβ “ △ ¨ ´β x∇U,∇¨y,
where β ě 0 is the inverse temperature and U : S Ñ R is a C1

potential.
An open and connected set B Ă S is said to be a well, if U is
constant on BB and if for any x P B , Upxq ă UpBBq. The height
of a well B is given by hpBq “ UpBBq ´ minB U. For n P N, let ln
the highest l ě 0 such that n disjoint wells of height l can be
found in S . Then we have

@ n P N, ln ≔ ´ lim
βÑ`8

β´1 lnpλnpLβqq



On a result of Wang

Consider the traditional L2 to L
4 hypercontractivity. Wang [2004]

has shown that if }M}4
L2pµqÑL4pµq ă 2, then the conjecture of

Høegh-Krohn and Simon is true and it is possible to deduce a
quantitative lower bound on the spectral gap. Next result shows
that this last part cannot be extended:

Proposition

For any K ě 2 and for any ǫ P p0, 1q, we can find a self-adjoint
ergodic Markov operator M whose spectral gap is ǫ and which is
such that }M}4

L2pµqÑL4pµq “ K.

Indeed, the example is very simple and is constructed on the two
points state space S ≔ t0, 1u, endowed with the probability
measure µ ≔ pη, 1 ´ ηq, η P p0, 1{2s, and with the self-adjoint
Markov operator in L

2pµq given by

M ≔ p1 ´ ǫqId ` ǫµ

where ǫ P p0, 1s, whose spectral gap is ǫ.



Changing the indices

To get quantitative bounds, we need to look at other eigenvalues
than the spectral gap. Here is another result of Lee, Gharan and
Trevisan:

Theorem (Lee, Gharan and Trevisan)

There exists a universal constant η ą 0 such that if
rcpnq ≔ η{ lnp1 ` nq, then for any finite self-adjoint Markov
operator,

@ n P N, λ2n ě rcpnqι2n

Again there is no difficulty to extend this result to general
self-adjoint Markov operators.
Lee, Gharan and Trevisan checked that the logarithmic order of
rcpnq is optimal, by applying hypercontractivity results due to
Bonami [1970] and Beckner [1975] to noisy hypercubes. We will
recover this optimality via the hypercontractivity of the
Ornstein-Uhlenbeck process.



A quantitative version
Consider a Young function Φ satisfying

lim
rÑ`8

Φprq
r2

“ `8

meaning that the Orlicz’s norm of LΦ is stronger than the L
2

norm. Define

@ n P N, kpnq “
?
n

Φ´1pnq
A careful examination of the previous proofs leads to:

Theorem

Let M be a self-adjoint Markov operator. If n P N is such that
kpnq ě 2

?
2 }M}

L2ÑLΦ , then we are assured of

λ2npMq ě rcpnq
16

In particular the top of the spectrum of M consists of 2n
eigenvalues 1, 1 ´ λ2pMq, ..., 1 ´ λ2npMq (with multiplicities).



Ornstein-Uhlenbeck generator

Let pPtqtě0 be the self-adjoint Markov semi-group associated to
the Ornstein-Uhlenbeck generator defined by

@ f P C
2

bpRq, @ x P R, Lrf spxq ≔ f 2pxq ´ xf 1pxq

which is essentially self-adjoint on L
2pγq, where γ is the normal

centered Gaussian distribution.
It is well-known (see Nelson [1973] and Gross [1975]) that for any
p ą 2,

}Pt}L2pγqÑLppγq “
#

`8 , if t ă 1

2
lnpp ´ 1q

1 , if t ě 1

2
lnpp ´ 1q

(for a less radical transition, consider the Young function given by
Φprq ≔ pr2 ` 1q lnpr2 ` 1q ´ r2, then }Pt}L2pγqÑLΦpγq is of order

1{
?
t for t ą 0 small).



A disappointing application?

Let us apply the previous theorem to M “ Pt for t ą 0 and
relatively to the usual Lebesgue space L

ppγq with p ą 2. More
precisely, for n P N, consider

pn ≔

2 lnpnq
lnpnq ´ 2 lnp2

?
2q

tn ≔

1

2
lnppn ´ 1q „ 2 lnp2

?
2q{ lnpnq

and let n0 P N be the smallest integer such that pn ą 2. We obtain

n ě n0 ùñ λnpLq ě cpnq
16tn

(2)

The r.h.s. is of order 1, which is quite disappointing, since it is
well-known that λnpLq “ n ´ 1 for all n P N!
Could our quantitative estimates (or Theorem [LGT3]) be
improved to get a lower bound of λnpLq going to infinity with n?



Tensorization

This is not possible, because the hypercontractivity property is
stable by tensorization. More precisely, for N P N, consider the
semi-group pPbN

t qtě0 acting on L
2pγbNq. The generator LpNq of

pPbN
t qtě0 corresponds to the sum of N copies of L, each acting on

different coordinates of RN . In particular, we get

@ n P J2,N ` 1K, λnpLpNqq “ λ2pLq

This forbids a lower bound going to infinity with n in (2) and
shows the optimality of the previous estimates.
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