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Reversible Markov operators

On a probability space (S, S, 1), a self-adjoint operator
M : 1L2(p) — IL2(u) is said to be Markovian if p-almost surely,

Y fel?(p), f>0 = M[f]=0

So M admits a spectral decomposition: there exists a
projection-valued measure (E)/c[—1,1] such that

1
M = f | dE;
-1

and M is said to be ergodic if
Y fel?(p), Mf = f = fe Vect(1)

namely if (E; — E;_)[L?(u)] = Vect(1).



Hyperboundedness

Stronger requirement: M has a spectral gap if there exists A > 0
such that (E; — E;_)[L?(1)] = Vect(1). Spectral gap: the
supremum of such .

The Markov operator M is hyperbounded if there exists p > 2 such
that

IMli2yorry < +%

A self-adjoint ergodic and hyperbounded Markovian operator
admits a spectral gap.

This result was conjectured by Hgegh-Krohn and Simon [1972], in
the context of Markovian semi-groups.



A reversible Markovian semi-group (P;):>0: a continuous family of
self-adjoint Markovian operators on IL?(11) satisfying Py = Id and

Vits=0, P:Ps = Piys

Ergodic if for any f € L2(p), P;[f] — p[f]1 in L2(u). Admits a
spectral gap: this convergence is uniform over the unit ball of
IL?(p). It corresponds to a spectral gap of the associated generator
L.

The semi-group (P¢)¢=0 is said to be hyperbounded, if there exists
a time T = 0 such that the Markov operator Pt is hyperbounded.
It follows from the previous result, applied to M = Py, that a
reversible ergodic hyperbounded Markov semi-group admits a
spectral gap.



Hypercontractivity

The semi-group (P¢)¢=0 is said to be hypercontractive, if there
exist p > 2 and a time T > 0 such that the norm of Py from
L2 () to LP(u) is 1.

The Hgegh-Krohn and Simon’s conjecture is easy to solve for a
hypercontractive Markov semi-group, since not only its generator
admits a spectral gap, but it also satisfies a logarithmic Sobolev
inequality, property in fact equivalent to hypercontractivity.

It is known that hyperboundedness is itself equivalent to a
non-tight logarithmic Sobolev inequality and that the existence of
a spectral gap enables to tight such an inequality.

Thus the previous theorem shows that for semi-groups,
hyperboundedness is equivalent of hypercontractivity.



Finite Cheeger inequality

Finite setting: S is a finite set whose points are given a positive

probability by p. We start with a Markovian generator L: a matrix

(L(x,y))x,yes whose off-diagonal entries are non-negative and

whose lines sum up to zero. We assume that the operator L is

symmetric in IL?(y). It is well-known to be non-positive definite, let
0

= A < X < - < Ay

be the spectrum of —L.
Cheeger's inequality relates A, to an isoperimetric quantity. The
conductance associated to any subset A < S with A = ¢:

, p(LaL(Tac))
J(A —
“ 1(A)
The connectivity constant of L is defined by
. . A (AT . ‘(A
1 A%n’smaX{J( ),J(A%)} A:O<T('£')<1/2J( )

With |L| := maxyes |L(x, x)|, the Cheeger's inequality states that

L
ﬁé)\2<b2



Connectivity spectrum

What for the other eigenvalues A3, ..., A\y? Introduce the
connectivity spectrum (t,)nepny- For n € N, let D, be the set of
n-tuples (A1, ..., A,) of disjoint and non-empty subsets of S and

= min max j(A
n (A1, An)EDp ke[[n]]j( )
Clearly t1 = 0 = A1 and for n = 2 the two definitions of ¢, coincide.
We conjectured that there exists a mapping ¢ : N — R% such that
for all (S, u, L) as above,

< Ap < g (1)

The second inequality is immediate, it amounts to consider the
vector space generated by the indicator functions of n disjoints
subsets in the variational characterization of A\, through Rayleigh
quotients.



Higher order Cheeger inequalities

The first inequality was recently obtained by Lee, Gharan and
Trevisan [2011], in the context of weighted finite graphs (S, E,w):
E is a set of undirected edges (which may contain loops) weighted
through w : E — R,. It can be transcripted for finite Markovian
generator, taking

— (x)L(x, ,if e = {x,y} with x =
veck, wle) = { |HL| + L(x,yx) Jife= {x,i} g

It follows

There exists a universal constant ) > 0 such that (1) is satisfied
with

VneN, c(n) = 2




A hyperboundedness estimate

Hyperboundedness does not look very pertinent in the finite
setting, let us nevertheless derive from the above theorem a
quantitative bound for this property. On the finite set S, consider
a Markov kernel M symmetric in I.?(1) and denote its spectrum by

1l =601 20> - >0y > -1

Proposition

Assume that for some n € [N], N = card(S), we have
0, >1—c(n)/4. Then we have that for any p > 2,

p (1 - 25n)P E_l
Mltagy ooy = — "

where 0, = +/(1 — 0,)/c(n) < 1/2.




Proof (1)

Introduce the Markovian generator L = M — Id, the eigenvalues of
—Lare \p, =1—0,,, me [N]. Next consider n € [N] as in the
proposition. According to Theorem [LGT], we have

tn < VILAR/c(n) < V/An/c(n) = 6,
so we can find (A1, ..., A,) € D, satisfying,
V ke [n], onpt(Ak) = plla L[Lac]]
Taking into account that
Lla] = 1a —M[la]
we deduce that for any k € [n],

(1 =0n)u(Ax) < pllaM[La,l]]



Proof (2)

For any k € [n], consider the set
B, = {X € A : M[]lAk](X) =>1-— 25,,}
We compute that

N[]lAkM[]lAk]] = :U‘[]]'BkM[]lAk]] + :u[]lAk\BkM[]lAk]]
< p(Bi) + (1 —205)(1(Ak) — p(Bk))

It follows from the two last bounds that

%M(Ak) < pu(Bi) < p(Ax)

Since the sets A, ..., A, are disjoint, there exists k € [n] such that
1(Ak) < 1/n. Consider f = 14,, it appears that

ulf?] = pu(Ae)



Proof (3)

and since by assumption 1 — 24, > 0, we get by definition of By,

plIMIF]P]

A\

(1 —26,)"1(Bx)

RLES SN

In particular, we obtain that

P L R S L §
Moy > = a2

as announced.



On the spectral Theorem

We come back to the Hgegh-Krohn and Simon's conjecture
framework and approximate it by finite sets.
We need a preliminary consequence of the spectral Theorem:

The ergodic self-adjoint Markov operator M has no spectral gap if
and only if for any A > 0, (Ey — E;_»)[IL?(u)] is of infinite
dimension.

Indeed, the mapping [0,2] 3 A — dim((E; — E;_»)[L2(n)]) is
non-decreasing. So if for some A € (0,2], we have that

dim((E; — E;_»)[L?(n)]) < +c0, it appears that the Z, -valued
mapping [0,A] 3/ — dim(E; — E;_/) has a finite number of jumps,
which correspond to eigenvalues.



A contradictory argument (1)

Assume that the ergodic self-adjoint Markov operator M has no
spectral gap. Forany ne N, let 0 <€, <1 A (c(n)/32) be given,
where c(n) is defined in Theorem [LGT]. By the above lemma, we
can find f1,....f, € L2(u), which are normalized, mutually
orthogonal and so that

0 ifi=]
(1—e,) . ifi=]

To come back to the finite case, consider a non-decreasing family
(Sn)Nen of finite sub-o-algebras of S such that

\/SN = o(f,....fn)

NeN



A contradictory argument (2)

Fixing N € N, we consider upy the restriction of p to Sy, Iy the
natural injection of IL?(jup) into IL?() and Ep the conditional
expectation (projection operator) with respect to Sy. Define
furthermore My = EyMlpy, which is a reversible Markov kernel on
(Sn, Sn, i), where Sy is the finite set of atoms of Sy.

It follows from Jensen's inequality, we have for any p > 2

IMIE2 oty < M2 1000

Furthermore by the martingale convergence theorem, for any
fel?(o(fl,...,fa), 1), we have in L2(p),

lim Ey[f] = f
NT@N[]



A contradictory argument (3)

It can be deduced from the choice of fi, ..., f, that for N
sufficiently large, My has n eigenvalues above 1 — 2¢,. We can
then apply our finite hyperboundedness estimate with

On = ~/2¢€p/c(n) < 1/4, to get
P S LV
IMNL2 Gy orr ) 2

It follows that

P
”M”H}(u JoLP () = HM’V||L2(MN)—>L”(MN) =

and since this is true for all n € N, M cannot be hyperbounded.



Extension of definitions

The previous approximation procedure also leads to the extension
of Cheeger's inequalities to the general setting of self-adjoint
Markov operators in IL2(1). For any n € N, define

— - plfId — M)[f]]
(M) = H:di::(ﬁ_l):n max{ M c fe H\{O}}

(in the general framework, these quantities are no longer
necessarily counting the ordered eigenvalues of Id — M). The
definition of conductance can also be extended to all non-negligible
and measurable Ae S:

p(LaM(Tac))
1(A)

so that the connectivity spectrum (t,(M))pen can be defined as
before.

JA) =



Markovian higher order Cheeger's inequalities

Proposition
With n > O the universal constant of Theorem [LGT], we have

2
1 (M)
VneN, ? |M| < )\n(M) < Ln(M)

Extension to Markovian generators? Let L be the generator of
self-adjoint Markovian semi-group (P;)¢>o. If we define for any
neN,

_ PR LGOIl
An(L) = s { .feva}

H:dim(H

then we have

VneN, (L)

I
=



Dirichlet connectivity spectrum

A similar definition of the connectivity spectrum (¢5(L))pen
through approximation via small times doesn't work properly. It is
convenient to introduce the Dirichlet connectivity spectrum,
intermediary between the usual spectrum and the connectivity
spectrum. We come back to a general self-adjoint Markov operator
M. To any non-negligible A € S, we associate its first Dirichlet
eigenvalue \o(M, A) given by

D(A) = {fe }L2(,u) . f =0 p-a.s. on Ac}

The Dirichlet connectivity spectrum (A,(M))pen of M is defined by

N, A(M) = i Ao(M, A
VYV ne 5 ( ) (Al,.TJ\r:)eDnIEQ[[a;ﬁ O( k)



Usual and Dirichlet connectivity spectra

In the finite setting, Lee, Gharan and Trevisan also proved:

Theorem (Lee, Gharan and Trevisan)

There exists a universal constant i) > 0 such that for any finite
self-adjoint Markov operator M, we have

n
VaeN,  —Af(M) < A(M) < Aq(M)

There is no difficulty in applying the spatial approximation
procedure to the Dirichlet connectivity spectrum, so that the
finiteness assumption can be indeed removed.

But due to its spectral features, the Dirichlet connectivity
spectrum also well-behaves under small times approximations.



Dirichlet conditions

For any non-negligible A € S, resorting to the Dirichlet semi-group
Vit>0, Pa::L23u)sf — 1P laf]

it can be proven that

fim AelPe) - _ An(L)
t—0+ t
= i Mo(L, A
(. min ), max o(L, Ax)
where
Ao(L,A) = infrep(L a) 7”“&,%“]]
D(L,A) = {feD(L): f=0pas on A%

With these definitions, Theorem [LGT2] extends to the generator
L.



Riemannian setting

Let us return to the Riemannian setting of Cheeger [1970]. The
state space S is a compact Riemannian manifold and L is the
associated Laplacian A operator. Due to the regularizing
properties of the corresponding heat semi-group, D, can be
restricted to contain only subsets with smooth boundaries. If A is
such a subset, a minimizer function exists for Ag(L, A), so going
through the proof of original Cheeger's inequality, via co-area
formula, it appears that we can find a subset B < A with smooth
boundary 0B such that

(2 < e

o is the (dim(S) — 1)-dimensional measure associated to i, the
Riemannian probability. This observation leads to define the
connectivity spectrum (1,(A))pen of A through

Y ne [N], (D) = min _ max 7 (0A)
(Av,.. An)eDy kel 1(Ax)



Cheeger inequalities

The Riemannian higher order Cheeger inequalities follow:

There exists a universal constant ) > 0 such that for any compact
Riemannian manifold S, we have

VneN, (D) = L2(A)

To get corresponding Buser [1982] inequalities, we would need a
lower bound on the curvature of the boundaries of minimizing
elements for the Dirichlet spectrum.



Witten Laplacian

But it seems that the inequalities of Theorem [LGT2] are more
interesting that those of Cheeger. For instance they can be used to
deduce the exponential behavior of the small eigenvalues of Witten
Laplacians at small temperature. Still on a compact Riemannian
manifold, Witten Laplacians have the form Lg = N —=B(VU, V),
where 3 > 0 is the inverse temperature and U : S — R is a C*
potential.

An open and connected set B — S is said to be a well, if U is
constant on 0B and if for any x € B, U(x) < U(0B). The height
of a well B is given by h(B) = U(0B) — ming U. For ne N, let I,
the highest / > 0 such that n disjoint wells of height / can be
found in S. Then we have

VneN L, = — | “Lin(\, (L
neN, gim A7 In(An(Lg))



On a result of Wang

Consider the traditional IL? to IL* hypercontractivity. Wang [2004]
has shown that if ”M”H‘lﬁ(u)—»L“(u) < 2, then the conjecture of
Hgegh-Krohn and Simon is true and it is possible to deduce a
quantitative lower bound on the spectral gap. Next result shows
that this last part cannot be extended:

Proposition

For any K > 2 and for any € € (0,1), we can find a self-adjoint
ergodic Markov operator M whose spectral gap is ¢ and which is
SUCh that HM”E?(;L)—JU‘(M) =K.

Indeed, the example is very simple and is constructed on the two
points state space S := {0,1}, endowed with the probability
measure 1 == (1,1 —n), n € (0,1/2], and with the self-adjoint
Markov operator in I.?(11) given by

M = (1—¢€ld+eu

where € € (0, 1], whose spectral gap is €.



Changing the indices

To get quantitative bounds, we need to look at other eigenvalues
than the spectral gap. Here is another result of Lee, Gharan and
Trevisan:

Theorem (Lee, Gharan and Trevisan)

There exists a universal constant 1) > 0 such that if
¢(n) :==n/In(1 + n), then for any finite self-adjoint Markov
operator,

VneN, )y = Z(n)?

Again there is no difficulty to extend this result to general
self-adjoint Markov operators.

Lee, Gharan and Trevisan checked that the logarithmic order of
¢(n) is optimal, by applying hypercontractivity results due to
Bonami [1970] and Beckner [1975] to noisy hypercubes. We will
recover this optimality via the hypercontractivity of the
Ornstein-Uhlenbeck process.



A quantitative version

Consider a Young function ¢ satisfying

. d(r)
[im > = 4o
r——400

meaning that the Orlicz's norm of L® is stronger than the 1.2
norm. Define

VneN, k(n) = %

A careful examination of the previous proofs leads to:

Theorem

Let M be a self-adjoint Markov operator. If n € N is such that
k(n) = 2/2||M|12_,pe, then we are assured of

L)

In particular the top of the spectrum of M consists of 2n




Ornstein-Uhlenbeck generator

Let (P¢)t>0 be the self-adjoint Markov semi-group associated to
the Ornstein-Uhlenbeck generator defined by

VFeCi(R),VxeR, L[fl(x) = f"(x)—xf'(x)

which is essentially self-adjoint on IL?(7), where 7 is the normal
centered Gaussian distribution.

It is well-known (see Nelson [1973] and Gross [1975]) that for any
p > 2,

+oo L ift<ilin(p—1)

2
HPtHLz(’y)—ﬁLP('}/) = { . 1
1 Jift>51In(p—1)

(for a less radical transition, consider the Young function given by
®(r) := (r? +1)In(r?> + 1) — r?, then | Pell2(y)—1.0(y) is of order
1/4/t for t > 0 small).



A disappointing application?

Let us apply the previous theorem to M = P; for t > 0 and
relatively to the usual Lebesgue space LP(y) with p > 2. More
precisely, for n € N, consider

_ 21In(n)
P = () = 2In(2v2)
- %In(p,,—l) ~ 2In(2v2)/In(n)

and let np € N be the smallest integer such that p, > 2. We obtain

c(n) )

= An(L) =
n ngp — n() ]_6tn

The r.h.s. is of order 1, which is quite disappointing, since it is
well-known that A,(L) = n—1 for all n e N!

Could our quantitative estimates (or Theorem [LGT3]) be
improved to get a lower bound of A\,(L) going to infinity with n?



Tensorization

This is not possible, because the hypercontractivity property is
stable by tensorization. More precisely, for N € N, consider the
semi-group (PEN),~¢ acting on L2(v®N). The generator L(V) of
(P?N)go corresponds to the sum of N copies of L, each acting on
different coordinates of RN In particular, we get

Vne2,N+1],  X(L™M)y = (L)

This forbids a lower bound going to infinity with n in (2) and
shows the optimality of the previous estimates.
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