On hypersurfaces in spaces of constant curvature satisfying a certain condition on the curvature tensor

By
Kouei Sekigawa

(Received June 20, 1968)

1. Introduction

If a Riemannian manifold M is locally symmetric, then its curvature tensor R satifies

We conjecture that the answer is affirmative in the case where M is irreducible and complete and $\operatorname{dim} M \geqq 3$.

Recently, K. Nomizu [4], has given an affirmative answer in the case where M is a complete hypersurface in a Euclidean space.

In this paper, let \bar{M} be a ($n+1$)-dimensional connected pseudo-Riemannian manifold with constant curvature c, and the main purpose is to consider the hypersurfaces of \bar{M} satisfying the condition (*).

Now, we give a short summary of those parts of the theory of hypersurfaces which are necessary for what follows.

Let M be a real hypersurface immersed in \tilde{M} and g be the induced pseudoRiemannian metric from the pseudo-Riemannian metric \tilde{g} of \tilde{M}. And let H be the second fundamental form with respect to this immersion and A be a field of endomorphism which corresponds to H, that is, $H(X, Y)=g(A X, Y)$, where X and Y are tangent vectors to M.

By definition, the directions of the lines of curvature of M are given by the vectors $\rho_{m}{ }^{i}$ which satisfy

$$
\begin{equation*}
\left(H_{i j}-\lambda_{m} g_{i j}\right) \rho_{m^{i}}=0, \quad \text { for } m, i, j=1,2, \ldots, n . \tag{1.1}
\end{equation*}
$$

where $H_{i j}$ and $g_{i j}$ are the components of H and g, respectively, and λ_{m} is a principal
normal curvature and is a root of the determinant equation

$$
\begin{equation*}
\left|H_{i j}-\lambda g_{i j}\right|=0 . \tag{1.2}
\end{equation*}
$$

If the principal normal curvature are real and none of the lines of curvature are tangent to null vectors, we call M a proper hypersurface of \bar{M} and term the immersion a proper immersion respectively. In this paper, we assume that an immersion means always a proper immersion.

The equation of Gauss expresses the curvature tensor R of M by means of A

$$
\begin{equation*}
R(X, Y)=\varepsilon \cdot A X \wedge A Y+c X \wedge Y \tag{1.3}
\end{equation*}
$$

where, in general, $X \wedge Y$ denotes the endomorphism which maps Z upon $g(Z, Y) X$ $-g(Z, X) Y$, and $\varepsilon=+1$, or -1 .
The type number $k(x)$ at x is, by definition, the rank of A at x

2. Reduction of condition (*)

At a point $x \in M$, let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of the tangent space $T_{x}(M)$ such that $A e_{i}=\lambda_{i} e_{i}, 1 \leqq i \leqq n$. Then the equation of Gauss implies

$$
R\left(e_{i}, e_{j}\right)=\left(\varepsilon \lambda_{i} \lambda_{j}+c\right) e_{i} \wedge e_{j}
$$

By computing

$$
\begin{aligned}
\left(R\left(e_{i}, e_{j}\right) \cdot R\right) & \left(e_{k}, e_{l}\right)= \\
& {\left[R\left(e_{i}, e_{j}\right), R\left(e_{k}, e_{l}\right)\right] } \\
& R\left(R\left(e_{i}, e_{j}\right) e_{k}, e_{l}\right)-R\left(e_{k}, R\left(e_{i}, e_{j}\right) e_{l}\right)
\end{aligned}
$$

we find that it is zero except possibly in the case where $k=i$ and $l \neq i, j(i \neq j)$. For this case we have

$$
\begin{equation*}
\left(R\left(e_{i}, e_{j}\right) \cdot R\right)\left(e_{i}, e_{l}\right)=\delta\left(\varepsilon \lambda_{i} \lambda_{j}+c\right) \lambda_{l}\left(\lambda_{j}-\lambda_{i}\right) e_{j} \wedge e l, \tag{2.1}
\end{equation*}
$$

where $\delta=+1$, or -1 .
Thus we see that condition (*) is equivalent to

$$
\begin{equation*}
\left(\varepsilon \lambda_{i} \lambda_{j}+c\right) \lambda_{l}\left(\lambda_{j}-\lambda_{i}\right)=0 \quad \text { for } l \neq i, j, \text { where } i \neq j \tag{2.2}
\end{equation*}
$$

Suppose that the type number $k(x)$ is $\geqq 2$ at a point $x \in M$ and assume that $\lambda_{1}, \ldots, \lambda_{k}$ are non-zero principal normal curvatures, that is, non-zero eigenvalues of A at x and $\lambda_{k+1}=\ldots=\lambda_{n}=0$.
When $c \neq 0$, from (2.2), we can see that non-zero eigenvalues of A are classified. into at most two classes, that is,

$$
\begin{aligned}
& \lambda_{i_{1}}=\ldots \ldots \ldots=\lambda_{i s}(=\lambda), \\
& \lambda_{j_{1}}=\ldots \ldots \ldots=\lambda_{j t}(=\mu), \quad \text { where } s+t=n, \text { and } \varepsilon \lambda \mu+c=0 .
\end{aligned}
$$

Then, by the observations we made above, we can define three linear subspaces,
say, $T_{0}(M), T_{1}(M), T_{2}(M)$ of the tangent space $T_{x}(M)$ at $x \in M$ as follows:

$$
\begin{aligned}
& T_{0}(x)=\left\{X \in T_{x}(M) ; A X=0\right\} \\
& T_{1}(x)=\left\{X \in T_{x}(M) ; A X=\lambda X\right\} \\
& T_{2}(x)=\left\{X \in T_{x}(M) ; A X=\mu X\right\} .
\end{aligned}
$$

We have $T_{x}(M)=T_{0}(M)+T_{1}(M)+T_{2}(M)$ (direct sum). For any $Z \in T_{x}(M), Z_{0}, Z_{1}$, and Z_{2} will denote the components of Z in $T_{0}(x), T_{1}(x)$ and $T_{2}(x)$, respectively. We shall only consider the following two cases in this paper.
I. $\quad c \neq 0$, and $k(x) \geqq 3$ at a point $x \in M, s \geqq 1, t \geqq 1$.
II. $c=0$, and $k(x) \geqq 3$ at a point $x \in M$.

Then we have the following for the case I.
Lemma 2.1. If $c \neq 0$ and the rank of A is $\geqq 3$ at $x_{0} \in M$, then there is a neighborhood U of x_{0} on which the dimension of $T_{1}(x)$ and the dimension of $T_{2}(x)$ are constant at each point $x \in U$, and the non-zero eigenvalues $\lambda(x)$ and $\mu(x)$ of A are differentiable functions. Where $\varepsilon \lambda(x) \mu(x)+c=0$ and $\lambda(x)>\mu(x)$, at $x \in U$.

And we have also the following for the case II.
Lemma 2.2. If $c=0$ and $k\left(x_{0}\right) \geqq 3$ at $x_{0} \in M$, then then there is a neighborhood U of x_{0} on which $k(x) \geqq 3$ at each point $x \in U$, and the non-zero eigenvalue $k(x)$ is a differentiable function.

3. Lemmas

In this paper, we shall assume that M is oriented (so that a unit normal field is defined on the whole M) and the type number $k(x)$ is $\geqq 3$ everywhere on M. By the observations we made in $\S 2$, for the case I , the functions $s(x)$ and $t(x)$ are locally constant and hence are constant functions, say, s and t, respectively, since M is connected, and moreover, for the case II, the function $k(x)$ is locally constant and hence is a constant function, say, k.

Lemma 3.1. For the case I, T_{1} and T_{2} are differentiable.
Proof. For any point $x_{0} \in M$, let $\left\{X_{1}, \ldots, X_{s}\right\}$ be a basis of $T_{1}\left(x_{0}\right)$ and $\left\{X_{s+1}, \ldots\right.$ X_{n} \} be a basis of $T_{2}(x)$. We extend X_{i} 's to vector fields on M and define vector fields

$$
Y_{i}=(A-\mu I) X_{i} \quad \text { for } 1 \leqq i \leqq s
$$

and

$$
Y_{j}=(A-\lambda D) X_{j} \quad \text { for } s+1 \leqq j \leqq n
$$

where I denotes the identity transformation. At x_{0}, we have $Y_{i}=(\lambda-\mu) X_{i}$ for $1 \leqq i \leqq s$ and $Y_{j}=-(\lambda-\mu) X_{j}$ for $s+1 \leqq j \leqq n$.
Thus $Y_{1}, \ldots . ., Y_{n}$ are linearly independent at λ_{0} and hence in a neighborhood U of x_{0}. At each point of U, we have

$$
\begin{array}{ll}
(A-\lambda I) Y_{i}=(A-\lambda I)(A-\mu I) X_{i}=0 & \text { for } 1 \leqq i \leqq s \\
(A-\mu I) Y_{j}=(A-\mu I)(A-\lambda I) X_{j}=0 & \text { for } s+1 \leqq j \leqq n .
\end{array}
$$

Hence $Y_{1}, \ldots \ldots, Y_{s}$ from a basis of T_{1} and $Y_{s+1}, \ldots \ldots, Y_{n}$ from a basis of T_{2}.
And we have also the following
Lemma 3.2. For the case $I I, T_{0}$ and T_{1} are differentiable.
Lemma 3.3. For the case I, T_{1} and T_{2} are involutive.
Proof. We recall the Codazzi equation: $\left(\nabla_{X} A\right) Y=\left(\nabla_{Y} A\right) X$, where ∇ denotes the Levi-Civita connection with respect to the pseudo-Riemannian metric g of M.

Suppose that X and Y are vector fields belonging to T_{1}. Then

$$
(\nabla x A) Y=\nabla x(A Y)-A(\nabla x Y)=(X \lambda) Y+\lambda(\nabla x Y)-A(\nabla x Y),
$$

and

$$
\left(\nabla_{Y} A\right) X=(Y \lambda) X+\lambda\left(\nabla_{Y} X\right)-A\left(\nabla_{Y} X\right) .
$$

Thus we get

$$
(X \lambda) Y-(Y \lambda) X+(\lambda I-A)[X, Y]=0 .
$$

Since $(X \lambda) Y-(Y \lambda) X \in T_{1}$ and $(\lambda I-A)[X, Y]=(\lambda-\mu)[X, Y]_{2}$, we get

$$
(X \lambda) Y-(Y \lambda) X=0 \text { and }[X, Y]_{2}=0 .
$$

The second identity shows that $[X, Y] \in T_{1}$, proving that T_{1} is involutive. Similarly, T_{2} is involutive.

And we have also the following
Lemma 3.4. For the case $I I, T_{0}$ and T_{1} are involutive.

4. Some results

For the case I, let $M_{1}(x)$ and $M_{2}(x)$ be the maximal integral manifolds of T_{1} and T_{2}, respectively.

Then we have the following
Lemma 4.1. For the case I, if $s \geqq 2$ and $t \geqq 2$, then $\lambda(x)$ and $\mu(x)$ are constant functions on M.

Proof. Since $s \geqq 2$, we may choose $X, Y \in T_{1}(x)$ such that X and Y are linearly
independent. Extending X and Y to vector fields belonging to $T_{1}(x)$, we have $(X \lambda) Y-(X \lambda) X=0$ at x. Thus $X \lambda=Y \lambda=0$ at x. Therefore, the function $\lambda(x)$ is constant on each $M_{1}(x)$. Similarly, since $t \geqq 2$, the function $\mu(x)$ is also constant on each $M_{2}(x)$. However, $\varepsilon \lambda \mu+c=0$, thus it follows that $\lambda(x)$ is a constant function on M, say, λ. And moreover, $\mu(x)$ is also a constant function on M, say, μ.

From Lemma 4.1., we can easily prove the following
Lemma 4.2. If $s \geqq 2$ and $t \geqq 2$, then $M_{1}(x)$ and $M_{2}(x)$ are both totally geodesic and $T_{1}(x)$ and $T_{2}(x)$ are paprallel.

Thus, by virtue of above two lemmas, we can see that $M_{1}(x)$ and $M_{2}(x)$ are spaces of constant curvatures c_{1}, c_{2}, respectively, where

$$
\begin{aligned}
& c_{1}=\varepsilon \lambda^{2}+c \\
& c_{2}=\varepsilon \mu^{2}+c .
\end{aligned}
$$

Then, we see that c_{1} and c_{2} satisfy the following equation

$$
\begin{equation*}
1 / c_{1}+1 / c_{2}=1 / c \tag{4.1}
\end{equation*}
$$

And moreover, we can show that for a point $x \in M$, there is a coordinate system $\left\{x^{1}, \ldots \ldots, x^{s}, x^{s+1}, \ldots \ldots, x^{n}\right\}$ with origin x in a neighborhood U of x such that $\left\{\partial / \partial x^{1}\right.$, $\left.\ldots \ldots, \partial / \partial x^{s}\right\}$ and $\left\{\partial / \partial x^{s+1}, \ldots \ldots, \partial / \partial x^{n}\right\}$ are local bases for T_{1} and T_{2}, and with respect to this coordinate system the first fundamental form of M is given as follows

$$
\begin{align*}
& d s^{2}=\frac{\varepsilon_{1}\left(d x^{1}\right)^{2}+\ldots \ldots+\varepsilon_{s}\left(d x^{s}\right)^{2}}{\left[1+\frac{c_{1}}{4}\left(\varepsilon_{1}\left(x^{1}\right)^{2}+\ldots+\varepsilon_{s}\left(x^{s}\right)^{2}\right)\right]^{2}} \tag{4.2}\\
& \quad+\frac{\varepsilon_{s+1}\left(d x^{s+1}\right)^{2}+\ldots \ldots+\varepsilon_{n}\left(d x^{n}\right)^{2}}{\left[1+\frac{c_{2}}{4}\left(\varepsilon_{s+1}\left(x^{s+1}\right)^{2}+\ldots+\varepsilon_{n}\left(x^{n}\right)^{2}\right)\right]^{2}}
\end{align*}
$$

where each ε is +1 , or -1 . (See for example A. Fialkow [1].)
Then M may be immersed in \tilde{M} by means of the algebraic equations

$$
\begin{align*}
& e_{1}\left(z^{1}\right)^{2}+\ldots \ldots+e_{s+2}\left(z^{s+1}\right)^{2}=1 / c_{1} \tag{4.3}\\
& e_{s+2}\left(z^{s+2}\right)^{2}+\ldots \ldots+e_{n+2}\left(z^{n+2}\right)^{2}=1 / c_{2}
\end{align*}
$$

where the e 's are +1 , or -1 and the \tilde{M} is defined by

$$
\begin{equation*}
e_{1}\left(z^{1}\right)^{2}+\ldots \ldots+e_{n+2}\left(z^{n+2}\right)^{2}=1 / c \tag{4.4}
\end{equation*}
$$

The z 's are the point coordinates of Weierstrass. Since $n \geqq 4$ and $\lambda \mu \neq 0$, the M is indeformable in \tilde{M}.
The equations (4.3) show that M may also be considered as the intersection of two hypersylinders in a flat space of $n+2$ dimensions.

Thus we have the following
Theorem 4.3. Let \tilde{M} be complete, connected and of constant curvature $c \neq 0$ and defined by (4.4). If M is connected complete proper hypersurface of \bar{M} of the case I and $s \geqq 2, t \geqq 2$, then M may be considered as the intersection of two hypersylinders in a flat space of $n+2$ dimensions.

As a result, M is, of course, symmetric.
Next, for the case II, let $M_{0}(x)$ and $M_{1}(x)$ be the maximal integral manifolds of T_{0} and T_{1} respectively.

Lemma 4.4. If X belongs to $T_{1}(x)$, then $X \lambda=0$.
From this lemma, we see that the function λ is constant on each maximal integral manifold of T_{1}, that is, on each $M_{1}(x)$.

We now let $X \in T_{1}, Y \in T_{0}$ and compute the both sides of the Codazzi equation:

$$
\begin{aligned}
\left(\nabla_{X} A\right) Y & =\nabla_{X}(A Y)-A\left(\nabla_{X} Y\right)=-A\left(\nabla_{X} Y\right)=-\lambda\left(\nabla_{X} Y\right)_{1}, \\
\left(\nabla_{Y} A\right) X & =\nabla_{Y}(A X)-A\left(\nabla_{Y} X\right)=\nabla_{Y}(\lambda X)-A\left(\nabla_{Y} X\right) \\
& =Y \lambda \cdot X+\lambda\left(\nabla_{Y} X\right)-A\left(\nabla_{Y} X\right) \\
& =Y \lambda \cdot X+\lambda\left(\nabla_{Y} X\right)_{0} .
\end{aligned}
$$

Therefore we have

$$
\left(\nabla_{Y} X\right)_{0}=0, \quad \text { that is, } \quad \nabla_{Y} X \in T_{1}
$$

and

$$
(Y \lambda) X=-\lambda(\nabla x Y)_{1}=-A(\nabla x Y)
$$

We have hence
Lemma 4.5. If $X \in T_{1}, Y \in T_{0}$, then $A(\nabla x Y)=-(Y \lambda) X$.
Lemma 4.6.
(i) If $Y \in T_{0}$, then $\nabla_{Y}\left(T_{1}\right) \subset T_{1}$.
(ii) If $Y \in T_{0}$, then $\nabla_{Y}\left(T_{0}\right) \subset T_{0}$.
(iii) If $Y \in T_{0}, X \in T_{1}$ and $[X, Y]=0$, then $\nabla x Y \in T_{1}$.

By virtue of Lemma 4.5. and Lemma 4.6., we have

$$
\begin{equation*}
\nabla_{Y} X=-\frac{Y \lambda}{\lambda} \cdot X . \quad \text { for } X \in T_{1}, Y \in T_{0},[X, Y]=0 \tag{4.5}
\end{equation*}
$$

By virtue of Lemma 3.4., for a point $x \in M$, there is a coordinate system $\left\{x^{1}, \ldots, x^{n}\right\}$ in a neighborhood U of x such that $\left\{\partial / \partial x^{1}, \ldots \ldots, \alpha / \partial x^{k}\right\}$ and $\left\{\partial / \partial x^{k+1}, \ldots \ldots, \partial / \partial x^{n}\right\}$ are local bases for T_{1} and T_{0}, respectively.
By setting $g_{\alpha \beta}\left(x^{1}, \ldots \ldots, x^{n}\right)=g\left(\partial / \partial x^{\alpha}, \partial / \partial x^{\beta}\right) \quad$ for $k+1 \leqq \alpha, \beta \leqq n$, we have

$$
\partial g_{\alpha \beta} / \partial x^{r}=g\left(\nabla_{\partial / \partial x^{r}}\left(\partial / \partial x^{\alpha}\right), \partial / \partial x^{\beta}\right)+g\left(\partial / \partial x^{\alpha}, \quad \nabla_{\partial / \partial x^{r}}\left(\partial / \partial x^{\beta}\right)\right) .
$$

But since Lemma 4.6 (iii), implies $\nabla_{\partial / \partial x^{r}} r\left(\partial / \partial x^{\alpha}\right) \in T_{1}$ for $1 \leqq r \leqq k$, we have

$$
g\left(\nabla_{\partial / \partial x^{r}}\left(\partial / \partial x^{\alpha}\right), \partial / \partial x^{\beta}\right)=0
$$

and, similarly, $\left.g\left(\partial / \partial x^{\alpha}, \nabla_{\partial / \partial x^{\prime} r} r \partial / \partial x\right)\right)=0$. We have thus $\partial g_{\alpha \beta} / \partial x^{r}=0$. Moreover, by setting $g_{p q}\left(x^{1}, \ldots \ldots, x^{n}\right)=g\left(\partial / \partial x^{p}, \partial / \partial x^{q}\right)$ for $1 \leqq p, q \leqq k$, we have

$$
\partial g_{p q} / \partial x^{\alpha}=g\left(\nabla_{\partial / \partial x^{\alpha}}\left(\partial / \partial x^{p}\right), \partial / \partial x^{q}\right)+g\left(\partial / \partial x^{p}, \quad \nabla \partial / \partial x^{\alpha}\left(\partial / \partial x_{p}\right)\right) .
$$

But (4.5) implies $\nabla \partial / \partial x^{\alpha}\left(\partial / \partial x^{p}\right)=\nabla \partial / \partial x^{p}\left(\partial / \partial x^{\alpha}\right)=-\frac{\partial \lambda}{\partial x^{\alpha}} \partial / \partial x^{p}$ for $k+1 \leqq \alpha \leqq n$. Hence

$$
\begin{equation*}
\partial g_{p q} / \partial x^{\alpha}=-\left(2 \partial \lambda / \partial x^{\alpha}\right) g_{p q} . \tag{4.6}
\end{equation*}
$$

Thus we have the following
Theorem 4.7. For the case $I I$, there is a coordinate system in a neighborhood U of x such that with respect to this coordinate system the metric tensor of M is given as follows

$$
g_{i j}(x)=\left(\begin{array}{ccc}
\left.g_{p_{q}\left(x^{1}\right.}, \ldots \ldots, x^{n}\right) & 0 \tag{4.7}\\
0 & g_{\alpha \beta}\left(x^{k+1}, \ldots \ldots, x^{n}\right)
\end{array}\right)
$$

where $g_{p q}\left(x^{1}, \ldots \ldots ., x^{n}\right)$ must satisfy (4.6), and $g_{\alpha \beta}$ are constant on U.
Lastly, let us give an example of hypersurface, of the case I, in the hyperbolic space of dimension $n+1$, say, H^{n+1}. Then H^{n+1} is isometric to the Riemannian half space

$$
d s^{2}=\left(1 / z^{1}\right)^{2}\left(\left(d z^{1}\right)^{1}+\ldots \ldots+\left(d z^{n+1}\right)^{2}\right), z \in R^{n+1}, z^{1}>0 .
$$

Let M be a hypersurface of H^{n+1}, defined by the equations:

$$
z^{1}=e^{u}, \quad z^{i}=e^{u} w^{i}\left(x^{1}, \ldots \ldots, x^{n-1}\right), \quad i=2, \ldots \ldots, n+1, \quad u \in R, \quad n \geqq 3
$$

where e^{u} denotes the exponential function of u.
Then the Riemannian metric of M is expressed as follows

$$
g_{p q}=\sum_{i=2}^{n+1}\left(\partial w^{i} / \partial x^{p}\right)\left(\partial w^{i} / \partial x^{q}\right), \quad g_{* *}=1+\sum_{i=2}^{n+1}\left(w^{i}\right)^{2}, \quad p, q=1, \ldots \ldots, n-1
$$

where the first fundamental from of M is written in the form, $d s^{2}=g_{p q} d x^{p} d x^{q}$ $+g_{* *} d u d u$.
Then, if M satisfies the condition (*), then, s or $t=1$ and from the similar arguments as before, we have

$$
\sum_{i=2}^{n+1}\left(w^{i}\right)=r^{2}, \quad \text { where } r \text { is a constant. }
$$

Therefore, M is homothetic to the direct product Riemannian space of ($n-1$)dimensional sphere with radius $|r|$ and a real line R.

Remarks, (i) If $c \neq 0$ and $k(x) \geqq 3$ at some point $x \in M$, then we can show that the condition (*) is equivalent to the condition, $R(X, Y) \cdot S=0$, at x. Where S denotes the Ricci tensor of M.
(ii) The assumption, $k(x) \geqq 3$ everywhere on M, can be replaced by the assumption, $k(x) \geqq 3$ at some point $x \in M$.

Nigata University

References

1. A. FIALKOW : Hypersurfaces of a space of constant curvature, Ann. of Math., 39 (1938), 762785.
2. S. KOBAYASHI and K. NOMIZU : Foundations of Differential Geometry, Vol. 1, Interscience Publishers, New York, 1963.
3. K. NOMIZU: On hypersurfaces satisfying a certain condition on the curvature tensor, Tohoku Math. J., 20 (1968), 46-59.
