91. On Hypersurfaces which are Close to Spheres

By Kanji Мотомiya
Nagoya Institute of Technology
(Comm. by Kinjirô Kunugi, M. J. A., June 2, 1972)

0. Some characterizations of the sphere among the closed strictly convex hypersurfaces in R^{n+1} were given in [1].
In particular, the following theorem holds:
A closed strictly convex hypersurface with $K_{n-1} / K_{n}=r$ is a hypersphere of radius r, where K_{n-1} is the ($n-1$)-th mean curvature and K_{n} is the Gaussian curvature.
Then, we prove
Theorem. Let M be a closed strictly convex hypersurface in $R^{n+1}(n \geqslant 2)$. If the function K_{n-1} / K_{n} on M is sufficiently close to r, then M is arbitrary close to a hypersphere of radius r in the sense that it can be enclosed between two concentric hyperspheres whose radius is arbitrarily close to r.
For the case where $n=2$, D. Koutroufiotis proved in [3]. Our proof of theorem is the same method of his proof in [3].
1. For the sake of simplicity, we shall assume our manifolds and mappings to be of class C^{∞}.
Let R^{n+1} be the ($n+1$)-dimensional euclidean space.
By a hypersurface in R^{n+1} we mean a n-dimensional connected manifold M with an immersion x.
Suppose M to be oriented. Then to $p \in M$, there is a uniquely determined unit normal vector $\xi(p)$ at $x(p)$.
We put

$$
\mathrm{I}=d x \cdot d x, \quad \mathrm{II}=-d \xi \cdot d x
$$

Let k_{1}, \cdots, k_{n}, are called the principal curvatures, be the eigenvalues of II relative to I. The i-th mean curvature $K_{i}(1 \leqslant i \leqslant n)$ is given by the i-th elementary symmetric function divided by $\binom{n}{i}=n!/ i!(n-i)$! i.e.,

$$
\binom{n}{i} K_{i}=\sum k_{1} \cdots k_{i} .
$$

In particular, $K_{n}=k_{1} \cdots k_{n}$ is called the Gaussian curvature. We shall consider closed strictly convex hypersurfaces i.e., compact hypersurfaces for which the Gaussian curvature K_{n} never vanishes on M.

We shall assume that the normal vector ξ is interior. Let S^{n} be the unit sphere in R^{n+1}. We denote by g the induced Riemannian metric on S^{n}.

Since the Gaussian curvature K_{n} never vanishes on M, the spherical mapping ξ of M onto S^{n} is a diffeomorphism.

$$
S^{n} \xrightarrow[\xi^{-1}]{\longrightarrow} M \underset{x}{\longrightarrow} R^{n+1}
$$

We put

$$
X=x \circ \xi^{-1} .
$$

We now remark that the i-th mean curvature \tilde{K}_{i} of the hypersurface (S^{n}, X) is given by

$$
\tilde{K}_{i}(\nu)=K_{i}\left(\xi^{-1}(\nu)\right) \quad \text { at each point } \nu \in S^{n} .
$$

We shall denote $\tilde{K}_{i}(\nu)$ by the same letter $K_{i}(\nu)$.
The support function φ of the hypersurface (S^{n}, X) is defined by

$$
\varphi(\nu)=-X(\nu) \cdot \nu
$$

where • is the inner product in R^{n+1}.
Then the support function φ satisfies the following differential equation:

$$
\begin{equation*}
\Delta \varphi+n \varphi=n K_{n-1} / K_{n}, \tag{1.1}
\end{equation*}
$$

where Δ is the Laplace-Beltrami operator with respect to the natural Riemannian metric g on S.

In fact, let $\left\{X_{1}, \cdots, X_{n}\right\}$ be an orthonormal basis in $T_{\nu}\left(S^{n}\right)$ and H be the symmetric tensor field of type $(1,1)$ corresponding to the second fundamental form II.
We have

$$
\begin{aligned}
\Delta \varphi & =\sum_{i=1}^{n} \nabla_{X_{i}} \nabla_{X_{i}} \varphi=-\sum \nabla_{X_{i}} X \cdot \nabla_{X_{i}} \nu-X \cdot \sum \nabla_{X_{i}} \nabla_{X_{i}} \nu \\
& =\sum \nabla_{H-1 X_{i}} \nu \cdot \nabla_{X_{i}} \nu-X \cdot \Delta \nu=\sum g\left(H^{-1} X_{i}, X_{i}\right)+n X \cdot \nu \\
& =\text { Trace } H^{-1}-n \varphi=n K_{n-1} / K_{n}-n \varphi .
\end{aligned}
$$

Let U_{1} and U_{2} be open subsets of S^{n} defined by

$$
\begin{aligned}
& U_{1}=\left\{\left(x_{1}, \cdots, x_{n+1}\right) \in S^{n} \left\lvert\, x_{n+1}>-\frac{1}{2}\right.\right\}, \\
& U_{2}=\left\{\left(x_{1}, \cdots, x_{n+1}\right) \in S^{n} \left\lvert\, x_{n+1}<\frac{1}{2}\right.\right\} .
\end{aligned}
$$

Those open sets define an open covering of S^{n} and are coordinate neibourhoods with local coordinates (y_{1}, \cdots, y_{n}).
Next, we shall define the some norms of functions on S^{n}.
The norm of a continuous function f on S is defined by

$$
\|f\|=\sup _{\nu \in S^{n}}|f(\nu)| .
$$

For some $p, 1<p<\infty$, and some integer k, the norm of a C^{k}-function f on S^{n} is defined by

$$
\|f\|_{k, p}=\left\{\int_{U_{1}|\alpha| \leqslant k} \sum_{D^{\alpha}}| |^{p} d U_{1}\right\}^{1 / p}+\left\{\int_{U_{2}} \sum_{|\alpha| \leqslant k}\left|D^{\alpha} f\right|^{p} d U_{2}\right\}^{1 / p},
$$

where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right),|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and $D^{\alpha} f=\partial^{|\alpha|} f / \partial y_{1}^{\alpha_{1}} \cdots \partial y_{n}^{\alpha_{n}}$.
2. Proof of Theorem. Let $\left(S^{n}, X_{0}\right)$ be the hypersurface. The corresponding support function φ_{0} satisfies the linear elliptic partial differential equation (1.1)

$$
\Delta \varphi+n \varphi=n K_{n-1} / K_{n} .
$$

We put $\varphi_{0}=r+\psi_{0}$.
Then ψ_{0} satisfies the following equation :

$$
\begin{equation*}
\Delta \psi+n \psi=n\left(K_{n-1} / K_{n}-r\right) . \tag{2.1}
\end{equation*}
$$

From the theory of spherical harmonics [4], the linear functions $\psi=a_{1} x_{1}+\cdots+a_{n+1} x_{n+1}$, restricted to the unit sphere, are the only solutions of the corresponding homogeneous equation $\Delta \psi+n \psi=0$. Therefore, the inhomogeneous differential equation (2.1) has solutions

$$
\psi=\psi_{0}+a_{1} x_{1}+\cdots+a_{n+1} x_{n+1}
$$

Among those solutions there is a unique one ψ which is orthogonal to all the solutions of the homogeneous equation, namely the one with

$$
\begin{equation*}
a_{1}=\frac{-\int_{S n} \psi_{0} x_{1} d \omega}{\int_{S n} x_{1}^{2} d \omega}, \cdots, a_{n+1}=\frac{-\int_{S n} \psi_{0} x_{n+1} d \omega}{\int_{S n} x_{n+1}^{2} d \omega} \tag{2.2}
\end{equation*}
$$

From the Banach's theorem and the Fredholm theory on Banach spaces [5], such unique solution ψ, by virtue of its choice, satisfies the inequality

$$
\begin{equation*}
\|\psi\|_{2, p} \leqslant c_{1}\left\|K_{n-1} / K_{n}-r\right\|_{0, p} \tag{2.3}
\end{equation*}
$$

where c_{1} is some constant depending only on p.
From Sobolev's inequalities, we have, if $p>n / 2$,

$$
\begin{equation*}
\|\psi\| \leqslant c_{2}\|\psi\|_{2, p} \tag{2.4}
\end{equation*}
$$

where c_{2} is a constant independent of the choice of the function ψ. Therefore, we have

$$
\begin{equation*}
\|\psi\| \leqslant c_{1} c_{2}\left\|K_{n-1} / K_{n}-r\right\|_{0, p} \tag{2.5}
\end{equation*}
$$

We consider now the hypersurface (S^{n}, X) obtained by a translation

$$
X=X_{0}-a
$$

where $a=\left(a_{1}, \cdots, a_{n+1}\right)$ is the constant vector given by (2.2).
Then, the corresponding support function φ is given by

$$
\varphi=r+\psi .
$$

From inequality (2.5), it follows that, given an $\varepsilon>0$, if $\left\|K_{n-1} / K_{n}-r\right\|_{0, p}$ is sufficiently small, $\|\psi\|<\varepsilon$.
Therefore, we have

$$
\begin{equation*}
r-\varepsilon<\varphi<r+\varepsilon \tag{2.6}
\end{equation*}
$$

Let P_{1} be the point on the hypersurface (S^{n}, X) at maximal distance from the origin 0 and P_{2} be the point on it at minimal distance from 0 . The segments $0 P_{1}$ and $0 P_{2}$ are perpendicular to the hypersurface at P_{1}, respectively P_{2}. Therefore, we have

$$
\left|O P_{1}\right|=\varphi\left(\nu_{1}\right) \quad \text { and } \quad\left|O P_{2}\right|=\varphi\left(\nu_{2}\right)
$$

From inequality (2.6), it follows that for an arbitrary point P on the hypersurface

$$
r-\varepsilon<\varphi\left(\nu_{2}\right)=\left|O P_{2}\right| \leqslant|O P| \leqslant\left|O P_{1}\right|=\varphi\left(\nu_{1}\right)<r+\varepsilon
$$

Therefore, the hypersurface lies entirely within the shell between the hyperspheres of radius $r-\varepsilon$ and $r+\varepsilon$.
Q.E.D.

References

[1] S S. Chern: Integral formulas for hypersurfaces in euclidean space and their applications to uniqueness theorems. J. Math. Mech., 8, 947-955 (1959).
[2] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry. Interscience, New York (1963).
[3] D. Koutroufiotis: Ovaloids which are almost spheres. Comm. Pure Appl. Math., 24, 289-300 (1971).
[4] S. Mizohata: Introduction to Integral Equation (in Japanese). Asakura (1968).
[5] K. Yosida: Functional Analysis. I (in Japanese). Iwanami (1960).

