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This paper characterises those hyponormal Toeplitz operators on the Hardy space of the unit circle
among all Toeplitz operators that have polynomial symbols with circulant-type sets of coefficients.

A bounded linear operator A on a Hilbert space H with inner product (·, ·) is said to be
hyponormal if its selfcommutator [A∗, A] = A∗A − AA∗ induces a positive semidefinite quadratic
form on H via ξ 7→ ([A∗, A]ξ, ξ), for ξ ∈ H. The purpose of this note is to study hyponormality
for Toeplitz operators acting on the Hardy space H2(T) of the unit circle T = ∂D in the complex
plane. In particular, our interest is with Toeplitz operators with polynomial symbols, such that the
coefficients of these trigonometric polynomials satisfy certain combinatorial constraints suggested
by a recent description [2,6,7] of finite normal Toeplitz matrices. In [2,6,7], circulant matrices arise
and lead to a natural definition for “circulant polynomial” and such polynomials are studied in
connection with hyponormality. In Theorem 2 of this paper we determine precisely those circulant
polynomials (and, more generally, those polynomials of circulant type) that induce hyponormal
Toeplitz operators. Although it is not feasible to characterise by properties of coefficients all
trigonometric polynomials that induce hyponormal Toeplitz operators, in Theorem 1 of this article
some new necessary conditions will be presented. Although quite basic in form, these necessary
conditions appear to have gone unobserved in previous literature.

Recall that given ϕ ∈ L∞(T), the Toeplitz operator with symbol ϕ is the operator Tϕ on
H2(T) defined by Tϕf = P (ϕ ·f), where f ∈ H2(T) and P denotes the projection that maps L2(T)
onto H2(T). The problem of determining which symbols induce hyponormal Toeplitz operators
was solved by Cowen in [1], however here we shall employ an equivalent variant of Cowen’s theorem
that was first proposed by Nakazi and Takahashi in [10]. Suppose that ϕ ∈ L∞(T) is arbitrary
and consider the following subset of the closed unit ball of H∞(T):

E(ϕ) = {k ∈ H∞(T) : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞(T)} .

The criterion is that Tϕ is hyponormal if and only if the set E(ϕ) is nonempty [1,10]. Cowen’s
method, then, is to recast the operator-theoretic problem of hyponormality for Toeplitz operators
into the problem of finding a solution with specified properties to a certain functional equation
involving the operator’s symbol ϕ. This approach has been put to use in the works [3,10,11] to
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study Toeplitz operators on the Hardy space of the unit circle. An abstract version of Cowen’s
method has been developed in [5].

If ϕ is a trigonometric polynomial, say ϕ(eiθ) =
∑N
−m aneinθ, where a−m and aN are nonzero,

then the nonnegative integers N and m denote the analytic and co-analytic degrees of ϕ. For arib-
trary trigonometric polynomials, Zhu [11] has applied Cowen’s criterion and adopted a method
based on the classical interpolation theorems of Schur to obtain an abstract characterisation of
those trigonometric polynomial symbols that correspond to hyponormal Toeplitz operators. Fur-
thermore, he was able to use this characterisation to give explicit necessary and sufficient conditions
for hyponormality in terms of the coefficients of the polynomial ϕ whenever N ≤ 3. However, with
polynomials of higher analytic degree, the analogous explicit necessary and sufficient conditions
(via properties of coefficients) are not known and in fact would be too complicated to be of much
value. Nevertheless, certain general features of hyponormal Toeplitz operators with polynomial
symbols are known, some of which are listed below in Theorem 1. The lower bound on the rank
of the selfcommutator in (ii) and statement (2) appear to be new.

Theorem 1. Suppose that ϕ is a trigonometric polynomial of co-analytic and analytic degrees m
and N .

1. If Tϕ is a hyponormal operator, then
(i) m ≤ N and |a−m| ≤ |aN |,
(ii) N −m ≤ rank [T ∗ϕ, Tϕ] ≤ N , and
(iii) Tϕ is subnormal and nonnormal if and only if m = 0.

2. The hyponormality of Tϕ is independent of the particular values of the Fourier coefficients
a0, a1, . . . , aN−m of ϕ.

Proof. For statement (1), assume that ϕ is as above and that Tϕ is hyponormal. The proof of (i)
is given in [10] and [11], while the proof of (iii) and the upperbound N in (ii) is known from [8].
To prove the lower bound in (ii), we use Theorem 10 of [10], which states that there exists a finite
Blaschke product b ∈ E(ϕ) such that the degree of b – meaning the number of zeros of b (in the
open unit disc D) [4, page 6] – equals the rank of [T ∗ϕ, Tϕ]. The function b is of the form

b(z) = αzl
n∏

i=1

(
z − αi

1− αiz

)
,

where |α| = 1, 0 < |αi| < 1 for i = 1, . . . , n, and deg(b) = l + n. ¿From b ∈ E(ϕ) we have that
g = ϕ− bϕ ∈ H∞. Hence

zmbϕ = zmϕ− zmg ∈ H2 ,

because zmϕ ∈ H2. Cross multiplication by the denominator of b leads to the polynomial

αzl
n∏

i=1

(z − αi)zmϕ ∈ H2 .

But the only way this polynomial can be analytic is if l + n + m−N ≥ 0. Hence deg(b) = l + n ≥
N −m.

For statement (2), suppose that ϕ(eiθ) =
∑N

n=−m aneinθ, where m ≤ N and aN 6= 0. By
Cowen’s theorem there is a function k in the closed unit ball of H∞(T) such that ϕ − kϕ ∈ H∞.
Because k satisfies ϕ− kϕ ∈ H∞, then k necessarily has the property that

(1.1) k
N∑

n=1

ane−inθ −
m∑

n=1

a−ne−inθ ∈ H∞ .



¿From (1.1) one computes the Fourier coefficients k̂(0), . . . , k̂(N − 1) of k to be k̂(n) = cn, for
n = 0, 1, . . . , N − 1, where c0, c1, . . . , cN−1 are determined uniquely from the coefficients of ϕ by
the recurrence relation

c0 = c1 = · · · = cN−m−1 = 0

cN−m =
a−m

aN

cn = (aN )−1
(
a−N+n −

n−1∑

j=N−m

cjaN−n+j

)
, for n = N −m + 1, · · · , N − 1 .(1.2)

Therefore if k1, k2 ∈ E(ϕ), then cn = k̂1(n) = k̂2(n) for all n = 0, 1, . . . , N − 1, and kp(z) =∑N−1
j=0 cjz

j is the unique (analytic) polynomial of degree less than N satisfying ϕ−kϕ ∈ H∞. But
since the coefficients in (1.2) are independent of the values of the coefficients a0, · · · , aN−m of ϕ, it
follows that if k ∈ E(ϕ), then k is independent of a0, · · · , aN−m. This completes the proof of (2).
¤

To motivate our interest in the circulant-type symbols that follow, let us recall that the
characterisation of finite normal Toeplitz matrices in [2,6,7] indicates that every finite normal
Toeplitz matrix whose eigenvalues are not collinear must be a generalised circulant, which is a
normal matrix of the form 



a0 eiωaN . . . . . . eiωa1

a1 a0
. . .

...
...

. . . . . . . . .
...

...
. . . a0 eiωaN

aN . . . . . . a1 a0




.

Of course the matrix above is simply a matrix representation of the compression of the Toeplitz
operator Tϕ to the subspace of H2(T) spanned by the functions 1, z, z2, . . . , zN−1, where ϕ is the
polynomial ϕ(eiθ) =

∑N
−N bneinθ with




b0 b−1 . . . . . . b−N

b1 b0
. . .

...
...

. . . . . . . . .
...

...
. . . a0 b−1

bN . . . . . . b1 b0




=




a0 eiωaN . . . . . . eiωa1

a1 a0
. . .

...
...

. . . . . . . . .
...

...
. . . a0 eiωaN

aN . . . . . . a1 a0




.

We say, therefore, that ϕ is a circulant polynomial.

Definition. A trigonometric polynomial ϕ(eiθ) =
∑N
−m aneinθ of analytic degree N and co-

analytic degree m is said to be a circulant polynomial with argument ω if (i) m ≤ N and (ii)
there exists ω ∈ [0, 2π) such that a−k = eiωaN−k+1 for every 1 ≤ k ≤ m. In other words, ϕ is
a circulant polynomial if and only if m ≤ N and the compression of the Toeplitz operator Tϕ to
the subspace of H2(T) spanned by the functions 1, z, z2, . . . , zN−1 is, with respect to the standard
basis, a generalised circulant matrix.

The polynomial ϕ(eiθ) = e−i2θ − 3e−iθ + ei7θ − 3ei8θ is a circulant polynomial, however we
know from Theorem 1 that Tϕ is hyponormal if and only if Tψ is hyponormal, where ψ(eiθ) =
e−i2θ − 3e−iθ + 2ei4θ − ei6θ + ei7θ − 3ei8θ. So although ψ is not a circulant polynomial per se, it is
convenient to view ψ as of “circulant type.” More general symbols of circulant type are described
in the hypothesis of Theorem 2, which is the main result of this paper.



Theorem 2. Let a0, a1, . . . , an be fixed complex numbers and let α ∈ C be such that either α = 0
or |α| = 1. Suppose that ϕ(eiθ) =

∑N
−m bneinθ is a trigonometric polynomial, with m ≤ N , whose

coefficients bn satisfy the following combinatorial constraints:

(2.1) bn =





an (0 ≤ n ≤ N −m)
an + αan+1 (N −m + 1 ≤ n ≤ N − 1)
aN (n = N)

and

(2.2) b−n =
{

eiω(aN−n+1 + ᾱaN−n) (1 ≤ n ≤ m− 1)
eiωaN−m+1 (n = m) .

If f denotes the analytic polynomial f(z) = aN−m+1+aN−m+2z+· · ·+aNzm−1, then the following
statements are equivalent.

1. Tϕ is a hyponormal operator.

2. For every root ζ of f such that |ζ| > 1, the number 1/ζ is a root of f in D of multiplicity
greater than or equal to the multiplicity of ζ.

In the cases where Tϕ is a hyponormal operator, we have that

E(ϕ) =





eiωaN

aN
zN−m

m−1∏

j=1

(
z − ζj

1− ζjz

)

 ,

where ζ1, · · · , ζm−1 denote the roots (repeated according to multiplicity) of the analytic polynomial
f . Moreover the rank of the selfcommutator of Tϕ is computed from the formula

rank [T ∗ϕ, Tϕ] = N −m + ZD − ZC\D ,

where ZD and ZC\D are the number of zeros of f in D and in C\D counting multiplicity.

Remark. If α = 0 in (2.1) and (2.2) and if a1 = · · · = aN−m = 0 when m < N , then ϕ is a
circulant polynomial with argument ω.

Proof. In view of Theorem 1, we will assume without loss of generality that

a0 =
{

ᾱeiωaN (m < N)
αa1 + ᾱeiωaN (m = N),

a1 = · · · = aN−m = 0.

The connection between the given trigonometric polynomial ϕ and the analytic polynomial f is
explained by a factorisation of zmϕ:

zmϕ(z) = f(z)
(

zN (z + α) + eiω(1 + ᾱz)
)

.

So, ϕ vanishes on at least N points on T, namely on each of the (N + 1)-roots of −eiω if α = 0
or on each of the N -roots of −ᾱeiω if |α| = 1. Consider the function |ϕ| as a continuous function
θ 7→ |ϕ(eiθ)| on the real interval [−π, π]. Then

log |ϕ(eiθ)| = log |f(eiθ)|+ log |eiNθ(eiθ + α) + eiω(1 + ᾱeiθ)|



fails to be Lebesgue integrable on [−π, π] (because log |eiNθ(eiθ + α) + eiω(1 + ᾱeiθ)| grows expo-
nentially near the (N + 1)-roots of −eiω if α = 0 or near the N -roots of −ᾱeiω if |α| = 1). We
conclude, then, that log |ϕ| is not integrable for every polynomial ϕ with the coefficients obeying
(2.1); therefore, a Toeplitz operator Tϕ is hyponormal if and only if ϕ = qϕ for some inner function
q ∈ H∞(T) ([10, Theorem 4(1)]). Because ϕ is a trigonometric polynomial, the inner function q
that arises must be rational. Therefore Tϕ is hyponormal if and only if q = ϕ

ϕ is analytic on the
open unit disc D. Observe that

q =
ϕ

ϕ
=

1
zm f(z)

(
zN+1 + αzN + eiω + eiωᾱz

)

zmf(z)
(

1
zN+1 + ᾱ

zN + e−iω + e−iωα
z

)

=
f(z)

(
zN+1 + αzN + eiω + eiωᾱz

)

f(z) (z2m−N−1 + ᾱz2m−N + e−iωz2m + e−iωαz2m−1)

=
f(z)

(
zN+1 + αzN + eiω + eiωᾱz

)

e−iωz2m−N−1f(z) (eiω + eiωᾱz + zN+1 + αzN )

= eiωzN−m f(z)
zm−1f(z)

.

On the other hand, since

zm−1f(z) = aN + aN−1z + · · ·+ aN−m+1z
m−1,

we have that
ζ is a zero of f ⇐⇒ (ζ)−1 is a zero of zm−1f.

Thus we can write

(2.3) q(z) =
eiωaN

aN
zN−m

m−1∏

j=1

(
z − ζj

1− ζjz

)
,

where ζ1, · · · , ζm−1 denote the roots (repeated according to multiplicity) of the analytic polynomial
f . Therefore Tϕ is hyponormal if and only if q is analytic on D if and only if the zeros of the analytic
polynomial f have the property that for every root ζ of f with |ζ| > 1, the complex number 1/ζ
is a root of f in D of multiplicity greater than or equal to the multiplicity of ζ. This is precisely
the criterion that was sought.

Suppose now that Tϕ is a hyponormal operator, where ϕ is described by the hypothesis of the
theorem, but where we no longer assume (as we did in this first part of the proof) that a0 has a
special value and that a1 = · · · = aN−m = 0 in the case that m < N . Then, as an argument of
Nakazi and Takahashi ([10, Theorem 10]) shows, for every k ∈ E(ϕ),

(2.4) rank [T ∗ϕ, Tϕ] ≤ degree of k.

The selfcommutator of Tϕ is independent of the constant term, and so without loss of generality
we assume once again that

a0 =
{

ᾱeiωaN (m < N)
αa1 + ᾱeiωaN (m = N) .

Next we shall perturb ϕ to a trigonometric polynomial ϕ0 such that in the case where m < N the
Fourier coefficients of ϕ0 vanish at 1, 2, . . . , N −m. To achieve this, let

ϕ0 = ϕ− g , where g(eiθ) =
N−m∑
n=0

aneinθ .



We are now in a position to apply the results obtained in the first part of the proof to the polynomial
ϕ0. By that which has preceded above, there is a finite Blaschke product q that satisfies ϕ0−qϕ0 = 0
and so

ϕ− qϕ = ϕ0 − qϕ0 + g − qg = 0 + q − qg .

Because zN−mg(z) is analytic, so is g(z) − q(z)g(z). Thus, ϕ − qϕ = g − qg ∈ H∞ and hence
q ∈ E(ϕ).

Formula (2.3) shows that the degree of q is N −m + ZD − ZC\D, where ZD and ZC\D are the
number of zeros of f in D and in C\D counting multiplicity. This together with (2.4) gives that

(2.5) rank [T ∗ϕ, Tϕ] ≤ N −m + ZD − ZC\D.

Now we will show that E(ϕ) has exactly one element k, namely q. To the contrary, assume that
E(ϕ) contains at least two elements. Then by another argument of Nakazi and Takahashi ([10,
Proposition 11]), ker [T ∗ϕ, Tϕ] = kerHϕ, where Hϕ is a Hankel operator with symbol ϕ. Thus

rank [T ∗ϕ, Tϕ] = dim (H2 ª kerHϕ).

But since Hϕ has the following matrix representation

Hϕ =




b1 b2 b3 . . . bN 0 . . .
b2 b3 · 0
b3 · 0
... · 0

bN 0
0
...




: l2 −→ l2

and bN = aN 6= 0, it follows that

kerHϕ = {(ξ1, ξ2, ξ3, · · · ) ∈ l2 : ξ1 = · · · = ξN = 0}.
Therefore we have that rank [T ∗ϕ, Tϕ] = N , which leads a contradiction because from (2.5) we must
have that rank [T ∗ϕ, Tϕ] ≤ N − 1. Therefore we can conclude that

E(ϕ) =





eiωaN

aN
zN−m

m−1∏

j=1

(
z − ζj

1− ζjz

)

 .

Furthermore, by [10, Theorem 10], we have that rank [T ∗ϕ, Tϕ] = N−m+ZD−ZC\D. This completes
the proof. ¤

Corollary 3. If a0, . . . , aN are fixed and if ϕ(eiθ) =
∑N
−N bneinθ is a trigonometric polynomial

for which the Toeplitz matrix B = (bi−j)0≤i,j≤N is equal to



a0 aN−1 + eiωaN aN−2 + eiωaN−1 . . . a1 + eiωa2 eiωa1

a1 + eiωa2 a0
. . .

...

a2 + eiωa3
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
...

aN−1 + eiωaN a0 aN−1 + eiωaN

aN . . . . . . . . . a1 + eiωa2 a0




,



and if f denotes the analytic polynomial f(z) = a1 +a2z + · · ·+aNzN−1, then Tϕ is a hyponormal

operator if and only if for every root ζ of f such that |ζ| > 1, the number 1/ζ is a root of f in D
of multiplicity greater than or equal to the multiplicity of ζ.

Proof. Take m = N and α = eiω in Theorem 2. ¤
Corollary 4. If a0, . . . , aN are fixed and if ϕ(eiθ) =

∑N
−N bneinθ is a trigonometric polynomial

for which the Toeplitz matrix B = (bi−j)0≤i,j≤N satisfies

B =




a0 aN−1 . . . a1 −(a1 + · · ·+ aN )

a1 a0
. . . a1

...
. . .

. . .
. . .

...
...

. . . a0 aN−1

aN . . . . . . a1 a0




,

and if f denotes the analytic polynomial

f(z) = (a1 + · · ·+ aN ) + (a2 + · · ·+ aN )z + · · ·+ (aN−1 + aN )zN−2 + aNzN−1 ,

then Tϕ is a hyponormal operator if and only if for every root ζ of f such that |ζ| > 1, the number

1/ζ is a root of f in D of multiplicity greater than or equal to the multiplicity of ζ.

Proof. This is an immediate result from Corollary 3. ¤
The criteria in Theorem 2, Corollary 3, and Corollary 4 are readily applicable, as illustrated

by the following simple examples.

Example 1. Consider the polynomial ϕ(eiθ) = αe−i2θ + βe−iθ + αeiθ + βei2θ. This is a circulant
polynomial and Theorem 2 shows that Tϕ is hyponormal if and only if |α| ≤ |β|. If β 6= 0, then
the solution q to the functional equation ϕ− qϕ = 0 is q(z) = (z + α

β )(1 + (α
β )z)−1.

Example 2. Consider the polynomial ϕ = αe−i2θ + (α + β)e−iθ + (α + β)eiθ + βei2θ. Corollary
3 shows that Tϕ is hyponormal if and only if |α| ≤ |β|.
Example 3. With the circulant polynomial

ϕ(eiθ) = −2e−i4θ + 9e−i3θ − 12e−i2θ + 4e−iθ − 2ei2θ + 9ei3θ − 12ei4θ + 4ei5θ ,

the analytic polynomial f is f(z) = 4(z − 1
2 )2(z − 2), and so by Theorem 2, Tϕ is hyponormal.

The rank of the selfcommutator is N −m + ZD − ZC\D = 5− 4 + 2− 1 = 2. The solution q to the
functional equation ϕ− qϕ = 0 is in this case q(z) = z(z − 1

2 )(1− 1
2z)−1.

Example 4. Consider the following polynomial of circulant type:

ϕ(eiθ) = 2e−i4θ − 11e−i3θ + 21e−i2θ − 16e−iθ − 11eiθ + 21ei2θ − 16ei3θ + 4ei4 theta.

Then the analytic polynomial f in Corollary 4 is

f(z) = 4z3 − 12z2 + 9z − 2 = 4(z − 1
2
)2(z − 2)

and hence Tϕ is hyponormal with rank-1 selfcommutator.

The normality of Toeplitz matrices involves circularity and symmetry, but it is only circularity
that we have considered herein. For a study of relations between the hyponormality of Toeplitz
operators with polynomial symbols and various symmetry-type properties of the coefficients, see
[3,9].
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