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On I-Baire spaces
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Abstract. In this paper, the concept of I-Baire spaces is introduced, and characterizations and properties
of these spaces are given. It is shown that (X, τ) is Baire if and only if (X, τ,I) is I-Baire for any ideal I on
X.

1. Introduction

It is well known that a Baire space is defined as a space in which every countable intersection of dense
open subsets is dense, or equivalently a space with the property that every nonempty open subspace is
nonmeager. Baire spaces have various applications in complete metric spaces. To develop applications of
Baire spaces, some researchers have studied some spaces such as hyperspaces, Volterra spaces (see [10, 19]).
Recently, Chakrabarti and Dasgupta [2] have investigated Baire spaces with minimal structure.

Ideals on topological spaces were studied by Kuratowski [17] and Vaidyanathaswamy [22]. Their
applications have been investigated intensively (see [3, 6, 7, 13, 16, 18, 20]).

The aim of this paper is to introduce and study I-Baire spaces. Some characterizations and properties
of I-Baire spaces, including their subspaces, are investigated. Finally, some mapping theorems and a
topological sum theorem on I-Baire spaces are discussed.

2. Preliminaries

Let X be a nonempty set, let 2X be a family of all subsets of X and let I ⊂ 2X. I is called an ideal (resp.
a σ-ideal) on X, if it satisfies the following conditions:

(1) If A ∈ I and B ⊂ A, then B ∈ I;
(2) If A,B ∈ I (resp. {An : n ∈ N} ⊂ I), then A ∪ B ∈ I (resp.

∪
n∈N

An ∈ I).

If τ is a topology on X and I is an ideal on X, then (X, τ,I) is called an ideal topological space or simply
an ideal space.

Let (X, τ,I) be an ideal space. An operator (·)∗ : 2X −→ 2X, called a local function [17] of A with respect
to τ and I, is defined as follows: for any A ⊂ X,

A∗(I, τ) = {x ∈ X : U ∩ A < I for every U ∈ τ(x)}
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where τ(x) = {U ∈ τ : x ∈ U}.
An operator cl∗(·) : 2X −→ 2X is defined as follows: for any A ⊂ X,

cl∗(A)(I, τ) = A ∪ A∗(I, τ).

Since cl∗(·) is a Kuratowski closure operator, cl(·)∗ generates a topology τ∗(I, τ), called ∗-topology. It is
easy to prove that τ∗(I, τ) ⊃ τ.

When there is no chance for confusion, we will simply write τ∗ for τ∗(I, τ), A∗ for A∗(I, τ), c∗A for
cl∗(A)(I, τ) and i∗A for int∗(A)(I, τ), where

int∗(A)(I, τ) = X − cl∗(X − A)(I, τ).

A ⊂ X is called ∗-closed [16] if c∗A = A, and A is called ∗-open (i.e., A ∈ τ∗) if X−A is ∗-closed. Obviously,
A is ∗-open if and only if i∗A = A.

Throughout this paper, spaces always mean topological spaces or ideal spaces on which no separation
axiom is assumed, and all mappings are onto. Sometimes, (X, τ) and (X, τ,I) are simply written by X. N
denotes the set of all natural integers. LetU ⊂ 2X, A ⊂ X and x ∈ X. UA denotes {U∩A : U ∈ U} andU(x)
denotes {U ∈ U : x ∈ U}. The closure of A and the interior of A are denoted by cA and iA respectively, and
we have

iA ⊂ i∗A ⊂ A ⊂ c∗A ⊂ cA.

Let (X, τ,I) be an ideal space and let Y ⊂ X. Then (Y, τY,IY) is an ideal space, where τY = {U∩Y : U ∈ τ}
and IY = {I ∩Y : I ∈ I} = {I ∈ I : I ⊂ Y}. For a space (X, τ,I) (resp. (X, τ∗,I)) with A ⊂ Y ⊂ X, the closure of
A and the interior of A in the subspace (Y, τY,IY) (resp. (Y, τ∗Y,IY)) are denoted by cYA and iYA (resp. c∗YA
and i∗YA), respectively.

Given A ⊂ X and some operators γi : 2X −→ 2X (i = 1, 2, · · · ,n). For convenience, we simply denote
γ1(γ2(· · · (γn(A)) · · · )) by γ1γ2 · · ·γnA.

Lemma 2.1. ([12]) Let (X, τ,I) be an ideal space and let A ⊂ X. If U ∈ τ, then U ∩ c∗A ⊂ c∗(U ∩ A).

Lemma 2.2. ([12]) Let (X, τ,I) be an ideal space and let A ⊂ Y ⊂ X. Then c∗Y(A) = c∗A ∩ Y.

3. ∗-denseness and nowhere ∗-denseness

Definition 3.1. A subset A of an ideal space (X, τ,I) is called
(1) ∗-dense [11], if c∗A = X;
(2) nowhere ∗-dense [1], if i∗cA = ∅.

The family of all nowhere ∗-dense subsets of an ideal space X shall be denoted by N ∗(X) or simply by
N ∗ when no ambiguity is present.

Remark 3.2. Let (X, τ,I) be an ideal space and let B ⊂ A ⊂ X.
(1) If A is ∗-dense in X, then A is dense in X.
(2) If A is nowhere ∗-dense in X, then A is nowhere dense in X.
(3) If A ∈ N ∗, then B ∈ N ∗.
(4) A ∈ N ∗ if and only if cA ∈ N ∗.

Proposition 3.3. Let (X, τ,I) and (X, τ,J) be two ideal spaces with I ⊂ J and A ⊂ X. If A is ∗-dense in (X, τ,J),
then A is ∗-dense in (X, τ,I).

Proof. This follows from the fact that I ⊂ J implies A∗(J , τ) ⊂ A∗(I, τ).

Proposition 3.4. Let (X, τ,I) and (X, σ,I) be two ideal spaces with τ ⊂ σ and A ⊂ X. If A is ∗-dense in (X, σ,I),
then A is ∗-dense in (X, τ,I).
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Proof. This follows from the fact that τ ⊂ σ implies A∗(I, σ) ⊂ A∗(I, τ).

Proposition 3.5. Let (X, τ,I) be an ideal space. Then A ⊂ X is ∗-dense in X if and only if U ∩ A , ∅ for any
U ∈ τ∗ − {∅}.

Proof. Necessity. Let A be ∗-dense in X and let U ∈ τ∗ − {∅}. Pick x ∈ U. Then x ∈ X = c∗A = A ∪ A∗.
Case 1. x ∈ A.
Then x ∈ U ∩ A. So U ∩ A , ∅.
Case 2. x ∈ A∗.
Suppose U ∩ A = ∅. Since X − U is ∗-closed in X, (X − U)∗ ⊂ X − U. Then U ⊂ X − (X − U)∗. By x ∈ U,

x < (X − U)∗. It follows that V ∩ (X − U) ∈ I for some V ∈ τ(x). By U ∩ A = ∅, A ⊂ X − U. This implies
V ∩ A ⊂ V ∩ (X −U). Then V ∩ A ∈ I. So x < A∗, a contradiction. Thus, U ∩ A , ∅.

Sufficiency. Suppose c∗A , X. Put U = X − c∗A. Then U ∈ τ∗ − {∅}. But U ∩A = (X − c∗A)∩A = ∅. This is
a contradiction.

Proposition 3.6. Let (X, τ,I) be an ideal space and let A ⊂ X. The following are equivalent.
(1) A ∈ N ∗;
(2) For each U ∈ τ∗ − {∅}, U 1 cA;
(3) For each U ∈ τ∗ − {∅}, U − cA ∈ τ∗ − {∅};
(4) X − cA is ∗-dense in X.

Proof. (1)=⇒(2) Suppose that U ⊂ cA for some U ∈ τ∗ − {∅}. Since A ∈ N ∗, we have U = i∗U ⊂ i∗cA = ∅.
Thus, U = ∅, a contradiction.

(2)=⇒(3) Let U ∈ τ∗ − {∅}. By (2), U 1 cA. Then U − cA , ∅. Since X − cA ∈ τ and τ ⊂ τ∗, we have
X − cA ∈ τ∗. Note that U ∈ τ∗. Thus U − cA = U ∩ (X − cA) ∈ τ∗ − {∅}.

(3)=⇒(4) Let U ∈ τ∗ − {∅}. By (3), U − cA ∈ τ∗ − {∅}. This implies that U ∩ (X − cA) = U − cA , ∅ for any
U ∈ τ∗ − {∅}. By Proposition 3.5, X − cA is ∗-dense in X.

(4)=⇒(1) Let X − cA be ∗-dense in X. Then X = c∗(X − cA) = X − i∗cA. This implies i∗cA = ∅ and thus
A ∈ N ∗.

Proposition 3.7. Let (X, τ,I) be an ideal space and let A ⊂ Y ⊂ X.
(1) If A ∈ N ∗(Y), then A ∈ N ∗(X).
(2) If Y ∈ τ∗ and A ∈ N ∗(X), then A ∈ N ∗(Y).
(3) If Y is ∗-dense in X and A ∈ N ∗(X), then A ∈ N ∗(Y).

Proof. (1) Let A ∈ N ∗(Y). By Proposition 3.6, Y − cYA is ∗-dense in Y. So Y ⊂ c∗(Y − cYA) = c∗(Y − cA ∩ Y) =
c∗(Y − cA). Since X − cA = (Y − cA)∪ (X −Y), we have c∗(X − cA) = c∗(Y − cA)∪ c∗(X −Y) ⊃ Y∪ (X −Y) = X.
Then X − cA is ∗-dense in X. By Proposition 3.6, A ∈ N ∗(X).

(2) Let Y ∈ τ∗ and A ∈ N ∗(X). For any W ∈ τ∗Y − {∅}, W = U∩Y for some U ∈ τ∗ − {∅}. Note that U,Y ∈ τ∗.
Then W ∈ τ∗. Since A ∈ N ∗(X), by Proposition 3.6, X−cA is ∗-dense in X. By Proposition 3.5, (X−cA)∩W , ∅.
Note that (Y − cYA) ∩W = (Y − cA ∩ Y) ∩W = (Y − cA) ∩W = ((X − cA) ∩ Y) ∩ (U ∩ Y) = (X − cA) ∩W. By
Proposition 3.5, Y − cYA is ∗-dense in Y. By Proposition 3.6, A ∈ N ∗(Y).

(3) Let Y be ∗-dense in X and A ∈ N ∗(X). Since A ∈ N ∗(X), by Proposition 3.6, X − cA is ∗-dense in
X. For any W ∈ τ∗Y − {∅}, W = U ∩ Y for some U ∈ τ∗ − {∅}. By Proposition 3.5, (X − cA) ∩ U , ∅. Then
(X − cA)∩U ∈ τ∗ − {∅}. Note that Y is ∗-dense in X. By Proposition 3.5, (Y − cYA)∩W = (Y − cA∩ Y)∩W =
(Y − cA) ∩W = ((X − cA) ∩ Y) ∩ (U ∩ Y) = Y ∩ ((X − cA) ∩U) , ∅. By Proposition 3.5, Y − cYA is ∗-dense in
Y. By Proposition 3.6, A ∈ N ∗(Y).

Proposition 3.8. Let (X, τ,I) be an ideal space and let A,B ⊂ X. If A,B ∈ N ∗, then A ∪ B ∈ N ∗.

Proof. Since A,B ∈ N ∗, i∗cA = i∗cB = ∅. Note that i∗c(A∪ B) = X − c∗(X − c(A∪ B)) = X − c∗(X − (cA)∪ (cB)) =
X − c∗((X − cA) ∩ (X − cB)). Since X − cA ∈ τ, by Lemma 2.1, we have X − c∗((X − cA) ∩ (X − cB)) ⊂
X− (X−cA)∩c∗(X−cB) = cA∪ i∗cB = cA∪∅ = cA. So i∗c(A∪B) ⊂ cA. Then, i∗c(A∪B) = i∗i∗c(A∪B) ⊂ i∗cA = ∅.
Thus A ∪ B ∈ N ∗.



Z. Li, F. Lin / Filomat 27:2 (2013), 301–310 304

Theorem 3.9. Let (X, τ,I) be an ideal space. ThenN ∗ is an ideal on X.

Proof. This holds by Remark 3.2 (3) and Proposition 3.8.

4. ∗-first category and ∗-second category

Recall that a set in a Baire space is said to be a first category set or a meager set, if it can be written as a
countable union of nowhere dense sets. We shall also give an analogous notion for I-Baire spaces.

Definition 4.1. Let (X, τ,I) be an ideal space and let A ⊂ X.
(1) A is called ∗-first category or ∗-meager in X, if there exists a sequence {An} consisting of nowhere ∗-dense

subsets of X such that A =
∪

n∈N
An.

(2) A is called ∗-second category or ∗-nonmeager in X, if A is not ∗-first category in X.
(3) A is called ∗-residual or ∗-comeager in X, if X − A is ∗-first category in X.

The family of all ∗-first category subsets (resp. all first category subsets) of an ideal space X shall be
denoted byM∗(X) or simply byM∗ (resp. M(X) orM) when no ambiguity is present.

Remark 4.2. For any ideal space,N ∗ ⊂ M∗ ⊂ M.

Proposition 4.3. Let (X, τ,I) be an ideal space and let A ⊂ Y ⊂ X.
(1) If A ∈ M∗(Y), then A ∈ M∗(X).
(2) If Y ∈ τ∗ and A ∈ M∗(X), then A ∈ M∗(Y).
(3) If Y is ∗-dense in X and A ∈ M∗(X), then A ∈ M∗(Y).

Proof. These hold by Proposition 3.7.

Corollary 4.4. Let (X, τ,I) be an ideal space and let A ⊂ Y ⊂ X.
(1) If A is ∗-second category in X, then A is ∗-second category in Y.
(2) If Y ∈ τ∗ and A is ∗-second category in Y, then A is ∗-second category in X.
(3) If Y is ∗-dense in X and A is ∗-second category in Y, then A is ∗-second category in X.

Proof. These hold by Proposition 4.3.

Proposition 4.5. Let (X, τ,I) be an ideal space and let A ⊂ Y ⊂ X. If Y ∈ M∗, then A ∈ M∗.

Proof. Let Y ∈ M∗ and A ⊂ Y. Then Y =
∪

n∈N
Yn where Yn ∈ N ∗ for each n ∈ N. So A = A∩Y = A∩ (

∪
n∈N

Yn) =∪
n∈N

(A ∩ Yn). Put An = A ∩ Yn for each n ∈ N. Note that each An ⊂ Yn. By Remark 3.2 (3), An ∈ N ∗.
Consequently, A =

∪
n∈N

An ∈ M∗.

Corollary 4.6. Let (X, τ,I) be an ideal space and let A ⊂ Y ⊂ X. If A is ∗-second category in X, then Y is ∗-second
category in X.

Proof. This holds by Proposition 4.5.

Proposition 4.7. Let (X, τ,I) be an ideal space. If Fn ∈ M∗ for each n ∈ N, then
∪

n∈N
Fn ∈ M∗.

Proof. This is obvious.

Theorem 4.8. Let (X, τ,I) be an ideal space. ThenM∗ is a σ-ideal on X.

Proof. This holds by Proposition 4.5 and 4.7.
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5. I -Baire spaces

5.1. The concept of I-Baire spaces

Definition 5.1. Let (X, τ,I) be an ideal space. X is called I-Baire, if for any sequence {Gn} consisting of open
and ∗-dense subsets of X,

∩
n∈N

Gn is dense in X.

Example 5.2. Let X = N, A = {1, 3, 5, · · · }, B = X − A,

τ = {∅} ∪ {A ∪M : M ∈ 2B} and I = 2B.

It is easily proved that (X, τ,I) is an ideal space.
Let {Gn} be any sequence consisting of open and ∗-dense subsets of X. We have

∩
n∈N

Gn ⊃ A. Note that

cA = X. Then c(
∩

n∈N
Gn) = X. Thus (X, τ,I) is I-Baire.

Theorem 5.3. Let (X, τ,I) and (X, τ,J) be two ideal spaces with I ⊂ J . If (X, τ,I) is I-Baire, then (X, τ,J) is
J-Baire.

Proof. This holds by Proposition 3.3.

Theorem 5.4. Let (X, τ,I) be an ideal space. If (X, τ∗) is Baire, then (X, τ,I) is I-Baire.

Proof. Let {Gn} be a sequence of open and ∗-dense subsets of (X, τ,I). Note that τ ⊂ τ∗, and for each n ∈ N,
Gn is ∗-dense in (X, τ) if and only if Gn is dense in (X, τ∗). Since (X, τ∗) is Baire, c∗(

∩
n∈N

Gn) = X and thus

c(
∩

n∈N
Gn) = X. Hence (X, τ,I) is I-Baire.

Theorem 5.5. Let (X, τ,I) be an ideal space. The following are equivalent.
(1) X is I-Baire;
(2) Each nonempty ∗-residual subset A of X is dense in X;
(3) Each U ∈ τ − {∅} is ∗-second category in X;
(4)M∗ ⊂ 2X − (τ − {∅});
(5) iF = ∅ for each F ∈ M∗.

Proof. (1)=⇒(2) Suppose that A is ∗-residual in X. Then X −A =
∪

n∈N
An where An ∈ N ∗. By Remark 3.2 (4),

cAn ∈ N ∗ for each n ∈ N. By Proposition 3.6, each X − cAn ∈ τ is ∗-dense in X. Now

A = X − (X − A) = X −
∪
n∈N

An =
∩
n∈N

(X − An) ⊃
∩
n∈N

(X − cAn).

Since X is I-Baire, c(
∩

n∈N
(X − cAn)) = X. Then cA = X. Thus A is dense in X.

(2)=⇒(3) Suppose that U is not ∗-second category in X for some U ∈ τ − {∅}. Then U ∈ M∗.
Case 1. Suppose U , X. Since U ∈ M∗, by (2), X − U is ∗-residual in X and then X − U is dense in X.

Note that U ∈ τ − {∅}. Then (X −U) ∩U , ∅. This is a contradiction.
Case 2. Suppose U = X. By Proposition 4.5, V ∈ M∗(X) for any open set V ⊂ U. Now it satisfies the

condition of Case 1 and so we omit the remaining proof.
(3)⇐⇒(4) is obvious.
(3)=⇒(5) Let F ∈ M∗. Then F =

∪
n∈N

Fn where Fn ∈ N ∗. Suppose that iF , ∅. Pick x ∈ iF. Then x ∈ U ⊂ F

for some U ∈ τ. Since F ∈ M∗, by Proposition 4.5, U ∈ M∗. By (3), U is ∗-second category in X. This is a
contradiction.
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(5)=⇒(1) Let {Gn} be a sequence consisting of open and ∗-dense subsets of X. Put Fn = X − Gn (n ∈ N).
Note that X − cFn = i(X − Fn) = iGn = Gn is ∗-dense in X. By Proposition 3.6, Fn ∈ N ∗ (n ∈ N). Then∪
n∈N

Fn ∈ M∗. By (5), i(
∪

n∈N
Fn) = ∅. Now we have

i(
∪
n∈N

Fn) = i(
∪
n∈N

(X − Gn)) = i(X −
∩
n∈N

Gn) = X − c(
∩
n∈N

Gn).

Then c(
∩

n∈N
Gn) = X. So

∩
n∈N

Gn is dense in X and thus X is I-Baire.

Proposition 5.6. Let (X, τ,I) be I-Baire and let A ⊂ X. If there exists a ∗-dense Gδ-subset G of X such that G ⊂ A,
then A is ∗-residual in X.

Proof. Let G =
∩

n∈N
Gn ⊂ A with c∗G = X and Gn ∈ τ−{∅} (n ∈ N). Since G is ∗-dense in X, each c∗Gn ⊃ c∗G = X

and so each Gn is ∗-dense in X. Note that Gn ∈ τ − {∅}. By Proposition 3.6, each X − Gn ∈ N ∗. Since

X − G = X −
∩
n∈N

Gn =
∪
n∈N

(X − Gn),

we have X − G ∈ M∗. Since X − A ⊂ X − G, by Proposition 4.5, X − A ∈ M∗. Thus A is ∗-residual in X.

5.2. Subspaces of I-Baire spaces

Theorem 5.7. Let (X, τ,I) be I-Baire and let Y ⊂ X. If Y ∈ τ − {∅}, then (Y, τY,IY) is IY-Baire.

Proof. Let U ∈ τY − {∅}. Since Y ∈ τ − {∅}, we have U ∈ τ − {∅}. Since (X, τ,I) is I-Baire, by Theorem 5.5,
U is ∗-second category in X. By Corollary 4.4, U is ∗-second category in Y. By Theorem 5.5, (Y, τY,IY) is
IY-Baire.

Theorem 5.8. Let (X, τ,I) be an ideal space. The following are equivalent.
(1) X is I-Baire;
(2) For any x ∈ X and Y ∈ τ(x), (Y, τY,IY) is IY-Baire;
(3) For any x ∈ X, there exists Y′ ∈ τ(x) such that (Y′, τY′ ,IY′) is IY′-Baire.

Proof. (1)=⇒(2) follows from Theorem 5.7.
(2)=⇒(3) is obvious.
(3)=⇒(1) Suppose that X is not I-Baire. By Theorem 5.5, G ∈ M∗(X) for some G ∈ τ − {∅}. Pick x ∈ G.

By (3), there exists Y′ ∈ τ(x) such that (Y′, τY′ ,IY′ ) is IY′-Baire. Now x ∈ G ∩ Y′ ⊂ X. Note that G ∈ M∗(X)
and Y′ ∈ τ− {∅}. By Proposition 4.5, G∩Y′ ∈ M∗(X). Note that Y′ ∈ τ(x). Then Y′ ∈ τ∗ − {∅}. By Proposition
4.3, G ∩ Y′ ∈ M∗(Y′). Note that G ∩ Y′ ∈ τY′ . By Theorem 5.5, (Y′, τY′ ,IY′) is not IY′ -Baire. This is a
contradiction.

Theorem 5.9. Let (X, τ,I) be an ideal space and let Y be ∗-residual in X. If X is I-Baire, then (Y, τY,IY) isIY-Baire.

Proof. Let (X, τ,I) be I-Baire and let Y be ∗-residual in X. To prove that (Y, τY,IY) is IY-Baire, it suffices to
show that any ∗-residual subset of Y is dense in Y.

Let A ⊂ Y and A ∈ M∗(Y). Then Y − A is ∗-residual in Y. By Proposition 4.3, A ∈ M∗(X). Since Y is
∗-residual in X, X−Y ∈ M∗(X). By Proposition 4.7, (X−Y)∪A ∈ M∗(X) and then X− (X−Y)∪A = Y∩ (X−A)
is ∗-residual in X. By Theorem 5.5, Y ∩ (X − A) is dense in X. Then

cY(Y − A) = cY(Y ∩ (X − A)) = c(Y ∩ (X − A)) ∩ Y = X ∩ Y = Y.

It follows that Y − A is dense in Y. By Theorem 5.5, (Y, τY,IY) is IY-Baire.
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6. I -Baire spaces, codense ideals and I -dense subsets

6.1. I-Baire spaces and codense ideals

In this subsection, we will characterize I-Baire spaces by means of codense ideals.

Definition 6.1. ([7]) Let (X, τ,I) be an ideal space. I is called codense, if τ ∩ I = {∅}.

Lemma 6.2. ([16]) Let (X, τ,I) be an ideal space. Then I is codense if and only if A ⊂ A∗ for every A ∈ τ.

Lemma 6.3. ([7]) Let (X, τ,I) be an ideal space and A ⊂ X. If A ⊂ A∗, then A∗ = cA∗ = cA = c∗A.

Theorem 6.4. Let (X, τ,I) be an ideal space and let I be codense. Then (X, τ) is Baire if and only if (X, τ,I) is
I-Baire.

Proof. Necessity. This is obvious.
Sufficiency. Suppose that (X, τ,I) isI-Baire. Let {Gn} be a sequence consisting of open and dense subsets

of X. Since Gn ∈ τ for each n ∈ N and I is codense, by Lemma 6.2, each Gn ⊂ G∗n. By Lemma 6.3, we have
c∗Gn = cGn = X for each n ∈ N. Since (X, τ,I) is I-Baire,

∩
n∈N

Gn is dense. Hence (X, τ) is Baire.

Problem 6.5. Can the condition “ let I be codense ” in Theorem 6.4 be omitted?

Lemma 6.6. If (X, τ,M∗) isM∗-Baire, thenM∗ is codense.

Proof. Let (X, τ,M∗) be M∗-Baire. By Theorem 5.5, every U ∈ τ − {∅} is ∗-second category in X and then
τ ∩M∗ = {∅}. This implies thatM∗ is codense.

Theorem 6.7. Let X be a space. The following are equivalent.
(1) (X, τ) is Baire;
(2) (X, τ, {∅}) is {∅}-Baire;
(3) (X, τ,N ∗) isN ∗-Baire;
(4) (X, τ,M∗) isM∗-Baire;
(5) (X, τ,I) is I-Baire for any ideal I on X.

Proof. (1) =⇒ (2) is obvious.
(2)=⇒(3)=⇒(4) hold by Theorem 3.9, Remark 4.2, Theorem 4.8 and Theorem 5.3.
(1) =⇒ (5) =⇒ (4) are obvious.
(4)=⇒(1) holds by Theorem 6.4 and Lemma 6.6.

6.2. I-Baire spaces and I-dense subsets

Definition 6.8. ([6]) Let (X, τ,I) be an ideal space. A ⊂ X is called I-dense, if A∗ = X.

Remark 6.9. (1) Every I-dense set is ∗-dense. However, ∗-dense sets need not be I-dense (see [6]).
(2) If I is codense, then by Lemma 6.2 and 6.3, I-denseness, ∗-denseness and denseness are equivalent.

Definition 6.10. ([6]) An ideal space (X, τ,I) is called I-resolvable, if X has two disjoint I-dense subsets.

Lemma 6.11. ([6]) Let (X, τ,I) be an ideal space. If X is I-resolvable, then I is codense.

Theorem 6.12. Let (X, τ,M∗) be an ideal space. If X isM∗-resolvable, then X isM∗-Baire.

Proof. Since (X, τ,M∗) is M∗-resolvable, by Lemma 6.11, M∗ is codense. So τ ∩M∗ = {∅}. It follows that
U <M∗(X) for any U ∈ τ − {∅}. By Theorem 5.5, X isM∗-Baire.
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Theorem 6.13. Let (X, τ,M) be an ideal space. Then X is M-resolvable if and only if X has two disjoint dense
I-Baire subspaces (i.e., X = A ∪ B, where A ∩ B = ∅, cA = cB = X, A and B are respectively M∗

A-Baire and
M∗

B-Baire).

Proof. This holds by Theorem 3.3 in [6] and Theorem 6.7.

Definition 6.14. ([3]) An ideal space (X, τ,I) is called I-separable, if X has a countable I-dense subset.

Theorem 6.15. Let (X, τ,M) be an ideal space. Then X is M-separable if and only if X has a countable dense
M∗

Y-Baire subspace (Y, τY,M∗
Y) .

Proof. This holds by Theorem 2.10 in [3] and Theorem 6.7.

7. Some properties of I -Baire spaces

7.1. Mapping properties of I-Baire spaces
Lemma 7.1. ([21]) Let f : (X, τ,I)→ (Y, σ) be a mapping. Then f (I) = { f (A) : A ∈ I} is an ideal on Y.

Definition 7.2. ([13]) A subset A of an ideal space (X, τ,I) is called semi-I-open, if A ⊂ c∗iA.

The family of all semi-I-open sets in an ideal space (X, τ,I) shall be denoted by SIO(X, τ).

Definition 7.3. ([14]) An ideal space (X, τ,I) is called semi-I-complete, if τ∗ = SIO(X, τ).

Definition 7.4. ([9]) A mapping f : (X, τ)→ (Y, σ) is called feebly open, if for any U ∈ τ − {∅}, i f (U) , ∅.

Definition 7.5. ([13]) A mapping f : (X, τ,I) → (Y, σ) is called semi-I-continuous, if f−1(V) ∈ SIO(X, τ) for
any V ∈ σ.

Lemma 7.6. ([15]) Let (X, τ,I) be an ideal space and let ∅ , A ⊂ X. Then A ∈ SIO(X, τ) if and only if there exists
U ∈ τ − {∅} such that U ⊂ A ⊂ c∗U.

Lemma 7.7. Let f : (X, τ,I)→ (Y, σ) be semi-I-continuous. Then f (i∗cA) ⊂ c f (A) for any A ⊂ X.

Proof. Let A ⊂ X and B = f (A). Since Y − cB ∈ σ and f is semi-I-continuous, f−1(Y − cB) ∈ SIO(X, τ). Then
f−1(Y−cB) ⊂ c∗i f−1(Y−cB) and so X− f−1(cB) ⊂ c∗i(X− f−1(cB)). This implies f−1(cB) ⊃ X−c∗i(X− f−1(cB)) =
i∗(X − i(X − f−1(cB))) = i∗c f−1(cB). It follows that i∗c f−1(B) ⊂ f−1(cB). Then

f (i∗cA) ⊂ f (i∗c f−1( f (A))) ⊂ f ( f−1(c f (A))) ⊂ c f (A).

Consequently, f (i∗cA) ⊂ c f (A) for any A ⊂ X.

Theorem 7.8. Let f : (X, τ,I) → (Y, σ) be semi-I-continuous and feebly open. If (X, τ,I) is semi-I-complete and
I-Baire, then (Y, σ, f (I)) is f (I)-Baire.

Proof. Suppose that (Y, σ, f (I)) is not f (I)-Baire. Then there exists B ∈ σ − {∅} such that B ∈ M∗(Y). Put
B =

∪
n∈N

Bn where Bn ∈ N ∗(Y). Then ∅ , f−1(B) = f−1(
∪

n∈N
Bn) =

∪
n∈N

f−1(Bn).

Claim. f−1(Bn) ∈ N ∗(X) (n ∈ N).
Suppose f−1(Bn) < N ∗(X) for some n ∈ N. Then i∗c f−1(Bn) , ∅. Put An = f−1(Bn). Note that (X, τ,I) is

semi-I-complete and i∗cAn ∈ τ∗, we have ∅ , i∗cAn ⊂ c∗ii∗cAn ⊂ c∗iccAn = c∗icAn. Then icAn , ∅. Since f is
feebly open, i f (icAn) , ∅. Note that i f (icAn) ⊂ i∗ f (i∗cAn). Since f is semi-I-continuous, by Lemma 7.7, we
have

∅ , i∗ f (i∗cAn) ⊂ i∗c f (An) ⊂ i∗cBn.

Then Bn < N ∗(Y), a contradiction. Thus f−1(Bn) ∈ N ∗(X) (n ∈ N) and consequently, f−1(B) ∈ M∗(X).
Since f is semi-I-continuous, ∅ , f−1(B) ∈ SIO(X, τ). By Lemma 7.6, U ⊂ f−1(B) ⊂ c∗U for some

U ∈ τ−{∅}. Note that f−1(B) ∈ M∗(X), by the claim. So, we have U ∈ M∗(X) by Proposition 4.5. By Theorem
5.5, (X, τ,I) is not I-Baire. This is a contradiction.
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Definition 7.9. ([8]) A mapping f : (X, τ,I) → (Y, σ) is called ∗-closed, if f (A) is ∗-closed in Y for every
∗-closed subset A of X.

Theorem 7.10. Let f : (X, τ,I) → (Y, σ) be a ∗-closed and continuous injection. If (X, τ,I) is I-Baire, then
(Y, σ, f (I)) is f (I)-Baire.

Proof. Let {Vn} be a sequence of open and ∗-dense subsets of Y. Put Vn = f (Un) (n ∈ N). Since f is injective,
f−1(Vn) = f−1( f (Un)) = Un. Since f is ∗-closed and each Vn is ∗-dense in Y, f (c∗Un) ⊃ c∗ f (Un) = c∗Vn = Y
and then c∗Un = X. Thus Un is ∗-dense in X (n ∈ N). Moreover, since f is continuous, Un = f−1(Vn) ∈ τ− {∅}
(n ∈ N).

Now, {Un} is a sequence of open and ∗-dense subsets of X. Since (X, τ,I) is I-Baire, we obtain that
c(
∩

n∈N
Un) = X. Note that f is continuous. Thus,

Y = f (X) = f (c(
∩
n∈N

Un)) ⊂ c f (
∩
n∈N

Un) ⊂ c(
∩
n∈N

f (Un)) = c(
∩
n∈N

Vn).

This implies c(
∩

n∈N
Vn) = Y. Hence (Y, σ, f (I)) is f (I)-Baire.

7.2. Topological sums
Lemma 7.11. ([4]) If every Iα is an ideal on Xα, then {∪

α∈Γ
Iα : Iα ∈ Iα} is an ideal of

∪
α∈Γ

Xα.

Let {(Xα, τα,Iα) : α ∈ Γ} be a family of pairwise disjoint ideal spaces, i.e., Xα ∩ Xβ = ∅ for α , β.

Put
X =
∪
α∈Γ

Xα,

τ = {A ⊂ X : A ∩ Xα ∈ τα for each α ∈ Γ}
and

I = {
∪
α∈Γ

Iα : Iα ∈ Iα}.

It is easy to prove that τ is a topology on X and Xα is clopen in X for any α ∈ Γ, and hence each Xα is
∗-closed and ∗-open in X.

By Lemma 7.11, (X, τ,I) is an ideal space, which is called the topological sum of {(Xα, τα,Iα) : α ∈ Γ}.
We denote it by

⊕
α∈Γ

Xα.

Theorem 7.12. Let (X, τ,I) be the topological sum of {(Xα, τα,Iα) : α ∈ Γ}. Then X is I-Baire if and only if Xα is
Iα-Baire for any α ∈ Γ.

Proof. Necessity. Let (X, τ,I) be I-Baire. Note that Xα is clopen in X for any α ∈ Γ and IXα = Iα. By
Theorem 5.7, Xα is Iα-Baire for any α ∈ Γ.

Sufficiency. Let {Gn} be a sequence of open and ∗-dense subsets of X. Put G =
∩

n∈N
Gn. For any n ∈ N and

α ∈ Γ, we denote
Gnα = Gn ∩ Xα and Gα =

∩
n∈N

Gnα.

Then G =
∪
α∈Γ

Gα. Now, to prove that (X, τ,I) is I-Baire, it suffices to show that G is dense in X.

Since Gn ∈ τ − {∅}, we have Gnα ∈ τα for any n ∈ N and α ∈ Γ. Since Xα ∈ τ, by Lemma 2.1,
c∗Gnα ⊃ c∗Gn ∩ Xα = X ∩ Xα = Xα. Note that Gnα ⊂ Xα and Xα is ∗-closed in X. Then c∗Gnα = Xα and so
c∗XαGnα = Xα. Thus for any α ∈ Γ, {Gnα} is a sequence of open and ∗-dense subsets of Xα. Since Xα is Iα-Baire,
cGα ∩Xα = cXαGα = Xα. This implies cGα ⊃ Xα. Note that G ⊃ Gα for any α ∈ Γ. Then cG ⊃ cGα ⊃ Xα, which
implies cG ⊃ ∪

α∈Γ
Xα = X. Thus X is I-Baire.
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