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Abstract

The “learning with errors” (LWE) problem is to distinguish random linear equations, which have been

perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as

hard as worst-case lattice problems, and in recent years it has served as the foundation for a plethora

of cryptographic applications. Unfortunately, these applications are rather inefficient due to an inherent

quadratic overhead in the use of LWE. A main open question was whether LWE and its applications

could be made truly efficient by exploiting extra algebraic structure, as was done for lattice-based hash

functions (and related primitives).

We resolve this question in the affirmative by introducing an algebraic variant of LWE called ring-

LWE, and proving that it too enjoys very strong hardness guarantees. Specifically, we show that the

ring-LWE distribution is pseudorandom, assuming that worst-case problems on ideal lattices are hard

for polynomial-time quantum algorithms. Applications include the first truly practical lattice-based

public-key cryptosystem with an efficient security reduction; moreover, many of the other applications of

LWE can be made much more efficient through the use of ring-LWE.

1 Introduction

Over the last decade, lattices have emerged as a very attractive foundation for cryptography. The appeal of

lattice-based primitives stems from the fact that their security can often be based on worst-case hardness

assumptions, and that they appear to remain secure even against quantum computers.

Many lattice-based cryptographic schemes are based directly upon two natural average-case problems

that have been shown to enjoy worst-case hardness guarantees. The short integer solution (SIS) problem was

first shown in Ajtai’s groundbreaking work [Ajt96] to be at least as hard as approximating several worst-case

lattice problems, such as the (decision version of the) shortest vector problem, to within a polynomial factor
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in the lattice dimension. More recently, Regev [Reg05] defined the learning with errors (LWE) problem and

proved that it enjoys similar worst-case hardness properties, under a quantum reduction. (That is, an efficient

algorithm for LWE would imply efficient quantum algorithms for approximate lattice problems.) As shown

in two recent results [Pei09, BLP+13], establishing the hardness of LWE under classical (non-quantum)

reductions is also possible, but currently this is based on more restricted lattice problems.

The SIS problem may be seen as a variant of subset-sum over a particular additive group. In more detail,

let n ≥ 1 be an integer dimension and q ≥ 2 be an integer modulus; the problem is, given polynomially

many random and independent ai ∈ Znq , to find a ‘small’ integer combination of them that sums to 0 ∈ Znq .

The LWE problem is closely related to SIS, and can be stated succinctly as the task of distinguishing ‘noisy

linear equations’ from truly random ones. More specifically, the goal is to distinguish polynomially many

pairs of the form (ai, bi ≈ 〈ai, s〉) ∈ Znq × Zq from uniformly random and independent pairs. Here s ∈ Znq
is a uniformly random secret (which is kept the same for all pairs), each ai ∈ Znq is uniformly random and

independent, and each inner product 〈ai, s〉 ∈ Zq is perturbed by a fresh random error term that is typically

distributed like a (rounded) normal variable.

In recent years, a multitude of cryptographic schemes have been proposed around the SIS and LWE

problems. The SIS problem has been the foundation for one-way [Ajt96] and collision-resistant hash func-

tions [GGH96], identification schemes [MV03, Lyu08, KTX08], and digital signatures [GPV08, CHKP10,

Boy10, MP12, Lyu12]. The LWE problem has proved to be amazingly versatile, serving as the basis for secure

public-key encryption under both chosen-plaintext [Reg05, PVW08, LP11] and chosen-ciphertext [PW08,

Pei09, MP12] attacks, oblivious transfer [PVW08], identity-based encryption [GPV08, CHKP10, ABB10a,

ABB10b], various forms of leakage-resilient cryptography (e.g., [AGV09, ACPS09, GKPV10]), fully homo-

morphic encryption [BV11, BGV12] (following the seminal work of Gentry [Gen09]), and much more.

A main drawback of schemes based on the SIS and LWE problems, however, is that they tend not to

be efficient enough for practical applications. Even the simplest primitives, such as one-way and collision-

resistant hash functions, have key sizes and require computation times that are at least quadratic in the main

security parameter, which needs to be in the several hundreds for sufficient security against known attacks

(see, e.g., [MR09, LP11]).

A promising approach for avoiding this intrinsic inefficiency is to use lattices that possess extra algebraic

structure. Influenced by the heuristic design of the NTRU cryptosystem [HPS98], Micciancio [Mic02] pro-

posed a ‘compact,’ efficient one-way function (though not a collision-resistant one; see [PR06, LM06]) using

a ring-based variant of SIS that he proved is at least as hard as worst-case problems on cyclic lattices. Later,

Peikert and Rosen [PR06] and Lyubashevsky and Micciancio [LM06] independently showed that a modified

ring-SIS problem is as hard as worst-case problems on ideal lattices (a generalization of cyclic lattices), which

led to constructions of collision-resistant hash functions with practical implementations [LMPR08]. These

results paved the way for other efficient cryptographic constructions, including identification schemes [Lyu09]

and signatures [LM08, Lyu09], though not any public-key encryption applications.

Despite its expected utility, a compact analogue of LWE with comparable security properties has not

yet appeared in the literature (though see Section 1.4 for discussion of a recent related work). Indeed, the

perspectives and techniques that have so far been employed for the ring-SIS problem appear insufficient for

adapting the more involved hardness proofs for LWE to the ring setting. Our main contributions in this paper

are to define a ring-based variant of LWE and to prove its hardness under worst-case assumptions on ideal

lattices.

2



1.1 Results

Here we give an informal overview of the ring-LWE problem and our hardness results for it. See Section 1.2

below for a discussion of some of the technical points omitted from this overview.

Let f(x) = xn + 1 ∈ Z[x], where the security parameter n is a power of 2, making f(x) irreducible

over the rationals. Let R = Z[x]/〈f(x)〉 be the ring of integer polynomials modulo f(x). Elements

of R (i.e., residues modulo f(x)) can be represented by integer polynomials of degree less than n. Let

q = 1 mod 2n be a sufficiently large public prime modulus (bounded by a polynomial in n), and let

Rq = R/〈q〉 = Zq[x]/〈f(x)〉 be the ring of integer polynomials modulo both f(x) and q. The qn elements

of Rq may be represented by polynomials of degree less than n whose coefficients are from some set of

canonical representatives of Zq, e.g., {0, . . . , q − 1}.
The ring-LWE problem in R, denoted R-LWE, may be informally defined as follows (the formal, more

general definition is given in Section 3): fix a certain error distribution over R that is concentrated on ‘small’

elements—informally, those having small integer coefficients—and let s = s(x) ∈ Rq be uniformly random.

Analogously to LWE, the goal is to distinguish arbitrarily many independent ‘random noisy ring equations’

from truly uniform pairs. More specifically, the noisy equations are of the form (a, b ≈ a · s) ∈ Rq × Rq,
where each a is uniformly random, and each product a · s is perturbed by a term drawn independently from

the error distribution over R.

Main Theorem 1 (Informal). Suppose that it is hard for polynomial-time quantum algorithms to approx-

imate the search version of the shortest vector problem (SVP) in the worst case on ideal lattices in R to

within a fixed poly(n) factor. Then any poly(n) number of samples drawn from the R-LWE distribution are

pseudorandom to any polynomial-time (possibly quantum) attacker.

For the ring R defined above, the family of ideal lattices is essentially the family of all “anti-cyclic integer

lattices,” i.e., lattices in Zn that are closed under the operation that cyclically rotates the coordinates and

negates the cycled element (see below for the more general definition of ideal lattices). We stress that we

rely here on the search version of SVP, which is important since contrary to the case of general lattices, the

decision version is typically easy to approximate on ideal lattices (see Lemma 2.9). For the same reason,

adopting the approach behind classical hardness reductions for LWE [Pei09, BLP+13], all of which seem to

inherently rely on the decision version of SVP, would not be meaningful in this context (but see the end of

Section 4.1).

Our main theorem follows from two component results: the first one (proved in Section 4) is a quantum

reduction from worst-case approximate SVP on ideal lattices to the search version of ring-LWE; the second

one (proved in Section 5) shows that the R-LWE distribution is in fact pseudorandom assuming that the

search problem is hard. More details on the proof are given in Section 1.3 below.

Efficiency. For cryptographic applications, the R-LWE problem has many attractive features. First note

the cryptographic strength of R-LWE versus standard LWE (or, for that matter, any other common number-

theoretic assumption): each noisy product b ≈ a · s gives n simultaneously pseudorandom values over Zq,

rather than just one scalar, yet the cost of generating it is quite small: polynomial multiplication can be

performed in O(n log n) scalar operations, and in parallel depth O(log n), using the Fast Fourier Trans-

form (FFT) or its variants, with highly optimized implementations in practice (see [LMPR08] and the

companion paper [LPR13]). Finally, in most applications each sample (a, b) ∈ Rq ×Rq from the R-LWE

distribution can replace n samples (a, b) ∈ Znq × Zq from the standard LWE distribution, thus reducing the

size of the public key (and often the secret key as well) by a factor of n. This is especially beneficial because
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key size has probably been the main barrier to practical lattice-based cryptosystems enjoying rigorous security

analysis.

Security. Given the utility, flexibility, and efficiency of the ring-LWE problem, a natural question is: how

plausible is the underlying assumption? All of the algebraic and algorithmic tools (including quantum

computation) that we employ in our hardness reductions can also be brought to bear against SVP and other

problems on ideal lattices. Yet despite considerable effort, no significant progress in attacking these problems

has been made. The best known algorithms for ideal lattices perform essentially no better than their generic

counterparts, both in theory and in practice. In particular, the asymptotically fastest known algorithms for

obtaining an approximation to SVP on ideal lattices to within polynomial factors require time 2Ω(n), just as

in the case of general lattices [AKS01, MV10].

We also gain some confidence in the hardness of ideal lattices from the fact that they arise naturally in

algebraic number theory, a deep and well-studied branch of mathematics that has been investigated reasonably

thoroughly from a computational point of view (see, e.g., [Coh93]). Due to their recent application in the

design of cryptographic schemes, however, it is probably still too early to say anything about their security

with great confidence. Further study is certainly a very important research direction.

Applications. As mentioned above, a remarkable number and variety of cryptographic constructions have

been based on standard LWE. Most of these applications can be made more efficient, and sometimes even

practical for real-world usage, by adapting them to ring-LWE. This process is often straightforward, but

in some cases it requires additional technical tools to obtain the tightest and most efficient results. In a

companion paper [LPR13] we give a collection of such tools, which include a strong ‘regularity’ lemma for

the ring setting, tight bounds on the growth of error terms under ring operations, and fast special-purpose

algorithms for important operations like generating error terms according to the appropriate distributions. We

also construct several ring-LWE-based cryptosystems using these tools.

As one example application, here we sketch a simple and efficient semantically secure public-key

cryptosystem, but defer a precise analysis and generalization to arbitrary cyclotomics to [LPR13]. For

concreteness, fix the ring R = Z[x]/〈xn + 1〉 for n a power of 2. The key-generation algorithm chooses

a uniformly random element a ∈ Rq as well as two random ‘small’ elements s, e ∈ R from the error

distribution. It outputs s as the secret key and the pair (a, b = a · s+ e) ∈ R2
q as the public key. To encrypt

an n-bit message z ∈ {0, 1}n, we view it as an element of R by using its bits as the 0-1 coefficients of a

polynomial. The encryption algorithm then chooses three random ‘small’ elements r, e1, e2 ∈ R from the

error distribution and outputs the pair (u, v) ∈ R2
q as the encryption of z, where

u = a · r + e1 mod q and v = b · r + e2 + ⌊q/2⌉ · z mod q.

The decryption algorithm simply computes

v − u · s = (r · e− s · e1 + e2) + ⌊q/2⌉ · z mod q.

For an appropriate choice of parameters, the coefficients of r · e − s · e1 + e2 ∈ R have magnitudes less

than q/4, so the bits of z can be recovered by rounding each coefficient of v − u · s back to either 0 or

⌊q/2⌉, whichever is closest modulo q. Notice the system’s resemblance to the Diffie-Hellman key-agreement

protocol [DH76] and ElGamal cryptosystem [ElG84], where a ∈ Rq is analogous to the generator of a

(multiplicative) cyclic group, and taking noisy products is analogous to exponentiation.

Semantic security follows from two easy applications of the pseudorandomness of ring-LWE. First we

note that ring-LWE samples are pseudorandom even when the secret is also chosen from the error distribution,
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by a transformation to the “(Hermite) normal form” analogous to the one for standard LWE [MR09, ACPS09].

Therefore, the public key (a, b) ∈ Rq is pseudorandom, so as a thought experiment we may replace it with a

truly uniform pair. Then we see that (ignoring the message component ⌊q/2⌉ · z) the pairs (a, u), (b, v) ∈ R2
q ,

which constitute the entire view of a passive adversary, are ring-LWE samples with secret r and hence are

also pseudorandom, which implies semantic security.

1.2 More Details

Here we fill in some of the missing details in the high-level description above.

The underlying ring. Our main focus in this work is on the rings Z[x]/〈Φm(x)〉 of integer polynomials

modulo a cyclotomic polynomial Φm(x). To recall, the mth cyclotomic polynomial Φm(x) ∈ Z[x] is the

polynomial of degree n = ϕ(m) whose roots are all the primitive mth roots of unity ωim ∈ C, where

ωm = exp(2π
√
−1/m) and 1 ≤ i < m with i coprime to m. For instance, when m ≥ 2 is a power of 2, we

have Φm(x) = xn + 1 where n = m/2. From an algebraic point of view, it is more natural to view these

rings as the rings of algebraic integers in cyclotomic number fields (as opposed to rings of polynomials), and

this is indeed the perspective we adopt.

Rings of integers in (not necessarily cyclotomic) number fields have some nice algebraic properties that

are essential to our results. For instance, they have unique factorization of ideals, and their fractional ideals

form a multiplicative group; in general, neither property holds in Z[x]/〈f(x)〉 for monic irreducible f(x), as

demonstrated by the ring Z[x]/〈x2+3〉 = Z[
√
−3]. (For example, in this ring 4 = 22 = (1+

√
−3)(1−

√
−3),

but 2, 1 +
√
−3, and 1−

√
−3 are all irreducible.) In addition, cyclotomic number fields have Galois (i.e.,

automorphism) groups that ‘act transitively’ on the prime ideals dividing a given prime integer while still

preserving the LWE error distribution, which is an essential fact used in the second component of our proof.

The first component of our proof does not need this latter property, and therefore applies more generally to

rings of integers in arbitrary (not necessarily cyclotomic) number fields. It is likely that our second component

can also be somewhat extended beyond cyclotomic number fields, but we do not attempt to do so here.

Ideal lattices and the canonical embedding. Fix some underlying ring R, e.g., the ring of algebraic

integers in a cyclotomic number field as above. Recall that an ideal is an additive subgroup that is closed

under multiplication by elements of R. In the case of cyclotomic rings Z[x]/〈Φm(x)〉, the latter constraint is

equivalent to requiring closure under multiplication by x. Fix also an additive isomorphism σ mapping the

ring R to some lattice σ(R) in Rn. For instance, the naı̈ve “coefficient embedding” maps any element of R
to the integer vector in Zn whose coordinates are exactly the coefficients of that element when viewed as a

polynomial residue. The family of ideal lattices (for the ring R and embedding σ) is the set of all lattices

σ(I) for ideals I in R. For example, when working with the ring Z[x]/〈xn + 1〉 for n a power of 2 and the

coefficient embedding, one obtains the family of all “anti-cyclic integer lattices” mentioned above.

Unlike almost all previous works in the area (e.g., [Mic02, PR06, LM06, LM08, Gen09, Lyu09, SSTX09]),

we choose not to use the naı̈ve coefficient embedding, but instead exclusively use the so-called canonical

embedding from algebraic number theory (also adopted in the prior work [PR07]), whose definition will

appear later.

By definition, any two embeddings are related to each other simply by a fixed linear transformation on Rn.

Moreover, in many cases the distortion introduced by this transformation is small; for example, in the ring

Z[x]/〈xn + 1〉 where n is a power of 2, the transformation is even an isometry (i.e., a scaled rotation). In

particular, worst-case lattice problems like approximate-SVP are equivalent under any two embeddings, up
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to a factor corresponding to the distortion between them. Hence, one might wonder why bother with the

canonical embedding and not just work with the naı̈ve one. Yet due to its central role in the study of number

fields and many useful geometric properties, we contend that the canonical embedding is the ‘right’ notion to

use in the study of ideal lattices. We elaborate on this point in the last part of this section.

Error distribution. One important issue we have ignored so far is the precise error distribution in the

definition of ring-LWE for which our hardness results hold. As in the standard LWE problem, the error

distribution we use is a (centered) Gaussian. However, unlike the standard LWE problem where the error is a

one-dimensional Gaussian (and hence the distribution can be specified by just one parameter, the standard

deviation), here the error is an n-dimensional Gaussian. While in general specifying an n-dimensional

centered Gaussian distribution requires an entire n-by-n covariance matrix, our error distributions are always

diagonal in the canonical embedding. In other words, when viewed in the canonical embedding, our error

distributions are product distributions in which each component is a (one-dimensional, centered) normal

distribution with a certain standard deviation, and hence an entire error distribution is defined by just n
parameters. When all these parameters are equal, we say that the distribution is spherical.

Notice that all of the above is under the assumption that we are using the canonical embedding. When

using another embedding (say, the naı̈ve coefficient embedding), the error distribution is still a multivariate

Gaussian (since a linear transformation of a Gaussian is Gaussian), but its coordinates need no longer be

independent. (One exception is spherical error with an underlying ring Z[x]/〈xn+1〉 for n a power of 2; here

the two embeddings are isometric, and hence the error also has i.i.d. coordinates in the coefficient embedding,

albeit with a different standard deviation due to the scaling involved.)

For our ring-LWE hardness results, the search problem requires a solution for any Gaussian error

distribution whose n parameters are all at most some parameter α. For the average-case decision problem,

the n parameters are themselves chosen at random and kept secret (see Definition 3.5). This situation is in

contrast with standard LWE, where the error distribution, being one-dimensional, is simply a fixed normal

distribution.

The above non-spherical error distributions might be an artifact of our proof technique, and although they

typically do not cause any serious problems, they might make certain applications and their proofs more

cumbersome. Fortunately, if we restrict the ring-LWE problem (in either its search or decision form) to any

bounded number ℓ of samples, then we can prove hardness for a fixed, spherical error distribution that is only

about an ℓ1/4 factor wider than the non-spherical one with random parameters (see Theorem 5.2). Because

the security reductions for most ring-LWE-based cryptographic schemes use only a small number of samples

(often, ℓ = O(1) or ℓ = O(log n)), it is appropriate and simpler to use spherical error in those applications.

Finally, we mention that if one assumes the hardness of the search problem with a fixed spherical Gaussian

error distribution and unbounded samples (which seems plausible, but is not implied by our worst-case

hardness proof), then the average-case decision problem for the very same error distribution (and unbounded

samples) is also hard (see Theorem 5.3).

In praise of the canonical embedding. While the number-theoretic perspective on ideal lattices (and in

particular the use of the canonical embedding) requires some investment in the mathematical background, we

find that it delivers many nice geometric and algebraic properties that pay dividends in the ease of working

with the objects, and in the strength and generality of results that can be obtained. We now describe a few

examples of this.

First, unlike the coefficient embedding, under the canonical embedding both addition and multiplication of

ring elements are simply coordinate-wise. As a result, both operations have simple geometric interpretations
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that lead to tight bounds, and product distributions (such as Gaussians) behave very nicely under both addition

and multiplication. By contrast, analyzing multiplication under the coefficient embedding required previous

works to use rather crude quantities like the “expansion factor” of the ring. The expansion factor bounds the

worst-case ratio of ‖σ(a · b)‖ to ‖σ(a)‖ · ‖σ(b)‖ over all a, b ∈ R, but on average (over the random choice

of a, b from natural distributions), it is often quite loose. Moreover, it does not provide any more detailed

information about how a · b relates to a and b geometrically, e.g., for analyzing probability distributions.

Second, although for many rings the canonical and coefficient embeddings are (nearly) isometric, in

many other rings of interest the distortion between them can be very large—even super-polynomial in the

dimension for some cyclotomic polynomial rings [Erd46]. This may explain why previous work was mostly

restricted to Z[x]/〈xn + 1〉 for n a power of 2, and a few other concrete rings, whereas we can prove tight

geometric bounds and hardness results for all cyclotomic rings (regardless of their expansion factor).

A third point in favor of the canonical embedding is that it behaves very nicely under the automorphisms

that are crucial to the second component of our proof: they simply permute the axes of the embedding.

1.3 Proof Outline and Techniques

As mentioned before, our main theorem consists of two component results, which we now describe in more

detail. We note that the two parts are essentially independent, and can be read separately.

First component: worst-case hardness of the search problem. In the first component we give a quantum

reduction from approximate SVP (in the worst case) on ideal lattices in R to the search version of ring-LWE,

where the goal is to recover the secret s ∈ Rq (with high probability, for any s) from arbitrarily many noisy

products. This result is stated formally as Theorem 4.1, and is proved throughout Section 4. As already

mentioned before, this reduction actually works in general (not necessarily cyclotomic) number fields.

Our reduction follows the general outline of Regev’s iterative quantum reduction for general lat-

tices [Reg05]. In fact, we use the quantum part of the reduction in [Reg05] essentially as a black box;

the main effort is in the classical (non-quantum) part, and requires perspectives and tools from algebraic

number theory such as the canonical embedding and the Chinese Remainder Theorem (CRT).

In particular, one of the main technical contributions is the use of the CRT for ‘clearing the ideal’ I from an

arbitrary ideal lattice instance (see Lemmas 2.14 and 2.15). This involves mapping the quotient ring I/qI to

the fixed quotient ringR/qR in an ‘algebraically consistent’ way (formally, as an isomorphism ofR-modules).

We believe that this technique should be useful elsewhere; in particular, it implies simpler and slightly tighter

hardness proofs for ring-SIS through the use of the ‘discrete Gaussian’ style of worst-case to average-case

reduction from [GPV08]. Lacking this technique, prior reductions for ideal lattices following [Mic02] used

samples from a principal subideal of I with known generator; however, this restriction does not seem

compatible with the approaches of [Reg05, GPV08], where the reduction must deal with Gaussian samples

from the full ideal I.

Second component: search / decision equivalence. In the second component we give a reduction from

the search problem (shown hard in the first component) to the decision variant, thereby showing that the

R-LWE distribution is pseudorandom. As alluded to before, we actually provide two variants of the reduction:

one to the decision problem with a nonspherical error distribution in the canonical embedding (Theorem 5.1),

and one to the decision problem with a spherical error distribution but with a bounded number of samples

(Theorem 5.2). We stress that these reductions are entirely classical (not quantum) and hence if one is willing

to assume the classical hardness of the search problem, one gets classical hardness of the decision problem.
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Moreover, if we assume hardness of the search problem under a fixed spherical Gaussian error distribution

(which is not implied by our worst-case hardness proof), then an easy simplification of our search-to-decision

reduction (Theorem 5.3) gives hardness of the decision variant under the same error distribution. The same

can be proved for many other natural error distributions, which demonstrates that our second component is of

value even without the first one.

Our approach is also inspired by analogous reductions for the standard LWE problem [BFKL93, Reg05],

but again the ring context presents significant new obstacles, primarily related to proving that the entire

n-dimensional quantity b ≈ a · s is pseudorandom. Here again, the solution seems to rely inherently on

tools from algebraic number theory: we develop new techniques that exploit special properties of cyclotomic

number fields of degree n — namely, that they are Galois (i.e., have n automorphisms) — and our particular

choice of modulus q = 1 mod m — namely, that 〈q〉 ‘splits completely’ into n prime ideals qi each of norm

q = poly(n), which are permuted transitively by the automorphisms. (Interestingly, this complete splitting is

also useful for performing the ring operations very efficiently in practice; see [LPR13]).

The basic outline of the reduction is as follows. First, by a hybrid argument we show that any distinguisher

between the uniform distribution and the ring-LWE distribution with secret s ∈ Rq must have some noticeable

advantage relative to some prime ideal factor qi of 〈q〉 (of the distinguisher’s choice); this advantage can be

amplified using standard self-reduction techniques. Next, we give an efficient search-to-decision reduction

that finds the value of s modulo qi, using the fact that the ring modulo qi is a field of order q = poly(n).
Then, because the automorphisms of the number field permute the qi, we can find s modulo every qj by

applying an appropriate automorphism to the ring-LWE distribution. (Crucially, the error distribution also

remains legal under the automorphisms.) This lets us recover all of s mod q using the Chinese Remainder

Theorem.

1.4 Related Work

In a concurrent and independent work, Stehlé, Steinfeld, Tanaka, and Xagawa [SSTX09] formulated a

variant of LWE quite similar to ours. We believe that our results subsume those of [SSTX09], although their

techniques, being quite modular, are of independent interest and might have further applications.

In more detail, their main result is analogous to our first component, showing hardness of the search

problem based on worst-case lattice problems and using a quantum reduction. However, whereas we show

a quantum reduction directly from the worst-case lattice problems, Stehlé et al. show a quantum reduction

from the ring-SIS problem, which they then combine with prior (classical) reductions from worst-case lattice

problems to ring-SIS [PR06, LM06]. Their reduction highlights a nice duality between (ring-)LWE and

(ring-)SIS (first observed in [GPV08]), and builds on the quantum machinery from [Reg05], together with

some new observations.

Although both reductions show hardness of the search problem, there are a couple of notable differences.

Whereas our reduction shows hardness of the search problem with an unbounded number of samples, the

reduction of Stehlé et al. shows hardness of the search problem with any a priori bounded number of samples.

It is probably possible to generate an unbounded number of samples from this bounded number of given

samples by taking random combinations, although this would incur an additional loss in the parameters.

Another difference is that their proof is presented only for the ring Z[x]/〈xn+1〉 for n a power of 2, whereas

ours works for the ring of integers in any number field.

Probably the most significant difference between our work and that of [SSTX09] is that the latter has no

analogue of our second component, namely the search-to-decision reduction. As a result, for cryptographic

applications Stehlé et al. use hard-core bits obtained via the efficient Goldreich-Levin construction based on

Toeplitz matrices [Gol04, Section 2.5]. This approach, however, induces a security reduction that runs in
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exponential time in the number of hard bits. In particular, encrypting in amortized Õ(1) time per message bit

induces the assumption that worst-case lattice problems are hard for 2o(n)-time quantum algorithms. This

much stronger assumption is of course quite undesirable, and moreover, since it requires a higher dimension n
for the same level of security, the efficiency of the resulting cryptosystem (which is the main reason for using

ring-LWE in the first place) is harmed. In contrast, we obtain a linear number of hard bits by showing directly

that the ring-LWE distribution is pseudorandom; in particular, this yields a cryptosystem with the same (or

even slightly better) running times under a fully polynomial security reduction.

Subsequent work. Since the publication of a preliminary version of this paper, several works have appeared

which use our results for cryptographic purposes. These include the work of Stehlé and Steinfeld [SS11] who

show how a slight modification of the NTRU cryptosystem can be based on ring-LWE, constructions of fully

homomorphic encryption schemes by Brakerski, Gentry, and Vaikuntanathan [BV11, BGV12] and multikey

fully homomorphic schemes by López-Alt, Tromer, and Vaikuntanathan [LTV12], and more. Also, Langlois

and Stehlé [LS13] extended the pseudorandomness of ring-LWE to essentially all choices of the modulus q.

Outline. We start in Section 2 with some background material on lattices and Gaussian measures, followed

by an overview of concepts from algebraic number theory required for our proofs. Although the latter

material is mostly standard, we are not aware of any single accessible reference that covers all the necessary

background. Section 3 gives the formal definition of the ring-LWE problem, both in its search and average-

case decision versions, and states our main theorem. In Section 4 we prove the hardness of the search

ring-LWE problem. We continue in Section 5 with several reductions to the average-case decision problem.

The latter two sections are the main contributions of the paper, and are essentially independent of each other.

Acknowledgments. We thank Damien Stehlé for useful discussions, and for sharing with us, together with

Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa, an early draft of their result.

2 Preliminaries

For a vector x in Rn or Cn and p ∈ [1,∞], we define the ℓp norm as ‖x‖p = (
∑

i∈[n]|xi|p)1/p when p <∞,

and ‖x‖∞ = maxi∈[n]|xi| when p =∞.

2.1 The Space H

When working with number fields and ideal lattices, it is convenient to work with the space H ⊆ Rs1 × C2s2

for some numbers s1 + 2s2 = n, defined as

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j , ∀ j ∈ [s2]} ⊆ Cn.

It is not difficult to verify that H (with the inner product induced on it by Cn) is isomorphic to Rn as an

inner product space. This can seen via the orthonormal basis {hi}i∈[n], defined as follows: for j ∈ [n], let

ej ∈ Cn be the vector with 1 in its jth (complex) coordinate, and 0 elsewhere; then for j ∈ [s1], we take

hj = ej ∈ Cn and for s1 < j ≤ s1 + s2 we take hj = 1√
2
(ej + ej+s2) and hj+s2 =

√
−1√
2
(ej − ej+s2).

Note that the complex conjugation operation (which maps H to itself) acts in the {hi}i∈[n] basis by flipping

the sign of all coordinates in {s1 + s2 + 1, . . . , n}.
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We will also equip H with the ℓp norm induced on it from Cn. Namely, for any a1, . . . , an ∈ R, the ℓp
norm of the element

∑

aihi ∈ H is given by

∥

∥

∥

n
∑

i=1

aihi

∥

∥

∥

p
=

(

s1
∑

i=1

|ai|p + 2

s1+s2
∑

i=s1+1

(

a2i+a
2
i+s2
2

)p/2)1/p
.

We note that for any p ∈ [1,∞], this norm is equal within a factor of
√
2 to (

∑n
i=1 |ai|p)

1/p
, which is the

ℓp norm induced on H from the isomorphism with Rn described above; for the ℓ2 norm, we in fact have an

equality. This near equivalence between H and Rn will allow us to use known definitions and results on

lattices in our setting, the only minor caveat being the
√
2 factor when dealing with ℓp norms for p 6= 2.

2.2 Lattice Background

We define a lattice as a discrete additive subgroup of H . We deal exclusively with full-rank lattices, which

are generated as the set of all integer linear combinations of some set of n linearly independent basis vectors

B = {b1, . . . ,bn} ⊂ H:

Λ = L(B) =
{

∑

i∈[n]
zibi : z ∈ Zn

}

.

The minimum distance λ1(Λ) of a lattice Λ in a given norm ‖·‖ is the length of a shortest nonzero lattice

vector: λ1(Λ) = min0 6=x∈Λ‖x‖. We use the Euclidean norm unless stated otherwise.

The dual lattice of Λ ⊂ H is defined as Λ∗ = {x ∈ H : 〈Λ,x〉 ⊆ Z}. It is easy to see that (Λ∗)∗ = Λ.

2.2.1 Gaussian Measures

For r > 0, define the Gaussian function ρr : H → (0, 1] as ρr(x) = exp(−π〈x,x〉/r2) = exp(−π‖x‖22/r2).
By normalizing this function we obtain the continuous Gaussian probability distribution Dr of width r,
whose density is given by r−n · ρr(x). We extend this to elliptical (non-spherical) Gaussian distributions

in the basis {hi}i∈[n] as follows. Let r = (r1, . . . , rn) ∈ (R+)n be a vector of positive real numbers such

that rj+s1+s2 = rj+s1 for each j ∈ [s2]. Then a sample from Dr is given by
∑

i∈[n] xihi, where the xi are

chosen independently from the (one-dimensional) Gaussian distribution Dri over R.

Micciancio and Regev [MR04] introduced a lattice quantity called the smoothing parameter, and related

it to various lattice quantities.

Definition 2.1. For a lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is defined to be the

smallest r such that ρ1/r(Λ
∗\{0}) ≤ ε.

Lemma 2.2 ([MR04, Lemmas 3.2, 3.3]). For any n-dimensional lattice Λ, we have η2−2n(Λ) ≤ √n/λ1(Λ∗),1

and ηε(Λ) ≤
√

ln(n/ε)λn(Λ) for all 0 < ε < 1.

The following lemma explains the name “smoothing parameter.”

Lemma 2.3 ([MR04, Lemma 4.1] and [Reg05, Claim 3.8]). For any lattice Λ, ε > 0, r ≥ ηε(Λ), and

c ∈ H , the statistical distance between (Dr + c) mod Λ and the uniform distribution modulo Λ is at

most ε/2. Alternatively, we have ρr(Λ + c) ∈ [1−ε1+ε , 1] · ρr(Λ).
1Note that we are using ε = 2−2n instead of 2−n as in [MR04], but the proof is exactly the same.
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For a lattice Λ, point u ∈ H , and real r > 0, define the discrete Gaussian probability distribution over

Λ + u with parameter r as

DΛ+u,r(x) =
ρr(x)

ρr(Λ + u)
∀ x ∈ Λ + u.

Lemma 2.4 ([Ban93, Lemma 1.5(i)]). For any n-dimensional lattice Λ and r > 0, a point sampled from

DΛ,r has Euclidean norm at most r
√
n, except with probability at most 2−2n.

We also need the following property of the smoothing parameter, which says that continuous noise

‘smooths’ the discrete structure of a discrete Gaussian distribution into a continuous one.

Lemma 2.5 ([Reg05]). Let Λ be a lattice, let u ∈ H be any vector, and let r, s > 0 be reals. Assume

that 1/
√

1/r2 + 1/s2 ≥ ηε(Λ) for some ε < 1
2 . Consider the continuous distribution Y on H obtained

by sampling from DΛ+u,r and then adding an element drawn independently from Ds. Then the statistical

distance between Y and D√
r2+s2 is at most 4ε.

2.3 Algebraic Number Theory Background

Algebraic number theory is the study of number fields. Here we review the necessary background, presenting

for concreteness the special case of cyclotomic number fields as a running example. In this subsection

we cover the relevant mathematical and computational background; in Section 2.4 we cover additional

special properties of cyclotomic number fields. More background and complete proofs can be found in any

introductory book on the subject, e.g., [Ste04].

2.3.1 Number Fields

A number field can be defined as a field extension K = Q(ζ) obtained by adjoining an abstract element ζ to

the field of rationals, where ζ satisfies the relation f(ζ) = 0 for some irreducible polynomial f(x) ∈ Q[x],
which is monic without loss of generality. The polynomial f is called the minimal polynomial of ζ, and

the degree n of the number field is the degree of f . Because f(ζ) = 0, the number field K can be seen as

an n-dimensional vector space over Q with basis {1, ζ, . . . , ζn−1}; this is called the power basis of K. Of

course, associating ζ with indeterminate x yields a natural isomorphism between K and Q[x]/f(x).
Let m be a positive integer, and let ζ = ζm denote an element of multiplicative order m, i.e., a primitive

mth root of unity. The mth cyclotomic number field is K = Q(ζ), and the minimal polynomial of ζ is the

mth cyclotomic polynomial

Φm(x) =
∏

i∈Z∗
m

(x− ωim) ∈ Z[x],

where ωm ∈ C is any primitive mth complex root of unity, e.g., ωm = exp(2π
√
−1/m). Observe that the

complex roots ωim of Φm(x) are exactly the primitive mth roots of unity in C, and that Φm(x) has degree

n = ϕ(m), the totient of m. The form of Φm(x) will not play any role in this work, aside from the fact that

it is computable in polynomial time given m (in unary).

2.3.2 Embeddings and Geometry

Here we describe the embeddings of a number field, which induce a natural ‘canonical’ geometry on it.

A number field K = Q(ζ) of degree n has exactly n ring embeddings (injective ring homomorphisms)

σi : K → C. Concretely, these embeddings map ζ to each of the complex roots of its minimal polynomial f ;
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it is easy to see that these are the only ring embeddings from K to C, because f(σi(ζ)) = σi(f(ζ)) = 0. An

embedding whose image lies in R (corresponding to a real root of f ) is called a real embedding; otherwise

(for a complex root of f ) it is called a complex embedding. Because complex roots of f(x) come in conjugate

pairs, so too do the complex embeddings. The number of real embeddings is denoted s1 and the number of

pairs of complex embeddings is denoted s2, so we have n = s1 + 2s2. By convention, we let {σj}j∈[s1]
be the real embeddings, and we order the complex embeddings so that σs1+s2+j = σs1+j for j ∈ [s2]. The

canonical embedding σ : K → Rs1 × C2s2 is then defined as

σ(x) = (σ1(x), . . . , σn(x)).

Note that it is a ring homomorphism from K to Rs1 ×C2s2 , where multiplication and addition in the latter are

both component-wise. Due to the pairing of the complex embeddings, we have that σ maps into H (defined

in Section 2.1 above).

By identifying elements of K with their canonical embeddings in H , we can speak of geometric norms

(e.g., the Euclidean norm) on K. Recalling that we define norms on H as those induced from Cn, we see that

for any x ∈ K and any p ∈ [1,∞], the ℓp norm of x is simply ‖x‖p = ‖σ(x)‖p = (
∑

i∈[n]|σi(x)|p)1/p for

p <∞, and is maxi∈[n]|σi(x)| for p =∞. (As always, we assume the ℓ2 norm when p is omitted.) Because

multiplication of embedded elements is component-wise (since σ is a ring homomorphism), we have

‖x · y‖p ≤ ‖x‖∞ · ‖y‖p
for any x, y ∈ K and any p ∈ [1,∞]. Thus the ℓ∞ norm acts as an ‘absolute value’ for K that bounds how

much an element ‘expands’ any other by multiplication.

Using the canonical embedding also allows us to think of the Gaussian distribution Dr for r ∈ (R+)n

overH , or its discrete analogue over a lattice inH , as a distribution overK. Strictly speaking, the distribution

Dr is not over K, but rather over the field tensor product KR = K ⊗Q R, which is isomorphic to H . Since

multiplication of elements in KR is mapped to coordinate-wise multiplication in H , we have that for any

element x ∈ KR, the distribution of x · Dr is Dr′ , where r′i = ri · |σi(x)|. (This uses the fact that our

distributions have the same variance in the real and imaginary components of each complex embedding.)

Example 2.6. For the mth cyclotomic field where ζ = ζm for m ≥ 3, there are 2s2 = n = ϕ(m) complex

embeddings (and no real ones), which are given by σi(ζ) = ζi for i ∈ Z∗
m. (In this case it is convenient to

index the embeddings σi by elements of Z∗
m instead of [n].) For any power ζj ∈ K, all the embeddings

σi(ζ
j) ∈ C are roots of unity and hence have magnitude 1, so ‖ζj‖2 =

√
n and ‖ζj‖∞ = 1.

2.3.3 Trace and Norm

Abstractly, the (field) trace Tr = TrK/Q : K → Q and (field) norm N = NK/Q : K → Q of x ∈ K are the

trace and determinant, respectively, of the linear transformation on K (viewed as a vector space over Q)

representing multiplication by x. Concretely, the trace and norm can be shown to be the sum and product,

respectively, of the embeddings:

Tr(x) =
∑

i∈[n]
σi(x) and N(x) =

∏

i∈[n]
σi(x).

Using either definition, it is routine to verify that trace and norm are additive and multiplicative, respectively.

Moreover, for all x, y ∈ K,

Tr(x · y) =
∑

i∈[n]
σi(x) · σi(y) = 〈σ(x), σ(y)〉.
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Thus, Tr(x · y) is a symmetric bilinear form akin to the inner product of the embeddings of x and y.

Example 2.7. Let ζ = ζ5 be a root of the cyclotomic polynomial Φ5(x) =
∏

i∈Z∗
5
(x− ζi) = x4 + x3 + x2 +

x+ 1, and consider the element y = 1
2 − ζ ∈ K = Q(ζ). Then Tr(y) =

∑

i∈Z∗
5
(12 − ζi) = 2− (−1) = 3,

and N(y) =
∏

i∈Z∗
5
(12 − ζi) = Φ5(

1
2) =

31
16 .

2.3.4 Ring of Integers and Its Ideals

An algebraic integer is an element whose minimal polynomial over the rationals has integer coefficients. For

a number field K, let OK ⊂ K denote the set of all algebraic integers in K. This set forms a ring (under the

usual addition and multiplication operations in K), called the ring of integers of the number field. The norm

and trace of an algebraic integer are themselves rational integers (i.e., in Z).

It happens that OK is a free Z-module of rank n (the degree of K), i.e., it is the set of all Z-linear

combinations of some basis B = {b1, . . . , bn} ⊂ OK . Such a set is called an integral basis, and it is also a

Q-basis for K (and an R-basis for KR). As usual, there are infinitely many such bases when n > 1.

Example 2.8. Continuing our example of themth cyclotomic number fieldK = Q(ζm) of degree n = ϕ(m),
the power basis {1, ζm, . . . , ζn−1

m } of K also happens to be an integral basis, i.e., OK = Z[ζm]. (In general,

it is unusual for the power basis of a number field to generate the entire ring of integers.)

An (integral) ideal I ⊆ OK is a nontrivial (i.e., I 6= ∅ and I 6= {0}) additive subgroup that is closed

under multiplication byOK , i.e., r ·x ∈ I for any r ∈ OK and x ∈ I .2 An ideal I inOK is finitely generated

as the set of all OK-linear combinations of some g1, g2, . . . ∈ OK , denoted I = 〈g1, g2, . . .〉. (In fact, it is

known that two generators always suffice.) More useful to us is the fact that an ideal is also a free Z-module

of rank n, i.e., it is generated as the set of all Z-linear combinations of some basis {u1, . . . , un} ⊂ OK .

The norm of an ideal I is its index as an additive subgroup ofOK , i.e., N(I) = |OK/I|. The sum I +J
of two ideals is the set of all x+ y for x ∈ I , y ∈ J , and the product ideal IJ is the set of all finite sums of

terms xy for x ∈ I, y ∈ J . This notion of norm for ideals generalizes the field norm defined above, in the

sense that N(〈x〉) = |N(x)| for any x ∈ OK , and N(IJ ) = N(I)N(J ).
Two ideals I,J ⊆ OK are said to be coprime (or relatively prime) if I +J = OK . An ideal p ( OK is

prime if whenever ab ∈ p for some a, b ∈ OK , then a ∈ p or b ∈ p (or both). In OK , an ideal p is prime if

and only if it is maximal, i.e., if the only proper superideal of p is OK itself, which implies that the quotient

ring OK/p is the finite field of order N(p). The ring OK has unique factorization of ideals, that is, every

ideal I ⊆ OK can be expressed uniquely as a product of powers of prime ideals.

A fractional ideal I ⊂ K is a set such that dI ⊆ OK is an integral ideal for some d ∈ OK . Its norm is

defined as N(I) = N(dI)/|N(d)|. The set of fractional ideals form a group under multiplication, and the

norm is a multiplicative homomorphism on this group.

2.3.5 Ideal Lattices

Here we recall how (fractional) ideals in K yield lattices under the canonical embedding, and describe some

of their properties. Recall that a fractional ideal I has a Z-basis U = {u1, . . . , un}. Therefore, under the

canonical embedding σ, the ideal yields a rank-n ideal lattice σ(I) having basis {σ(u1), . . . , σ(un)} ⊂ H .

For convenience, we often identify an ideal with its embedded lattice, and speak of, e.g., the minimum

distance λ1(I) of an ideal, etc.

2Some texts also define the trivial set {0} as an ideal, but in this work it is more convenient to exclude it.
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The (absolute) discriminant ∆K of a number field K is defined to be the square of the fundamental

volume of σ(OK), the embedded ring of integers. Equivalently, ∆K = |det(Tr(bi · bj))| where b1, . . . , bn is

any integral basis of OK .3 Consequently, the fundamental volume of any ideal lattice σ(I) is N(I) · √∆K .

For example, the discriminant of the mth cyclotomic number field K = Q(ζm) of degree n = ϕ(m) is

known to be

∆K =
mn

∏

prime p|m
pn/(p−1)

≤ nn,

where the product in the denominator runs over all primes p dividing m. The inequality above is tight in the

special case when m is a power of two, where n = m/2.

The following classical lemma gives upper and lower bounds on the minimum distance of an ideal lattice.

The upper bound is an immediate consequence of Minkowski’s first theorem; the lower bound follows from

the arithmetic mean/geometric mean inequality, and the fact that |N(x)| ≥ N(I) for any nonzero x ∈ I . (For

a detailed proof, see, e.g., [PR07].)

Lemma 2.9. For any fractional ideal I in a number field K of degree n, and in any ℓp norm for p ∈ [1,∞],

n1/p ·N(I)1/n ≤ λ1(I) ≤ n1/p ·N(I)1/n ·
√

∆
1/n
K .

2.3.6 Duality

Here we recall the notion of a dual ideal and explain its close connection to both the inverse ideal and the

dual lattice. For more details, see [Con09] as an accessible reference.

For any lattice L in K (i.e., for the Z-span of any Q-basis of K), its dual is defined as

L∨ = {x ∈ K : Tr(xL) ⊆ Z}.

It is not difficult to see that, under the canonical embedding, L∨ embeds as the complex conjugate of the dual

lattice, i.e., σ(L∨) = σ(L)∗. This is due to the fact that Tr(xy) =
∑

i σi(x)σi(y) = 〈σ(x), σ(y)〉. It is also

easy to check that (L∨)∨ = L, and that if L is a fractional ideal, then L∨ is one as well.

Except in the trivial number field K = Q, the ring of integers R = OK is not self-dual, nor are an ideal

and its inverse dual to each other. Fortunately, a useful and important fact is that an ideal and its inverse

are related by multiplication with the dual ideal of the ring: for any fractional ideal I, its dual ideal is

I∨ = I−1 ·R∨. (Notice that for I = R this holds trivially, since R−1 = R.) The factor R∨ is a fractional

ideal whose inverse (R∨)−1, called the different ideal, is integral and of norm N((R∨)−1) = ∆K . The

fractional ideal R∨ itself is often called the codifferent. One especially nice case is the mth cyclotomic

number field for m = 2k of degree n = ϕ(m) = m/2, for which R∨ = 〈n−1〉 is just a scaling of R.

2.3.7 Computation in Number Fields

We now recall how objects over K and OK are represented and operated upon by algorithms, in the general

case. For more details, see, e.g., [Coh93]. (Significantly faster algorithms exist for cyclotomic number fields;

see the companion paper [LPR13] for details.) When quantifying computational complexity in the context of

a number field K, “polynomial” is taken to mean some polynomial in n, log∆K , and the total bit length of

any inputs. (In all the concrete families of number fields we use, log∆K is itself a small polynomial in n.)

3In some texts the discriminant is defined as a signed quantity, but in this work we only care about its magnitude.
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Because OK is a free Z-module of rank n, the ring OK can be represented relative to some integral basis

B = {b1, . . . , bn} ⊂ OK , which is also a Q-basis for K. I.e., every element x ∈ K is represented uniquely

by a vector x = (x1, . . . , xn) ∈ Qn where x =
∑

i∈[n] xi · bi, and x ∈ OK if and only if every xi ∈ Z.

Addition in K (and OK) is computed simply by component-wise addition of the representation vectors

of the addends. For computing the multiplication operation in K (and OK), it suffices by linearity to know

each product bi · bj ∈ OK for i, j ∈ [n]. The representations of these terms (as usual, with respect to B) are

integral vectors of polynomial size, and constitute the entire description of K andOK . Given this description,

it is possible to compute multiplicative inverses in polynomial time.

An integral ideal I ⊆ OK is represented by some Z-basis for I , that is, a set UI = {u1, . . . , un} ⊂ OK
such that I =

∑

i∈[n] Z · ui (where as always, each ui is represented relative to a fixed integral basis B).

A fractional ideal I is represented by also including a denominator d ∈ OK such that d · I is an integral

ideal. With these representations, in deterministic polynomial time it is possible to check that a given basis

generates an ideal I , to compute the norm of I , to compute the inverse ideal I−1 and dual ideal I∨, to reduce

a given element in K modulo a given basis of I , and to compute the Hermite normal form (HNF) of I along

with the unimodular integer matrix relating the HNF to the input basis. Given two ideals I,J , it is possible

to compute the product ideal IJ in deterministic polynomial time, and if J ⊆ I, to select a uniformly

random element from the quotient group I/J in polynomial time, and to enumerate I/J in deterministic

polynomial time per element.

Recall from Section 2.2.1 that the elliptical Gaussian distribution Dr corresponds (under the canonical

embedding) to the sum of independent one-dimensional Gaussian multiples of the orthonormal basis vectors hi
for H . Therefore, it is possible to sample in polynomial time from Dr over KR (up to any desired precision),

given r and the representations of each hi relative to B. (Equivalently, it is enough to know σ(B), the

embedding of the power basis into H .)

2.3.8 Ideal Lattice Problems

The following are the three main (seemingly hard) computational problems on ideal lattices that we deal

with in this work: the Shortest Vector Problem (SVP), Shortest Independent Vectors Problem (SIVP), and the

Bounded-Distance Decoding (BDD) problem. Without loss of generality, they may be restricted to integral

ideals in OK , by the following scaling argument: if I is a fractional ideal with denominator d ∈ OK (such

that dI ⊆ OK is an integral ideal), then the scaled ideal N(d) · I ⊆ OK , because N(d) ∈ 〈d〉.

Definition 2.10 (SVP and SIVP). Let K be a number field endowed with some geometric norm (e.g., the ℓ2
norm), and let γ ≥ 1. The K-SVPγ problem in the given norm is: given a fractional ideal I in K, find some

nonzero x ∈ I such that ‖x‖ ≤ γ · λ1(I). The K-SIVPγ problem is defined similarly, where the goal is to

find n linearly independent elements in I whose norms are all at most γ · λn(I).

Definition 2.11 (BDD). Let K be a number field endowed with some geometric norm (e.g., the ℓ∞ norm),

let I be a fractional ideal in K, and let d < λ1(I)/2. The K-BDDI,d problem in the given norm is: given I
and y of the form y = x+ e for some x ∈ I and ‖e‖ ≤ d, find x.

2.3.9 Chinese Remainder Theorem

Here we recall the Chinese Remainder Theorem (CRT) for the ring of integers R = OK in a number field K,

and some of its important consequences for our work.
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Lemma 2.12 (Chinese Remainder Theorem). Let I1, . . . , Ir be pairwise coprime ideals in R, and let

I =
∏

i∈[r] Ii. The natural ring homomorphism R →⊕

i∈[r](R/Ii) induces a ring isomorphism R/I →
⊕

i∈[r](R/Ii).

The following lemma shows that we can efficiently compute a “CRT basis” C for any set of pairwise

coprime ideals I1, . . . , Ir, i.e., elements c1, . . . , cr ∈ R such that ci = 1 mod Ii and ci = 0 mod Ij for all

i 6= j. Such a basis allows us to invert the isomorphism described in Lemma 2.12, as follows: for any given

w = (w1, . . . , wr) ∈
⊕

i(R/Ii), the value v =
∑

iwi · ci mod I is the unique element in R/I that maps

to w under the ring isomorphism.

Lemma 2.13. There is a deterministic polynomial-time algorithm that, given coprime ideals I,J ⊆ R
(represented by Z-bases), outputs some c ∈ J such that c = 1 mod I . More generally, there is a deterministic

polynomial-time algorithm that, given pairwise coprime ideals I1, . . . , Ir, outputs a CRT basis c1, . . . , cr ∈
R for those ideals.

Proof. The algorithm is a generalization of the extended Euclidean algorithm for the integers Z. It works as

follows: given arbitrary Z-bases BI and BJ for I and J respectively, let B = BI ∪ BJ be the (possibly

overdetermined) basis for I + J = R. Compute from B the Hermite normal form basis H = {h1, . . . , hn}
for R, yielding an expression of each hi as a Z-combination of elements in B. Write the element 1 ∈ R as a

Z-combination of elements in H , and hence as a Z-combination of elements in BI ∪BJ . From this we get

elements x ∈ I, y ∈ J such that x + y = 1. Finally, output the element c = y = 1 − x ∈ J , which is 1
modulo I. For the second part of the claim, to compute each ci we simply let I = Ii and J =

∏

j 6=i Ij .

The next two lemmas combine to give an efficiently computable bijection (and moreover, an isomorphism

of R-modules) between the quotient groups I/qI and J /qJ for any fractional ideals I,J . This will be an

important tool for ‘clearing out’ the arbitrary ideal I in our BDD-to-LWE reduction in Section 4.2 (and more

generally, in other worst-case to average-case reductions for ideal lattices). We note that these lemmas are

probably standard for experts in computational number theory, but we believe their application in our context

is new.

Lemma 2.14. Let I and J be ideals in R. There exists t ∈ I such that the ideal t · I−1 ⊆ R is coprime

to J . Moreover, such t can be found efficiently given I and the prime ideal factorization of J .

Proof. Let p1, . . . , pr be the given prime divisors of J . For each i ∈ [r], let ei ≥ 0 be the largest power

of pi that divides I. (Such ei can be computed efficiently by trial division and binary search, because ei
cannot exceed log N(I)/ log N(pi).) For each i ∈ [r], choose an arbitrary ti ∈ p

ei
i that is not in p

ei+1
i . By

the Chinese Remainder Theorem, there exists t ∈ R such that

t = 0 mod
(

I/
∏

i∈[r]
p
ei
i

)

and ∀i ∈ [r], t = ti mod p
ei+1
i .

(Note that the ideals in question are pairwise coprime.) Moreover, such t can be found efficiently using a

CRT basis for the ideals p
ei+1
i and I/∏i p

ei
i . Now because t is 0 modulo every p

ei
i , it follows that t ∈ I.

To finish, we need to show that t · I−1 is not divisible by any pi. Supposing to the contrary implies that

piI|〈t〉, and since p
ei+1
i |piI we have t ∈ p

ei+1
i . But t = ti 6= 0 mod p

ei+1
i , a contradiction.

Upon first reading, in the following lemma the reader may wish to think of the idealM as the multiplica-

tive identity (i.e., the entire ring R).
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Lemma 2.15. Let I and J be ideals in R, let t ∈ I be such that t · I−1 is coprime with J , and letM be

any fractional ideal in K. Then the function θt : K → K defined as θt(u) = t · u induces an isomorphism

fromM/JM to IM/IJM, as R-modules. Moreover, this isomorphism may be efficiently inverted given

I, J ,M, and t.

Proof. That θt induces a homomorphism of R-modules follows immediately from the fact that it represents

multiplication by a fixed t ∈ R.

Now consider the function induced by θt having domainM and range IM/IJM. Its kernel is JM,

which may be seen as follows: first, θt(JM) = t · JM ⊆ IJM. Second, if θt(u) = 0 for some u ∈M,

then t · u ∈ IJM which implies (t · I−1) · (u · M−1) ⊆ J . Because t · I−1 and J are coprime ideals in

R, we have u · M−1 ⊆ J ⇒ u ∈ JM. So the function fromM/JM to IM/IJM induced by θt is

injective. It remains to show that it is surjective. (Actually, surjectivity follows immediately from the fact that

both quotient groups have cardinality N(J ), but below we give a constructive proof that also demonstrates

efficient invertibility.)

Let v ∈ IM be arbitrary. By hypothesis, t · I−1 and J are coprime, so we can use the algorithm

from Lemma 2.13 to compute some c ∈ t · I−1 such that c = 1 mod J . Then let a = c · v ∈ t · M, and

observe that a− v = v · (c− 1) ∈ IJM. Let w = a/t ∈ M; then θt(w) = t · (a/t) = v mod IJM, so

w mod JM is the preimage of v mod IJM.

2.4 Special Properties of Cyclotomic Number Fields

Here we recall a few important facts about cyclotomic number fields. We use these in our search-to-decision

reductions of Section 5. Let K = Q(ζ) for ζ = ζm be the mth cyclotomic number field, which has minimal

polynomial Φm(x) of degree n = ϕ(m), and let R = OK = Z[ζ].
The number field K has n automorphisms τk : K → K, which are defined by τk(ζ) = ζk for k ∈ Z∗

m. It

is easy to verify that τk is a ring homomorphism and is invertible, hence it is an automorphism. An important

fact is that each automorphism permutes the coordinates of the canonical embedding. More precisely,

σi(τk(ζ)) = σik(ζ) for any i, k ∈ Z∗
m, so σ ◦ τk is just σ under a fixed permutation of its coordinates.

For an integer prime q ∈ Z, the factorization of the ideal 〈q〉 = qR is as follows. Let q′ be the largest

power of q that divides m, let e = ϕ(q′), and let f be the multiplicative order of q modulo m/q′. Then

〈q〉 = ∏

i q
e
i , where the qi are n/(ef) distinct prime ideals, each of norm qf . Concretely, these ideals are

given by qi = 〈q, Fi(ζ)〉, where Φm(x) =
∏

i(Fi(x))
e is the factorization of the cyclotomic polynomial

Φm(x) modulo q (i.e., in Zq[x]) into monic irreducible polynomials Fi(x). (Note that this factorization can

be computed efficiently [Sho09, Chapter 20].)

In particular, for an integer prime q congruent to 1 modulo m, we have e = f = 1, the field Zq has a

primitive mth root of unity ω (because the multiplicative group of Zq is cyclic with order q − 1), and so

Φm(x) factors in Zq[x] as Φ(x) =
∏

i∈Z∗
m
(x − ωi). The ideal 〈q〉 then “splits completely” into n distinct

prime ideals, as 〈q〉 = ∏

i∈Z∗
m
qi where qi = 〈q, ζ − ωi〉 is prime and has norm q.

The following lemma says that the automorphisms τk “act transitively” on the prime ideals qi, i.e.,

each qi is sent to each qj by some automorphism τk. We note that the lemma follows directly from the fact

that cyclotomic number fields are Galois extensions of Q (see, e.g., [Ste04, Chapter 13]); here we give an

elementary proof for completeness.

Lemma 2.16. Using the notation above, for any i, j ∈ Z∗
m we have τj(qi) = qi/j .
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Proof. By definition, τj(qi) = τj(〈q, ζ − ωi〉) = 〈q, ζj − ωi〉. Now observe that

ζj − ωi = ζj − (ωi/j)j = (ζ − ωi/j) ·
(

ζj−1 + ωi/j · ζj−2 + · · ·+ (ωi/j)j−1
)

mod q,

where the summation on the right is in OK . Thus τj(qi) ⊆ 〈q, ζ − ωi/j〉 = qi/j .

For the reverse inclusion, note that ζ−ωi/j = (ζj)1/j−(ωi)1/j factors similarly (modulo q) as a multiple

of ζj − ωi, and therefore qi/j ⊆ 〈q, ζj − ωi〉 = τj(qi).

3 The Ring-LWE Problem and Main Results

Here we define the ring-LWE distribution (actually, family of distributions) and the main computational

problems associated with it. Ring-LWE is parameterized by a number field K with ring of integers R = OK
and a (rational) integer modulus q ≥ 2. For any fractional ideal J in K, we let Jq denote J /qJ . Recall

that R∨ is the dual (or “codifferent”) fractional ideal of R, and let T = KR/R
∨.

Definition 3.1 (Ring-LWE Distribution). For s ∈ R∨
q (the “secret”) and an error distribution ψ over KR,

a sample from the ring-LWE distribution As,ψ over Rq × T is generated by choosing a← Rq uniformly at

random, choosing e← ψ, and outputting (a, b = (a · s)/q + e mod R∨).

Note that (a · s)/q ∈ 1
qR

∨/R∨, so the reduction modulo R∨ in the second component of the sample is well

defined.

Definition 3.2 (Ring-LWE, Search). Let Ψ be a family of distributions over KR. The search version of the

ring-LWE problem, denoted R-LWEq,Ψ, is defined as follows: given access to arbitrarily many independent

samples from As,ψ for some arbitrary s ∈ R∨
q and ψ ∈ Ψ, find s.

The following decision form of the problem, whose hardness means (informally) that the ring-LWE

distribution is pseudorandom, is usually more suitable for cryptographic applications. In Section 5, we show

that it is in fact equivalent to the search version, under certain conditions on the parameters.

Definition 3.3 (Ring-LWE, Average-Case Decision). Let Υ be a distribution over a family of error distri-

butions, each over KR. The average-case decision version of the ring-LWE problem, denoted R-DLWEq,Υ,

is to distinguish with non-negligible advantage between arbitrarily many independent samples from As,ψ,

for a random choice of (s, ψ)← U(R∨
q )×Υ, and the same number of uniformly random and independent

samples from Rq × T.

For an asymptotic treatment of the ring-LWE problems, we let K come from an infinite sequence of

number fields K = {Kn} of increasing dimension n, and let q, Ψ, and Υ depend on n as well.

Recall that when informally describing ring-LWE in the introduction, we said that the secret s belongs

to Rq (and so the products a · s are also in Rq), whereas in the formal definition above, s is in R∨
q (and so

a · s ∈ R∨
q ). Since the description in the introduction was specialized to the mth cyclotomic ring for m = 2k

(i.e., R = Z[x]/〈xn + 1〉 for n = 2k−1), these two variants are actually equivalent. This follows from the

fact that for this ring the codifferent R∨ = n−1R is simply a scaling of the ring, and so one can transform

samples (a, b = (a · s)/q + e) to (a, b′ = b · n = (a · s′)/q + e′), where s′ = s · n ∈ Rq and e′ = e · n ∈ R.

More generally, it is usually more appropriate to leave the secret in R∨
q , as in our formal definition above; see

Section 3.3 below for further discussion.
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3.1 Error Distributions

We first define the family of LWE error distributions for which our reduction to the search version of ring-LWE

(in Section 4) applies.

Definition 3.4. For a positive real α > 0, the family Ψ≤α is the set of all elliptical Gaussian distributions Dr

(over KR) where each parameter ri ≤ α.

Our hardness results for the average-case decision problem (in Section 5) apply to cyclotomic number

fields K = Q(ζm); recall that these have zero real embeddings and n/2 = ϕ(m)/2 pairs of complex

embeddings, σi = σi+n/2 for i ∈ [n/2]. Our results use a distribution Υ over error distributions, defined as

follows. The gamma distribution Γ(2, 1) with shape parameter 2 and scale parameter 1 has density given by

x exp(−x) for x ≥ 0, and zero for x < 0. Sampling from this gamma distribution can be done efficiently

by, e.g., sampling two uniform variables U1, U2 in [0, 1] and outputting − lnU1 − lnU2. Other equally good

choices are possible (e.g., a Gaussian distribution) and we make this particular choice for convenience.

Definition 3.5. Let K be the mth cyclotomic number field having degree n = ϕ(m). For a positive real

α > 0, a distribution sampled from Υα is given by an elliptical Gaussian distribution Dr (over KR) whose

parameters are r2i = r2i+n/2 = α2(1 +
√
nxi), where x1, . . . , xn/2 are chosen independently from the

distribution Γ(2, 1).

Notice that error distributions drawn from Υα typically have parameters of size roughly O(α · n1/4).
It is important to keep in mind that in our definition of ring-LWE, the error distribution is added moduloR∨.

As a result, in order for the problem not to be trivially impossible to solve, the error must not exceed the

smoothing parameter of R∨, or else the ring-LWE distribution will be statistically indistinguishable from

uniform (for any value of the secret s). For example, in the case of a cyclotomic R = Z[x]/〈xn + 1〉 for

n = 2k, we have λn(R
∨) = 1/

√
n and so by Lemma 2.2 we obtain an upper bound of O(

√

log n/n) on the

error parameters. This is in contrast to standard LWE, where the error is added modulo Z and hence can be as

large as O(
√
log n).

3.2 Main Theorem

We can now finally state our main theorem, obtained by combining Theorem 4.1 with Theorems 5.1 and 5.2.

We note that each of these component theorems, as well as Theorem 5.3, should be of independent interest.

Theorem 3.6. Let K be the mth cyclotomic number field having dimension n = ϕ(m) and R = OK be its

ring of integers. Let α <
√

log n/n, and let q = q(n) ≥ 2, q = 1 mod m be a poly(n)-bounded prime

such that αq ≥ ω(√log n). Then there is a polynomial-time quantum reduction from Õ(
√
n/α)-approximate

SIVP (or SVP) on ideal lattices in K to R-DLWEq,Υα . Alternatively, for any ℓ ≥ 1, we can replace the target

problem by the problem of solving R-DLWEq,Dξ
given only ℓ samples, where ξ = α · (nℓ/ log(nℓ))1/4.

Notice that in the latter reduction we use DLWE with a fixed (spherical) error distribution Dξ, instead of

a distribution over error distributions. Also note that when ℓ is small, which is often the case in applications,

both reductions lead to essentially the same error parameters. See Section 5 for further discussion.

For applications, it is typically more useful to work with a ‘discrete’ variant of ring-LWE in which the b
component of each sample is taken from a finite set, instead of the continuous domain T. (Indeed, this is

how we described the ring-LWE problem in the introduction.) As in standard LWE, this is easily achieved by

discretizing the samples. See [LPR13, Section 2.6] for details.
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3.3 Why This is the Right Definition of Ring-LWE

Our definition of ring-LWE and hardness results make three, seemingly arbitrary, choices: the public value a
is drawn from Rq, the secret s belongs to R∨

q , and the error distributions are “spherically bounded,” namely,

the bound α in the definition of Ψ≤α is the same for all coordinates of the embedding (and similarly for the

error distributions used in the average-case problem). Indeed, there is some arbitrariness in the definition: for

instance, taking a ∈ Jq and s ∈ J ∨
q for any fixed fractional ideal J (and keeping the same error distribution)

leads to a computationally equivalent problem.4 For example, we could take a from R∨
q and s from Rq.

This brings us to the following natural question: modulo these equivalences, why are our choices the

“right” ones? In particular, why not take both a and s in Rq, and use a spherically bounded error distribution?

As described earlier, in certain cases (e.g., the mth cyclotomic for m = 2k) this definition is equivalent to the

original one, but it turns out that in general it leads to a pure loss in two ways: once in the provable hardness

of the problem for a given spherical error bound (due to the inherent distortion in mapping R∨ to R), and

again in the amount of error that can be used in typical applications. By contrast, our choices turn out to be

the most mathematically natural and computationally effective ones, for a variety of reasons that we now

explain.

The first reason is that our choices emerge naturally in the core BDD-to-LWE reduction of Section 4, due

to the R∨ ratio between the dual and inverse ideals (recall that I∨ = R∨ · I−1 for any fractional ideal I).

In more detail, in our reduction the secret s corresponds to the unknown closest point x ∈ I∨ of a BDD

instance, and the public elements a are obtained from Gaussian samples over I. After ‘clearing the ideal’ I
(using Lemma 2.15), we end up with secret s ∈ R∨

q , public elements a ∈ Rq, and spherically bounded error

from the products of the spherical Gaussian samples with the BDD offset vector.

Another important reason for our choices relates to cryptographic applications in cyclotomic rings. Fixing

encryption as an example, we wish to have as much security as possible, which by our results means using as

much spherically bounded error as possible, yet still decrypt correctly, which requires removing the error

from noisy products using knowledge of the secret. For our choices, this means solving BDD for spherically

bounded error on the ideal R∨. The amount of spherical error that can be efficiently decoded from an

ideal essentially depends inversely on the λn parameter of its dual ideal. The dual of R∨ is R, which, for

cyclotomic rings of degree n, has n elements 1, ζ, . . . , ζn−1 of Euclidean norm
√
n, and hence λn(R) =

√
n.

This turns out to be the smallest possible (relative to its norm), by Lemma 2.9. Therefore, among all ideals of

the same norm, the codifferent R∨ is decodable under the most spherical Gaussian error. By contrast, for

most cyclotomics this is not true of R itself, because its dual ideal R∨ typically does not have optimally short

vectors.5

A final reason for our choice is by analogy to the standard LWE and SIS (short integer solution) problems,

which may be seen as problems on dual random lattices (see, e.g., [GPV08]). In the ring setting, an instance

of ring-SIS is given by a tuple a = (a1, . . . , am) ∈ Rmq , which defines the “q-ary” lattice Λ⊥(a):

qRm ⊆ Λ⊥(a) =
{

z = (z1, . . . , zm) ∈ Rm :
∑

i∈[m]
aizi = 0 ∈ Rq

}

⊆ Rm.

Analogously to standard LWE, we wish to view ring-LWE as a bounded-distance decoding problem on the

4This follows by the ‘clearing ideals’ technique of Lemma 2.15. We note that standard LWE also admits an analogous formulation:

for any n-dimensional lattice L and its dual L∗, we can take a ∈ L/qL, s ∈ L∗/qL∗, and b ≈ 〈a, s〉/q mod 1. In that setting, the

self-dual lattice L = Zn is of course the most natural choice.
5In some cryptographic applications, several ring-LWE samples are combined, requiring decoding on ideals derived from the

one used in the original ring-LWE samples (e.g., starting from our R∨, one needs to decode (R∨)k for some k > 1). The same

considerations discussed here reveal that R∨ is essentially optimal also in these applications. See [LPR13] for further details.
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dual lattice of Λ⊥(a) ⊆ Rm, under the canonical embedding.6 It can be seen that this dual lattice is

(Λ⊥(a))∨ = (R∨)m +
{

(a · s)/q : s ∈ R∨
q

}

⊆ (1/q) · (R∨)m,

where the product a · s = (a1 · s, . . . , am · s). Therefore, it is natural that the ring-LWE distribution should

produce noisy products of the form (ai · s)/q, for random values ai ∈ Rq and some fixed s ∈ R∨
q .

Finally, we remark that working with R∨ and R∨
q is computationally just as efficient as working with R

and Rq, by the Chinese Remainder Theorem and its consequences. (See the companion paper [LPR13] for

details.)

4 Hardness of Search-LWE

Throughout this section, let K denote an arbitrary number field of degree n with ring of integers R = OK .

For concreteness, the reader may wish to keep in mind the particular case of a cyclotomic number field,

although the results in this section apply to arbitrary number fields. The following is the main theorem of this

section. (Throughout this section, ω(
√
log n) denotes some fixed, arbitrary function that grows asymptotically

faster than
√
log n.)

Theorem 4.1. Let K be an arbitrary number field of degree n and R = OK . Let α = α(n) > 0, and let

q = q(n) ≥ 2 be such that αq ≥ 2 · ω(√log n). For some negligible ε = ε(n), there is a probabilistic

polynomial-time quantum reduction from K-DGSγ to R-LWEq,Ψ≤α
, where

γ = max
{

ηε(I) · (
√
2/α) · ω(

√

log n),
√
2n/λ1(I∨)

}

. (4.1)

Here, K-DGSγ denotes the discrete Gaussian sampling problem [Reg05], which asks, given an ideal I
in K and a number s ≥ γ = γ(I), to produce samples from the distribution DI,s. Using the easy inequality

ηε(I) > 1/λ1(I∨) [Reg05, Claim 2.13], we get that as long as α <
√

log n/n (which is virtually always

the case in applications), the first term in the maximum in Equation (4.1) dominates.

As shown in [Reg05, Section 3.3], there are easy reductions from standard lattice problems to DGS.

Namely, using the facts that ηε(I) ≤ λn(I) · ω(
√
log n) for any fractional ideal I and some negligi-

ble ε(n) (Lemma 2.2), and that a sample from DI,γ has length at most γ
√
n with overwhelming probability

(Lemma 2.4), an oracle for K-DGSγ with γ = ηε(I) · Õ(1/α) immediately implies an oracle for Õ(
√
n/α)-

approximate SIVP on ideal lattices in K. In cyclotomic number fields, where λn(I) = λ1(I) for any

fractional ideal I (because multiplying a shortest nonzero element v ∈ I by 1, ζ, . . . , ζn−1 gives n linearly

independent elements of the same length), this also implies an oracle for Õ(
√
n/α)-approximate SVP.

Meaningful error rates and approximation factors. As mentioned in Section 3.1, in order for ring-LWE

to be information theoretically solvable, it is necessary that α < ηε(R
∨) for all negligible ε(n) (otherwise,

ring-LWE samples will just be essentially uniform). Moreover, it can be shown that a sufficient condition for

solvability is that α ≤ λ1(R
∨)/(C

√
n) for some universal constant C > 0; this is based on the fact that a

sample from Dα has norm at most α
√
n with overwhelming probability.

For example, consider the mth cyclotomic number field, which has degree n = ϕ(m). When m is a

power of two, we have λn(R
∨) = 1/

√
n, so by Lemma 2.2 we need α = O(

√

log n/n), which also turns

out to be sufficient for information-theoretic solvability. This corresponds to superlinear ω(n) approximation

6As expected, the dual Λ∨ of a lattice Λ ⊂ Km is the set of all x ∈ Km such that
∑

i∈[m] Tr(xi · vi) ∈ Z for all v ∈ Λ.
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factors for SVP and SIVP. For arbitrary m, one can show the slightly looser bound λn(R
∨) ≤ 2d

√
n/m,

where d is the number of distinct prime divisors of m.

As a second example, consider any family of number fields K of increasing dimension n that have

discriminants ∆K = 2Θ(n) (see, e.g., [Roq67]). Then λ1(R
∨) = Θ(

√
n) by Lemma 2.9, so we may take

α > 0 to be as large as a small constant while still ensuring solvability. Now for any fractional ideal I in K,

we have λ1(I) ·λ1(I∨) = Θ(
√
n) by Lemma 2.9, so ηε(I) = λ1(I)/Θ(

√
n) for ε = 2−Ω(n) by Lemma 2.2.

Therefore, we can take γ = ω(
√
log n) and obtain worst-case approximation factors as small as ω(

√
log n)

for SVP and SIVP. This essentially matches the O(
√
log n) approximation factors obtained in [PR07] for

the ring-SIS problem in the same families of number fields.

4.1 Proof of Theorem 4.1

The proof of Theorem 4.1 follows Regev’s proof in [Reg05] for general lattices, replacing its core component

with an analogous statement for ideal lattices (Lemma 4.3). For completeness, we now describe the reduction

in some detail, focusing on the necessary modifications. The reduction works by repeated applications of the

following iterative step.

Lemma 4.2. Let α > 0 and q ≥ 2 be an integer. There exists an efficient quantum algorithm that, given

a fractional ideal I in K, a number r ≥
√
2q · ηε(I) for some negligible ε = ε(n) such that r′ :=

r · ω(√log n)/(αq) >
√
2n/λ1(I∨), an oracle to R-LWEq,Ψ≤α

, and a list of samples from the discrete

Gaussian distribution DI,r (as many as required by the R-LWE oracle), outputs an independent sample

from DI,r′ .

Theorem 4.1 follows easily from this iterative step, as we now sketch; see [Reg05] for more details. We

start with a very large value of r, say r ≥ 22nλn(I), so that any polynomial number of samples fromDI,r can

be generated classically (see [Reg05, Lemma 3.2]). Then, given the samples from DI,r, we apply the iterative

step of Lemma 4.2 a polynomial number of times (using the same samples) to obtain a polynomial number

of independent samples from DI,r′ for r′ = r/2. Repeating this, we obtain samples from progressively

narrower and narrower distributions, until we get samples with the desired Gaussian parameter s ≥ γ. Note

that the γ given in Equation (4.1) corresponds to values of r, r′ satisfying the hypotheses of Lemma 4.2.

The iterative step of Lemma 4.2 is obtained by combining two reductions. The first, whose proof is given

in Section 4.2, is a reduction from BDD (on I∨) to LWE, which uses Gaussian samples over I.

Lemma 4.3. Let α > 0, let q ≥ 2 be an integer with known factorization, let I be a fractional ideal

in K, and let r ≥
√
2q · ηε(I) for some negligible ε = ε(n). Given an oracle for the discrete Gaussian

distribution DI,r, there is a probabilistic polynomial-time (classical) reduction from BDDI∨,d in the ℓ∞
norm to R-LWEq,Ψ≤α

, where d = αq/(
√
2r).

The second part is quantum, and is nearly identical to the one in Regev’s reduction [Reg05, Lemma 3.14].

The only difference is that we allow the BDD oracle to err with some negligible probability.7 This stronger

statement follows from the proof in [Reg05] by noticing that the algorithm calls the BDD oracle on points

whose offset is sampled from the continuous Gaussian distribution Dd′/(
√
2n).

Lemma 4.4. There is an efficient quantum algorithm that, given any n-dimensional lattice Λ, a number

d′ < λ1(Λ
∨)/2 (where λ1 is with respect to the ℓ2 norm), and an oracle that solves BDD on Λ∨ with all

but negligible probability for points whose offset from Λ∨ is sampled from Dd′/
√
2n, outputs a sample from

7A similar but more extensive strengthening is used by Stehlé et al. [SSTX09].
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DΛ,
√
n/(

√
2d′). In particular, since a sample fromDd′/

√
2n has ℓ∞ norm at most d′·ω(√log n)/√n except with

negligible probability, it suffices if the oracle solves BDDI∨,d in the ℓ∞ norm, where d = d′ ·ω(√log n)/√n.

Proof of Lemma 4.2. Using Lemma 4.3 with samples from DI,r and the given oracle for R-LWEq,Ψ≤α
, we

obtain an algorithm for BDD on I∨ to within distance d = αq/(
√
2r) in the ℓ∞ norm. Using Lemma 4.4

with d′ = d
√
n/ω(

√
log n) =

√

n/2/r′ < λ1(I∨)/2, we obtain a quantum procedure that produces samples

from the discrete Gaussian distribution DI,r′ , as promised.

We note that one can also interpret Lemma 4.3 as a standalone classical (non-quantum) reduction from

a seemingly hard (but non-standard) worst-case lattice problem to ring-LWE, similar to what was done

in [Pei09]. In particular, since one can efficiently generate Gaussian samples from Λ using any set of n
sufficiently short linearly independent lattice vectors [GPV08], the worst-case problem can defined as follows:

given an ideal I together with a set of n linearly independent elements (or in the case of cyclotomics, even

just one nonzero element) of I of Euclidean length at most r/ω(
√
log n), solve BDD on the dual I∨ to

within ℓ∞ distance αq/(
√
2r).

4.2 The BDD to LWE Reduction

Our goal in this section is to prove Lemma 4.3. We first observe that to solve BDD on an ideal I, it suffices

to find the solution modulo qI. This is actually a special case of a lemma from [Reg05], which gives a

lattice-preserving reduction for BDD in general lattices. Because the reduction is lattice-preserving, it also

applies to ideal lattices.

Definition 4.5. The q-BDDI,d problem (in any norm) is: given an instance y of BDDI,d that has solution

x ∈ I, find x mod qI.

Lemma 4.6 (Special case of [Reg05, Lemma 3.5]). For any q ≥ 2, there is a deterministic polynomial-time

reduction from BDDI,d (in any ℓp norm) to q-BDDI,d (in the same norm).

Therefore, it suffices in the following to present a reduction as in Lemma 4.3 but from q-BDD. Notice

that by the scaling argument in Section 2.3.8 we can assume without loss of generality that I is an integral

ideal (in R). Finally, recall the notation T = KR/R
∨ and Jq = J /qJ for any ideal J .

The high-level description of the reduction is as follows. Its input is a q-BDDI∨,d instance y = x+ e
(where x ∈ I∨ and ‖e‖∞ ≤ d), and it is given access to an oracle that generates independent samples

from the discrete Gaussian distribution DI,r, and an oracle L that solves R-LWE. The reduction produces

samples from the LWE distribution As,ψ, where the secret s and the error distribution ψ are related to x and e,
respectively. Finally, given the solution s output by L, the reduction recovers x mod qI∨ from s.

In detail, the reduction does the following, given a q-BDDI∨,d instance y:

1. Compute an element t ∈ I such that t · I−1 and 〈q〉 are coprime.

(By Lemma 2.14, such t exists and can be found efficiently using the factorization of 〈q〉.)

2. For each sample requested by L, get a fresh z ← DI,r from the Gaussian oracle and provide to L the

pair (a, b) ∈ Rq × T, computed as follows: let e′ ← Dα/
√
2, and

a = θ−1
t (z mod qI) ∈ Rq and b = (z · y)/q + e′ mod R∨.

(Recall that by Lemma 2.15 with J = 〈q〉 andM = R, the function θt(u) = t · u induces a bijection

from Rq to Iq, which can be efficiently inverted given I, q, and t.)
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3. When L produces a solution s ∈ R∨
q , output θ−1

t (s) ∈ I∨q .

(Again, by Lemma 2.15 with J = 〈q〉 andM = I∨ = I−1 ·R∨, the function θt induces a bijection

from I∨q to R∨
q , which can be efficiently inverted).

The correctness of the reduction follows from Lemma 4.7 below, which says that the samples (a, b) are

distributed according to As,ψ for s = θt(x mod qI∨) ∈ R∨
q and some ψ ∈ Ψ≤α. By hypothesis, L returns s,

so the reduction outputs θ−1
t (s) = x mod qI∨, which is the correct solution to its q-BDDI∨,d input instance.

Lemma 4.7. Let y be the BDDI∨,d instance given to the reduction above, where y = x+ e for some x ∈ I∨
and ‖e‖∞ ≤ d. Each pair (a, b) produced by the reduction has distribution As,ψ (up to negligible statistical

distance), for s = θt(x mod qI∨) = t · x ∈ R∨
q and some ψ ∈ Ψ≤α.

Proof. We first show that in each output pair (a, b), the component a ∈ Rq is within negligible distance

of uniform. Because r ≥ q · ηε(I), the second statement in Lemma 2.3 implies that all possible values of

z mod qI (when z is chosen from DI,r) are obtained with probabilities that are in some interval [1−ε1+ε , 1] · β
for some β > 0, from which it follows easily that z mod qI is within distance (say) 2ε of the uniform

distribution on Iq. Finally, because θt induces a bijection fromRq to Iq by Lemma 2.15, a = θ−1
t (z mod qI)

is within statistical distance 2ε of uniform over Rq.
Now condition on any fixed value of a. We next analyze the component

b = (z · y)/q + e′ = (z · x)/q + (z/q) · e+ e′ mod R∨,

starting with (z · x)/q. By definition of a, we have z = θt(a) = a · t ∈ Iq. Because x ∈ I∨ = I−1 ·R∨, we

have

z · x = θt(a) · x = a · (t · x) mod R∨
q .

Then because s = t ·x mod R∨
q , we have z ·x = a ·s mod R∨

q , which implies (z ·x)/q = (a ·s)/q mod R∨.

To analyze the remaining (z/q) · e+ e′ term, note that conditioned on the value of a, the random variable

z/q has distribution DI+u/q,r/q, where I + u/q is some coset of I (specifically, u = θt(a) mod qI) and

r/q ≥
√
2 · ηε(I). Note that

(r/q) · ‖e‖∞ ≤ (r/q) · d = α/
√
2,

so we may apply Lemma 4.8 below; it implies that the distribution of (z/q) · e + e′ is within negligible

statistical distance of the elliptical Gaussian Dr, where each

r2i = (r/q)2 · |σi(e)|2 + (α/
√
2)2 ≤ (r/q)2 · d2 + α2/2 = α2.

We conclude that each (a, b) is distributed as As,ψ for some ψ ∈ Ψ≤α, as desired.

Lemma 4.8. Let I be a (fractional) ideal in K, and let r ≥
√
2 · ηε(I) for some ε = negl(n). Let e ∈ K

be fixed, let z be distributed as DI+v,r for arbitrary v ∈ K, and let e′ be distributed as Dr′ for some

r′ ≥ r · ‖e‖∞. Then the distribution of z · e + e′ is within negligible statistical distance of the elliptical

Gaussian distribution Dr over KR, where r2i = r2 · |σi(e)|2 + (r′)2.

Proof. Assume that e 6= 0, and hence every σi(e) 6= 0, otherwise the result holds trivially. We can

write z · e + e′ as (z + e′/e) · e. The distribution of e′/e is the elliptical Gaussian Dt, where each

ti = r′/|σi(e)| ≥ r′/‖e‖∞ ≥ r. Thus e′/e can be written as the sum f + g of independent f and g, where f
has distribution Dr, and g has distribution Dt′ where (t′i)

2 = t2i − r2.
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Now by Lemma 2.5, the distribution of z + f is negligibly far from D√
2r, so (z + e′/e) = (z + f + g)

has distribution negligibly far from Dt′′ , where

(t′′i )
2 = 2r2 + t2i − r2 = r2 + (r′)2/|σi(e)|2.

We conclude that (z + e′/e) · e has distribution negligibly far from Dr, as desired.

5 Pseudorandomness of Ring-LWE

In this section we show that for appropriate choices of ring, modulus, and error distribution, the average-case

decision version of the ring-LWE problem is hard, i.e., the ring-LWE distribution is pseudorandom. For

concreteness and simplicity, we specialize the discussion to cyclotomic fields (though it seems likely that

our techniques can be extended to deal with other number fields). So throughout this section we assume that

ζ = ζm is a primitive mth root of unity, K = Q(ζ) is the mth cyclotomic number field having dimension

n = ϕ(m),R = OK = Z[ζ] is its ring of integers,R∨ = O∨
K is its dual (codifferent) ideal, and q = 1 mod m

is a poly(n)-bounded prime. Recall from Section 2.4 that q splits completely as 〈q〉 = ∏

i∈Z∗
m
qi, for distinct

prime ideals qi each of norm N(qi) = q. Also recall that the automorphisms ofK are τk(ζ) = ζk for k ∈ Z∗
m,

and that τk(qi) = qi·k−1 and τ−1
k = τk−1 .8

The following is the main theorem of this section. It gives a reduction from the search variant of ring-LWE

(which by Theorem 4.1 is as hard as a worst-case lattice problem) to the average-case decision problem

ring-DLWE (see Definition 3.3). This establishes the hardness of the average-case problem, which means

that the LWE distribution As,ψ is itself pseudorandom when both s and the error distribution ψ are chosen at

random from appropriate distributions (and kept secret).

Theorem 5.1. Let R and q be as above and let αq ≥ ηε(R∨) for some negligible ε = ε(n). Then there is a

randomized polynomial-time reduction from R-LWEq,Ψ≤α
to R-DLWEq,Υα .

Note that η2−n(R∨) ≤ √n/λ1(R) = 1, where the inequality follows by Lemma 2.2, and the equality

λ1(R) =
√
n holds because ‖σ(1)‖ = √n and λ1(R) ≥

√
n by Lemma 2.9. So in the above theorem it

suffices to take αq ≥ 1, which is a slightly weaker hypothesis than that of Theorem 4.1.

The proof of Theorem 5.1 is obtained by combining four reductions, as summarized in the following

diagram; the numbers refer to lemma numbers, and the definitions of all intermediate problems are given

later. We note that in order to apply the last reduction (Lemma 5.14), we need a certain property of our family

of noise distribution; this property is proved in Lemma 5.13.

LWEq,Ψ
5.5−−−−−−−−−→

Automorphisms
qi-LWEq,Ψ

5.9−−−−−−−−−→
Search/Decision

WDLWE
i
q,Ψ

5.12−−−−−−−−−→
Worst/Average

DLWE
i
q,Υ

5.14−−−−→
Hybrid

DLWEq,Υ.

This sequence of reductions is similar in spirit to the one given in previous work on the standard LWE

problem [Reg05]. However, there are a few important differences, requiring the introduction of new tools.

One fundamental issue arising in the ring setting is that an oracle for DLWE might only let us deduce the

value of the secret s relative to one ideal factor qi of 〈q〉. In order to recover the entire secret, we ‘shuffle’

the qi factors using the field’s automorphisms to recover s relative to every qj (see Lemma 5.5).

Another challenge arises from the fact that the reduction in Section 4 establishes the hardness of LWEq,Ψ

for non-spherical Gaussian error distributions ψ ∈ Ψ, which individually are not necessarily invariant under

8In fact, for any constant c dividing n, our results generalize easily to the case where q splits only into n/c distinct prime ideals qi,

each of norm qc = poly(n), because the automorphisms still act transitively upon the qis.
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the field’s automorphisms. (However, the whole family Ψ of distributions is.) As a result, our reduction to an

average-case problem (obtained in Lemma 5.12) needs to randomize the error distribution itself, which leads

to a distribution Υ over Gaussian noise distributions that are both non-spherical and wider by a factor of about

n1/4. Although this is somewhat undesirable, we do not see any way to avoid it completely. Fortunately,

this has only a minor effect on the resulting applications, i.e., adding an extra step of choosing the noise

parameters.

Alternatively, there are two ways to avoid randomizing the error distribution in certain contexts. First, in

many cryptographic applications there is a natural bound on the number of LWE samples available to the

adversary. In such cases, the following theorem establishes pseudorandomness with a fixed spherical noise

distribution.

Theorem 5.2. Let R, q, and α be as in Theorem 5.1, and let ℓ ≥ 1. There is a randomized polynomial-

time reduction from solving R-LWEq,Ψ≤α
to solving R-DLWEq,Dξ

given only ℓ samples, where ξ = α ·
(nℓ/ log(nℓ))1/4.

The proof of Theorem 5.2 uses the same sequence of reductions as in Theorem 5.1, except that Lemma 5.12

is replaced with Lemma 5.16.

Second, any fixed spherical Gaussian distribution Dα is invariant under all the automorphisms; therefore,

if one assumes that the search problem LWEq,Dα is hard (which seems very plausible, though we do not have

a worst-case hardness proof), then one can simplify our chain of reductions to use error distribution Dα in

all the average-case problems. In this case, there is no need to use a distribution Υ over error distributions,

and we do not need to lose the factor n1/4. The proof again uses the same sequence of reductions as that

of Theorem 5.1, except that Lemma 5.12 is modified so as not to randomize the error distribution, only the

secret s (resulting in a considerably simpler proof).

Theorem 5.3. Let R, q, and α be as in Theorem 5.1. There is a randomized polynomial-time reduction from

solving R-LWEq,Dα to solving R-DLWEq,Dα .

5.1 Search to Worst-Case Decision

Here we reduce the search version of LWEq,Ψ to a certain decision problem relative to just one arbitrary

prime ideal qi. All of the problems considered here are worst-case over the choice of s ∈ R∨
q and error

distribution ψ ∈ Ψ, where Ψ is the family of allowed error distributions (though the actual error terms drawn

from ψ are still random), and their solutions must be found with overwhelming probability (over all the

randomness of the experiment).

Our first reduction is to the following intermediate problem. Note that by Lemmas 2.12 and 2.15, there is

an efficiently computable and invertible R-module isomorphism between R∨
q and

⊕

i∈Z∗
m
(R∨/qiR∨).

Definition 5.4 (LWE over qi). The qi-LWEq,Ψ problem is: given access to As,ψ for some arbitrary s ∈ R∨
q

and ψ ∈ Ψ, find s mod qiR
∨.

Lemma 5.5 (LWE to qi-LWE). Suppose that the family Ψ is closed under all the automorphisms of K, i.e.,

ψ ∈ Ψ ⇒ τk(ψ) ∈ Ψ for every k ∈ Z∗
m. Then for every i ∈ Z∗

m, there is a deterministic polynomial-time

reduction from LWEq,Ψ to qi-LWEq,Ψ.

Proof. We use the oracle for qi-LWE along with the field automorphisms τk to recover the value s mod qjR
∨

for every j ∈ Z∗
m. We can then efficiently reconstruct s ∈ R∨

q using the Chinese Remainder Theorem.
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The reduction that finds s mod qjR
∨ works as follows: transform each sample (a, b)← As,ψ into the

sample (τk(a), τk(b)) ∈ Rq × T, where k = j/i ∈ Z∗
m and hence τk(qj) = qi. (Note that R and R∨ are

fixed by every automorphism τk, so τk(Rq) = Rq and τk(T) = T = KR/R
∨.) Give the transformed samples

to the qi-LWEq,Ψ oracle, and when the oracle returns its answer t ∈ R∨/qiR∨, return τ−1
k (t) ∈ R∨/qjR∨.

We now prove that τ−1
k (t) = s mod qjR

∨. For each sample (a, b) from As,ψ, notice that because

b = as/q + e mod R∨ and τk(q) = q, we have

τk(b) = τk(a) · τk(s)/q + τk(e) mod R∨.

Because τk is an automorphism onR, τk(a) is uniformly random in τk(Rq) = Rq, and the pairs (τk(a), τk(b))
are distributed according to Aτk(s),ψ′ where ψ′ = τk(ψ) ∈ Ψ. The oracle must therefore return t =

τk(s) mod qiR
∨, and τ−1

k (t) = s mod τ−1
k (qiR

∨) = s mod qjR
∨, as desired.

We now observe that Ψ≤α satisfies the closure property required by the above lemma.

Lemma 5.6. For any α > 0, the family Ψ≤α is closed under every automorphism τ of K, i.e., ψ ∈ Ψ≤α ⇒
τ(ψ) ∈ Ψ≤α.

Proof. Let τk : K → K be any automorphism of K, which is of the form τk(ζ) = ζk for some k ∈ Z∗
m.

Then by the fact that τk simply permutes the coordinates of the canonical embedding (see Section 2.4), for

any ψ = Dr ∈ Ψ≤α, we have τk(Dr) = Dr′ ∈ Ψ≤α, where the entries of r′ are merely a rearrangement of

the entries of r and hence are all at most α.

For our second reduction, we need to introduce a few more definitions. For notational convenience, we

identify the elements of Z∗
m with their integer representatives from the set {1, . . . ,m− 1}, with the usual

ordering. For i ∈ Z∗
m we let i− denote the largest element in Z∗

m less than i, defining 1− to be 0.

Definition 5.7 (Hybrid LWE distribution). For i ∈ Z∗
m, s ∈ R∨

q , and a distribution ψ over KR, the

distribution Ais,ψ over Rq × T is defined as follows: choose (a, b) ← As,ψ and output (a, b+ h/q) where

h ∈ R∨
q is uniformly random and independent mod qjR

∨ for all j ≤ i, and is 0 mod all the remaining qjR
∨.

Also define A0
s,ψ simply as As,ψ.

Definition 5.8 (Worst-case decision LWE relative to qi). For i ∈ Z∗
m and a family of distributions Ψ, the

WDLWE
i
q,Ψ problem is defined as follows: given access to Ajs,ψ for arbitrary s ∈ R∨

q , ψ ∈ Ψ, and

j ∈ {i−, i}, find j.

Lemma 5.9 (Search to Decision). For any i ∈ Z∗
m, there is a probabilistic polynomial-time reduction from

qi-LWEq,Ψ to WDLWE
i
q,Ψ.

Proof. The idea for recovering s mod qiR
∨ is to try each of its possible values, modifying the samples

we receive from As,ψ so that on the correct value the modified samples are distributed according to Ai−s,ψ,

whereas on all the other values the modified samples are distributed according to Ais,ψ. We can then use the

WDLWE
i
q,Ψ oracle to tell us which distribution was generated. Because there are only N(qi) = q = poly(n)

possible values for s mod qiR
∨, we can enumerate over all of them efficiently and discover the correct value.

We now give the transformation that takes some g ∈ R∨
q and maps As,ψ to either Ai−s,ψ or Ais,ψ, depending

on whether or not g = s mod qiR
∨ (its values modulo the other qjR

∨ are irrelevant). Given a sample

(a, b)← As,ψ, the transformation produces a sample

(a′, b′) = (a+ v, b+ (h+ vg)/q) ∈ Rq × T,
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where v ∈ Rq is uniformly random mod qi and is 0 mod the other qj , and h ∈ R∨
q is uniformly random

and independent mod qjR
∨ for all j < i, and is 0 mod all the remaining qjR

∨. First, notice that since a is

uniformly distributed in Rq, so is a′. Next, condition on any fixed value of a′. Then b′ can be written as

b′ = b+ (h+ vg)/q = (as+ h+ vg)/q + e

= (a′s+ h+ v(g − s))/q + e,

where e is drawn from ψ.

We consider two cases. First, assume that g = s mod qiR
∨. Then by the Chinese Remainder Theorem

(Lemma 2.12), v(g − s) = 0 ∈ R∨
q , and hence the distribution of (a′, b′) is exactly Ai−s,ψ. Next, assume that

g 6= s mod qiR
∨. Then since qi is a maximal ideal (which in R is equivalent to being a prime ideal), R/qi is

a field, and hence v(g − s) ∈ R∨
q is distributed uniformly mod qiR

∨, and is zero mod all other qjR
∨. From

this it follows that v(g − s) + h is uniformly random and independent mod qjR
∨ for all j ≤ i, and is 0 mod

all the remaining qjR
∨. Hence, the distribution of (a′, b′) is exactly Ais,ψ, as claimed.

5.2 Worst-Case Decision to Average-Case Decision

We now reduce the worst-case decision problem WDLWE
i
q,Ψ (where Ψ is a family of Gaussian noise

distributions) to an entirely average-case problem, namely, distinguishing As,ψ from the uniform distribution

(with any non-negligible advantage) for a random choice of both s and ψ, where the parameters of the error

distribution ψ themselves are drawn at random from a certain distribution Υ and kept secret.

We first define the following variant of average-case decision LWE.

Definition 5.10 (Average-case decision LWE relative to qi). For i ∈ Z∗
m and a distribution Υ over error

distributions, we say that an algorithm solves the DLWE
i
q,Υ problem if with a non-negligible probability over

the choice of a random (s, ψ)← U(R∨
q )×Υ, it has a non-negligible difference in acceptance probability on

inputs from Ais,ψ versus inputs from Ai−s,ψ.

We will need the following technical claim.

Claim 5.11. Let P be the distribution Γ(2, 1)n andQ be the distribution (Γ(2, 1)−z1)×· · ·×(Γ(2, 1)−zn)
for some 0 ≤ z1, . . . , zn ≤ 1/

√
n. Then any set A ⊆ Rn whose measure under P is non-negligible also has

non-negligible measure under Q.

We remark that the claim is sharp in the sense that if we take z1 = · · · = zn = ω(1/
√
n) then the positive

quadrant has measure 1 under P , but negligible measure under Q.

Proof. For any two probability density functions P,Q : Rn → R≥0 where P (x) = 0 whenever Q(x) = 0
(which is the case for the P and Q in the lemma statement), define

R(P ||Q) =

∫

Rn

P (x)2

Q(x)
dx,

with the convention that the fraction is zero when both numerator and denominator are zero. (The logarithm

of this quantity is known as the Rényi divergence of order 2.) By Cauchy-Schwarz, for any set A ⊆ Rn,

(
∫

A P (x) dx)
2

∫

AQ(x) dx
≤

∫

A

P (x)2

Q(x)
dx ≤ R(P ||Q).
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Hence if a setA has non-negligible measure under P andR(P ||Q) ≤ poly(n), thenA also has non-negligible

measure under Q.9

We now apply this in our setting. A straightforward calculation shows that for all z > 0,

R(Γ(2, 1) ||Γ(2, 1)− z) = ez
(

1− z + z2ez
∫ ∞

z
x−1e−xdx

)

,

which for small z is easily seen to be 1 + z2 log(1/z) +O(z2). Hence,

R(Γ(2, 1)n || (Γ(2, 1)− z1)× · · · × (Γ(2, 1)− zn))
= R(Γ(2, 1) ||Γ(2, 1)− z1) · · ·R(Γ(2, 1) ||Γ(2, 1)− zn)

is polynomial in n.

Lemma 5.12 (Worst-case to average-case). For any α > 0 and every i ∈ Z∗
m, there is a randomized

polynomial-time reduction from WDLWE
i
q,Ψ≤α

to DLWE
i
q,Υα

.

Proof. For some s′ ∈ R∨
q , r′ ∈ (R+)n, and k ∈ Z∗

m, consider the transformation mapping each (a, b) to

(a, b+ (a · s′ + h)/q + e′) where e′ is chosen from Dr′ , and h ∈ R∨
q is uniformly random and independent

mod qjR
∨ for all j ≤ k, and 0 mod all the remaining qjR

∨. Then it is easy to see that for all s ∈ R∨
q and

i ∈ Z∗
m, this transformation maps Ais,ψ to A

max{k,i}
s+s′,ψ+D

r
′
.

The reduction repeats the following a polynomial number of times. Choose a uniform s′ ∈ R∨
q as well

as reals x1, . . . , xn/2 chosen independently from the distribution Γ(2, 1) and let r′ ∈ (R+)n be defined by

r′2j = r′2j+n/2 = α2√nxj for j ∈ [n/2]. Then estimate the acceptance probability of the oracle on the

following two input distributions: the first is obtained from our input by applying the above transformation

with parameters s′, r′, and i−; the second is obtained similarly using parameters s′, r′, and i. If in any of

these polynomial number of attempts a non-negligible difference is observed between the two acceptance

probabilities, output “i−”; otherwise output “i”.

Notice that if our input distribution is Ais,ψ, then in each of the attempts, the two distributions on which

we estimate the oracle’s acceptance probability are exactly the same, hence we output “i” with overwhelming

probability. So assume that our input distribution is Ai−s,Dr

for some r satisfying that all ri are in [0, α]. In

this case we estimate the oracle’s acceptance probability on Ai−s+s′,Dr+Dr
′

and Ais+s′,Dr+Dr
′
, and notice

that Dr + Dr′ = Dr′′ where r′′2j = r2j + r′2j . Let S be the set of all pairs (s, ψ) for which the oracle has

a non-negligible difference in acceptance probability on Ai−s,ψ and Ais,ψ. By assumption, the measure of S
under U(R∨

q )×Υα is non-negligible. By Claim 5.11, (s+ s′, Dr+Dr′) ∈ S with non-negligible probability

and the lemma follows.

Lemma 5.13. Let α ≥ ηε(R
∨)/q for some ε > 0. Then for any ψ in the support of Υα and s ∈ R∨

q , the

distribution Am−1
s,ψ is within statistical distance ε/2 of the uniform distribution over (Rq,T).

Proof. By definition, a sample from the distribution Am−1
s,ψ is given by (a, (a · s + h)/q + e) where e is

chosen from ψ, a is chosen uniformly from Rq, and h is chosen uniformly from R∨
q . It suffices to show

that conditioned on any fixed value of a, the second element of the pair is within statistical distance ε of the

uniform distribution over T. So fix some value of a. Notice first that (a · s+h)/q is distributed like a uniform

9We note that other notions of relative entropy also have this property. The advantage of our choice of R(·||·) is that it is easy to

calculate, as we do below.
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element of (q−1R∨)/R∨. Moreover, any noise distribution ψ in the support of Υα can be written as the sum

of two independent Gaussian noise distributions Dr +Dr′ , the first with parameters ri = α and the second

with parameters (r′i)
2 = xi ≥ 0. By Lemma 2.3 and our assumption on α, the sum of a uniform element of

(q−1R∨)/R∨ and noise chosen from Dr is within statistical distance ε/2 of the uniform distribution on T,

and clearly this remains the case after adding the independent noise Dr′ .

Lemma 5.14 (Hybrid). Let Υ be a distribution over noise distributions satisfying that for any ψ in the

support of Υ and any s ∈ R∨
q , the distribution Am−1

s,ψ is within negligible statistical distance from uniform.

Then for any oracle solving the DLWEq,Υ problem, there exists an i ∈ Z∗
m and an efficient algorithm that

solves DLWE
i
q,Υ using the oracle.

Proof. We use a simple hybrid argument. Let (s, ψ) be any pair for which the oracle distinguishes between

As,ψ and uniform inputs with a non-negligible advantage. By Markov’s inequality, the probability measure

of such pairs is non-negligible. Since A0
s,ψ = As,ψ, and Am−1

s,ψ is negligibly far from the uniform distribution,

we see that for each such (s, ψ) there must exist an i ∈ Z∗
m for which the oracle distinguishes between Ais,ψ

and Ai−s,ψ with non-negligible advantage. The lemma follows by taking the i that is associated to the set of

pairs (s, ψ) of highest probability.

This completes the proof of Theorem 5.1. To prove Theorem 5.2, we start with a technical claim and

proceed with an alternative noise reduction.

Claim 5.15. Let r1, . . . , rn ∈ R+ and s1, . . . , sn ∈ R+ be such that for all i, |si/ri−1| <
√

log n/n. Then

any set A ⊆ Rn whose measure under the Gaussian distribution Dr1 × · · · ×Drn is non-negligible, also has

non-negligible measure under Ds1 × · · · ×Dsn .

Proof. We use the same notation and technique as in Claim 5.11. An easy calculation shows that for all

r > 0 and α > 1/
√
2,

R(Dr ||Dαr) =
α2

√
2α2 − 1

,

which is smaller than, say, 1 + 3(α− 1)2 for α sufficiently close to 1. Hence,

R(Dr1 × · · · ×Drn ||Ds1 × · · · ×Dsn) = R(Dr1 ||Ds1) · · ·R(Drn ||Dsn)

≤ (1 + 3 log n/n)n = poly(n).

Lemma 5.16 (Worst-case to average-case with spherical noise). For any α > 0, ℓ ≥ 1, and every i ∈ Z∗
m,

there is a randomized polynomial-time reduction from solving WDLWE
i
q,Ψ≤α

to solving DLWE
i
q,Dξ

given

only ℓ samples, where ξ = α(nℓ/ log(nℓ))1/4.

Proof. For some s′ ∈ R∨
q , k ∈ Z∗

m, and e1, . . . , eℓ ∈ T, consider the transformation mapping ℓ samples

(ai, bi)
ℓ
i=1 to (ai, bi+(ai ·s′+hi)/q+ei)ℓi=1 where h1, . . . , hℓ ∈ R∨

q are chosen independently to be uniform

mod qjR
∨ for all j ≤ k, and 0 mod all the remaining qjR

∨. Then it is easy to see that for all s ∈ R∨
q , ψ, r′,

and i ∈ Z∗
m, if we sample from (Ais,ψ)

ℓ (i.e., ℓ independent samples from Ais,ψ) and apply this transformation

with e1, . . . , eℓ chosen independently from Dr′ , then the output distribution (averaged over the choice of

e1, . . . , eℓ) is (A
max{k,i}
s+s′,ψ+D

r
′
)ℓ.
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The reduction repeats the following a polynomial number of times. Choose a uniform s′ ∈ R∨
q as well

as e1, . . . , eℓ chosen independently from Dξ. Then estimate the acceptance probability of the oracle on the

following two input distributions: the first is obtained from our input by applying the above transformation

with parameters s′, e1, . . . , eℓ, and i−; the second is obtained similarly using parameters s′, e1, . . . , eℓ, and i.
If in any of these polynomial number of attempts a non-negligible difference is observed between the two

acceptance probabilities, output “i−”; otherwise output “i”.

Notice that if our input distribution is Ais,ψ, then in each of the attempts, the two distributions on which

we estimate the oracle’s acceptance probability are exactly the same, hence we output “i” with overwhelming

probability. So assume that our input distribution is Ai−s,Dr

for some r satisfying that all ri are in [0, α].

Let Bi−(s′, e1, . . . , eℓ) and Bi(s′, e1, . . . , eℓ) be the two distributions on ℓ pairs which our reduction uses

as input to the oracle. Define the vector r′ with coordinates r′2j = ξ2 − r2j so that Dr + Dr′ = Dξ. By

our observation above, the average of Bi−(s′, e1, . . . , eℓ) over e1, . . . , eℓ chosen independently from Dr′ is

(Ai−s+s′,Dξ
)ℓ and similarly with Bi and Ai. Let S be the set of all tuples (s, e1, . . . , eℓ) for which the oracle

has a non-negligible difference in acceptance probability on Bi−(s′, e1, . . . , eℓ) and Bi(s′, e1, . . . , eℓ). By

assumption and a Markov argument, the measure of S under U(R∨
q )× (Dr′)

ℓ is non-negligible. Since

1 ≤ ξ
√

ξ2 − r2i
≤ ξ

√

ξ2 − α2
≤ 1 +

√

log(nℓ)

nℓ
,

it follows from Claim 5.15 that the measure of S under U(R∨
q )× (Dξ)

ℓ is also non-negligible, and we are

done.
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