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Abstract. We introduce a new concept of ideals in BCC-algebras and describe connections
between such ideals and congruences.
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1. Introduction

By an algebra G = (G, ·, 0) we mean a non-empty set G together with a binary

multiplication and a distinguished element 0. In the sequel a multiplication will be
denoted by juxtaposition. Dots we use only to avoid repetitions of brackets. For

example, the formula ((xy)(zy))(xz) = 0 will be written as (xy · zy) · xz = 0.

Definition. An algebra (G, ·, 0) is called a BCC-algebra if it satisfies the follow-
ing axioms:

(xy · zy) · xz = 0,(1)

xx = 0,(2)

0x = 0,(3)

x0 = x,(4)

xy = yx = 0 implies x = y.(5)

The above definition is a dual form of the ordinary definition (cf. [1], [6], [7]).
In our convention any BCK-algebra is a BCC-algebra, but there are BCC-algebras

which are not BCK-algebras (cf. [2]). Such BCC-algebras are called proper. Some
methods of construction of BCC-algebras from BCK-algebras are given in [3]. Note
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that (cf. [2]) a BCC-algebra is a BCK-algebra iff it satisfies

(6) xy · z = xz · y.

2. Ideals

As is well-known (cf. for example [4], [5]) a non-empty subset A of a BCK-algebra

(G, ·, 0) is called an ideal if

0 ∈ A,(i)

xy ∈ A and y ∈ A imply x ∈ A.(ii)

In the sequel this ideal will be called a BCK-ideal and will be considered also in

BCC-algebras.
If A is a BCK-ideal of a BCK-algebra G then the relation ∼ defined on G by

(7) x ∼ y iff xy, yx ∈ A

is a congruence (cf. [4]). We say that this relation is defined by the ideal A.

This result is not true for BCC-algebras.

Example 2.1. Let G = {0, 1, 2, 3, 4} and let the multiplication be defined by the
table

· 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 1 0 0
4 4 3 4 3 0

First we prove that this algebra is a BCC-algebra. It is clear that such algebra
satisfies (2), (3), (4) and (5). We prove (1). If x, y, z are not different, then obviously

(1) holds. For different x, y, z we verify only the case when one of elements x, y, z

is equal to 4, because S = {0, 1, 2, 3} is a BCC-algebra (cf. Table 14 in [2]). Since
xy ∈ S, 4y ∈ {3, 4} and u3 = u4 = 0 for all x, y, u ∈ S, then (1) holds for z = 4. For
y = 4 it holds, too. For x = 4 the left hand side of (1) has the form (4y · zy) · 4z,
which for y = 1 and y = 3 is equal to 0 since 4y · zy = 3 · zy ∈ S and u3 = u4 = 0
for u ∈ S. The case y = 0 is obvious. If y = 2 then (42 · z2) · 4z = (4 · z2) · 4z, which
for z = 0 trivially gives 0. For z ∈ {1, 3} we obtain (4 · z2) · 4z = 41 · 3 = 0. This
completes the proof that G is a BCC-algebra.
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It is not difficult to verify that A = {0, 1} is a BCK-ideal of this BCC-algebra, but
the relation ∼ defined by this ideal is not a congruence. Indeed, 4 ∼ 4, 2 ∼ 3 but
not (42 ∼ 43) since 42 · 43 = 3 /∈ A.
In connection with this fact we introduce a new concept of ideals.

Definition. A non-empty subset A of a BCC-algebra G is called a BCC-ideal,
if

0 ∈ A,(8)

xy · z ∈ A and y ∈ A imply xz ∈ A.(9)

Lemma 2.2. In a BCC-algebra any BCC-ideal is a BCK-ideal.

Indeed, putting z = 0 in (9) we obtain (ii).

On the other hand, using (6) we have

Lemma 2.3. In a BCK-algebra any BCK-ideal is a BCC-ideal.

Lemma 2.4. In a BCC-algebra any BCK-ideal is a BCC-subalgebra.

�����. Let A be a BCK-ideal. Then 0 ∈ A and xy · x = 0 for all x, y ∈ G

(cf. [2]). Thus for x, y ∈ A we have xy · x ∈ A, which implies xy ∈ A. �

Corollary 2.5. Any BCC-ideal of a BCC-algebra is a BCC-subalgebra.

The following example shows that a BCC-ideal is not a BCK-subalgebra, in gen-

eral.

Example 2.6. Let G = {0, 1, 2, 3, 4, 5} and let the multiplication be defined by
the table

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 0 0 0 0 1
2 2 2 0 0 1 1
3 3 2 1 0 1 1
4 4 4 4 4 0 1
5 5 5 5 5 5 0

Since S = {0, 1, 2, 3, 4} is a BCC-algebra (cf. Table 2 in [1]), then G is a BCC-
algebra by Proposition 4 in [2] (cf. also Construction 3 in [3]). It is easy to see that
S is a BCC-ideal of G. It is not a BCK-algebra since 21 · 4 �= 24 · 1.
On the other hand, in Example 2.1 S = {0, 1, 2, 3} is a BCC-subalgebra which is

not a BCK-ideal, because 43 = 3 ∈ S but 4 /∈ S. Similarly, A = {0, 1, 2} is a BCK-
subalgebra which is not a BCK-ideal since 32 ∈ A but 3 /∈ A. Thus in BCC-algebras
BCC-ideals, BCK-ideals and BCK-subalgebras are independent concepts.
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Proposition 2.7. Let G be a BCC-algebra. Then a BCC-subalgebra A of G is
a BCC-ideal iff x ∈ A, yz /∈ A imply yx · z /∈ A.

�����. If a BCC-subalgebra A is a BCC-ideal, then x ∈ A, yz /∈ A imply
yx · z /∈ A. If not, then yx · z ∈ A, x ∈ A imply yz ∈ A, which is a contradiction.

Conversely, let A be a BCC-subalgebra in which x ∈ A, yz /∈ A imply yx · z /∈ A.

Then obviously 0 ∈ A. Moreover, x ∈ A, yx · z ∈ A gives yz ∈ A, because for yz /∈ A

we have (by assumption) yx · z /∈ A. Hence A is a BCC-ideal. �

Putting z = 0 in the above Proposition we obtain

Proposition 2.8. Let G be a BCC-algebra. Then a BCC-subalgebra A of G is
a BCK-ideal iff x ∈ A, y /∈ A imply yx /∈ A.

Proposition 2.9. Let A be a BCK-ideal of a BCC-algebra G. If B is a BCK-ideal
of A, then it is a BCK-ideal of G.

�����. Since B is a BCK-ideal of A, then 0 ∈ B. Let y, xy ∈ B for some x ∈ G.
Then y, xy ∈ A and x ∈ A because B ⊂ A and A is a BCK-ideal of G. Thus x ∈ A

and xy, y ∈ B imply x ∈ B. This completes the proof. �

Corollary 2.10. Let A be a BCC-ideal of a BCC-algebra G. If B is a BCK-ideal
of A, then B is a BCK-ideal of G.

Remark 2.11. If a BCC-ideal A is a BCK-subalgebra of G, then any of its
sub-BCK-ideals is a BCC-ideal, but in general it is not a BCC-ideal of G.

Remark 2.12. On any BCC-algebra (G, ·, 0) one can define (cf. [2]) the so-called
natural order by putting

x � y iff xy = 0.

As in the case of BCK-algebras, this order is partial and 0 is its smallest element.

Thus any BCC-algebra may be viewed as a groupoid (G, ·, 0) with the natural order
satisfying conditions xy · zy � xz, 0 � x, x0 = x, x � y � x imply x = y (cf. Theo-

rem 2 from [2]). But, in general, BCC-algebras with the same partial order are not
isomorphic as groupoids (cf. [2]).

Remark 2.13. The above ideals are ideals in the sense of ordered structures.
Indeed, if A is a BCC-ideal (or a BCK-ideal), then y ∈ A and x � y imply x ∈ A.
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3. Congruences

In this section we describe congruences on BCC-algebras. We start with the

following

Theorem 3.1. If A is a BCC-ideal of a BCC-algebra G, then the relation ∼
defined by (7) is a congruence on G.

�����. It is clear that this relation is reflexive and symmetric. It is also

transitive, because x ∼ y and y ∼ z imply xy, yx, yz, zy ∈ A and (xz ·yz)·xy = 0 ∈ A,
which by Lemma 2.2 gives xz ∈ A. Similarly (zx · yx) · zy = 0 ∈ A gives zx ∈ A.

Thus x ∼ z and ∼ is an equivalence relation.
If x ∼ u and y ∼ v, then (xy · uy) · xu = 0 ∈ A and xu ∈ A, which by Lemma 2.2

gives xy · uy ∈ A. Similarly uy · xy ∈ A. Hence xy ∼ uy. On the other hand
(uy · vy) · uv = 0 ∈ A and vy ∈ A imply uy · uv ∈ A. In the same manner from

(uv · yv) · uy = 0 ∈ A and yv ∈ A we obtain uv · uy ∈ A. Thus uy ∼ uv. Since ∼ is
transitive, then xy ∼ uv, which proves that ∼ is a congruence. �

Lemma 3.2. If ∼ is a congruence on a BCC-algebra G, then

C0 = {x ∈ G : x ∼ 0}

is a BCC-ideal.

�����. Obviously 0 ∈ C0 = {x ∈ G : x ∼ 0}. If xy · z, y ∈ C0, then xy · z ∼ 0
and y ∼ 0. But x ∼ x and z ∼ z imply xy · z ∼ x0 · z = xz. Thus xz ∼ 0, which
completes the proof. �

Since C0 = A for any congruence defined by (7), then as a consequence of the

above results we obtain

Corollary 3.3. Any BCC-ideal is determined by some congruence.

Corollary 3.4. The lattice of all congruences of a BCC-algebra is complete. The
least congruence is defined by the BCC-ideal {0}, the greatest by A = G.

Let ∼ be a congruence relation on G and let Cx = {y ∈ G : y ∼ x}. Then the
family {Cx : x ∈ G} gives a partition of G which is denoted by G/∼ . For x, y ∈ G

we define Cx ∗ Cy = Cxy. Since ∼ has the substitution property, the operation ∗
is well-defined. As is easily seen, (G/∼ , ∗, C0) satisfies all axioms of a BCC-algebra
except (5). This axiom is not satisfied also in the case of BCK-algebras (cf. [5] and
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[8]). If (5) holds for all classes Cx ∈ G/∼ , i.e. if (G/∼ , ∗, C0) is a BCC-algebra, then
the congruence ∼ is called regular.
For a congruence defined by (7) we put G/∼ = G/A and C0 = A.

Theorem 3.5. A congruence is regular iff it is defined by some BCC-ideal.

�����. Let �A be a congruence defined by a BCC-ideal A. Then A0 = A and
Ax ∗ Ay = A0 = Ay ∗ Ax imply xy, yx ∈ A, which shows that x ∼ y and Ax = Ay.

Hence a congruence defined by a BCC-ideal is regular.

Now let � be an arbitrary regular congruence. If x�y, then xy�0 and yx�0 since � is

reflexive and has the substitution property. Therefore Cxy = C0 = Cyx, xy, yx ∈ C0
and A = C0 is a BCC-ideal (by Lemma 3.2). Hence � � �A.

Conversely, if x�Ay, then xy, yx ∈ A = C0 and Cx ∗ Cy = C0 = Cy ∗ Cx, which

implies Cx = Cy because �A is regular. Thus x�y and �A � �. Hence � = �A. The
proof is complete. �

Corollary 3.6. All congruences of a finite BCC-algebra are regular.

If G/A is a BCC-algebra, then the canonical mapping f : G �→ G/A defined
by f(x) = Ax is an epimorphism. Since the kernel kerf = f−1(0) of any BCC-
homomorphism is a BCC-ideal, then in the same manner as in [5] we can prove the

following results:

Theorem 3.7. If f is an epimorphism from a BCC-algebra G onto a BCC-algebra
H, then the quotient BCC-algebra G/ker(f ) is isomorphic to H.

Theorem 3.8. Let X, Y, Z be BCC-algebras, let h : X �→ Y be an epimorphism,
and let g : X �→ Z be a homomorphism. If ker(h) ⊂ ker(g), then there exists a
unique homomorphism f : X �→ Z such that f ◦ h = g.

Corollary 3.9. Let � be a regular congruence on a BCC-algebra X defined by a
BCC-ideal A, and let h be a canonical mapping from X onto Y = X/A. If A0 ⊂
ker(g), then there exists a unique homomorphism f : X �→ Z such that f ◦ h = g.

Corollary 3.10. Let h be a homomorphism from a BCC-algebra G onto a BCC-
algebra H. Then the inverse image of a BCC-ideal, a BCC-subalgebra and a BCK-
subalgebra of H is a BCC-ideal, a BCC-subalgebra and a BCK-subalgebra of G,
respectively.

The theory of universal algebras yields immediately
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Theorem 3.11. The composition � ◦ σ of two congruences on a BCC-algebra G
is a congruence on G iff these congruences commute, i.e. iff � ◦ σ = σ ◦ �.

Corollary 3.12. Let A and B be BCC-ideals. If congruences �A and �B com-

mute, then ⋃

a∈A

Ba =
⋃

b∈B

Ab

is a BCC-ideal.

�����. Let �A ◦ �B = �. Then by Lemma 3.2

⋃

a∈A

Ba = {x ∈ B : x�Ba for some a ∈ A}

= {x ∈ G : x�Ba and a�A0} = {x ∈ G : x�0} = C0

is a BCC-ideal. Since �A ◦ �B = �B ◦ �A then

⋃

a∈A

Ba =
⋃

b∈B

Ab.

�

4. Maximal ideals

A proper ideal is called maximal iff it is not properly contained in any proper

ideal of the same type. A BCC-algebra without proper BCC-ideals (BCK-ideals)
is called BCC-simple (BCK-simple). Obviously any BCK-simple BCC-algebra is

BCC-simple. The converse is not true. A BCC-algebraG given in our Example 2.1
is BCC-simple, but it is not BCK-simple because it has two maximal BCK-ideals

A = {0, 1} and B = {0, 2}.
A BCC-simple BCC-algebra has only two regular congruences.

Theorem 4.1. Let A be a proper BCC-ideal of a BCC-algebra G. Then A is a

maximal BCC-ideal of G iff G/A is a BCC-simple BCC-algebra.

�����. Let G/A be a BCC-simple BCC-algebra. If A is not a maximal BCC-
ideal, then there exists a proper BCC-ideal B such that A ⊂ B ⊂ G. Obviously B/A

is properly contained in G/A and has at least two elements, because x ∈ Ax ⊂ B/A

for all x ∈ B − A. Obviously A = A0 ∈ B/A. Moreover, if Ay ∈ B/A and
Axy·z = (Ax ∗ Ay) ∗ Az ∈ B/A, then y, xy · z ∈ B, which implies xz ∈ B. Therefore
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Ax ∗ Az ∈ B/A. Thus B/A is a proper BCC-ideal of G/A, i.e. G/A is not simple.
This contradiction proves that A is a maximal BCC-ideal.
Conversely, if A is a maximal BCC-ideal of G and G/A is not BCC-simple, then

there exists a proper BCC-ideal D of G/A. Then ϕ−1(D), where ϕ(x) = Ax is the

canonical homomorphism from G onto G/A, is a proper BCC-ideal of G. Moreover
A = A0 ⊂ ϕ−1(D) and A �= ϕ−1(D), which contradicts our hypothesis. Hence G/A
is simple. The proof is complete. �

Theorem 4.2. Any BCC-algebra may be viewed as a maximal BCC-ideal of some
BCC-algebra.

�����. Corollary 3 in [2] (cf. also Construction 5 in [3]) implies that if S is a
(proper) BCC-algebra and e /∈ S, then G = S ∪ {e} with the multiplication defined
by

x ∗ y =





xy for x, y ∈ S,

0 for y = e,

e for x = e, y �= e

is a (proper) BCC-algebra and e is the greatest element of G. It is not difficult to
verify that S is a maximal BCC-ideal of G. �

Corollary 4.3. If a BCC-algebra G has an element e such that xy = e iff x = e,

y �= e, then G− {e} is the maximal BCC-ideal of G.

�����. Assume xy · z �= e for some y �= e. Then xz �= e. If not, then xz = e,
by the assumption, implies x = e, z �= e. Hence xy · z = ey · z = ez = e, which is

impossible. �

Corollary 4.4. If a BCC-algebra G has an element e such that G \ {e} is a
BCC-ideal (BCK-ideal), then ey = e for all y �= e and e is the maximal element

of G.
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versity of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroc�law Poland, e-mail:
dudek@im.pwr.wroc.pl; �������� �����, Department of Mathematics, Hanzhong
Teachers College, Hanzhong, Shaanxi Province, Peoples Republic of China.

29


