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Abstract

This paper considers identification problems based on DNA marker

data. The topics we discuss are general, but we will exemplify them in

a simple context. There is DNA available from two persons. There is

uncertainty about the relationship between the two individuals and a

number of hypotheses describing the possible relationship is available.

The task is to determine the most likely pedigree. This problem is

fairly standard. However, there are some problems that cannot be

solved using DNA from independently segregating loci. For example,
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the likelihoods for (i) grandparent-grandchild, (ii) uncle-niece and (iii)

half-sibs coincide for such DNA data and so these relations cannot

be distinguished on the basis of markers normally used for forensic

identification problems: the likelihood ratio comparing any pair of

hypotheses will be unity.

Sometimes, but not in the examples we consider, other sources

of DNA like mtDNA or sex chromosomes can help to distinguish be-

tween such equally likely possibilities. Prior information can likewise

be of use. For instance, age information can exclude alternative (i)

above and also indicate that alternative (iii) is apriori more likely than

alternative (ii).

More generally, the above problems can be solved using linked

autosomal markers. To study the problem in detail and understand

how linkage works in this regard, we derive an explicit formula for a

pair of linked markers. The formula extends to independent pairs of

linked markers. While this approach adds to the understanding of the

problem, more markers are required to obtain satisfactory results and

then the Lander-Green algorithm is needed. Simulation experiments

are presented based on a range of scenarios and we conclude that

useful results can be obtained using available freeware (MERLIN and

R).

The main message of this paper is that linked autosomal markers

deserve greater attention in forensic genetics and that the required

laboratory and statistical analyses can be performed based on existing

technology and freeware.

Keywords: Identification; likelihoods; linked autosomal markers
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1 Introduction

This paper deals with relationship estimation based on DNA-data.

There is an extensive literature on this general problem for unlinked

markers and a recent review is provided in [1]. There are some dis-

tinguishing features of the problems we address and the solutions we

propose. First, we restrict attention to pairwise problems assuming

that DNA is available from two persons and the task is to determine

the relationship between these individuals. This is a problem of great

practical importance arising in various contexts. For example, con-

sider the situation where a disaster has wiped out a large part of an

individual’s family. A body is found, and DNA data is available from

the two individuals. The problem is to estimate the relationship be-

tween the deceased and the survivor. There is no theoretical problem

in the extension from pairwise to joint relationship. Second, the possi-

ble relationships are listed and the objective is to determine the most

likely. The problem is much harder if the alternatives are unspecified.

Thirdly, and this is an important distinction between this and pre-

vious work, we consider problems that cannot be solved using DNA

from any number of independently segregating loci. For example, the

likelihoods for (i) grandparent-grandchild, (ii) uncle-niece and (iii)

half-sibs coincide for such DNA data and so these relations cannot be

distinguished on the basis of markers normally used for forensic iden-

tification problems. Thompson [2] provides an early discussion of this

problem and Thompson and colleagues have revisited and extended

the discussion in subsequent writings including [3] and [4]. In the latter

paper the relevance of linked markers is summarised as follows “...the
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three relationships have distinct consequences for data at linked loci,

since each provides a different probability that the two relatives share

one gene identical by descent at both of two loci”. A large number

of markers might be required to distinguish between alternatives that

have equal likelihoods for independently segregating loci. In [5] as

many as 399 markers are used. The number of markers is determined

by the chosen distance between markers explaining the odd figure 399.

The calculations of the latter paper are only approximate for avuncu-

lar relations like alternative (ii) above. Our calculations will be exact,

based on an explicit formula in a simple case and on the freeware

MERLIN [6] in the more general case. The number of markers used

in [5] may be too small for some purposes and we provide examples

with 3820 markers.

The next section presents the basic methods. Linked autosomal

markers will be the main focus, but some alternative or supplementary

approaches based on mtDNA, sex chromosomes and prior information

will be mentioned. In the results section identification problems are

solved that are unsolvable based on standard forensic markers. Our

main message is that linked autosomal markers deserve greater atten-

tion in forensic applications.

2 Methods

We formulate the problem in a Bayesian context. This is done since

this approach handles cases with more than two alternatives conve-

niently. Furthermore, if there is prior, non-DNA, information that the

user would like to include, this can be easily accommodated. How-
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ever, our approach by no means implies that a Bayesian analysis is

required.

There are competing hypotheses H1, ...,Hn having prior probabil-

ities π1, ..., πn, respectively. One hypothesis corresponds to a specific

pedigree. The values πi = 1/n reflect a flat prior whereby all hypothe-

ses are assumed to be equally likely in the absence of data and will

be used for our examples. More general priors are discussed in [7]

and further exemplified in [8]. Let Li ≡ L(data|Hi) be the likelihood

of the data calculated assuming hypothesis Hi to be true. By Bayes’

Theorem, the posterior probability of Hi is

P (Hi|data) =
Liπi

∑n
i=1

Liπi

=
Li

∑n
i=1

Li

, (1)

where the last equality applies for a flat prior. This last equality

leads to a meaningful frequentist version: the likelihood of one hy-

pothesis is compared to the sum of the others. However, this is not

the traditional forensic approach and in particular it does not yield

the classical paternity index for the case of two alternatives. Rather,

classical pairwise comparisons are made:

P (Hi|data)

P (Hj |data)
=

Li

Lj

πi

πj

=
Li

Lj

for any i 6= j (2)

expressing the posterior probability ratio on the left hand side as the

product of the likelihood ratio, Li/Lj , and the prior ratio, πi/πj .

Again, the right hand side of the equation assumes a flat prior and

coincides with the conventional LR (likelihood ratio). There is also

a simple relation to Essen-Möller’s W [9] since W = P (Hi|data) =

LR/(1+LR) is the posterior probability corresponding to two equally

likely prior alternatives.
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The pedigrees of Figure 1, corresponding to the following hypothe-

ses

H1 : A is the grandparent of B,

H2 : A is the niece of B, (3)

H3 : A is the half-sib of B.

will be used to exemplify the methods throughout as they all have

equal likelihood for unlinked markers . However, we emphasize that

the approach applies generally and is not restricted to this example.

Sometimes, but not in the examples we consider, other sources of

DNA like mtDNA [10], X-chromosomes [11, 5] or Y-chromosomes [12]

can be helpful. Prior information can likewise be of use. For instance,

age information can exclude hypothesis H1 above by assigning π1 = 0

in (1). Prior information can also indicate that H3 is apriori more

likely than alternative H2. In this paper, we will not assume that

such prior information is available.

The remaining part of this section discusses the calculation of the

likelihoods required for Equation (2). We will present likelihood cal-

culations for each of the following cases:

1. one marker,

2. two linked markers,

3. independent pairs of linked markers,

4. general case.
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2.1 One marker

The likelihoods can be calculated analytically for the pedigrees corre-

sponding to Figure 1 in several ways. In our context the IBD concept

will prove convenient to show that the likelihoods Li corresponding

to the hypotheses Hi, i = 1, 2, 3, coincide. Alleles that have de-

scended from a single ancestral allele are said to be identical by de-

scent, IBD. The likelihood for a pair of individuals for one marker

depends on the pedigree describing their relationship only through

the IBD-probabilities. For pedigrees 1, 2 and 3 of Figure 1, individ-

uals A and B share no, one or two alleles with probabilities 0.5, 0.5

and 0 respectively. Since these probabilities are identical, so are the

likelihoods. This is noted in [2] along with a more detailed account of

IBD probabilities and reference to earlier work. The likelihoods can

also be calculated explicitly. Note that for i = 1, 2, 3

L(data|Hi) = L(data|I = 0)P (I = 0) + L(data|I = 1)P (I = 1)

+ L(data|I = 2)P (I = 2)

where I is the number of IBD alleles. For the pedigrees of Figure 1,

L(data|Hi) = L(data|I = 0)0.5 + L(data|I = 1)0.5.

The right hand side of the above equation can be evaluated for spe-

cific marker data using Table 1, based on [2]. For instance, if both

individuals are homozygous a,a and the allele frequency is pa then

L(data|Hi) = p4

a0.5 + p3

a0.5.

The above equation as well as remaining likelihood calculations of this

paper assumes Hardy-Weinberg equilibrium.
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2.2 Two linked markers

The distinguishing feature of this paper compared to forensic science

texts like [13] and [14] is the need to consider linked autosomal mark-

ers. At least two linked markers are required to distinguish the pedi-

grees of Figure 1. The required number of markers depends on how

informative they are and we elaborate on this in the discussion sec-

tion. Some concepts from linkage analysis are needed to explain the

methods. There are several classical introductions to linkage analysis

like [15] and there are also more recent reviews [16]. We will briefly

review the required background when the need arises.

Consider two markers on the same chromosome string. The dis-

tance between the markers can be measured by r, the recombination

probability. Generally 0 ≤ r ≤ 0.5 where r = 0.5 corresponds to the

markers being unlinked. For r < 0.5 the markers are linked. Let

ki
11

(r) denote the probability that two individuals whose relation is

described by pedigree i have one allele IBD at two markers separated

by a distance of r. For the pedigrees of Figure 1

ki
11(r) =



























(1 − r)/2 i = 1,

R/2 i = 2,

(2(1 − r)R + r)/4 i = 3.

(4)

where R = r2 + (1 − r)2. These functions are plotted in Figure 2.

A derivation of the above equation based on [3] is provided in the

appendix. Equation 4 is also reproduced in slightly different form as

Table 1 of [4]. The function values coincide for r = 0.0 correspond-

ing to complete linkage, i.e., there is effectively only one marker and

r = 0.5 when there is no linkage and the loci are segregating indepen-
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dently. If the distance between markers can be chosen, it would be

wise based on power considerations to select a value of r maximizing

the difference between the k-functions. For instance, r = 0.25 max-

imises the difference k1
11

(r) − k2
11

(r) and so this choice is optimal if

the purpose is to distinguish between pedigrees 1 and 2 of Figure 1.

Other comparisons lead to other optimal choices for r. In the absence

of exact information, r = 0.25 is a good choice. The curves corre-

sponding to i = 2 and 3 are the closest and we can anticipate that the

corresponding pedigrees will be the hardest to distinguish.

The likelihoods for two linked markers corresponding to the pedi-

grees of Figure 1 depend on the pedigree only through the IBD prob-

abilities given in Equation (4). An explicit formula for this likeli-

hood, L(data|ped. i) is derived in the appendix and appears as Equa-

tion (10).

2.3 Independent pairs of linked markers

While one pair of markers may be relevant for the understanding of

the problem, more markers are of course required to obtain useful

results. The first obvious extension is to consider independent pairs

of linked markers. Let j denote one such pair on chromosome j and

assume that one pair of markers is available on each autosome. Then

L(data|ped. i) =

22
∏

j=1

L(dataj |ped. i) (5)

It may be possible to extend the number of markers if independent

pairs of markers can be obtained on the same chromosome. Recall,
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however, that the markers in the pair should be separated by some

distance to be of use.

2.4 General case

The approaches described so far only use a small fraction of the mark-

ers available. It is obviously of interest to use a much larger number

of markers. Likelihoods must then be calculated numerically and the

Lander-Green algorithm [17] is the basic engine in modern comput-

ing packages. This algorithm is based on a hidden Markov model for

the unobserved IBD status along the chromosome. There are several

freeware implementations and we will be using the program MERLIN

[6]. For large complex pedigrees simulation based methods may be

required and MCMC has been implemented in the freeware programs

SIMWALK2 [18] and Morgan [19].

3 Results

This section consists of two examples. The first illustrates the analyt-

ical approach based on Equation (5) and illustrates how the recombi-

nation fraction or distance between markers influences the result. The

second example uses a much larger number of markers and numerical

results are obtained using MERLIN. The data for Examples 1 and 2

are simulated in MERLIN for individuals A and B of Figure 1 using

Haldane’s map function. For Example 1, 400 simulations were per-

formed whereas Example 2 is more computer intensive and the number

of simulations was reduced to 100. The results reported in Tables 2

and 3 below and Figures 3 and 4 are based on these simulations. Mark-
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ers are assumed to be in linkage equilibrium and there are four alleles

with equal allele frequencies. There is a number of parameter settings

that can be varied. This has not been given priority in the coming

examples; we have chosen to emphasise more fundamental issues in

the examples rather than provide detailed sensitivity analyses. Some

of these assumptions are discussed further in Section 4.

3.1 Example 1

For this first example we consider the case motivating this paper, i.e.,

the hypotheses formulated in Equation (3). In the appendix, ana-

lytical results are worked out for one pair of linked markers and the

influence of parameters on the resulting likelihoods is discussed. One

pair of markers is obviously of little practical use and the immediate

extension is to consider pairs of independent markers and the likeli-

hood given in (5). We simulated data for 22 pairs of markers using

MERLIN. The calculations are implemented in R; numerical results

have been confirmed for selected cases using MERLIN. The distance

between the markers in a pair was varied from 0 to 0.5 with steps

of 0.05. Figure 3 shows the posterior probabilities when data were

simulated assuming H1, the grandparent - grandchild alternative, to

be true. The true alternative comes out as the most likely when it

should, but only marginally so. Figure 4 displays the same infor-

mation as Figure 3 but the LR-s are presented rather than posterior

probabilities. The relation between LR-s and posterior probabilities is

given in Equation (2). LR-s require a reference pedigree or hypothesis

and the uncle-niece alternative has been chosen in Figure 4. From
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Figure 3 and 4 we note that alternatives 2 and 3 are the closest alter-

natives and the hardest to distinguish. This confirms the observations

based on the k− functions of Equation (4) and Figure 1.

3.2 Example 2

This example expands on the previous by considering a much larger

number of markers. An extra alternative, H4, corresponding to A and

B being sibs, is also added to allow for extra comparisons.

The resulting posterior probabilities or equivalently scaled likelil-

ihoods, are given in Table 2 based on Equation 1. The first column

of the table gives information on the markers used. For instance ’20

chr; 3820 markers’ indicates that 3820 markers evenly spread on 20

chromosomes have been used. The distance between the markers is

1cM, corresponding roughly to r = 0.01. The second column shows

the ’True R’, i.e., the relationship from which data has been simulated.

For the alternative ’20 unlinked markers’, the posteriors for the first

three relationships are the same as explained earlier. For instance,

when data is simulated from the grandparent-grandchild alternative,

this posterior probability is 0.302 while the corresponding figure for

the sibs alternative is 0.093. Observe that readers preferring likelihood

ratios can obtain these easily: For the above example the likelihood

ratio is obtained as 0.302/0.093=3.2 for a flat prior. As more and more

linked markers are introduced results improve and for the largest data

set the posterior for the grandparent-grandchild relationship is 0.976.

Observe that there is a considerable improvement moving from 400

markers (inter marker distance 10cM), corresponding to the amount
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of data used in [5] to 3820 markers. From Table 2 it again appears to

be hardest to distinguish between ’half-sibs’ and ’uncle-nephew’ and

the posterior probability for the true relationship exceeds 0.5 only

when the greatest amount of data is used. This is consistent with the

previous example.

Table 3 is based on the same simulated data, but now classification

rates comparable to those in [5] are presented, i.e., the fraction of times

the indicated relationship has the largest likelihood (or equivalently

largest posterior probability when flat priors are used). For instance,

simulating from the grandparent-grandchild relation with 3820 mark-

ers, the true relationship comes out with the largest likelihood for 395

of the 400 simulations, corresponding to 98.8%.

4 Discussion

The approach using independent pairs of linked markers does not lead

to acceptable discrimination between the alternatives. However, for

a sufficient number of linked markers, acceptable results are obtained

using available freeware for calculations. The main message of this

paper is that linked autosomal markers deserve greater attention in

forensic genetics.

Consideration of linked autosomal markers comes with a cost. For

a fixed number of markers and a specific pedigree, there is more in-

formation in unlinked markers as pointed out in [4]. Furthermore,

some additional parameters need to be specified for linked markers.

In particular, the genetic map describing the location of markers must

be specified. The relation beetween distance measured in cM (centi-
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Morgan) and recombination fraction must also be specified. A com-

mon choice is Haldane’s map function [15]. These additional parame-

ters and additional assumptions may complicate matters and accord-

ing to [2] “...the use of linked markers is best avoided when possible”.

For court applications it is a great advantage to use methods generally

agreed on and using linked markers may be lead to debate. However,

there is no alternative for some cases. Moreover, some important cases

do not involve court proceedings and controversy may be less of an

issue.

The assumption of linkage equilibrium [15] is principally a differ-

ent problem that may arise when a large number of markers is used

for calculations of pedigree likelihoods. When markers are close, this

assumption may be violated. It is hard to give definite rules regarding

acceptable distance between markers. Linkage disequilibrium varies

considerably within an individual genome and there is also consid-

erable difference between populations. The only case where linkage

disequilibrium may possibly be a problem for this paper, is when 3820

markers are used. MERLIN produces markers where this assumption

holds by construction. The effects of linkage disequilibrium on linkage

analysis have been considered [20] and there are also options in MER-

LIN designated to handle this problem although these are somewhat

adhoc. Linked markers and linkage disequilibrium has also been dis-

cussed in [21] and [22], the latter with reference to DNA match prob-

abilities for siblings and half-siblings. While the modelling of linkage

disequilibrium is still being debated, the effects of any departures from

linkage equilibrium on the calculations we have presented are undeni-

ably important and should be central to the sensitivity analyses that
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we have deliberately omitted from this particular paper.

We have assumed Hardy-Weinberg equilibrium. This is required

for Table 1. It would be possible to include coancestry [23, 14, 24].

Obviously, the majority of case work can be solved satisfactorily with

independently segregating loci. However, we maintain that there are

important problems that cannot be solved unless linked markers are

used. Furthermore, the information on maps and parameters needed

for the analyses is becoming increasingly reliable and accurate.

We have restricted attention to pairwise estimation problems. If

DNA is available from a person related to both of the individuals, the

problem will typically become much easier and there may no longer

be a need to consider linked markers [25].

Mutations were not considered for our likelihood calculations and

we maintain that it is not probably worthwhile to model mutations

for the applications we have considered. The mutation rates for the

markers used in linkage and association applications are much smaller

than the rates for forensic markers. For the pedigrees we have con-

sidered, mutation will be confounded with errors. The large number

of markers involved necessarily leads to greater problems related to

errors, see [5]. This is a topic that needs further investigation with a

view to forensic applications.

Finally, we emphasise that it is important to be aware of the prob-

lem of pedigrees with identical likelihoods for independent markers.

If, for instance, the result of a case work based on traditional forensic

markers is to conclude that two individuals are half sibs, it is impor-

tant to realise that there is no information in the DNA that allows the

uncle-niece or grandparent-grandchild alternatives to be excluded.
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5 Appendix

We first provide a derivation of Equation (4) based largely on pages

25 and 26 of [3]. The probability of alleles being IBD for a specific

locus is 1/2 for all three relations. For the grandparent - grandchild

alternative, the alleles received by the parent must be passed on to the

child without recombination. This occurs with probability 1 − r and

so k1

11
(r) = (1 − r)/2. Turning to the half-sib alternative, alleles at

the first locus must again be IBD. The second locus is IBD if there is

a recombination in the segregation to both offspring (occurring with

probability r2) or to neither (occurring with probability (1 − r)2).

Consequently, k2
11

(r) = R/2 where R = r2 + (1 − r)2. It remains to

deal with the uncle - niece relationship and some further notation is

useful:

E = ′No recomb. in the maternal chromosome bit received by B′,

Ij = ′The number of IBD alleles for marker j, j = 1, 2′.

Then

k3

11(r) = P (I1 = 1, I2 = 1|E)P (E) + P (I1 = 1, I2 = 1|Ec)P (Ec)

= P (I1 = 1, I2 = 1|E)(1 − r) + P (I1 = 1, I2 = 1|Ec)r (6)

and

P (I1 = 1, I2 = 1|E) = R/2. (7)

The latter equation holds since in this case the markers passed on to A

without recombination from her mother must be IBD to the markers

in the uncle. The probability that one marker is IBD is 1/2 and then

for the other marker to be IBD there must either be none or two
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crossovers. When Ec is true the niece has received one paternal and

one maternal allele. The probability that the uncle received the same

two alleles is 1/4 and so

P (I1 = 1, I2 = 1|Ec) =
1

4
. (8)

Inserting Equations (7) and (8) into (6) produces the required result

and the argument is completed.

We next derive the likelihood for the hypotheses of Equation (3)

for two linked markers. Then

L(data|ped. i) = P (data|ped. i) (9)

= ki
00(r)P (data|I1 = 0, I2 = 0)

+ ki
10(r)P (data|I1 = 1, I2 = 0)

+ ki
01(r)P (data|I1 = 0, I2 = 1)

+ ki
11(r)P (data|I1 = 1, I2 = 1)

where ki
uv(r) = P (I1 = u, I2 = v). The expression for ki

11
(r) is given

in Equation (4). Equation (9) can be simplified for our application

since ki
00

(r) = ki
11

(r) as shown below:

ki
1,1(r) = P (I1 = 1, I2 = 1) = P (I2 = 1|I1 = 1)P (I1 = 1)

= (1 − P (I2 = 0|I1 = 1))P (I1 = 0)

since P (I1 = 0) = P (I1 = 1) for the pedigrees we consider. The

symmetry between markers 1 and 2 implies that

ki
1,1(r) = (1 − P (I1 = 1|I2 = 0)P (I1 = 0)

= P (I1 = 0|I2 = 0)P (I1 = 0) = ki
0,0(r)
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Using the above equation, the symmetry identity ki
01

(r) = ki
10

(r) and

the fact that the k−functions add to unity for fixed r, Equation (9)

simplifies to

L(data|ped. i) = (p00 + p11 − p10 − p01)k
i
1,1(r)+

1

2
(p10 + p01) (10)

where

pi
uv(r) = L(data|I1 = u, I2 = v) (11)

= P (data marker 1|I1 = u)P (data marker 2|I2 = v)

and the right hand side is provided in Table 1.

To illustrate how equation (10) is used, assume individual A is

homozygous (1,1) for both markers while B is also homozygous at

both markers, but for another allele. It is then impossible that A

and B share alleles IBD. Equation (10) simplifies to L(data|ped. i) =

p00k
i
1,1(r) and the LR comparing hypothesis H1 to H2 therefore be-

comes

LR =
p00k

1
1,1(r)

p00k2
1,1(r)

=
1 − r

r2 + (1 − r)2
(12)

where k11(r) is given in (4). Observe that this LR is unity for r = 0 and

r = 0.5 as it should. For other values of r the LR exceeds unity and

a maximum value of 1.21 occurs for r = 0.29 (details omitted). This

indicates a modest contribution for data of this type to distinguish

between the hypotheses.
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Figure 1 Three pedigrees are shown. Data is available from indi-

viduals A and B and the task is to determine the most likely

pedigree.

Figure 2 The probability that two individuals are IBD at each of

two loci is shown for the pedigrees of Figure 1.

Figure 3 Posterior probabilities as functions of the recombination

fraction, r, for the three hypotheses of Equation (3) based on

400 sets of simulated data.

Figure 4 Likelihood ratios as functions of the recombination fraction,

r, for the three hypotheses of Equation (3) based on 400 sets of

simulated data.
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Table 1: Probabilities for ordered autosomal genotyped genotypes, X, as a

function of the number of alleles shared IBD, indicated by I. For instance,

when the individuals are (a, a) and (a, b), it is possible that I = 0 or I = 1

and the probabilities are shown as functions of the allele frequencies.

P (X|I) for

Genotype X I = 0 I = 1 I = 2

(aa, aa) p4

a p3

a p2

a

(aa, ab) 2p3

apb p2

apb 0

(aa, bb) p2

ap
2

b 0 0

(aa, bc) 2p2

apbpc 0 0

(ab, ab) 4p2

ap
2

b papb(pa + pb) 2papb

(ab, ac) 4p2

apbpc papbpc 0

(ab, cd) 4papbpcpd 0 0
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Table 2: Posteriors probabilities are shown. The first column shows the

markers used and the second the relation from which data have simulated.

The grandparent-grandchild relation is abbreviated grandpar. Observe that

it is hard to distinguish between half-sibs and uncle-niece relationships and

that only the case with 3820 markers produces useful results.

Markers True R grandpar half-sibs uncle-niece sibs

20 unlinked markers grandpar 0.302 0.302 0.302 0.093

1 chr; 20 markers grandpar 0.236 0.224 0.122 0.419

5 chr; 100 markers grandpar 0.455 0.288 0.249 0.008

20 chr; 400 markers grandpar 0.692 0.197 0.112 0.000

20 chr; 3820 markers grandpar 0.976 0.023 0.001 0.000

20 unlinked markers half-sibs 0.304 0.304 0.304 0.089

1 chr; 20 markers half-sibs 0.232 0.229 0.127 0.412

5 chr; 100 markers half-sibs 0.287 0.349 0.354 0.009

20 chr; 400 markers half-sibs 0.204 0.406 0.389 0.000

20 chr; 3820 markers half-sibs 0.031 0.646 0.323 0.000

20 unlinked markers uncle-niece 0.296 0.296 0.296 0.112

1 chr; 20 markers uncle-niece 0.234 0.236 0.121 0.408

5 chr; 100 markers uncle-niece 0.245 0.353 0.386 0.016

20 chr; 400 markers uncle-niece 0.120 0.400 0.480 0.000

20 chr; 3820 markers uncle-niece 0.000 0.321 0.678 0.000

20 unlinked markers sibs 0.095 0.095 0.095 0.715

1 chr; 20 markers sibs 0.070 0.066 0.526 0.338

5 chr; 100 markers sibs 0.013 0.015 0.014 0.958

20 chr; 400 markers sibs 0.000 0.000 0.000 1.000

20 chr; 3820 markers sibs 0.000 0.000 0.000 1.000
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Table 3: Classification rates are shown. The first column shows the mark-

ers used and the second the relation from which data have simulated. For

instance for ’20 chr; 3820 markers’, i.e., 3820 markers distributed with

1cM distance on 20 chromosomes, the probability of correctly classifying

a grandparent-grandchild (abbreviated grandpar) relation is 0.988.

Markers True R grandpar half-sibs uncle-niece sibs

20 unlinked markers grandpar 0.895 0.000 0.000 0.105

1 chr; 20 markers grandpar 0.320 0.110 0.093 0.478

5 chr; 100 markers grandpar 0.643 0.198 0.158 0.003

20 chr; 400 markers grandpar 0.838 0.148 0.015 0.000

20 chr; 3820 markers grandpar 0.988 0.013 0.000 0.000

20 unlinked markers half-sibs 0.883 0.000 0.000 0.118

1 chr; 20 markers half-sibs 0.248 0.178 0.113 0.463

5 chr; 100 markers half-sibs 0.315 0.238 0.443 0.005

20 chr; 400 markers half-sibs 0.200 0.408 0.393 0.000

20 chr; 3820 markers hal-sibs 0.013 0.760 0.228 0.000

20 unlinked markers uncle-niece 0.858 0.000 0.000 0.143

1 chr; 20 markers uncle-niece 0.190 0.260 0.095 0.455

5 chr; 100 markers uncle-niece 0.248 0.188 0.555 0.010

20 chr; 400 markers uncle-niece 0.083 0.325 0.593 0.000

20 chr; 3820 markers uncle-niece 0.000 0.248 0.753 0.000

20 unlinked markers sibs 0.133 0.000 0.000 0.868

1 chr; 20 markers sibs 0.048 0.018 0.565 0.370

5 chr; 100 markers sibs 0.008 0.008 0.010 0.975

20 chr; 400 markers sibs 0.000 0.000 0.000 1.000

20 chr; 3820 markers sibs 0.000 0.000 0.000 1.000
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