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Abstract—Network theory has been used for modeling 
biological data as well as social networks, transportation logistics, 
business transcripts, and many other types of data sets. Identifying 
important features/parts of these networks for a multitude of 
applications is becoming increasingly significant as the need for 
big data analysis techniques grows. When analyzing a network of 
protein-protein interactions (PPIs), identifying nodes of 
significant importance can direct the user toward biologically 
relevant network features. In this work, we propose that a node of 
structural importance in a network model can correspond to a 
biologically vital or significant property. This relationship 
between topological and biological importance can be seen 
in/between structurally defined nodes, such as hub nodes and 
driver nodes, within a network and within clusters. This work 
proposes data mining approaches for identification and 
examination of relationships between hub and driver nodes within 
human, yeast, rat, and mouse PPI networks. Relationships with 
other types of significant nodes, with direct neighbors, and with 
the rest of the network were analyzed to determine if the model 
can be characterized biologically by its structural makeup. We 
performed numerous tests on structure with a data-driven 
mentality, looking for properties that were potentially significant 
on a network level and then comparing those properties to 
biological significance. Our results showed that identifying and 
cross-referencing different types of topologically significant nodes 
can exemplify properties such as transcription factor enrichment, 
lethality, clustering, and Gene Ontology (GO) enrichment. Mining 
the biological networks, we discovered a key relationship between 
network properties and how sparse/dense a network is—a
property we described as “sparseness”. Overall, structurally 
important nodes were found to have significant biological 
relevance. 

Keywords—protein-protein interaction networks, driver nodes, 
hub nodes, network enrichment, graph theory, clustering 

I. INTRODUCTION

With biological data becoming increasingly available as 
technology and methodology for acquisition of new data 
improve, the need for analysis of this new data has become 
extremely important. In many circumstances, data is collected 
and left untouched because of a lack of proper analysis 
techniques. Utilizing bioinformatics to analyze biological data 
is not only efficient, but also practical. It provides 
computational methods that work on massive data sets that 
would be painstakingly difficult to analyze using other 
manners. We use a systems biology approach to model and 
visualize biological networks that we study as graphs. 

Graphical models make it easier to analyze data because they 
describe user-friendly tools to identify significant properties of 
networks that can be further tested via computational 
techniques. While basic analysis of biological networks reveals 
important features, sophisticated data mining tools are needed 
to extract useful knowledge from the networks. In this research, 
systems biology and bioinformatics are used to identify 
significant characteristics in given data sets using a network 
model and to further analyze the topological characteristics of 
these models by linking them to their known biological 
purposes. 

A. Background & Previous Work
In 1999, Barabási and Albert [1] introduced their cornerstone 
paper on scale-free networks, revealing that networks can be 
used to reflect evolutionary history, social disparities, and much 
more. For the first time, networks were thrust into the scientific 
spotlight and further network research began. They called for a 
better description of complex systems, and this description 
could only be created by classifying significant properties of 
networks. This work was followed in 2001 by [2], which 
specifically examined hub nodes (nodes with larger number of 
connections than other nodes) in protein-protein interaction 
networks (PPINs). They introduced the centrality-lethality rule, 
which played a major factor in our lethality studies by
explaining why the essentiality of nodes is significantly higher 
in nodes of high degree (hub nodes). Also determined in this 
work was the importance of topological position of strongly 
positioned individual proteins because which helped solidify 
biological robustness in yeast against mutations. 

In 2003, [5] expanded studies of node properties and PPIN 
analysis tools to include degree, clustering, shortest paths, 
connectivity, and function. This paper displayed the vast 
amount of information that can be generated through analyses 
of networks by defining many rising concepts of significance in 
network theory. Later, in 2006, [7] found empirical evidence 
confirming the centrality-lethality rule without using the high-
degree of hubs as their only justification. By scientifically 
testing and proving the rule using yeast data and without using 
solely structural properties as validation, they provided a strong 
foundation for future research to use this rule as fact. The results 
of this paper created an explanation of why essential 
interactions and their proteins are essential and did so without 
needing to invoke network architecture. [7] and [2] were both 
reasserted by [9] in 2008, who once again confirmed the 



centrality-lethality rule. However, in new analysis of network 
connectivity and controllability, [9] proved through 
experiments that essential hubs are no more important than 
nonessential hubs to keep a network connected. In other words, 
hubs are not necessarily the key pieces that keep and control a 
network. This opened the door for examining driver nodes as 
perhaps equally significant, if not more significant. However, 
[17] did prove that hubs tend to have a higher lethality than non-
hubs (a fact which we also assert in lethality tests on the hubs
of the yeast PPIN; see Results).

One issue with the centrality-essentiality rule, for many 
years, was defining a formal threshold/identifying a definite 
parameter for the hub node [11]. determined that the method to 
isolate hubs is setting an ad hoc degree scale that determines 
topological and functional significance. They defined hubs in 
three different manners and across all three asserted the 
significance of hubs in multiple fashions, finding that their 
approach was able to yield consistent results with previous 
studies, suggesting that this ad hoc approach can properly 
identify hub nodes in a PPIN.  

In 2011, [12] introduced the concept of driver node 
identification, expanding structural concepts from simply 

topology and functionality to network controllability. Driver 
nodes are a bit more complex than hubs—[12] helped clarify a 
previously foggy definition. The established definition of driver 
nodes is essentially that they are proteins that must be 
controlled to maintain controllability over the entire network. 
They outlined the beginning stages of defining driver nodes and 
their significance and discussed how to identify nodes that were 
needed to control a network. They also established why control 
theory and network theory, when intermixed, proved very 
helpful in the identification of significant network properties, 
such as drivers. This paper is one of the cornerstones of driver 
node research. 

More recent experiments ([13], [14], [18], etc.) in 
applications of network theory have further studied clusters, 
lethality, betweenness centrality, closeness, and other structures 
in various network types (social, physical, biological, technical, 
etc.). However, despite the significance of the discoveries made 
by [12] in their 2011 paper, the structural and biological 
significance of the driver node remains relatively unknown. 
Thus, our goal is to extensively probe to the role of driver nodes 
within networks while continuing to analyze hubs in new ways. 

Figure 1. An overview of the overall approach – first networks are created using known protein-protein interaction 
databases, then hubs, clusters, and drivers are identified. The method used to identify driver nodes is contained as 
pseudocode below.



II. PROPOSED NETWORK MODEL

Multiple tools were utilized to improve the functionality of 
our data and perform the various tests we planned via
computational methods; the general approach used is described 
visually in Figure 1. The first step of this entire project was the 
visualization of our biological networks. Each network was 
downloaded from BioGrid’s May 25th, 2013 Organism release 
(3.2.101). Essentially, each node represents a single protein in 
the biological data set, while each edge represents an 
unweighted interaction between two proteins.  Each network 
was visualized using Cytoscape [4], and we confirmed their 
scale-free qualities, similar to those described in [1]. 

The significant nodes we wanted to study were hub nodes 
and driver nodes; hubs, to verify that our models were 
consistent with previous findings, and drivers, to further 
understand their role in the PPIN. The R statistical computing 
language along with the igraph package [6] was used to perform 
much of our initial identification and analysis tests. Hub nodes 
are calculated by an ad hoc selection of nodes of the highest 
degrees within a network, as outlined by [11]. Calculation of 
driver nodes primarily involves employing maximum bipartite 
matching and graph theory to identify nodes that must be 
controlled to control the overall network. Using the R and 
igraph packages, an algorithm based on the process identified 
in [12] was implemented to identify driver nodes in our 
networks.  

Pseudocode of Driver Nodes Algorithm 
Load igraph library 
g <- Graph read in as input
b <- Edgelist version of g
d <- Unique edgelist from b (removes duplicates)
f <- Create vector with values from 1 to length of b
FOR a number i between 1 and the length of b

x equals d if it equals b at position i
f at position i equals x

FOR a number i between 1 and the length of f
if the remainder of i/2 is 0, f at position i

equals itself plus the length of d
g1 <- Bipartite graph of f
m <- Maximum bipartite matching of g1
k <- Create vector with values from 1 to length of f
p <- Perform difference on vectors k and m
p <- Subtract the length of d from p in previous
line 
result <- Select all nodes from original unique
edgelist that are represented by p
OUTPUT result 

To perform the rest of our computational tests, we ran 
multiple scripts written in Perl and Python on a UNIX platform 
via the University of Nebraska’s Morph-G, Sapling, and Rapids 
servers. All Gene Ontology (GO) Enrichment graphs and 
analyses were found via the PANTHER online 
database/analysis tool (http://www.pantherdb.org/) under 
default parameters [15] [16]. 

III. RESULTS

The various computational tests we performed on the driver 
and hub nodes yielded some interesting results. Regarding the 
concentration of driver nodes within networks, we found a 
relationship between network size and the number of driver 
nodes that exist in that network. As shown in Table 1, more 

driver nodes exist within more spread out, sparse networks, like 
Rattus norvegicus. However, in tightly-packed, dense networks 
like Saccharomyces cerevisiae, there exists a lower percentage 
of driver nodes. It is known that PPI databases are fraught with 
false positives and further, in larger model organisms, the 
known set of PPIs is not complete. We speculate that as these 
datasets continue to mature, they will become less sparse, and 
as such, their number of driver nodes will increase accordingly 
to reflect the controllability of the more dense networks. We 
calculated sparsity as 1-(2e)/[n(n-1)] where n = number of 
nodes and e = number of edges. 

TABLE I. THE RELATIONSHIP BETWEEN NETWORK SPARSENESS 
(NUMBER OF EDGES IN RELATION TO NUMBER OF NODES) AND NUMBER OF 
DRIVER NODES. COLUMN 1: SPECIES NAME FOR PPIN. COLUMN 2: NUMBER OF 
NODES IN THE NETWORK (NODES = PROTEINS). COLUMN 3: NUMBER OF EDGES 
IN THE NETWORK (EDGES = INTERACTIONS BETWEEN TWO PROTEINS). COLUMN 
4: 100% - NETWORK DENSITY, OR HOW MANY EDGES ARE MISSING FROM THE 
COMPLETE NETWORK. COLUMN 5: THE NUMBER OF DRIVER NODES FOUND IN 
THE NETWORK (PERCENTAGE OF DRIVER NODES IN THE NETWORK).

Organism Total 
Nodes

Total 
Edges

Network 
Sparsity

Driver Nodes
(Percentage of 

Network)

H. sapiens 17,349 131,098 99.91288
% 10,410 (60.003%)

M.
musculus 7,329 14,639 99.94549

% 5,005 (68.290%)

R. 
norvegicus 2,366 3,217 99.88502

% 1,735 (73.331%)

S. 
cerevisiae 6,344 216,877 98.92208

% 1,714 (27.018%)

By accessing databases of lethal proteins and transcription 
factors in yeast, we were also able to test the driver and hub 
nodes of Saccharomyces cerevisiae for their essentiality within 
the network, in addition to transcription factor function; we 
hypothesized driver nodes could be regulators of the network, 
which TFs are. Hubs tended to not be transcription factors, but 
exhibited more lethal properties. Drivers, on the other hand, 
were about the same percentage lethal as the overall network, 
but they did have a tendency to serve the purpose of being a 
transcription factor. Table 2 shows these results. 

TABLE II. THE LETHALITY AND TRANSCRIPTION FACTOR ENRICHMENT 
OF SIGNIFICANT NODES IN YEAST. COLUMN 1: NODE TYPE WITHIN YEAST PPIN.
COLUMN 2: NUMBER OF PROTEINS IDENTIFIED WITHIN SUBNETWORK. COLUMN 
3: NUMBER OF PROTEINS FOUND WITHIN LIST OF KNOWN LETHAL PROTEINS.
COLUMN 4: RATIO OF % OF LETHAL DRIVERS/HUBS TO % OF LETHAL NON-
DRIVERS/NON-HUBS. COLUMN 5: NUMBER OF PROTEINS FOUND WITHIN LIST OF 
KNOWN TRANSCRIPTION FACTORS. COLUMN 6: RATIO OF % OF TRANSCRIPTION 
FACTOR DRIVERS/HUBS TO % OF TRANSCRIPTION FACTOR NON-DRIVERS/NON-
HUBS. 

Node 
Type

Node 
#

Lethal 
Nodes 
(%)

Lethalit
y Ratio

Transcriptio
n Factors 

(%)

Transcr
-iption 
Factor 
Ratio

Yeast 
Drivers 1714 319 

(18.61%)
1.016

121 (8.539%)

1.613Yeast 
Non-

Drivers
4703 861 

(18.31%) 249 (5.295%)

Yeast 
Hubs 6 3 (50%)

2.723

0 (0%)

0Yeast 
Non-
Hubs

6411 1177 
(18.36%) 362 (5.647%)



Next, we analyzed the neighbors of these nodes by utilizing 
first-degree neighbors of hubs in e`ach network. Initial analysis 
after isolating the neighbors from the rest of the network 
showed yet another relationship with network sparseness. In 
more sparse networks (M. musculus, R. norvegicus), the first-
degree neighbors of hub nodes represented an extremely large 
percentage of the network’s driver nodes, while in more dense 
networks (H. sapiens, S. cerevisiae), the first-degree neighbors 
represented about the same percentage of driver nodes as the 
rest of the network. The sparser networks had more hubs than 
the dense networks, but their first degree-neighbors still 
represented a smaller percentage of the network. These results 
are shown in Table 3. 

TABLE III. FIRST-DEGREE NEIGHBORS OF HUB NODES AND THEIR 
PROPERTIES WITHIN EACH OF THE NETWORK AND THE DRIVER NODES OF EACH 
NETWORK

Organism
Total First-Degree 
Neighbors of Hubs 

(Percentage of 
Network)

Hubs 
(Total 
Hubs)

Driver Nodes 
(Percentage of 

Neighbors)

H. sapiens 11033 (63.59%) 6 (6) 6714 (60.85%)
M.

musculus 2121 (28.94%) 12 (12) 1847 (87.08%)

R. 
norvegicus 1201 (50.76%) 7 (7) 1088 (90.59%)

S. 
cerevisiae 4488 (70.74%) 6 (6) 1193 (26.58%)

Figure 2. Graphs of the Gene Ontology enrichment from the Panther database of the human (top graphs) and yeast (bottom graphs) 
sub-graphs. Note that the DNA translation enrichment (purple in human cluster—top right, green in yeast cluster—bottom right) is
extremely prominent in the clusters, but hardly visible in the overall network graphs. [16]



 Newly created networks of only first-degree neighbors of 
hubs were then used for clustering. We isolated the highly-
scored clusters within each network using the MCODE plugin 
via Cytoscape [4] and found that significant clusters existed 
among the first-degree neighbors of hubs in the larger networks 
(H. sapiens, S. cerevisiae). Within these clusters, there were a 
higher percentage of driver nodes than in the entire network, 
including the clusters (shown in Table 4). They also had a GO 
enrichment [16] with an extremely small p-value for 
translation—which is VERY slightly enriched in both overall 
networks (shown in Table 1). The clusters also had GO 
enrichment for multiple types of metabolic processes—but each 
of those traits was also enriched in the overall network just as 
heavily. 

Finally, we analyzed the connectivity between hub nodes in 
each network. We wanted to see how hubs interacted with each 
other, so after determining the hub nodes, we used R to isolate 
the shortest paths between each hub node. The results are 
shown in the graph below (Figure 3). Each “jump” represents 
one node between each hub—so if two hubs are one “jump” 
apart, then they are directly connected. 

IV. DISCUSSION/CONCLUSIONS

The results of the tests we performed held multiple 
significant meanings. The described relationship between 
network size properties (edge-node ratios, shown in Table 1) 
and number of driver nodes can be justified by the fact that, as 
our results showed, networks that are sparser will be less 
interconnected, and thus, will need more driver nodes in order 
to maintain control over the entire network. Networks like the 
yeast PPIN are extremely well interconnected and are 
controllable using fewer nodes than large networks with less 
connectivity, like the human PPIN. 

After analyzing our initial topological results, we returned 
to our original goal of identifying driver node significance and 
corresponding biological properties. As has been previously 
defined, we found that hubs were strongly lethal in the yeast 

network and had a significantly larger lethality ratio in 
comparison to the driver nodes, which were about as lethal as 
the rest of the network. This was expected; hubs are extremely 
important to the survival of a network—they serve as central 
communication points across the entire network due to their 
high connectivity. This “centrality-lethality” rule has been 
described in landmark papers since 2001, including [2], [7], [9],
and [17]. Additionally, we discovered that driver nodes actually 
were more often transcription factors (8%) than to hub nodes 
(0%), background sets of non-hubs (5%), and non-drivers (5%). 

Topologically, first-degree neighbors of hubs displayed an 
inverse correlation to network sparseness than the correlation 
that driver nodes showed. There are far more first-degree 
neighbors of hubs in networks that were more densely 
interconnected and had more drivers. This relationship certainly 
makes sense because the networks with higher connectivity 
were more likely to have hubs of a substantially higher degree, 
causing the increased number of nodes interacting with the 
hubs. An interesting topological finding was that in the sparser  

networks (M. musculus, R. norvegicus), despite having a 
smaller number of first-degree neighbors, an extremely large 
percentage of driver nodes were represented as first-degree 
neighbors. In other works, driver nodes are very frequently 
connected directly to hub nodes. This is in concordance with 
the network control theory that in order to control a network, 
one must not simply control the hubs, but control the nodes 
interacting with the hubs.
In attempting to isolate highly-scored clusters of the first-
degree neighbors of hub nodes, we found another topological 
correlation to biological properties. In both of the larger 
networks (H. sapiens & S. cerevisiae), the highest scored cluster 
had an extremely strong GO enrichment for DNA translation—
which was unusual considering that translation is VERY 
slightly enriched in the rest of the network. This result could 
definitely be analyzed through further testing of clusters within 
these networks and within other large PPINs.  
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Fig. 3. Graph of the tests on hub interconnectivity. Note that the yeast hubs had much higher degrees than the mouse 
and rat hubs—this is why yeast has so many more total occurrences.



Our hub connectivity study also yielded some interesting 
results. In the cases of the yeast and mouse PINs, it is very 
apparent that the hub nodes are considered assortative, meaning 
they tend to connect to other hubs. None of the hubs were more 
than 3 jumps away from each other, showing that these hubs 
have close interaction with each other. However, a large 
majority of the hubs did not interact directly with each other—
most hubs were 2 or 3 jumps apart. This was explained by [3],
who stated that connectivity is not likely between two high-
degree nodes, but more likely between a node of high degree 
and a node of low degree. In the case of the rat PIN, the hub 
nodes seem to be more disassortative—meaning they were not 
directly connected, reaffirming the assertions of [3].  These 
results could once again relate to the concept of network 
sparseness, except on a smaller scale with only hub nodes. 
These ideas of how hubs are mixed can be further seen in 
network theory. 

So, why are these results significant? The importance of 
these tests can be found when we return to discussing our initial 
goal. Each test we performed yielded a result that showed a 
correspondence of the topological properties of our PPIs and 
biologically significant information. All in all, identifying 
significant nodes and analyzing their relationships can help 
identify points of importance within PPI networks, and 
biologically investigating these points of importance in further 
tests has a very strong potential to yield valuable results. 
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Cluster) Hub Nodes Translation Enrichment 
p-value

Percent of Nodes 
Enriched

H. sapiens 79 31.608 57 (72.15%) 3 1.15E-66 69.74%
S. 

cerevisiae 58 25.966 27 (46.55%) 1 1.04E-46 87.76%

TABLE IV. ANALYSIS OF HIGHLY-SCORED CLUSTERS WITHIN LARGER NETWORKS AND THEIR GO ENRICHMENT IN TRANSLATION
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