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Abstract

Inferring population structure using Bayesian clustering programs often requires a priori specification of the number of
subpopulations, K , from which the sample has been drawn. Here, we explore the utility of a common Bayesian model
selection criterion, the Deviance Information Criterion (DIC), for estimating K . We evaluate the accuracy of DIC, as well as
other popular approaches, on datasets generated by coalescent simulations under various demographic scenarios. We find
that DIC outperforms competing methods in many genetic contexts, validating its application in assessing population
structure.
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Introduction

A common problem in modern population genetics is

identifying population substructure among a sample of individuals

genotyped across a set of neutral genetic markers. Bayesian

clustering algorithms such as STRUCTURE [1,2] and BAPS [3]

and their derivates [4–8] are commonly used for addressing this

problem. Of particular concern to many investigators is estimating

the number of subpopulations or clusters K that are necessary and

sufficient to explain observed patterns of genetic variation. Part of

the reason investigators are concerned with the ‘‘choosing K ’’

problem is that many of the classification algorithms (including

STRUCTURE) require specifying the number of clusters as a

parameter in the model. A consequence of this is that the

biological conclusions one draws from the data may be artificially

dependent on the value of K chosen. In practice, many inves-

tigators analyze their data using a range of values for K , reporting

the output for all (or a plausible set of) K ’s and/or employ one of

several post hoc statistics [1,4,9] to choose an optimal value for K .

The purpose of this communication is to report our experience

with the Deviance Information Criterion (DIC) as a statistic for

choosing K . By comparing the performance of DIC to other

commonly used statistics on simulated data under a variety of

population genetic scenarios, we find that it often outperforms

other approaches and recommend it be considered by investiga-

tors interested in estimating K from genotype data. Its advantage

over more complex approaches such as the reversible-jump

Markov chain Monte Carlo (MCMC) or the Dirichlet process

prior on K , is that calculating DIC requires trivial computational

overhead once the MCMC has been run.

Choosing K is a difficult problem in the Bayesian clustering

setting, because as K increases, the likelihood of the data increases

monotonically, as well as the complexity of the model. Adding

more degrees of freedom to the analysis generally improves the

overall fit of the model to data. This often results in monotonic

non-decrease in the probability of the data given K as K increases

[1,9]. A common way of dealing with this class of statistical

problems (known as ‘‘model selection’’) is to use a penalizing

function which weighs the fit of a model versus its complexity. This

is the underlying idea behind many model selection statistics such

as the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC). The Deviance Information Criterion

(DIC) is a recently proposed statistic for model selection when the

posterior distribution of parameters in competing models are

estimated using Markov chain Monte Carlo, as is the case with

STRUCTURE and its derivatives [10].

Results

We applied the Deviance Information Criterion to estimate K
for datasets generated by coalescent simulations under various

demographic scenarios and for the large-scale genotype data from

Human Genome Diversity Panel. We evaluated the accuracy of

DIC in comparison with other popular approaches and demon-

strate that DIC performs well in a variety of scenarios.

Application to Simulated Data
We performed extensive coalescent simulations using multiple

demographic models, including Models Split, Tree, M0:5, M2:0,

M10 and Inbred (see Section Methods and Figure 1). Models Split

and Tree implement the distinct demographic histories during

subpopulation formation. Models M0:5, M2:0, and M10 are used to

investigate the impact of different levels of exchange among

subpopulations on the inference of population structure. Model
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Inbred is designed to test the effect of the confounding factor

‘‘inbreeding’’. To evaluate the robustness of our method in the

case of scarcity of data, we also simulate the Model Split with

n~10 individuals or S~10 SNPs. The last scenario tested is to

reduce the splitting time among subpopulations by a factor of ten.

This is equivalent to decreasing the genetic distances among

subpopulations, which implicitly reflects the various levels of

physical distances among populations. Then we ran each data set

through InStruct [5] with five MCMC chains for each value of K ,

retaining a total of 50,000 iterations after a 500,000 iteration burn-

in period with a thinning interval of ten iterations between

retained draws. Figure 2 illustrates the performance of DIC on a

randomly selected data set generated under Model Split with true

K[f1,2,3,5g. For these four data sets, {DIC always peaked at the

correct K values for all the chains. (Note that we choose to plot

{DIC because it is often easier to visualize a maximum peak than

a minimum trough).

To place our work in a broader context, we also ran these data

sets through five methods commonly used to estimate K : (1) the

approximate likelihood method implemented in STRUCTURE

using both the original and correlated allele frequency model, (i.e.,

the ‘‘F’’ model [1,2]), (2) the DK approach based on running

STRUCTURE with both the original and F models [9], (3)

Eigenanalysis method (implemented in ‘‘SmartPCA’’ software)

proposed by Patterson et al. [11] which estimates K as 1 plus the

number of significant eigenvalues underlying a principal compo-

nent decomposition (PCD) of the scaled genotypic value matrix, (4)

Structurama which uses a Dirichlet process prior model to

partition a sample into subgroups [12,13], and (5) BAPS utilizing

the splitting and merging strategy to attain the best classification

[3,6–8]. We also conducted preliminary analyses using the

regularization method [4], but found that it consistently performed

poorly for moderate values of K (e.g., the accuracy was under 50%

when K~3 under the Split model).

We assessed the accuracy of each method as the proportion of

data sets which correctly recover the value of K used in data

simulation using the optimality criterion defined for each

approach. For example, for DIC, we used the lowest DIC value

observed across five independent MCMC chains run for each of

the six values of K . For Eigenanalysis, we assessed accuracy under

three significance levels (a[f0:05,0:01 and 0:001g). For Structur-

ama, we chose the partitions of individuals with the highest

posterior probabilities under two prior distributions: (1) a

noninformative prior on the number of clusters, and (2) a prior

distribution with the expected number of clusters equal to the true

value of K used to simulate the data. We use the individual

clustering mode of BAPS as our simulation does not include

admixture.

Under the case of simple population splitting with a high degree

of population differentiation, i.e., FST values around 0:5, we found

that the DIC method consistently outperformed other approaches

(see Table 1). For example, under Model Split, the accuracy is

near 100% for all values of K considered. STRUCTURE, on the

other hand, has an accuracy that ranges from 54% to 100%

depending on the true K and whether or not the F model is

employed. We also observe that the accuracy of DK decays with

K , starting at 100% for K~2 and reaching 50% and 64% for the

F and non-F models, respectively, at K~5. Eigenanalysis tends to

perform well, but is sensitive to the choice of a with smaller values

(e.g., 0:1%) of a performing better than higher values (e.g., 5%).

The performance of Structurama on simulated data was

interesting. It performed perfectly well when K was small (Kv3)

but when Kw3, it tended to fail almost completely. We posit that

this may be due to the tendency of the Dirichlet process mixture

model to overcluster, which results in K being underestimated. An

alternative explanation is that the Dirichlet process prior fails to

converge within a finite number of iterations in practice, which

commonly challenges many other mixture model methods [14].

BAPS performs perfectly well, except in the case of K~4, it drops

to 82%. The performance of most methods under the complex

splitting model (i.e., Model Tree) was similar to the performance

under Model Split. This implies our results are robust to moderate

Figure 1. Subpopulation topology of Model Split and Model Tree for K ranging from three to five. In Model Split, subpopulations are
split from one ancestral population simultaneously, forming a star-shaped topology. In Model Tree, populations separate at different time points,
forming a tree-shaped topology. The time interval between two consecutive dashed lines is 0.5 scaled in units of 4Ne generations, where Ne is the
effective population size.
doi:10.1371/journal.pone.0021014.g001
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Figure 2. Performance of DIC on one data set simulated under Model Split for each true K value, 1,2,3 and 5.
doi:10.1371/journal.pone.0021014.g002
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deviations from the K-wise subpopulation split topology assumed

in STRUCTURE.

Migration among subpopulations, on the other hand, can have a

profound impact on the accuracy of all approaches. When

migration rates are low between subpopulations (Model M0:5),

DIC, BAPS, and Eigenanalysis with a stringent p-value cutoff both

worked perfectly. STRUCTURE also performed reasonably well

with accuracy rates ranging between 84% and 100% (see Table 2).

When the migration rates among subpopulations are intermediate

(M~2:0 corresponding to FST*0:2), most methods showed results

similar to those under Model M0:5. The notable exception was

Structurama which performed poorly (at least under the parameter

values we explored). Under low population differentiation (M~10;

FST*0:06), all methods showed a decrease in accuracy. For

example, the accuracy of DIC noticeably decreases with K reaching

a low of 54% for K~5 (see Table 3). The original STRUCTURE

model also performed poorly with accuracy well below 20%.

Interestingly, in the case of strong migration, the F model’s

accuracy is much higher both for the STRUCTURE and DK

statistics. This is probably because the correlated alleles model is

doing a good job in modeling patterns of genetic variation among

admixed subpopulations. Since InStruct does not implement an F

model, we predict that adding the F model to InStruct or

implementing DIC within STRUCTURE with the F model would

perform as well or better than these statistics. Eigenanalysis also

seems to handle the high migration rate scenario well. Its accuracy

Table 1. Accuracy of multiple K estimators under Models Split and Tree.

Model Split Tree

K 1 2 3 4 5 3 4 5

FST 0.495 0.502 0.493 0.492 0.486 0.507 0.501

DIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

STRUCTURE 0.90 1.00 1.00 0.86 0.80 0.98 0.94 0.72

STRUCTURE, F model 0.90 0.98 0.94 0.82 0.54 0.90 0.82 0.62

DK 1.00 0.94 0.70 0.64 0.80 0.86 0.64

DK , F model 1.00 0.90 0.78 0.50 0.84 0.92 0.54

Eigenanalysis, a~0:05 0.97 0.89 0.86 0.86 0.96 0.96 0.92 0.90

Eigenanalysis, a~0:01 1.00 0.96 0.91 0.93 0.99 0.98 0.94 0.92

Eigenanalysis, a~0:001 1.00 1.00 0.96 0.96 1.00 1.00 0.96 0.96

Structurama, noninformative prior 1.00 1.00 0.82 0.18 0.02 0.88 0.22 0.00

Structurama, correct prior 1.00 1.00 0.82 0.18 0.02 0.82 0.22 0.00

BAPS 1.00 1.00 1.00 0.82 1.00 1.00 1.00 0.96

Performance assessment of methods including DIC, STRUCTURE, DK , Eigenanalysis, Structurama and BAPS. ‘‘FST ’’ is the population differentiation statistic estimated by
SmartPCA [11] averaged across 50 data sets. STRUCTURE’s performance is evaluated based upon both the original model and the correlated alleles or ‘‘F’’ model.
Similarly tested is the DK statistic that relies on STRUCTURE. Eigenanalysis is tested at three significance levels (a). Structurama is assessed using both a noninformative
prior on K and the true K value as the starting point. BAPS is evaluated using the individual clustering mode. Blank values in the table indicate that a program did not
generate a result.
doi:10.1371/journal.pone.0021014.t001

Table 2. Accuracy of multiple K estimators under Models M0:5 and M2:0.

Model M0:5, slow migration M2:0, moderate migration

K 2 3 4 5 2 3 4 5

FST 0.392 0.430 0.452 0.454 0.191 0.248 0.263 0.281

DIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

STRUCTURE 1.00 0.98 0.94 0.84 1.00 1.00 0.96 0.84

STRUCTURE, F model 0.88 0.96 0.94 0.88 0.86 0.86 0.94 0.86

DK 1.00 0.78 0.94 0.80 1.00 0.92 0.76 0.80

DK , F model 1.00 0.84 0.94 0.88 1.00 0.96 0.80 0.92

Eigenanalysis, a~0:05 0.96 0.84 0.98 0.96 1.00 0.86 0.94 0.98

Eigenanalysis, a~0:01 0.98 0.94 1.00 0.96 1.00 0.98 0.98 1.00

Eigenanalysis, a~0:001 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Structurama, noninformative prior 1.00 0.96 0.80 0.44 0.74 0.52 0.12 0.00

Structurama, correct prior 1.00 0.98 0.78 0.44 0.72 0.52 0.10 0.06

BAPS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

Evaluation of these methods are performed in the same manner as in Table 1.
doi:10.1371/journal.pone.0021014.t002
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decreases only slightly with K , compared to the low migration rate

case. Intriguingly, the most stringent significance level for high

migration does not necessarily perform best, as it does with the slower

migration models. This suggests that it may be challenging to find the

optimal tuning of a for best classification accuracy when using PCD

and a Tracy-Widom approximation to the distribution of p-values.

We also observe that Structurama appears to be very sensitive to

migration. It clusters all individuals into one group for every data set

under Model M10, i.e. no matter which prior is used, Structurama

incorrectly estimates K~1 for every simulated data set. Our results

differ from [12], who found Structurama worked well in estimating K
under certain scenarios. We believe the differences may be due to the

details of the simulation used. They considered an island model with

migration, whereas we used a population-split model with subsequent

migration among demes. This slight difference leads to more

subpopulation differentiation in their simulations than ours, since

they have a longer expected coalescent time between demes than we

do. (That is, in our simulations all demes merge, looking back in time,

at the time of population splitting). BAPS’s accuracy decreases

sharply as K increases, implying that it performs poorly in the case of

weak population differentiation.

When we assessed accuracy under the inbreeding model, assuming

undetected inbreeding (such as partial self-fertilization) within

subpopulations, we found again that DIC tends to outperform other

methods (see Table 3). It is important to note that in calculating DIC,

we have used InStruct’s inbreeding model whereas the other

approaches based on STRUCTURE assume the Hardy-Weinberg

equilibrium within clusters. We, and others, have shown that failing

to consider inbreeding in the likelihood calculation for STRUC-

TURE can lead to spurious signals of population admixture and

erroneous inference of the number of subpopulations [5]. This

phenomenon appears to cause a large reduction in the accuracy of

estimating K by STRUCTURE’s F model with only 20% of

simulations uncovering the true number of populations underlying

the data. Eigenanalysis, which does not account for inbreeding either,

likewise overestimates the number of subpopulations, and has an

accuracy ranging from 61% to 100% depending on the true value of

K . Both Structurama and BAPS are not heavily affected by hidden

inbreeding, and have the similar accuracy pattern as under Model

Split.

To assess the robustness of DIC in the limit of small data sets, we

simulated data under Model Split for n~10 individuals or S~10
SNPs. We found that the accuracy of DIC is robust to the former,

but not the latter (Table 4). When the subpopulation size decreases

to 10, DIC performs almost as well as with a larger number of

individuals per subpopulation. STRUCTURE and DK , on the

other hand, show a significant reduction in accuracy as K increases

to 5. Eigenanalysis shows a reduction in accuracy only when using a

stringent p-value cutoff. When the number of markers is reduced to

only 10, DIC’s accuracy falls to 42% when K increases to five,

which is expected as DIC is an asymptotic approximation that only

holds as the sample size is sufficiently large, and the accuracy of

STRUCTURE and DK is close to zero. With so few markers,

Eigenanalysis fails to provide an output. Structurama also performs

poorly under larger values of Ks. BAPS is robust to the decrease in

sample size but is strongly affected by reducing the number of

markers. While we conclude that DIC is more robust than other

approaches to small data sizes, we, of course, expect accuracy to

increase with S and so recommend that investigators genotype as

many unlinked markers as is economically feasible.

Under the Split model, our simulated data sets had a high degree

of population differentiation (FST among clusters was around 0:5).

To investigate the effect of weaker population structure on

estimation accuracy, we simulated data with a reduced splitting

time of 0.05 in units of 4Ne generations. This gives simulated data

with FST among subpopulations in the range of 0:08*0:12. We

found that shortening the splitting time, not surprisingly, reduced

the accuracy of all methods with results similar to those observed for

the strong migration among subpopulations (Model M10). We note,

in particular, that the Bayesian methods showed a decrease in

accuracy with increasing K . Interestingly, Eigenanalysis performed

quite well, particularly using the less stringent significance level (see

Table 5), which is consistent with the original results of [11] that

their approach can detect very fine-scale population structure.

Application to Human Data
To demonstrate a concrete application of DIC, we have applied

the approach with the inbreeding model of InStruct to the Human

Genome Diversity Panel (HGDP-CEPH) data from [15],

containing 1056 individuals from 52 populations, genotyped at

Table 3. Accuracy of multiple K estimators under Models M10 and Inbred.

Model M10, fast migration Inbred

K 2 3 4 5 1 2 3 4 5

FST 0.048 0.063 0.069 0.073 0.489 0.498 0.491 0.504

DIC 1.00 0.94 0.70 0.56 1.00 1.00 1.00 0.98 0.98

STRUCTURE 0.02 0.02 0.06 0.16 0.64 1.00 0.98 0.90 0.84

STRUCTURE, F model 0.90 0.98 1.00 1.00 0.34 0.36 0.22 0.20 0.22

DK 0.32 0.48 0.26 0.16 1.00 0.74 0.80 0.68

DK , F model 0.94 0.96 0.74 0.64 1.00 0.94 0.84 0.82

Eigenanalysis, a~0:05 0.94 0.96 0.90 0.94 0.86 0.68 0.61 0.66 0.68

Eigenanalysis, a~0:01 1.00 0.98 0.90 0.90 0.96 0.92 0.73 0.78 0.75

Eigenanalysis, a~0:001 1.00 0.92 0.90 0.84 1.00 0.93 0.81 0.84 0.85

Structurama, noninformative prior 0.00 0.00 0.00 0.00 1.00 1.00 0.82 0.24 0.02

Structurama, correct prior 0.00 0.00 0.00 0.00 1.00 1.00 0.78 0.22 0.02

BAPS 0.64 0.54 0.22 0.14 0.74 1.00 1.00 1.00 0.98

Evaluation of these methods are performed in the same manner as in Table 1.
doi:10.1371/journal.pone.0021014.t003
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377 autosomal microsatellite loci. We find that DIC estimates

K~6 for these data as shown in Figure 3A. The five clusters

we estimate (see Figure 3B) correspond approximately to the

geographic regions of Africa, Europe/the Middle East/Central-

South Asia, the Americas, East Asia, and Oceania as described by

[15]. It is interesting to note that in our classification, we also

found evidence that some alleles from the San people of Namibia,

Africa, may form a sixth minor cluster with a posterior inbreeding

coefficient estimate around 0.20, the highest of all clusters.

Discussion

The Deviance Information Criterion is a simple and effective

model selection method for estimating K , the number of clusters

underlying a sample of individuals. We anticipate this approach

will have wide applications in population structure inference. One

important factor affecting our estimation of the accuracy of DIC is

the underlying probabilistic model used in InStruct. Since InStruct

takes inbreeding into account, it naturally outperforms approaches

that do not model non-random mating explicitly. At the same

time, since we do not implement the F model, we do poorly when

migration rates are high and allele frequencies are similar among

clusters. Furthermore, the accuracy of DIC sometimes fluctuates

with the quality of the classification of individuals into clusters. As

in any complex MCMC framework, the likelihood surface may be

multimodal for a given value of K . In practice, we have observed

that DIC values may vary substantially among independent

MCMC chains for the same dataset, especially for larger K values,

due to poor mixing of MCMCs under some scenarios. We

recommend that for a given value of K , several chains be run and

the minimum value of DIC across chains be used for inference. It

is also important to note that population structure is a complex

concept with a hierarchical form and multiple levels. DIC infers

the best partition of a group of individual genetic materials taken

as a whole. To investigate the finer scale of subpopulation

structure, we suggest further structure analysis within each inferred

cluster.

Methods

DIC Statistic
Here we introduce the Deviance Information Criterion formula

in details. Denote f (yijh) for i~1, . . . ,n as the probability of

observing individual i’s genotype given parameters h of the model

which include factors such as subpopulation allele frequencies,

probabilities of assignment, inbreeding coefficients, etc. For a

given multivariate parameter vector h, we define the deviance as:

D(h)~{2
Xn

i~1

log f (yijh)

The above formula is easily recognized as the usual log-likelihood

function evaluated at h. [10] defines the Deviance Information

Table 4. Accuracy of multiple K estimators with reduced data dimensions.

Model Subpopulation Size = 10 Number of Loci = 10

K 1 2 3 4 5 1 2 3 4 5

DIC 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.82 0.42 0.48

STRUCTURE 0.84 1.00 0.86 0.60 0.40 1.00 0.96 0.86 0.72 0.18

STRUCTURE, F model 0.16 1.00 0.86 0.66 0.34 0.10 0.96 0.86 0.72 0.18

DK 0.98 0.68 0.64 0.22 0.94 0.24 0.06 0.04

DK , F model 0.98 0.86 0.62 0.16 0.94 0.20 0.10 0.04

Eigenanalysis, a~0:05 0.90 0.80 0.82 0.80

Eigenanalysis, a~0:01 0.96 0.84 0.88 0.92

Eigenanalysis, a~0:001 0.20 0.42 0.66 0.78

Structurama, noninformative prior 1.00 1.00 0.96 0.38 0.00 1.00 0.90 0.40 0.14 0.00

Structurama, correct prior 1.00 1.00 0.96 0.38 0.00 1.00 0.90 0.38 0.12 0.00

BAPS 1.00 1.00 1.00 0.8 0.5 0.00 0.02 0.04 0.36 0.28

Evaluation of these methods are performed in the same manner as in Table 1. Data are simulated under Model Split with the size of each subpopulation reduced from
50 to 10 and the number of loci reduced from 100 to 10, respectively.
doi:10.1371/journal.pone.0021014.t004

Table 5. Accuracy of multiple K estimators with shorter
splitting time among subpopulations.

Model Subpopulation Splitting Time = 0.05

K 1 2 3 4 5

FST 0.090 0.084 0.093 0.097

DIC 1.00 1.00 0.92 0.60 0.26

STRUCTURE 0.64 0.78 0.50 0.54 0.22

STRUCTURE, F model 0.76 1.00 0.94 0.94 0.74

DK 1.00 0.44 0.08 0.04

DK , F model 0.96 0.78 0.56 0.42

Eigenanalysis, a~0:05 0.96 0.96 0.94 0.9 0.72

Eigenanalysis, a~0:01 1.00 1.00 0.98 0.94 0.70

Eigenanalysis, a~0:001 1.00 1.00 0.98 0.88 0.48

Structurama, noninformative prior 1.00 0.00 0.00 0.00 0.00

Structurama, correct prior 1.00 0.00 0.00 0.00 0.00

BAPS 1.00 1.00 0.58 0.02 0.00

Evaluation of these methods are performed in the same manner as in Table 1.
Data are simulated under Model Split with the splitting time reduced from
t~0:5 to 0:05.
doi:10.1371/journal.pone.0021014.t005

Identifying Optimal Number of Population Clusters

PLoS ONE | www.plosone.org 6 June 2011 | Volume 6 | Issue 6 | e21014



Criterion as

DIC~D(h)zpD~2D(h){D(~hh)

where D(h) is the posterior mean deviance and ~hh is a point estimate

of the parameters. The quantity pD~D(h){D(~hh) is an estimate of

the ‘‘effective number of parameters in the model’’. We estimate

D(h) using M retained Markov chain Monte Carlo draws:

D(h)~

PM
j~1 D(h(j))

M

where h(j) represent the retained values of the parameters at

iteration j. In the Bayesian clustering problem, point estimates of h
can often be ill-behaved due to the label-switching problem, and

according to [16], a more stable estimator of DIC for mixture

models is based on averaging the likelihood over retained draws:

DIC~2D(h)z2
Xn

i~1

log f (yi)

where

f (yi)~

PM
i~1 f (yijh(j))

M

is the average value of the likelihood function for individual i across

retained draws from an MCMC chain. As with AIC and BIC,

a smaller value of DIC indicates a better fitting model. We

implemented the Deviance Information Criterion in our program

InStruct [5] accessible through the web interface http://cbsuapps.

tc.cornell.edu/InStruct.aspx.

Data Simulation
To demonstrate the performance of DIC and compare it with

other methods, we used the standard coalescent simulation

program ‘‘ms’’ [17] to generate data under various genetic

scenarios. For each population substructure scenario, we assumed

a sample of K subpopulations for K~1,2, . . . ,5, and equal and

constant subpopulation sizes of 50 individuals genotyped at 100

unlinked neutral diallelic (i.e., SNP) loci. Six major genetic

contexts considered in our simulation are listed below:

Model Split K subpopulations that split without subsequent

migration.

Model Tree K subpopulations with a tree-shaped relationship

describing the splitting process.

Model M0.5 K subpopulations with a scaled migration rate

M~4Nem~0:5 between any of two subpopulations.

Model M2.0 K subpopulations with a scaled migration rate

M~2:0 between any of two subpopulations.

Model M10 K subpopulations with a scaled migration rate

M~10 between any of two subpopulations.

Figure 3. Analysis result of data from the Human Genome Diversity Panel. A. Estimated DIC for different values of K . B. Distruct
classification bar plot of individuals from the above data set assuming K~6. Each vertical bar represents one individual and each color represents a
different cluster.
doi:10.1371/journal.pone.0021014.g003
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Model Inbred K subpopulations without migration, each

subpopulation with a randomly sampled selfing rate.

For Model Split, M0:5, M2:0, M10 and Inbred, all subpopula-

tions split from a common ancestral population at a time t~0:5 in

the past scaled in units of 4Ne generations, where Ne is the

effective subpopulation size. In Model Inbred, partial self-

fertilization within subpopulations is taken into account using

the same simulation scheme as in [5]. For Models M0:5, M2:0 and

M10, K~1 is omitted as there is no migration in the case of only

one subpopulation. Besides the star-shaped genealogy among

subpopulations in Model Split, Inbred, M0:5, M2:0 and M10, we

also considered the tree topology relationship among subpopula-

tions described in Model Tree as illustrated in Figure 1. For this

model, the K~1 and 2 cases are ignored since they are identical to

the corresponding Ks under Model Split.

To assess the robustness of our conclusions to changes in sample

size, the number of loci genotyped, or population divergence time,

we undertook further simulations using Model Split. First, we

reduced subpopulation size from n~50 to n~10. Second, we

reduced the number of markers used in the analysis from 100 to

10. Third, we reduced the splitting time from the common

ancestral population from t~0:5 to 0:05. For each of the nine

contexts described above (6 models+3 robustness conditions), we

simulated 50 replicate data sets per value of K .
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