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Abstract

Let ρ be a two-dimensional modulo p representation of the absolute Galois group of a
totally real number field. Under the assumptions that ρ has a large image and admits
a low-weight crystalline modular deformation we show that any low-weight crystalline
deformation of ρ unramified outside a finite set of primes will be modular. We follow
the approach of Wiles as generalized by Fujiwara. The main new ingredient is an Ihara-
type lemma for the local component at ρ of the middle degree cohomology of a Hilbert
modular variety. As an application we relate the algebraic p-part of the value at one of
the adjoint L-function associated with a Hilbert modular newform to the cardinality
of the corresponding Selmer group.
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1. Introduction

1.1 Statement of the main results

Let F be a totally real number field of degree d, ring of integers o and Galois closure F̃ .
Denote by JF the set of all embeddings of F into R. The absolute Galois group of a field L
is denoted by GL.

Let f be a Hilbert modular newform over F of level n (an ideal of o), cohomological
weight k =

∑
τ∈JF

kττ (kτ > 2 of the same parity) and put w0 = max{kτ − 2 | τ ∈ JF }. For a

prime p and an embedding ιp : Q →֒ Qp one can associate with f and ιp a p-adic representation
(cf. [Tay89, Tay97]):

ρf,p : GF → GL2(Qp), (1)

which is irreducible, totally odd, unramified outside np and characterized by the property that
for each prime v not dividing np we have tr(ρf,p(Frobv)) = ιp(c(f, v)), where Frobv denotes a
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On Ihara’s lemma for Hilbert modular varieties

geometric Frobenius at v and c(f, v) is the eigenvalue of f for the standard Hecke operator Tv. The
embedding ιp defines a partition JF =

∐
v JFv , where v runs over the primes of F dividing p and

JFv denotes the set of embeddings of Fv in Qp. Then ρf,p|GFv
is known to be de Rham of Hodge–

Tate weights ((w0 − kτ )/2 + 1, (w0 + kτ )/2)τ∈JFv
, unless w0 = 0, ρf,p is residually reducible but

not nearly ordinary, d is even and the automorphic representation associated with f is not a
discrete series at any finite place (cf. [BR93] and [Kis08]). If p > w0 + 2 is unramified in F and
relatively prime to n, then ρf,p|GFv

is crystalline (cf. [Bre99]).

Such a ρf,p is defined over the ring of integers O of a finite extension E of Qp. Denote by κ
the residue field of O and let ρf,p be the semi-simplification of the reduction of ρf,p modulo a
uniformizer ̟ of O. We say that a two-dimensional irreducible p-adic (respectively, modulo p)
representation of GF is modular if it can be obtained by the above construction. The following
conjecture is a well-known extension to an arbitrary totally real field F of a conjecture of Fontaine
and Mazur [FM97].

Conjecture. A two-dimensional, irreducible, totally odd p-adic representation of GF
unramified outside a finite set of primes and de Rham at all primes v dividing p with distinct
Hodge–Tate weights for each Fv →֒ Qp, is modular, up to a twist by an integer power of the
p-adic cyclotomic character.

We provide some evidence for this conjecture by proving the following modularity lifting
theorem.

Theorem A. Let ρ : GF → GL2(Fp) be a continuous representation. Assume that:

(Modρ) p is unramified in F , p − 1>
∑

τ∈JF
((w0 + kτ )/2) and there exists a Hilbert modular

newform f of level prime to p and cohomological weight k, such that ρf,p
∼= ρ; and

(LIIndρ) the image of G
F̃

by ⊗ IndQF ρ=
⊗

τ∈GQ/GF
ρ(τ−1 · τ) is irreducible of order divisible

by p.

Then all crystalline deformations of ρ of weights between zero and p − 2 which are unramified
outside a finite set of primes are modular.

Remark 1.1. We have greatly benefited from the work [Fuj06a] of Fujiwara, although we use a
different approach (cf. § 1.2 for a more detailed discussion). Furthermore, the proof of Theorem A
relies on Fujiwara’s results in the minimal case. Let us mention, however, that if Pρ = ∅
(cf. Definition 4.2), then Theorem A is independent of the results of [Fuj06a] (cf. Theorem 5.1).

Remark 1.2. One can show that if F is Galois over Q and if f is a Hilbert modular newform
on F which is not a theta series nor a twist of a base change of a Hilbert modular newform on
E ( F , then for all but finitely many primes p, ρ= ρf,p satisfies (LIIndρ) for all ιp : Q →֒ Qp.

Remark 1.3. The level lowering results of Jarvis [Jar99a, Jar99b], Fujiwara [Fuj06b] and
Rajaei [Raj01], generalizing classical results of Ribet [Rib90] et al. to the case of an arbitrary
totally real field F , imply that the newform f in (Modρ) can be chosen so that ρf,p is a minimally
ramified deformation of ρ in the sense of Definition 4.6.

To a Hilbert modular newform as above, Blasius and Rogawski [BR93] attached, when w0 > 0,
a rank-three motive over F with coefficients in Q, pure of weight zero and autodual. For all ιp, its
p-adic realization Ad0(ρf,p) is given by the adjoint action of GF via ρf,p on the space of two-by-
two trace-zero matrices. Denote by L(Ad0(ρf,p), s) and Γ(Ad0(ρf,p), s) the associated L-function
and Γ-factor.

1115

https://doi.org/10.1112/S0010437X09004205 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004205


M. Dimitrov

In this setting, Beilinson and Deligne conjecture that the order of vanishing of L(Ad0(ρf,p), s)
at s= 1 equals dim H1

f (F,Ad0(ρf,p) ⊗ Qp) − dim H0(F,Ad0(ρf,p) ⊗ Qp), where H1
f is the Selmer

group defined by Bloch and Kato (cf. [DFG04, § 2.1]). By a formula due to Shimura we know
that L(Ad0(ρf,p), 1) is a non-zero multiple of the Petersson inner product of f , hence does not
vanish. Since ρf,p is irreducible, by Schur’s lemma H0(F,Ad0(ρf,p) ⊗ Qp) = 0. Therefore, in our
case, the Beilinson–Deligne conjecture is equivalent to the vanishing of H1

f (F,Ad0(ρf,p) ⊗ Qp).

Let Tam(Ad0(ρf,p)) ⊂ O be the Tamagawa ideal introduced by Fontaine and Perrin-Riou
(cf. [FP94, §§ I.4.1 and II.5.3.3]).

Theorem B. Assume that p is unramified in F and let f be a Hilbert modular newform over F
of level prime to p and cohomological weight k satisfying p − 1>

∑
τ∈JF

((w0 + kτ )/2). If ρ= ρf,p
satisfies (LIIndρ) then:

(i) the Beilinson–Deligne conjecture holds, H1
f (F,Ad0(ρf,p) ⊗ Qp) = 0; and

(ii) ιp

(
Γ(Ad0(ρf,p), 1)L(Ad0(ρf,p), 1)

ΩJ
fΩ

JF \J
f

)
O = Tam(Ad0(ρf,p)) FittO(H1

f (F,Ad0(ρf,p) ⊗ Qp/Zp));

where J ⊂ JF and ΩJ
f , Ω

JF \J
f are Matsushima–Shimura–Harder periods as in Definition 7.1.

An immediate corollary is that for p as in the theorem, the p-adic valuation of ΩJ
fΩ

JF \J
f does

not depend on J , nor change when we twist f by a Hecke character.

Theorem B is a first step towards the generalization to an arbitrary totally real field of the
work [DFG04] of Diamond, Flach and Guo on the Tamagawa number conjecture for Ad0(ρf,p)
over Q. When F is not Q, it is an open problem how to identify the periods ΩJ

f used in
Theorem B with the motivic periods attached to f used in the formulation of the Tamagawa
number conjecture.

1.2 General strategy of the proof

The method we use originates in the work of Wiles [Wil95] and Taylor–Wiles [TW95], later
developed by Diamond [Dia97b] and Fujiwara [Fuj06a].

Let ρ be as in Theorem A and let Σ be the finite set of primes of F not dividing p.
In § 4.2 we define the notion of a Σ-ramified deformations of ρ. By Mazur [Maz97] and
Ramakrishna [Ram93], the functor assigning to a local complete Noetherian O-algebra A with
residue field κ, the set of all Σ-ramified deformations of ρ to A, is representable by an O-
algebra RΣ, called the universal deformation ring. Since ρ is absolutely irreducible and odd,
RΣ is topologically generated as O-algebra by traces of images of elements of GF (cf. [Wil95,
pp. 509–510]). Moreover, by the Cebotarev density theorem, it is enough to take traces of images
of Frobenius elements outside a finite set of primes.

Let S be a large finite set of primes and let TΣ be the O-subalgebra of
∏
f O generated

by (ιp(c(f, v)))v/∈S where f runs over all Hilbert modular newforms of weight k such that ρf,p
is a Σ-ramified deformation of ρ. The O-algebra TΣ is local complete Noetherian and reduced.
By the above discussion TΣ does not depend on the choice of S and the natural homomorphism
RΣ →

∏
f O factors through a surjective homomorphism of local O-algebras πΣ : RΣ → TΣ. Then

Theorem A amounts to proving that πΣ is an isomorphism.

We follow Wiles’ method consisting of showing first that π∅ is an isomorphism (the minimal
case) and then in proving, by induction on the cardinality of Σ, that πΣ is an isomorphism
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(raising the level). In order to prove that RΣ is ‘not too big’ we use Galois cohomology via
Proposition 6.5. In order to prove that TΣ is ‘not too small’ we realize it geometrically as a
local component of the Hecke algebra acting on the middle degree cohomology of some Shimura
variety and then use this interpretation to study congruences.

It is on that last point that our approach differs from Fujiwara’s. Whereas Fujiwara uses some
quaternionic Shimura curves or Hida varieties of dimension zero, we use the d-dimensional Hilbert
modular variety. The main ingredient in our approach is a result from [Dim05] guaranteeing the
torsion freeness of certain local components of the middle degree cohomology of a Hilbert modular
variety, which is recalled in the next section.

In the minimal case our modularity result is strictly included in Fujiwara’s since we only
treat the case Pρ = ∅ (cf. Definition 4.2) and furthermore we do not consider the ordinary non-
crystalline case. On the other hand, our level raising results are new, thanks to an Ihara-type
lemma for the middle degree cohomology of Hilbert modular varieties (cf. Theorem 3.1). Our
proof relies substantially on the q-expansion principle, which is available for Hilbert modular
varieties.

Finally, let us observe that whereas modularity lifting results similar to Theorem A may
be obtained in various ways (cf. [SW99, SW01a, SW01b, Tay06] or [Kis09]), the use of the
cohomology of Hilbert modular varieties seems to be inevitable in order to obtain results on
the adjoint L-functions and Selmer groups such as Theorem B.

2. Cohomology of Hilbert modular varieties

In this section we state and prove a slightly more general version of a theorem in [Dim05]. We
take advantage of this opportunity to correct a wrong assumption in [Dim05], coming from a
mistake in [DT04]. We thank the referee for pointing out this error to us.

2.1 Hilbert modular varieties

Denote by Ẑ the profinite completion of Z and by A = (F ⊗ Ẑ) × (F ⊗Q R) the ring of adèles
of F . For a prime v, let ̟v denote a uniformizer of Fv.

For an open compact subgroup U of (o ⊗ Ẑ)× we denote by CU (respectively, C+
U ) the class

group A×/F×U(F ⊗Q R)× (respectively, the narrow class group A×/F×U(F ⊗Q R)×
+, where

(F ⊗Q R)×
+ denotes the open cone of totally positive elements in (F ⊗Q R)×).

For an open compact subgroup K of GL2(F ⊗ Ẑ) we denote by YK the Hilbert modular
variety of level K with complex points GL2(F )\GL2(A)/K · SO2(F ⊗Q R)(F ⊗Q R)×. By the
strong approximation theorem for GL2, the group of connected components of YK is isomorphic
to C+

det(K).

We consider the Hilbert modular varieties as analytic varieties, except in the proofs of
Theorem 3.1 and Propositions 3.3 and § 5.5 where we use integral models.

For an ideal n of o, we consider the following open compact subgroups of GL2(F ⊗ Ẑ):

K0(n) =

{(
a b
c d

)
∈ GL2(o ⊗ Ẑ)

∣∣∣∣ c ∈ n

}
, K1(n) =

{(
a b
c d

)
∈ K0(n)

∣∣∣∣ a − 1 ∈ n

}
,

K11(n) =

{(
a b
c d

)
∈ K1(n)

∣∣∣∣ d − 1 ∈ n

}
, and K(n) =

{(
a b
c d

)
∈ K11(n)

∣∣∣∣ b ∈ n

}
.

For ? = 0, 1, 11,∅ let Y?(n) be the Hilbert modular variety of level K?(n).
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Consider the following assumption:

(NT) n does not divide two, nor three, nor NF/Q(d).

In [DT04, Lemma 1.4] it is shown that under the assumption (NT), for all x ∈ GL2(F ⊗ Ẑ),
the group GL2(F ) ∩ xK1(n)x−1(F ⊗Q R)× SL2(F ⊗Q R) is torsion free. This is not sufficient to
claim that Y1(n) is smooth. Here is a corrected statement.

Lemma 2.1. (i) The variety YK is smooth if, and only if, for all x ∈ GL2(F ⊗ Ẑ), the quotient
of the group GL2(F ) ∩ xKx−1(F ⊗Q R)× SL2(F ⊗Q R) by its center is torsion free.

(ii) If n satisfies (NT), then Y11(n) is smooth.

(iii) Let u be a prime ideal of F above a prime number q such that:

• q splits completely in F (
√
ǫ | ǫ ∈ o×, for all τ ∈ JF , τ(ǫ)> 0); and

• q ≡ −1 (mod 4ℓ) for all prime numbers ℓ such that [F (ζℓ) : F ] = 2.

Then Y0(u) is smooth.

(iv) If K ′
✁K and YK is smooth, then YK′ is smooth and the natural morphism YK′ → YK

is étale with group K/K ′(K ∩ F×).

Proof. Claims (i) and (iv) are well known, claim (ii) follows easily from [DT04, Lemma 1.4]. We
omit the proof of claim (iii) since it is very similar to the proof of Lemma 2.2(i) given below. ✷

From now on, we only consider compact open subgroups K factoring as a product
∏
v Kv

over the primes v of F , such that Kv is maximal for all primes v dividing p and YK is smooth.
We denote by ΣK the set of primes v where Kv is not maximal.

For an O-algebra A, we denote by VA the sheaf of locally constant sections of

GL2(F )\(GL2(A) × VA)/K · SO2(F ⊗Q R)(F ⊗Q R)× −→ YK , (2)

where VA denotes the algebraic irreducible representation
⊗

τ∈JF
(det(w0−kτ )/2+1 ⊗ Symkτ −2 A2)

of GL2(A)JF ∼= GL2(o ⊗ A) and K acts on the right on VA via its p-component
∏
v|p Kv.

Note that for K ′ ⊂ K, there is a natural projection pr : YK′ → YK and pr∗ VA = VA. For
g ∈ GL2(F ⊗ Ẑ) ∩ M2(o ⊗ Ẑ) we define the Hecke correspondence [KgK] on YK by the usual
diagram.

YK∩gKg−1
pr1

wwooooooo

·g
// Yg−1Kg∩K

pr2

''OOOOOOO

YK YK

(3)

The Hecke correspondences act naturally on the left on the Betti cohomology groups
H•(YK , VA) and on those with compact support H•

c(YK , VA) (cf. [Hid88, § 7]). If Kv
∼=

GL2(ov), we define the standard Hecke operators Tv = [Kv

(
1 0
0 ̟v

)
Kv] = [Kv

(
̟v 0
0 1

)
Kv] and

Sv = [Kv

(
̟v 0
0 ̟v

)
Kv] = [

(
̟v 0
0 ̟v

)
Kv].

2.2 Adjoint Hilbert modular varieties

For an open compact subgroup K of GL2(F ⊗ Ẑ) we define the adjoint Hilbert modular variety
of level K:

Y ad
K = GL2(F )\GL2(A)/A×K · SO2(F ⊗Q R). (4)

Again, we have Betti cohomology groups H•(Y ad
K , VA) and Hecke action on them. In

particular, if Kv = GL2(ov), there is a Hecke operator Tv (the operator Sv acts by NF/Q(v)w0).
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We call Y ad
K adjoint since it can be rewritten in terms of the adjoint group PGL2 as follows:

Y ad
K = PGL2(F )\PGL2(A)/K · PSO2(F ⊗Q R), (5)

where K is the image of K in PGL2(F ⊗ Ẑ).

The group of connected components of YK is isomorphic to the quotient of C+
det(K)

by the image of A×2, hence it is a 2-group. If det(K) = (o ⊗ Ẑ)×, then the group of
connected components of YK is isomorphic to the narrow class group C+

F of F , while the
group of connected components of Y ad

K is isomorphic to the genus group C+
F /C2

F
∼= C+

F /(C+
F )2.

Each connected component of Y ad
K can be defined more classically using the Hurwitz–Maass

extension of the Hilbert modular group.

Lemma 2.2. (i) Let u be a prime ideal of F above a prime number q, such that:

• q splits completely in the ray class field of F modulo 4; and

• q ≡ −1 (mod 4ℓ) for all prime numbers ℓ such that [F (ζℓ) : F )] = 2.

Then Y ad
0 (u) is smooth.

(ii) If K ′
✁K and Y ad

K is smooth, then Y ad
K′ is smooth and the natural morphism Y ad

K′ → Y ad
K

is étale with group K/K ′(K ∩ A×).

Proof. We show by contradiction that for all x ∈ GL2(F ⊗ Ẑ), the quotient of the group
GL2(F ) ∩ xK0(u)x−1A× SL2(F ⊗Q R) by its center is torsion free. Suppose that we are given
an element γ in that group which is torsion of prime order ℓ in the quotient. Consider the
(quadratic) extension F [γ] = F [X]/(X2 − tr γX + det γ) of F . Since γu ∈ K0(u)F×

u , it follows
that u splits in F [γ]/F .

If ℓ is odd, then necessarily F [γ] = F (ζℓ). Our second assumption on q implies then that u is
inert in F [γ], which is a contradiction.

If ℓ= 2, then tr γ = 0 and det γ ∈ F× ∩ (Ẑ ⊗ o)×A×2. By class field theory, the extension
F (

√
det γ) corresponds to a quotient of the class group C

(1+4Ẑ⊗o)× , hence by our first assumption

on q, u splits in F (
√

det γ). On the other hand, by the second assumption u is inert in F (
√

−1),
hence u is inert in F (

√
−det γ) = F [γ], which is a contradiction.

This proves part (i). The proof of part (ii) is left to the reader. ✷

2.3 Twisted Hilbert modular varieties and Hecke operators

Let U be an open compact subgroup of (o ⊗ Ẑ)× and let K be an open compact subgroup
of GL2(F ⊗ Ẑ) such that K11(n) ⊂ K ⊂ K0(n), for some ideal n ⊂ o. Assuming that U and K
decompose as a product over all primes v, so does the group

K ′ = {x ∈ K | det(x) ∈ U}. (6)

We define the twisted Hecke operators T ′
v = [K ′

v

(
1 0
0 ̟v

)
K ′
v] and S′

v = [K ′
v

(
̟v 0
0 ̟v

)
K ′
v], for

v ∤ n, and U ′
v = [K ′

v

(
1 0
0 ̟v

)
K ′
v], for v | n.

Note that if v /∈ ΣK′ , then T ′
v, S

′
v and U ′

v coincide with the standard Hecke operators. In
general, they depend on the choice of ̟v in the following way: if we replace ̟v by ̟′

v, then
T ′
v and U ′

v are multiplied by the invertible Hecke operator Uδ := [K ′
v

(
1 0
0 δ

)
K ′
v] =

(
1 0
0 δ

)
K ′
v, with

δ =̟′
v/̟v ∈ o×

v , whereas S′
v is multiplied by its square.

For a Hecke character ψ of CK′ ∩A× , we denote by [ψ] the ψ-isotypic part for the action of the
Hecke operators SvNF/Q(v)−w0 , v /∈ ΣK′ .
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For a character ν of (o ⊗ Ẑ)×, trivial on U , we denote by [ν] the ν-isotypic part for the action
of the Hecke operators Uδ for δ ∈ o×

v .

2.4 Freeness results

Consider the maximal ideal mρ = (̟, Tv − tr(ρ(Frobv)), Sv − det(ρ(Frobv))NF/Q(v)−1) of the

abstract Hecke algebra TS = O[Tv, Sv | v /∈ S], where S is a finite set of primes containing
ΣK ∪ {v | p}.

Theorem 2.3. Let K =
∏
v Kv ⊂ GL2(F ⊗ Ẑ) be an open compact subgroup, maximal at

primes v dividing p and such that YK is smooth. Under the assumptions (Modρ) and (LIInd ρ):

(i) H•
c(YK , VO)mρ = H•(YK , VO)mρ = Hd(YK , VO)mρ is a free O-module of finite rank;

(ii) H•(YK , VE/O)mρ = Hd(YK , VE/O)mρ is a divisible O-module of finite corank and the

Pontryagin pairing Hd(YK , VO)mρ × Hd(YK , VE/O)mρ → E/O is a perfect duality.

Moreover, if Y ad
K is smooth, then parts (i) and (ii) remain valid when we replace YK by Y ad

K .

Proof. For K =K1(n) the theorem is proved in [Dim05, Theorems 4.4 and 6.6], except for the
following issues.

• The assumption (LIInd ρ) in [Dim05, § 3.5] is formulated as follows: the restriction of ρ to
G
F̃

is irreducible of order divisible by p, and is not a twist by a character of any of its other
d − 1 internal conjugates. This is clearly implied by (LIInd ρ). Conversely, if the assumption
from [Dim05, § 3.5] holds, then by [Dim05, Lemma 6.5] every irreducible G

F̃
-representation

annihilated by the characteristic polynomial of (⊗ IndQF ρ)|G
F̃

is isomorphic to (⊗ IndQF ρ)|G
F̃
,

so in particular (⊗ IndQF ρ)|G
F̃

is irreducible. Therefore, these assumptions are equivalent.

• Theorem 4.4 is proved under the assumption (MW). However, this assumption is only
used through [Dim05, Lemma 4.2] and under the assumption (LIInd ρ) we can apply the
stronger [Dim05, Lemma 6.5], hence the results of [Dim05, Theorems 4.4] remain valid.

• The part of (Modρ) assuming that ρ is modular is only used through the knowledge of its
weights for the tame inertia. Actually, the proof only uses the fact that the highest weight∑

τ∈JF
((w0 + kτ )/2) occurs with multiplicity one in the tame inertia action of ⊗ IndQF ρ.

This fact is a consequence from [Dim05, Corollary 2.7(ii)] and the theory of Fontaine–
Laffaille, if we assume that p − 1 is bigger than

∑
τ∈JF

((w0 + kτ )/2). In contrast to the
claim made in [Dim05], assuming that p − 1 is bigger than

∑
τ∈JF

(kτ − 1), which is
the difference between the highest and the lowest weights, is not sufficient for both the
above argument and for Faltings’ comparison theorem.

Let us now explain how these results extend to more general level structures. Observe first that
a conjugate ofK has a normal subgroup of the formK(n) for some ideal n ⊂ o. Hence, a conjugate
of K contains K11(n) ∩ K0(n

2) as a normal subgroup. Therefore, YK admits a finite étale cover
isomorphic to YK11(n)∩K0(n2), and the latter has a finite abelian cover Y 1

11(n
2) :=

∐
c
M1

1 (c, n2),

where c runs over a set of representatives of C+

(1+Ẑ⊗n2)×
and M1

1 (c, n2) are the fine moduli spaces

defined in [Dim05, § 1.4]. The following morphisms of Hilbert modular varieties are étale:

Y 1
11(n

2) // Y11(n
2) // YK11(n)∩K0(n2) // YK // Y ad

K . (7)

Recall that eachM1
1 (c, n2) is a fine moduli space admitting an arithmetic model endowed with

a universal Hilbert–Blumenthal abelian variety. In [Dim05, DT04] one proves various geometric
results concerning M1

1 (c, n), such as the existence of minimal compactifications, the existence of
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proper smooth toroidal compactifications over Zp and the extension of certain vector bundles to
these compactifications, the construction of a Berstein–Gelfand–Gelfand complex for distribution
algebras over O, having as consequence the degeneracy at E1 of the Hodge to de Rham spectral
sequence. By applying those constructions to each component of Y 1

11(n
2), it follows that the

highest weight
∑

τ∈JF
((w0 + kτ )/2) of ⊗ IndQF ρ does not occur in Hi(Y 1

11(n
2)
Q
, Vκ) for i < d.

By [Dim05, Theorem 6.6] Hi(Y 1
11(n

2)
Q
, Vκ)mρ vanishes for i < d (it is important observe that the

Hodge to de Rham spectral sequence is TS-equivariant; we refer to [Dim05, § 2.4] for a geometric
definition of the Hecke correspondences).

If YK′′ → YK′ is an étale morphism of smooth Hilbert modular varieties with group ∆, the
corresponding Hoschild–Serre spectral sequence is Hecke equivariant and yields

Ej,i2 = Hj(∆,Hi(YK′′ , Vκ)mρ) ⇒ Hi+j(YK′ , Vκ)mρ . (8)

Starting from the vanishing of Hi(Y 1
11(n

2), Vκ)mρ for i < d, then applying (8) to the morphisms

of (7) yields the vanishing of Hi(YK , Vκ)mρ and Hi(Y ad
K , Vκ)mρ) for i < d. The theorem then

follows by exactly the same arguments as in [Dim05, Theorems 4.4 and 6.6]. ✷

Proposition 2.4. Suppose that we are given an étale morphism of smooth Hilbert modular
varieties YK → YK′ with group ∆. Assume that ∆ is an abelian p-group and that O is large
enough to contain the values of all of its characters. Then, under the assumptions (Modρ) and

(LIInd ρ), Hd(YK , VO)mρ is a free O[∆]-module and Hd(YK , VO)mρ ⊗O[∆] O ∼= Hd(YK′ , VO)mρ as

TS-modules.

Proof. By Theorem 2.3(i) Hd(YK , VO)mρ is free over O, hence by Nakayama’s lemma the desired

freeness over O[∆] is equivalent to the freeness of Hd(YK , VO)mρ ⊗O κ over Λ := κ[∆].

Since Λ is a local Artinial ring, freeness is equivalent to flatness. Hence, we have to show that
TorΛi (Hd(YK , Vκ)mρ , κ) = 0 for i > 0 and Hd(YK , Vκ)mρ ⊗Λ κ ∼= Hd(YK′ , Vκ)mρ .

We reproduce here Fujiwara’s perfect complex argument (cf. [Fuj06a, Lemma 8.16]) following
the presentation of Mokrane and Tilouine (cf. [MT02, § 10]).

Let C • be the Godement resolution of the sheaf Vκ on the (complex) variety YK . It has a
natural action of Λ and there is a hypertor spectral sequence:

Ei,j2 = TorΛ−i(H
j(C •), κ) ⇒ Hi+j(C • ⊗Λ κ).

By definition, Hj(C •) = Hj(YK , Vκ). Since YK → YK′ is étale with group ∆, it is a standard
property of Godement’s resolution that Hj(C • ⊗Λ κ) = Hj(YK′ , Vκ) (cf. [Fuj06a, Lemma 8.18]).
Hence, the spectral sequence becomes

Ei,j2 = TorΛ−i(H
j(YK , Vκ), κ) ⇒ Hi+j(YK′ , Vκ).

Since the Hecke operators are defined as correspondences, the spectral sequence is TS-equivariant
and we can localize it at mρ. By Theorem 2.3(i), we have Hd(YK , Vκ)mρ = 0, unless j = d.
Therefore, the mρ-localization of the spectral sequence degenerates at E2, and gives

TorΛ−i(H
d(YK , Vκ)mρ , κ)

∼= Hi+d(YK′ , Vκ)mρ .

Another application of Theorem 2.3(i) yields Hi+d(YK′ , Vκ)mρ = 0, unless i= 0.

Hence, TorΛ−i(H
d(YK , Vκ)mρ , κ) = 0, unless i= 0 in which case

Hd(YK , Vκ)mρ ⊗Λ κ= TorΛ0 (Hd(YK , Vκ)mρ , κ)
∼= Hd(YK′ , Vκ)mρ

as desired. ✷
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2.5 Poincaré duality

In this section we endow the middle degree cohomology of a Hilbert modular variety with various
pairings coming from the Poincaré duality.

We define a sheaf V∨
O on YK by replacing the GL2(O)JF -representation VO, in the definition

of VO in § 2.1, by its dual

V ∨
O =

⊗

τ∈JF

det (−w0−kτ )/2+1 ⊗ Symkτ −2(O2).

The cup product followed by the trace map induces a pairing:

[ , ] : Hd
c(YK , VO) × Hd(YK , V∨

O) → H2d
c (YK , O) → O, (9)

which becomes perfect after extending scalars to E. The dual of the Hecke operator [KxK] under
this pairing is the Hecke operator [Kx−1K] (cf. [Fuj06a, § 3.4]). In particular, for v /∈ S, the dual
of Tv (respectively, Sv) is TvS

−1
v (respectively, S−1

v ). We modify the pairing (9) in a standard
way, in order to make it Hecke equivariant.

First, the involution x 7→ x∗ = (det x)−1x of GL2 induces a natural isomorphism
Hd(YK , V∨

O) ∼= Hd(YK∗ , VO). Assume next that ιK∗ι−1 =K, where ι=
(

0 −1
n 0

)
for some ideal

n of o prime to p. Then ι∗VO ∼= VO and there is a natural isomorphism: Hd(YK∗ , VO) ∼=
Hd(YιK∗ι−1 , VO) = Hd(YK , VO). Since for all x diagonal ιx∗ι−1 = det(x∗)(x∗)−1 = x−1 we have
the following commutative diagram.

Hd
! (YK , V

∨
O)

∗
//

[Kx−1K]

��

Hd(YK∗ , VO)
[ιK∗]

//

[K∗(x−1)∗K∗]

��

Hd(YιK∗ι−1 , VO) Hd(YK , VO)

[KxK]

��

Hd(YK , V∨
O)

∗
// Hd(YK∗ , VO)

[ιK∗]
// Hd(YιK∗ι−1 , VO) Hd(YK , VO)

(10)

By composing the pairing (9) with the first line in the diagram we obtain a new pairing:

〈 , 〉 = [ , ι(∗)] : Hd
c(YK , VO) × Hd(YK , VO) → O, (11)

that we call the modified Poincaré pairing. It has the advantage of being equivariant for all of
the Hecke operators [KxK] with x diagonal (this is not a restrictive assumption as long as we
are concerned with commutative Hecke algebras). In particular, the pairing (11) is TS-linear,
and under the assumptions of Theorem 2.3(i) its mρ-localization yields a perfect duality of free
O-modules:

〈 , 〉 : Hd(YK , VO)mρ × Hd(YK , VO)mρ → O. (12)

We now introduce a variant of this pairing for cohomology groups with fixed central character.
Let ψ be a character of CK∩A× . Consider the sheaf Vψ

O of locally constant sections of

GL2(F )\(GL2(A) × VO)/A×(p)K SO2(F ⊗Q R) −→ Y ad
K , (13)

where the prime to p idèles A×(p) act on VO via ψ| · |−w0/| · |−w0∞ . Since ψ is trivial on K ∩ A×,
this is compatible with the action of K on VO. The cup product followed by the trace map
induces a pairing:

[ , ] : Hd
c(Y

ad
K , Vψ

O) × Hd(Y ad
K , (Vψ

O)∨) → H2d
c (Y ad

K , O) → O, (14)

and again, the action of the Hecke operator [KxK] is dual to the action of [Kx−1K]. Note that

the involution x 7→ x∗ sends the sheaf (Vψ
O)∨ to Vψ

O. Similarly to (11) we define the TS-linear
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modified Poincaré pairing:

〈 , 〉 = [ , ι(∗)] : Hd
c(Y

ad
K , Vψ

O) × Hd(Y ad
K , Vψ

O) → O. (15)

Finally, under the assumptions of Theorem 2.3(i) there is a natural isomorphism

Hd(YK , VO)[ψ]mρ
∼= Hd(Y ad

K , Vψ
O)mρ and a perfect duality of free O-modules:

〈 , 〉 : Hd(YK , VO)[ψ]mρ × Hd(YK , VO)[ψ]mρ → O. (16)

3. Ihara’s lemma for Hilbert modular varieties

Recall our running assumptions that K factors as a product
∏
v Kv over the primes v of F , that

Kv is maximal for all primes v dividing p and that YK is smooth.

Let q be a prime not dividing p and let S be a finite set of primes containing those dividing
pq and the set of primes ΣK where K is not maximal.

Consider the maximal ideal mρ = (̟, Tv − tr(ρ(Frobv)), Sv − det(ρ(Frobv))NF/Q(v)−1) of the

abstract Hecke algebra TS = O[Tv, Sv | v /∈ S]. The Betti cohomology groups Hd(YK , VO) defined
in § 2.1 are modules over TS .

3.1 Main theorem

Fix a finite index subgroup U of o×
q , and suppose that Kq = {x ∈ GL2(oq) | det(x) ∈ U}. In § 2.3

we defined Hecke operators T ′
q, S

′
q (respectively, U ′

q) acting on Hd(YK , VA) (respectively, on

Hd(YK∩K0(q), VA)).

Consider the degeneracy maps pr1, pr2 : YK∩K0(q) → YK used in the definition of the Hecke
correspondence T ′

q.

Theorem 3.1. Assume that (Modρ) and (LIInd ρ) hold. Then the mρ-localization of the

TS-linear homomorphism:

pr∗
1 + pr∗

2 : Hd(YK , VO)⊕2 → Hd(YK∩K0(q), VO)

is injective with flat cokernel.

Proof. Our proof is geometric and relies on the existence of smooth models YK (respectively,
YK∩K0(q)) of YK (respectively, YK∩K0(q)) over an unramified extension of Zp and on the existence
of smooth toroidal compactifications thereof. One should be careful to observe that K ∩ K0(q)
is maximal at primes dividing p. By the Betti-étale comparison isomorphism the cohomology
groups

W := Hd(YK,Q, Vκ)mρ and W0(q) := Hd(YK∩K0(q),Q, Vκ)mρ ,

are endowed with a structure of TS [GQ] modules. The theorem is equivalent to the injectivity of
TS [GQ]-linear homomorphism:

pr∗
1 + pr∗

2 :W⊕2 → W0(q).

1123

https://doi.org/10.1112/S0010437X09004205 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004205


M. Dimitrov

The image of TSmρ
in Endκ(W ) is a local Artinian ring and (mi

ρW )i>0 is a finite

decreasing filtration of W by TS [GQ]-modules. By the torsion freeness result in Theorem 2.3(i),
both W and the graded pieces mi

ρW/m
i+1
ρ W are quotients of two TS [GQ]-stable O-lattices

in Hd(YK,Q, VO)mρ ⊗O E. By a theorem of Brylinski and Labesse [BL84], it follows that the

characteristic polynomial of ⊗ IndQF ρ annihilates the κ[GQ]-module mi
ρW/m

i+1
ρ W (cf. also [Dia98,

Lemma 3]). It follows then from (LIInd ρ) and [Dim05, Lemma 6.5] that every G
F̃
-irreducible

subquotient ofW is isomorphic to ⊗ IndQF ρ. The same arguments apply also to W0(q). Therefore,
we can check the above injectivity by checking it on the last graded pieces of the corresponding
Fontaine–Laffaille modules.

By Faltings’ étale-crystalline comparison theorem and the degeneracy of the Hodge to
de Rham spectral sequence (cf. [Dim05, Theorem 5.13]) the claim would follow from the following
lemma (although this part of the argument relies on the existence of toroidal compactifications
of YK and YK∩K0(q), by Köcher’s principle we can omit them as long as we are concerned with

global sections of the invertible bundle ωk ⊗ ν−w0/2; cf. [Dim05, §§ 1.5 and 1.7]). ✷

Lemma 3.2. The following homomorphism is injective

pr∗
1 + pr∗

2 : H0(YK/κ, ω
k ⊗ ν−w0/2)⊕2 → H0(YK∩K0(q)/κ, ω

k ⊗ ν−w0/2).

Proof. Let (g′, g) be an element of the kernel: pr∗
1(g

′) = − pr∗
2(g).

Since the homomorphism is U ′
q-equivariant for the U ′

q-action on the left-hand side given by the

matrix
( T ′

q 1

−S′
qNF/Q(q) 0

)
, we may assume that (g′, g) is an eigenvector for U ′

q. Similarly may assume

that g′ is an eigenvector for S′
q. This implies that g′ is a multiple of g, hence pr∗

2(g) = −pr∗
1(g

′)
is a multiple of pr∗

1(g). On the other hand, pr∗
1(g) has the same q-expansion as g, whereas the

q-expansions of pr∗
2(g) and g are related as follows: for every x ∈ F ⊗ Ẑ,

c(pr∗
2(g), x) =

{
c(g, x̟−1

q ) if xq̟
−1
q ∈ oq,

0 otherwise.
(17)

It follows that c(g, x) = 0 for all x, which in virtue of the q-expansion principle implies g = 0.
The proof of Theorem 3.1 is now complete. ✷

3.2 More cohomological results

Fix a finite index subgroup U of o×
q , and suppose that Kq = {x ∈ K1(q

c−1) | det(x) ∈ U}, for
some integer c > 1. Consider the degeneracy maps

pr1, pr2 : YK∩K1(qc) → YK∩K0(qc) → YK and

pr3, pr4 : YK∩K1(qc)∩K0(qc+1) → YK∩K1(qc),
(18)

used in the definition of the Hecke correspondence U ′
q in § 2.3.

Proposition 3.3. Assume that (Modρ) and (LIInd ρ) hold. Then the mρ-localization of the

TS-linear sequence:

0 → Hd(YK , VO)
(pr∗

1,−pr∗
2)−−−−−−−→Hd(YK∩K1(qc), VO)⊕2 pr∗

3 + pr∗
4−−−−−−−→Hd(YK∩K1(qc)∩K0(qc+1), VO)

is exact and the last arrow has flat cokernel.
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Proof. We follow closely Fujiwara’s argument [Fuj06a, Proposition 5.13], except for the last part
of it where we use a geometric argument instead (Fujiwara uses open compact subgroups which
do not satisfy our running assumption to be maximal at primes dividing p).

It is enough to prove the exactness after tensoring with κ, which by Theorem 2.3(i) amounts
to replacing VO by Vκ. Put K0 =K, K1 =K ∩ K1(q

c),

K2 =

(
̟q 0
0 1

)
(K ∩ K1(q

c))

(
̟−1

q 0

0 1

)
, and

K3 =

(
̟q 0
0 1

)
(K ∩ K1(q

c) ∩ K0(q
c+1))

(
̟−1

q 0

0 1

)
=K ∩ K1(q

c) ∩ K0(q),

where K0(q) =
(
̟q 0
0 1

)
K0(q)

(
̟−1

q 0
0 1

)
is the opposite parahoric subgroup.

For i= 0, 1, 2, 3 put Yi = YKi . By the above computations it is equivalent then to prove the
exactness of the sequence:

0 → Hd(Y0, Vκ)mρ

(pr′
1

∗,−pr′
2

∗)−−−−−−−−−→Hd(Y1, Vκ)mρ ⊕ Hd(Y2, Vκ)mρ

pr′
3

∗+pr′
4

∗

−−−−−−−→Hd(Y3, Vκ)mρ ,

where

Y3pr′
3

yysssss pr′
4

%%KKKKK

pr

��

Y1

pr′
1

%%KKKKK Y2

pr′
2

yysssss

Y0

and the projections are induced by the inclusion of the open compact subgroups.

Taking models of the Yi (0 6 i 6 3) over Q and using Betti-étale comparison isomorphisms
turns the above sequence into a sequence of TS [GQ]-modules Wi := Hd(Yi,Q, Vκ)mρ . As in the
proof of Theorem 3.1, the condition (LIInd ρ) implies that every G

F̃
-irreducible subquotient of

Wi (0 6 i 6 3) is isomorphic to ⊗ IndQF ρ. Therefore, it is enough to check the exactness on the
last graded pieces of the Fontaine–Laffaille modules. This is the object of the following result. ✷

Lemma 3.4. The following sequence is exact:

0 → H0(Y0/κ, ω
k ⊗ ν−w0/2)

(pr′
1

∗,−pr′
2

∗)−−−−−−−−−→

→ H0(Y1/κ, ω
k ⊗ ν−w0/2) ⊕ H0(Y2/κ, ω

k ⊗ ν−w0/2)
pr′

3
∗+pr′

4
∗

−−−−−−−→H0(Y3/κ, ω
k ⊗ ν−w0/2). (19)

Proof. We adapt the analytic argument of [Fuj06a, Lemma 5.14] in order to show that the
coproduct Y1

∐
Y3

Y2 is isomorphic to Y0 as κ-schemes.

For 0 6 i 6 3, there exists a fine moduli scheme Y 1
i such that Y 1

i → Yi is a finite étale with
group

∆i =
F×

+ ∩ det(Ki)

(F× ∩ Ki)2
,

where ∆1 = ∆2 = ∆3 ։ ∆0 (recall that by definition Y 1
i has the same number of connected

components as Yi). Since Y 1
i → Y 1

0 is ∆i-equivariant (where the action on Y 1
0 is via the surjection

∆i ։ ∆0), we have Yi
∐

Y 1
i

Y 1
0

∼= Y0 for all i. Hence, it is enough to show that Y 1
1

∐
Y 1

3
Y 1

2
∼= Y 1

0 .
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We show this claim using the following functorial description of the Y 1
i :

(i) Y 1
0 classifies polarized Hilbert–Blumenthal abelian varieties A with µqc−1-level structure P

and some additional level structures that we ignore since they are the same for Y 1
i for all

0 6 i 6 3;

(ii) Y 1
1 classifies polarized Hilbert–Blumenthal abelian varieties A with µqc-level structure Q;

(iii) Y 1
2 classifies polarized Hilbert–Blumenthal abelian varieties A with a µq-subgroup C and a

µqc-level structure Q in A/C;

(iv) Y 1
3 classifies polarized Hilbert–Blumenthal abelian varieties A with µqc-level structure Q

and a µq-subgroup C disjoint from the group generated by Q.

The morphisms pr′
j in the diagram above come from forgetful functors described as follows:

(i) pr′
1(A, Q) = (A, Qq), where Qq is the µqc−1-level structure deduced from Q obtained by

composing with the dual µqc−1 →֒ µqc of the natural projection o/qc → o/qc−1;

(ii) pr′
2(A, Q, C) = (A, Q

q
) where it is important to observe that Q

q
is a well-defined µqc−1-level

structure on A (not only in A/C);

(iii) pr′
3(A, Q, C) = (A, Q);

(iv) pr′
4(A, Q, C) = (A, Q mod C, C), where Q mod C is a µqc-level structure on A/C, since

C is disjoint from the group generated by Q.

We have pr′
1 ◦ pr′

3(A, Q, C) = (A, Qq) = (A, (Q mod C)q) = pr′
2 ◦ pr′

4(A, Q, C).

We have to show that given any two homomorphisms h1 : Y 1
1 → X and h2 : Y 1

2 → X such that
h1 ◦ pr′

3 = h2 ◦ pr′
4, there exists a unique homomorphism h0 : Y 1

0 → X such that h1 = h0 ◦ pr′
1

and h2 = h0 ◦ pr′
2. By the functorial description of the Y i

0 and the pr′
j the claim is reduced to

a simple lemma from group theory saying that, if K0 is generated by K1 and K2, then the
coproduct K0/K1

∐
K0/K3

K0/K2 =K0/K1
∐
K0

K0/K2 is a singleton.

Hence, Y1
∐

Y3
Y2

∼= Y0 yielding an exact sequence of sheaves over Y0:

0 → ωk ⊗ ν−w0/2 → pr′
1 ∗ pr′

1
∗ωk ⊗ ν−w0/2 ⊕ pr′

2 ∗ pr′
2

∗ωk ⊗ ν−w0/2 → pr∗ pr∗ ωk ⊗ ν−w0/2.

Since the functor of global sections is left-exact, this implies the lemma. ✷

4. Twisting

Let ρ : GF → GL2(κ) be a totally odd, absolutely irreducible representation.

4.1 Local twist types

For a prime v of F , we identify GFv with a decomposition subgroup of GF and denote by Iv its
inertia subgroup. Let ρv be the restriction of ρ to GFv . We normalize the local class field theory
isomorphism so that the uniformizer ̟v corresponds to the geometric Frobenius.

Over a totally real field F , twists of minimal conductor exist locally, but not necessarily
globally. This observation motivates the following definition, due to Fujiwara.

Definition 4.1. Let v be a prime of F not dividing p. A local twist type character for ρv is a
character νv : GFv → κ× such that ρv ⊗ νv

−1 has minimal conductor amongst all twists of ρv by
characters of GFv . For any prime v we choose once and for all a local twist-type character νv and
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use the same notation for the character of F×
v coming from local class field theory. For simplicity,

we choose ̟v and νv, so that νv(̟v) = 1. Denote by ν the character
∏
v νv of (o ⊗ Ẑ)×.

Definition 4.2. Let Σρ be the set of primes v not dividing p such that ρv ⊗ νv
−1 is ramified.

Let Sρ be the set of primes v ∈ Σρ such that ρv is reducible.

Let Pρ be the set of primes v ∈ Σρ such that ρv is irreducible but ρv|Iv is reducible, and
NF/Q(v) ≡ −1 (mod p).

Note that Σρ, Sρ and Pρ do not change when we twist ρ by a character.

4.2 Minimally ramified deformations

For a character µ taking values in κ×, we denote by µ̃ its Teichmüller lift.

Let A be a local complete Noetherian O-algebra with residue field κ and ρ̃v : GFv → GL2(A)
be a lifting of ρv. For F = Q, the following definition coincides with the notion introduced
in [Dia97a].

Definition 4.3. We say that ρ̃v is a minimally ramified if det ρ̃v|Iv = d̃et ρv|Iv and, in addition:

• if v /∈ Σρ, then ρ̃v ⊗ ν̃−1
v is unramified;

• if v ∈ Sρ, then (ρ̃v ⊗ ν̃−1
v )Iv 6= 0;

• if v ∈ Pρ and (ρv ⊗ µ−1
v )Iv 6= 0 for some character µv : Iv → κ×, then (ρ̃v ⊗ µ̃−1

v )Iv 6= 0.

Remark 4.4. (i) If ρ̃v is a minimally ramified lifting of ρv, then ρ̃v ⊗ µ̃ is a minimally ramified
lifting of ρv ⊗ µ for all characters µ : GFv → κ×.

(ii) If ρ̃v is a minimally ramified lifting of ρv, then the Artin conductors of ρ̃v and ρv coincide
and det ρ̃v|Iv is the Teichmüller lift of det ρv|Iv . The converse holds if ρv has minimal conductor
among its twists and v /∈ Pρ (cf. [Dia97a, Remark 3.5]).

Let χp : GF → Z×
p be the p-adic cyclotomic character.

Definition 4.5. Let φ : GF → O × be a finite p-power order character of conductor prime to p.
Define ψ : GF → O × as the unique character such that ψφ−2 is the Teichmüller lift of (χw0+1

p

mod p) · det ρ.

Definition 4.6. Let Σ be a finite set of primes of F not dividing p. Let A be a local complete
Noetherian O-algebra with residue field κ. We say that a deformation ρ̃ : GF → GL2(A) of ρ to
A is Σ-ramified, if the following three conditions hold:

• ρ̃ ⊗ φ−1 is minimally ramified at all primes v /∈ Σ, v ∤ p (cf. Definition 4.3);

• ρ̃ is crystalline at each prime v dividing p with Hodge–Tate weights ((w0 − kτ )/2 + 1, (w0 +
kτ )/2)τ∈JFv

;

• det ρ̃= χ−w0−1
p ψ.

A ∅-ramified deformation is called minimally ramified.

Note that if ρf,p is a Σ-ramified deformation of ρ, then the central character of f has to be
ψ| · |−w0 . Since p is odd, every p-power character of GF has a square root, hence the determinant
of any finitely ramified low-weight crystalline deformation of ρ is of the form χ−w0−1

p ψ, for some ψ
as above.
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4.3 Auxiliary level structures

Under the assumption (LIInd ρ), which implies in particular that the restriction of ρ to the
absolute Galois group of any totally real extension of F is absolutely irreducible, a standard
argument (cf. [Jar99b, § 12]) using the Cebotarev density theorem implies that there exist
infinitely many primes u of F as in Lemma 2.2(i), such that:

(i) NF/Q(u) 6≡ 1 (mod p) and

(ii) φ and ρ are unramified at u; and tr(ρ(Frobu))2 6≡ ψ(u)NF/Q(u)w0(NF/Q(u) + 1)2 (mod ̟).

In particular, this implies that Lu(Ad0(ρ), 1) ∈ κ×. Let us fix such a prime u and denote by
αu and βu the eigenvalues of ρ(Frobu).

Lemma 4.7. The natural projection TPρ∪{u} → TPρ is an isomorphism.

Proof. This amounts to proving that if f is a newform of weight k, central character ψ| · |−w0

and level prime to p, and if ρf,p is a deformation of ρ, then the local component πu of the
associated automorphic representation π is unramified. Since ρu is unramified, if πu is ramified,
then necessarily the valuation of its conductor is one or two. Since πu has unramified central

character this implies that dim π
K0(u)
u = 1 or dim π

K0(u2)
u = 1. In the first case πu is a special

representation, hence αu ≡ βuNF/Q(u)±1 (mod ̟). In the second case πu is either a ramified
principal series, in which case NF/Q(u) ≡ 1 (mod p), or a supercuspidal representation, in which
case NF/Q(u) ≡ −1 (mod p) and tr(ρ(Frobu)) ≡ 0 (mod ̟). In both cases this contradicts our
assumptions. ✷

By Lemmas 2.1(iii) and 2.2(i), for all K ⊂ K0(u), YK and Y ad
K are smooth. However, by

Lemma 4.7 the additional level at u does not modify the local components of the Hecke algebras
and cohomology modules that we consider, hence we omit it in our notation.

4.4 Level structures and Hecke operators associated with ρ

The cohomology of the Hilbert modular varieties for the level structures that we introduce in
this section play an important role in the study of modular deformations of ρ.

For v not dividing p denote by cv be the valuation of the Artin conductor of ρv ⊗ νv
−1 and

by dv the dimension of (ρv ⊗ ν−1)Iv (cf. Definition 4.1). Put cv = dv = 0 if v divides p. Define

K ′
v = ker(K1(v

cv)
det−→ o×

v
ν̃vφ−→ O ×), and

K ′′
v = ker(K1(v

cv) ∩ K0(v
cv+dv)

det−→ o×
v

ν̃vφ−→ O ×).
(20)

For all but finitely many primes v, we have νv|
o

×
v

= φ|
o

×
v

= 1.

For a prime u as in Lemma 2.2(i) and a finite set of primes Σ of F not dividing p we put
nΣ = u

∏
v∈Σ v

cv+dv
∏
v/∈Σ v

cv and

KΣ =K0(u) ∩
∏

v∈Σ

K ′′
v

∏

v/∈Σ

K ′
v ⊂ K0(nΣ) and Kρ =K∅. (21)

As in § 2.3 we define Hecke operators Uδ :=
(
1 0
0 δ

)
K ′
v and Sδ :=

(
δ 0
0 δ

)
K ′
v, for all v where δ ∈ o×

v ;

T ′
v = [K ′

v

(
1 0
0 ̟v

)
K ′
v] and S′

v = [K ′
v

(
̟v 0
0 ̟v

)
K ′
v] for v /∈ Σ such that cv = 0; U ′

v = [K ′
v

(
1 0
0 ̟v

)
K ′
v] for

v /∈ Σ such that cv > 0; U ′′
v = [K ′′

v

(
1 0
0 ̟v

)
K ′′
v ] for v ∈ Σ.
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Let Q be a finite set of primes q of F such that NF/Q(q) ≡ 1 (mod p). Put

K0,Q =Kρ ∩
∏

q∈Q
K0(q) and KQ =Kρ ∩

∏

q∈Q
KQ

q (22)

where KQ
q is the kernel of the composition of K0(q) → (o/q)×,

(
a b
c d

)
7→ aq/dq with the natural

projection from (o/q)× to its p-Sylow ∆q.

For q ∈ Q and δ ∈ o×
q , the operator Sδ := [

(
δ 0
0 δ

)
KQ

q ] is trivial, the operator Uδ :=

[KQ
q

(
1 0
0 δ

)
KQ

q ] depends only on the image of δ in ∆q, and the operator Uq := [KQ
q

(
1 0
0 ̟q

)
KQ

q ]
depends on the choice of ̟q as described in § 2.3.

4.5 Decomposing the central action

Since our aim is to study automorphic forms with fixed central character, we only consider open
subgroups K ⊂ Kρ such that K ∩ A× =Kρ ∩ A×. Consider the idèle class group

Cρ := CKρ∩A× . (23)

The natural inclusions induce the following commutative diagram, where all morphisms are
étale for the indicated (abelian) groups.

Yρ

Cρ

��

F×K1(n∅)/F×Kρ
// Y1(n∅)

C
(1+Ẑ⊗n∅)×

��

Y ad
ρ

A×K1(n∅)/A×Kρ
// Y ad

n∅

(24)

If v ∈ Σρ the p-Sylow subgroup of (o/v)× injects naturally in A×K1(n∅)/A×Kρ (a fortiori in
F×K1(n∅)/F×Kρ), hence acts freely on Y ad

ρ and Yρ. It follows that the étale morphism Yρ → Y ad
n∅

factors through an étale morphism Yρ → Y ∆
ρ with group the p-group

∆φ
ρ = (p-Sylow of Cρ) ×

∏

v∈Σρ

(o×
v /ker(φv)). (25)

Recall that [ψ] denotes the ψ-isotypic part for the action of the Hecke operators
S′
vNF/Q(v)−w0 , v /∈ Σρ, where ψ is seen as a finite-order Hecke character of Cρ, and that [φν̃]

denotes the intersection of the φvν̃v-isotypic parts for the action of the Hecke operators Uδ for
δ ∈ o×

v (cf. Definitions 4.1 and 4.5).

For v /∈ Σρ we have U2
δ = Sδ and since p is odd, the φv-action at those v is determined by the

action of the central character.

Hence, the [ψ, ν̃φ] part is the intersection of the [φ2, φ] part for the action of the p-group

∆φ
ρ with the [ψφ−2, ν̃]-isotypic part for the action of a prime to p order group. This geometric

description of the Hecke action of ∆φ
ρ will play an important role in the proof of Proposition 5.9.

5. Modularity of the minimally ramified deformations

Let ρ : GF → GL2(κ) be a continuous representation satisfying (LIIndρ) and (Modρ).

The main aim of this section is to prove the following.

1129

https://doi.org/10.1112/S0010437X09004205 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004205


M. Dimitrov

Theorem 5.1. Suppose that Pρ = ∅. Then all minimally ramified deformations of ρ are
modular.

In the notation of § 1.2, the above theorem amounts to prove that π : R ։ T is an isomorphism
(since Σ = ∅ in the entire section, we omit the subscripts). Our proof uses a stronger version,
due to Fujiwara [Fuj06a, § 2], of a method invented by Wiles [Wil95] and Taylor–Wiles [TW95]
and known as a Taylor–Wiles system (a similar formalism has been found independently by
Diamond [Dia97b]).

The construction of a Taylor–Wiles system occupies the entire section. It includes namely a
geometric realization of T as a Hecke algebra acting on the local component M at ρ of the middle
degree cohomology of a Hilbert modular variety. The torsion freeness of M is a crucial ingredient
(cf. Theorem 2.3(i)). Lemmas 5.4, 5.6 and 5.7 are proved using standard fact about automorphic
representations and local Langlands correspondence for GL(2), whereas Propositions 5.5, 5.8
and 5.9 use finer geometric arguments.

Note that Fujiwara’s formalism is not essential for us since we know that M is free over TPρ

and TPρ is Gorenstein. This fact is an important ingredient in the proof of Theorem A, and is
shown in Proposition 5.5 without assuming Pρ = ∅. Actually, we only assume Pρ = ∅ in § 5.6.

5.1 The formalism of Taylor–Wiles systems, following Fujiwara

Definition 5.2. Let Q be a family of finite sets of primes q of F such that NF/Q(q) ≡ 1 (mod p).

A Taylor–Wiles system for Q is a family {R, M, (RQ, MQ)Q∈Q } such that:

(TW1) RQ is a local complete O[∆Q]-algebra, where ∆Q =
∏

q∈Q ∆q and ∆q is the p-Sylow of

(o/q)×;

(TW2) R is a local complete O-algebra and there is an isomorphism of local complete O-
algebras RQ ⊗O[∆Q] O ∼= R;

(TW3) M is a non-zero R-module, and MQ is an RQ-module, free of finite rank over O[∆Q]
and such that MQ ⊗O[∆Q] O is isomorphic to M as R-module.

We denote by T the image of R → EndO(M).

When Q = {Qm|m ∈ N}, we write Rm, Mm, . . . instead of RQm , MQm , . . ..

Theorem 5.3 (Fujiwara [Fuj06a, § 2]). Let {R, (Rm, Mm)m∈N} be a Taylor–Wiles system.
Assume that for all m:

(i) for all q ∈ Qm, NF/Q(q) ≡ 1 (mod pm);

(ii) Rm can be generated by #Qm = r elements as a local complete O-algebra.

Then, the natural surjection R ։ T is an isomorphism. Moreover, these algebras are a flat
and complete intersection of relative dimension zero over O and M is free over T .

5.2 The rings RQ

Let Q be a finite set of auxiliary primes q of F satisfying:

(i) NF/Q(q) ≡ 1 (mod p); and

(ii) φ and ρ are unramified at q, and ρ(Frobq) has two distinct eigenvalues αq and βq in κ.

For such a Q we can associate by § 1.2 a universal deformation ring RQ, endowed with
a canonical surjection RQ ։ R∅ =: R. By a result of Faltings (cf. [TW95, Appendix]) RQ is a
O[∆Q]-algebra and RQ ⊗O[∆Q] O ∼= R. Thus, conditions (TW1) and (TW2) hold.
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More generally, for any set of primes P disjoint from Q, RQ∪P is a O[∆Q]-algebra and

RQ∪P ⊗O[∆Q] O ∼= RP . (26)

In particular, RQ∪Pρ is a O[∆Q]-algebra.

5.3 The module M

Denote by Yρ the Hilbert modular varieties of level Kρ defined in § 4.4.

Let S be a finite set of primes containing Σρ ∪ {v | p} ∪ {u} ∪ {v | φν̃v ramified} = ΣKρ ∪
{v | p}. Denote by mρ the maximal ideal of TS = O[Tv, Sv | v /∈ S] corresponding to ρ. With
the notation introduced in §§ 4.4 and 4.5, we fix an eigenvalue αu of ρ(Frobu) and consider the
O-module:

M := Hd(Yρ, VO)[ψ, ν̃φ](mρ,Uu−αu). (27)

Let T′ be the image of TS in the ring of O-linear endomorphisms of M.

By Theorem 2.3(i) the mρ-localization of the TS-module Hd(Yρ, VO) is free over O. Hence, M
is free over O as a direct factor of free O-module.

Moreover, M is non-zero by (Modρ) and Remark 1.3. For any newform f contributing to M,
consider the maximal ideal

mf = (̟, T ′
v − ιp(c(f, v)), S

′
v − ιp(ψ(v))NF/Q(v)w0 , U ′

v′ − ιp(c(f, v
′)); v /∈ Σρ, v

′ ∈ Σρ)

of Tfull = O[T ′
v, S

′
v; v /∈ Σρ][U

′
v′ ; v′ ∈ Σρ]. Note that mf ∩ TS = mρ.

Let T (respectively, m) be the image of Tfull (respectively, mf ) in the ring of O-linear
endomorphisms of Hd(Yρ, VO)[ψ, ν̃φ].

Lemma 5.4. We have the following results:

(i) there is a unique isomorphism of TS-algebras TPρ

∼→ T′;

(ii) M ⊗ C is free of rank 2d over TPρ ⊗ C; and

(iii) the natural injective algebra homomorphism T′ →֒ Tm is an isomorphism.

Proof. (i) By Lemma 4.7, we have TPρ∪{u} ∼= TPρ . Since O-algebras TPρ∪{u} and T′ are torsion
free (the first by definition, the second because M is free over O), it is enough to show that
there is a unique isomorphism of TS ⊗ C-algebras between TPρ∪{u} ⊗ C and T′ ⊗ C (tensors being
over O for some fixed embedding O →֒ C).

Consider a (cuspidal) automorphic representation π generated by a holomorphic newform f
of weight k, central character ψ| · |−w0 and prime to p conductor. By definition, π contributes to
TPρ∪{u} ⊗ C if, and only if, for all primes v ∤ pu, v /∈ Pρ, φ

−1 ⊗ ρf,p|GFv
is a minimally ramified

deformation of ρv.

For v /∈ Pρ, v 6= u, Remark 4.4 shows that φ−1 ⊗ ρf,p|GFv
is a minimally ramified deformation

of ρv if, and only if, (φν̃v)
−1 ⊗ ρf,p|GFv

has conductor cv. By Carayol’s theorem [Car86] on the
compatibility between the local and the global Langlands correspondences this is equivalent to

(πv ⊗ (φν̃v)
−1)K1(vcv ) ∼= π

K′
v

v [φν̃v] 6= 0.

If v ∈ Pρ then dim(ρf,p ⊗ (φν̃v)
−1)Iv = dim(ρ ⊗ ν−1

v )Iv = 0, hence (φν̃v)
−1 ⊗ ρf,p|GFv

has

conductor cv and so (πv ⊗ (φν̃v)
−1)K1(vcv ) 6= 0.

Finally, the argument of Lemma 4.7 shows that πu is unramified, hence π
K0(u)
u is two

dimensional and contains a unique eigenline for Uu with eigenvalue α̃u congruent to αu

modulo ̟.
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Therefore, π contributes to M ⊗ C. By the Matsushima–Shimura–Harder isomorphism, this is
equivalent to π contributing to T′ ⊗ C. Conversely, if π contributes to T′ ⊗ C, the same arguments
show that π contributes to TPρ∪{u} ⊗ C.

(ii) Let π be an automorphic representation contributing to T′ ⊗ C. As a byproduct of the

computations in part (i) we have dim π
K0(u)
u [Uu − α̃u] = 1 and dim π

K′
v

v [φν̃v] = 1 for all v 6= u.
By the Matsushima–Shimura–Harder isomorphism, the [f ]-part of M ⊗ C is 2d-dimensional.

(iii) We have to show that for all v ∈ S the image T ′
v (or U ′

v) in EndO(M) belong to T′.
The argument uses local Langlands correspondence and the fact that M is torsion free. As
observed in § 1.2 there exists a Pρ-deformation ρ̃ of ρ with coefficients in TPρ and by part (i)

there is a unique isomorphism of TS algebras TPρ
∼= T′. It remains to prove that the resulting

homomorphism TPρ → Tm is surjective.

If v /∈ Σρ, then the eigenvalue of T ′
v on π

K′
v

v [φν̃v] equals the eigenvalue of Tv on (πv ⊗
(φν̃v)

−1)K1(vcv ). Recall that νv(̟v) = 1. Hence, the action of T ′
v on M is given by tr(ρ̃ ⊗

(φν̃v)
−1)(Frobv) ∈ TPρ .

If v ∈ Sρ, then the eigenvalue of U ′
v on π

K′
v

v [φν̃v] equals the eigenvalue of Uv on (πv ⊗
(φν̃v)

−1)K1(vcv ). Hence, the action of U ′
v on M is given by the eigenvalue of (ρ̃ ⊗ (φν̃v)

−1)(Frobv)
on the line (ρ̃ ⊗ (φν̃v)

−1)Iv hence belongs to TPρ .

If v ∈ Σρ\Sρ, then U ′
v = 0. This completes the proof. ✷

Proposition 5.5. The local component M is free of rank 2d over TPρ and TPρ is Gorenstein.

Proof. Put W = Hd(Yρ, Vκ)[ψ, ν̃φ](mρ, Uu−αu). By Lemma 5.4 and [Dim05, Lemma 6.8], it is

enough to show that W [m] = M ⊗Tm
κ is a κ-vector space of dimension at most 2d.

As in the proof of Theorem 3.1, the condition (LIInd ρ) implies that every G
F̃
-irreducible

subquotient of W [m] ⊂ W [mρ] is isomorphic to ⊗ IndQF ρ. Therefore, it is enough to check that
the last graded piece of the Fontaine–Laffaille module attached to W [m] has dimension at most
one. Again as in the proofs of Theorems 2.3 and 3.1, this amounts to showing that

dim H0(Yρ/κ, ω
k ⊗ ν−w0/2)[ψ, ν,m] 6 1. (28)

By the q-expansion principle, a Hilbert modular form in H0(Yρ/κ, ω
k ⊗ ν−w0/2) is uniquely

determined by the coefficients of its q-expansion. The coefficients are indexed by (F ⊗
Ẑ)×/

∏
v ker(νv), hence a form in H0(Yρ/κ, ω

k ⊗ ν−w0/2)[ν] is uniquely determined by the

subset of its coefficients indexed by (F ⊗ Ẑ)×/(o ⊗ Ẑ)× which can be identified with the set
of ideals of F , and is it a standard fact that coefficients at non-integral ideals vanish.

Finally, the coefficients of a form in H0(Yρ/κ, ω
k ⊗ ν−w0/2)[ν][ψ,m] are uniquely determined,

since they are related to the eigenvalues of T ′
v, S

′
v and U ′

v, and those are fixed in the [ψ,m]-part. ✷

5.4 The modules MQ

Denote by Y0,Q (respectively, Y Q) the Hilbert modular varieties of level K0,Q (respectively, KQ)
introduced in § 4.4. The natural homomorphism Y Q → Y0,Q induced by the inclusion KQ ⊂ K0,Q,
is étale with group ∆Q.

Assume that S contains Σρ ∪ {v | p} ∪ Q ∪ {u} ∪ {v | φν̃v ramified} = ΣKQ ∪ {v | p}.

Let T′
0,Q be the image of the Hecke algebra TS in the ring of O-linear endomorphisms of

M0,Q := Hd(Y0,Q, VO)[ψ, ν̃φ](mρ,Uu−αu,Uq−αq;q∈Q). (29)
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Let T′
Q be the image of the Hecke algebra TS [∆Q] in the ring of O-linear endomorphisms of

MQ := Hd(Y Q, VO)[ψ, ν̃φ](mρ,Uu−αu,Uq−αq;q∈Q). (30)

The group ∆Q acts on Hd(Y Q, VO) via the Hecke operators Uδ, δ ∈ o×
q , q ∈ Q defined in § 4.4.

Note that whereas Uq ∈ EndO(Hd(Y Q, VO)[ψ, ν̃φ]mρ) depends on the choice of a uniformizer, the
ideal (̟, Uq − αq) does not, so MQ does not.

Again by Theorem 2.3(i) the modules M0,Q and MQ are free over O, hence T′
0,Q and T′

Q are
torsion free.

By Lemma 5.4, for all q ∈ Q, the Hecke operators Tq and Sq belong to TPρ

∼→ T′, hence act on
M. By § 5.2 and Hensel’s lemma the polynomial X2 − TqX + SqNF/Q(q) ∈ TPρ [X] has a unique

root α̃q ∈ TPρ (respectively, β̃q ∈ TPρ) above αq (respectively, βq).

Lemma 5.6. There exists a unique isomorphism of TS-algebras T′
0,Q

∼→ T′.

Proof. As in Lemma 5.4(i) it is enough to show that there is an isomorphism of TS-algebras
T′

0,Q ⊗ C ∼→ T′ ⊗ C.

The local component at q of an automorphic representation π contributing to T′
0,Q ⊗ C (or

M0,q ⊗ C) admits invariants by K0(q) and cannot be special (since αq 6= βqNF/Q(q)±1 by our
assumptions in § 5.2); hence, it is necessarily an unramified principal series and so contributes
to M ⊗ C and T′ ⊗ C. Moreover, π contributes with the same multiplicity both in M0,q ⊗ C
and M ⊗ C. The proof of this fact is very similar to the proof of Lemma 5.4(ii), once we note

that for every such π, π
K0(q)
q is two dimensional and contains a unique eigenline for Uq with

eigenvalue congruent to αq modulo ̟. ✷

Lemma 5.7. There is a unique isomorphism of TS [∆Q]-algebras TPρ∪Q
∼→ T′

Q.

Proof. Both TPρ∪Q and T′
Q are defined as images of TS [∆Q] hence the uniqueness. For the

existence, as in Lemma 5.4(i), it is enough to show that there is an isomorphism of TS [∆Q]-
algebras between TPρ∪Q ⊗ C and T′

Q ⊗ C.

Consider a (cuspidal) automorphic representation π generated by a holomorphic newform f
of weight k, central character ψ| · |−w0 and prime to p conductor.

If π contributes T′
Q ⊗ C, then it necessarily contributes to TPρ∪Q ⊗ C, since by the proof of

Lemma 5.4(i) ρf,p satisfies all of the deformation conditions at primes outside Q, and there is
no deformation conditions at primes in Q.

Conversely, suppose that π contributes to TPρ∪Q ⊗ C. By [TW95, Appendix], ρf,p|GFq

is decomposable and ρf,p|Iq ∼= χ ⊕ χ−1 where χ factors through the natural surjective
homomorphism Iq → o×

q → (o/q)× → ∆q. By the local Langlands correspondence πq is a principal
series induced from two characters whose restriction to o×

q are χ and χ−1. It follows that

π
Kq

q =

{
π
K0(q)
q if χ is trivial,

(πq ⊗ χ)K1(q) ⊕ (πq ⊗ χ−1)K1(q) if χ is non-trivial.
(31)

In both cases π
Kq

q is two dimensional and splits under the action of Uq as a direct sum of two

lines, one with eigenvalue α̃q congruent to αq modulo ̟ and one with eigenvalue β̃q congruent

to βq modulo ̟. Hence, π
Kq

q [Uq − αq] 6= 0. Note that whereas Uq and the eigenvalue depend on
the choice of a uniformizer, the decomposition does not.
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Also, note that by local Langlands correspondence, the ∆q-action on T′
Q ⊗ C coming from

the Hecke action of K0(q) on π
Kq

q , corresponds to the ∆q-action on TPρ∪Q ⊗ C coming from the
Iq-action on ρf,p.

The above discussion at primes in Q together with the arguments of Lemma 5.4(i) at the
primes outside Q imply that π contributes to MQ ⊗ C, hence to T′

Q ⊗ C. ✷

5.5 The condition (TW3)

Proposition 5.8. There is a TS-linear isomorphism M ∼→ M0,Q such that the Uq-action on
M0,Q corresponds to the α̃q-action on M.

Proof. We may assume that Q= {q} and prove the lemma with Kρ replaced by K0,Q\{q} in the

definitions of Yρ, T′ and M. Consider the TS-linear homomorphism:

M → M2, x 7→ (x, −β̃q · x).

Let Uq be the TS-linear endomorphism of M2 given by the matrix
(

Tq 1
−NF/Q(q)Sq 0

)
acting on

the left. Since its eigenvalues α̃q and β̃q are distinct modulo ̟, it induces an isomorphism:

M ∼→ (M2)(Uq−αq).

Consider the natural degeneracy maps pr1, pr2 : Y0,q → Yρ used in the definition of the Hecke
correspondence Tq in § 2.1. The TS-linear homomorphism pr∗

1 + pr∗
2 : Hd(Yρ, VO)2 → Hd(Y0,q, VO)

yields (after taking [ψ, ν̃φ] parts and localizing at mρ):

ξ : Hd(Yρ, VO)[ψ, ν̃φ]2mρ
→ Hd(Y0,q, VO)[ψ, ν̃φ]mρ .

From the definition of Uq acting on M2 we see that ξ is Uq-linear. It is also Uu-linear, hence
after localization at (̟, Uq − αq, Uu − αu) induces

ξ′ : (M2)(Uq−αq) → M0,q.

It is enough to show then that ξ′ is an isomorphism.

By Lemma 5.6 and its proof, we see that ξ′ ⊗ C is an isomorphism. It remains to prove that
ξ (hence, ξ′) is injective with flat cokernel.

Let ξ̂ be the dual of ξ with respect to the modified Poincaré pairing defined in § 2.5. The

matrix of ξ̂ ◦ ξ : (M ⊗ κ)2 → (M ⊗ κ)2 is given by
(

1+NF/Q(q) Tq

S−1
q Tq 1+NF/Q(q)

)
. It is invertible by our

assumptions on q. Therefore, ξ is injective with flat cokernel. ✷

By § 5.2, RPρ∪Q is a O[∆Q]-algebra. Hence, the surjective homomorphism of local O-algebras
πΣ : RPρ∪Q → TPρ∪Q defined in § 1.2 endows TPρ∪Q with O[∆Q]-algebra structure.

Proposition 5.9. The local component MQ is a free O[∆Q]-module and MQ ⊗O[∆Q] O ∼=
M0,Q as TS-modules.

Proof. By Theorem 2.4(i) Hd(Y Q, VO)mρ is free over O[∆Q] and the TS-module of its ∆Q-
coinvariants is isomorphic to Hd(Y0,Q, VO)mρ . If the class group Cρ defined in § 4.5 has order
prime to p (in particular, φ is trivial), then the claim follows simply by taking the [ψ, ν̃]-part. In
fact, the [ψ, ν̃]-part, for the action of a prime to p order group, of a free O[∆Q]-module is a free
O[∆Q]-direct factor.
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In the general case, denote by ∆φ
ρ the p-Sylow subgroup of Cρ × ∏

v∈Σρ
(o×
v / ker(φv)). As

in § 4.5 the p-group
∏
v∈Σρ

(o×
v / ker(φv)) injects in A×K0(Qn∅)/A×K0,Q and a fortiori in

A×K0(Qn∅)/A×KQ. Also the morphisms YQ → Y ad
Q and Y0,Q → Y ad

0,Q are étale with group Cρ.
Hence, the étale morphism YQ → Y ad

Qn∅
(respectively, Y0,Q → Y ad

Qn∅
) factors through an étale

morphism YQ → Y ∆
Q (respectively, Y0,Q → Y ∆

0,Q) with group ∆φ
ρ . Then Theorem 2.4(i) applies to

each of the five étale morphisms in the following diagram.

YQ∆Q

xxqqqqqq ∆φ
ρ

%%LLLLLL

��

Y0,Q

∆φ
ρ

%%KKKKK
Y ∆
Q

∆Q
yysssss

Y ∆
0,Q

(32)

In particular, Hd(Y Q, VO)mρ is free over O[∆φ
ρ × ∆Q], hence Hd(Y Q, VO)mρ [φ] is free over O[∆Q]

and

Hd(Y Q, VO)mρ [φ] ⊗O[∆Q] O ∼= (Hd(Y Q, VO)mρ ⊗O[∆Q] O)[φ] ∼= Hd(Y0,Q, VO)mρ [φ].

Further taking the [ψφ−2, ν̃] part, for the action of the prime to p order group (Cρ/∆φ
ρ) ×∏

v(o
×
v / ker(νv)), and using the argument invoked in the beginning of the proof, yields the desired

result. ✷

So far we have constructed a Taylor–Wiles system {R, M, (RQ, MQ)Q∈Q } for the family Q
of sets Q containing a finite number of primes q as in § 5.2. The aim of the next section is to find
a subfamily {Qm | m ∈ N} satisfying the conditions (i) and (ii) of Theorem 5.3.

5.6 Selmer groups

We assume in this section that Pρ = ∅. Let ρf,p be a modular deformation of ρ as in (Modρ).
For r > 1 we put ρr := ρf,p mod ̟r, so that ρ1 = ρ.

We use Galois cohomology techniques in order to control the number of generators of RQ.

Definition 5.10. For v | p the subgroup H1
f (Fv,Ad0 ρr) ⊂ H1(Fv,Ad0 ρr) consists of classes

corresponding to crystalline extensions of ρr by itself.

For v ∤ p the subgroup of unramified classes H1
f (Fv,Ad0 ρr) ⊂ H1(Fv,Ad0 ρr) is defined as

H1(GFv/Iv, (Ad0 ρr)
Iv).

Definition 5.11. The Selmer groups associated with a finite set of primes Σ are defined as

H1
Σ(F,Ad0 ρr) = ker

(
H1(F,Ad0 ρr) →

⊕

v/∈Σ

H1(Fv,Ad0 ρr)/H
1
f (Fv,Ad0 ρr)

)

and

H1
Σ(F,Ad0 ρf,p ⊗ Qp/Zp) = lim

−→
H1

Σ(F,Ad0 ρr).
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The dual of Ad0 ρ is canonically isomorphic to its Tate twist Ad0 ρ(1). The corresponding
dual Selmer group H1

Σ∗ (F,Ad0 ρ(1)) is defined as the kernel of the map

H1(F,Ad0 ρ(1)) →
⊕

v∈Σ

H1(Fv,Ad0 ρ(1))
⊕

v/∈Σ

H1(Fv,Ad0 ρ(1))/H1
f (Fv,Ad0 ρ(1)).

The Poitou–Tate exact sequence yields the following formula:

#H1
Σ(F,Ad0 ρ)

#H1
Σ∗ (F,Ad0 ρ(1))

=
#H0(F,Ad0 ρ)

#H0(F,Ad0 ρ(1))

∏

v∈Σ

#H1(Fv,Ad0 ρv)

#H0(Fv,Ad0 ρv)

∏

v|p∞

#H1
f (Fv,Ad0 ρv)

#H0(Fv,Ad0 ρv)
. (33)

A proof for F = Q can be found in [Wil95, Proposition 1.6], but as mentioned in [DDT97,
Theorem 2.19] the same argument works over an arbitrary number field.

By (LIInd ρ) we have H0(F,Ad0 ρ) = H0(F,Ad0 ρ(1)) = 0. Since ρ is totally odd, for all v | ∞
we have dim H0(Fv,Ad0 ρv) = 1. Since ρ is crystalline at all places v dividing p we have

dim H1
f (Fv,Ad0 ρv) − dim H0(Fv,Ad0 ρv) 6 [Fv : Qp] (34)

(cf. [Fuj06a, Theorem 3.20] and also [DFG04, Corollary 2.3]). Finally, for all q ∈ Q,
dim H0(Fq,Ad0 ρq(1)) = 1. Putting all of this together we obtain the following result.

Lemma 5.12. We have dim H1
Q(F,Ad0 ρ) 6 H1

Q∗ (F,Ad0 ρ(1)) + #Q.

Finally, by the same arguments as in [Wil95, § 3] we obtain the following lemma.

Lemma 5.13. Let m > 1 be an integer. Then for each non-zero element x ∈ H0
∅∗ (F,Ad0 ρ(1))

there exists a prime q such that:

• NF/Q(q) ≡ 1 (mod pm);

• ρ is unramified at q and ρ(Frobq) has two distinct eigenvalues in κ; and

• the image by the restriction map of x in H1
f (Fq,Ad0 ρ(1)) is non-trivial.

Put r := dim H0
∅∗ (F,Ad0 ρ(1)). For each m > 1, let Qm be the set of primes q corresponding

by the above lemma to the elements of a basis of H0
∅∗ (F,Ad0 ρ(1)). Then H0

Q∗
m

(F,Ad0 ρ(1)) = 0

and by Lemma 5.12 we obtain dim H0
Qm

(F,Ad0 ρ) 6 #Qm. Therefore, Rm is generated by at
most #Qm = r elements. This completes the proof of Theorem 5.1.

6. Raising the level

6.1 Numerical invariants

Definition 6.1. For a local complete Noetherian O-algebra A endowed with a surjective
homomorphism θA :A → O, we define the following two invariants:

• the congruence ideal ηA := θA(AnnA(ker θA)) ⊂ O; and

• the module of relative differentials ΦA := Ω1
A/O = ker θA/(ker θA)2.

Here we state Wiles’ numerical criterion.

Theorem 6.2 [DDT97, Theorem 3.40]. Let π : R ։ T be a surjective homomorphism such that
θR = π ◦ θT . Assume that T is finite and flat over O and ηT 6= (0). Then the following three
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conditions are equivalent:

(i) #ΦR 6 #(O/ηT );

(ii) #ΦR = #(O/ηT ); and

(iii) R and T are complete intersections over O and π is an isomorphism.

We consider couples (T , M) consisting of a finite and flat O-algebra T and a T -module
M which is a finitely generated free O-module endowed with a perfect T -linear pairing
〈·, ·〉 : M × M → O and such that M ⊗ E is free over T ⊗ E of a given rank (in our application
this rank will be 2d). The pairing induces an isomorphism of T -modules M ∼−→ Hom(M, O).

From [DDT97, Lemma 4.17] and [Dia97b, Theorem 2.4] we deduce the following.

Proposition 6.3. Let (T , M) and (T ′, M′) be two couples as above. Assume that we have a
surjective homomorphism T ′

։ T and a T ′-linear injective homomorphism ξ : M →֒ M′ inducing
via 〈·, ·〉 a surjective homomorphism ξ̂ : M′

։ M.

If M is free over T and if ξ̂ ◦ ξ(M) = T · M for some T ∈ T then

#(O/ηT )#(O/θT (T )) 6 #(O/ηT ′ ).

Moreover, equality holds if, and only if, M′ is free over T ′.

6.2 Proof of Theorem A

Let Σ be a finite set of primes containing Pρ. We start by redefining TΣ geometrically.

Let YΣ be the Hilbert modular variety of level KΣ defined in § 4.4.

Let S be a finite set of primes containing Σρ ∪ Σ ∪ {v | p} ∪ {u} ∪ {v| φν̃v ramified} = ΣKΣ
∪

{v | p}.

Let T′
Σ be the image of TS in the ring of O-linear endomorphisms of

MΣ := Hd(YΣ, VO)[ψ, ν̃φ](mρ,Uu−αu,U ′′
q;q∈Σ). (35)

By Theorem 2.3(i) MΣ is free of finite rank over O.

For every Hilbert modular newform f occurring in TΣ we denote by θΣ
f : TΣ → O the projection

on the f -component and by ηΣ
f the corresponding congruence ideal.

Lemma 6.4. We have the following:

(i) there is a unique isomorphism of TS-algebras T′
Σ

∼= TΣ;

(ii) MΣ ⊗ C is free of rank 2d over TΣ ⊗ C and U ′′
q acts as zero on it for all q ∈ Σ.

Proof. We follow closely the proofs of Lemmas 5.4 and 5.7. The main point here is to show
that, if f is a Hilbert modular newform occurring in TΣ ⊗ C and π denotes the corresponding
automorphic representation, then for all q ∈ Σ,

(πq)
K′′

q[φqν̃q] = (πq ⊗ φ−1
q ν̃−1

q )K1(qcq)∩K0(qcq+dq)

contains a unique eigenline for U ′′
q with eigenvalue congruent to zero modulo ̟ (and this

eigenvalue is actually zero). We distinguish three cases.

• If (ν̃qφq)
−1 ⊗ ρf,p is unramified at q, then necessarily dq = 2, cq = 0 and

dim
(
(πq ⊗ φ−1

q ν̃−1
q )K0(q2)

)
= 3.
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The characteristic polynomial of U ′′
q = [K0(q

2)
(
1 0
0 ̟q

)
K0(q

2)] acting on it is given by

X(X2 − c(f, q)X + ψ(q)NF/Q(q)w0+1) = θΣ
f (X(X2 − T ′

qX + S′
qNF/Q(q))),

and X = 0 is a simple root modulo ̟ of this polynomial.

• If dim((ν̃qφq)
−1 ⊗ ρf,p)

Iq = 1, then dq > 1 and

dim
(
(πq ⊗ φ−1

q ν̃−1
q )K1(qcq)∩K0(qcq+dq))

= 2.

The characteristic polynomial of U ′′
q = [K0(q

cq+dq)
(
1 0
0 ̟q

)
K0(q

cq+dq)] acting on it is given
by

X(X − c(f, q)) = θΣ
f (X(X − U ′

q)),

where U ′
q = [K0(q

cq+dq−1)
(
1 0
0 ̟q

)
K0(q

cq+dq−1)] and X = 0 is simple root modulo ̟ of this
polynomial.

• Finally, if ((ν̃qφq)
−1 ⊗ ρf,p)

Iq = {0}, then

dim
(
(πq ⊗ φ−1

q ν̃−1
q )K1(qcq)∩K0(qcq+dq)

)
= 1,

and U ′′
q = 0 on it.

This completes the proof. ✷

By § 1.2 we have a surjection πΣ : RΣ → TΣ. Therefore, we may endow RΣ with a surjective
homomorphism θΣ

f ◦ πΣ : RΣ → O and we denote by ΦΣ
f the corresponding numerical invariant.

Proposition 6.5 (Wiles [Wil95, Proposition 1.2]). We have

HomO(ΦΣ
f , E/O) ∼= H1

Σ(F,Ad0(ρf,p) ⊗ Qp/Zp).

By (16) there exists a perfect TΣ-linear pairing:

〈·, ·〉 : MΣ × MΣ → O, (36)

analogous to that defined in [DFG04, 1.5.3, 1.8.1] in the case F = Q (note that since Σ ⊃ Pρ we
do not need the rather technical [DFG04, Lemma 1.5]).

Theorem A is implied by the first part of the following.

Theorem 6.6. Let ρ : GF → GL2(Fp) be a continuous representation satisfying (LIIndρ) and
(Modρ). Let Σ be a finite set of primes containing Pρ. Then πΣ : RΣ → TΣ is an isomorphism of
complete intersections over O and MΣ is free of finite rank over TΣ. In particular, all Σ-ramified
deformations of ρ are modular.

Moreover, for all Hilbert modular newforms f such that ρf,p is a Σ-ramified deformations
of ρ:

#H1
Σ(F,Ad0(ρf,p) ⊗ Qp/Zp) = #(O/ηΣ

f )< ∞. (37)

Proof. We proceed by induction on #Σ. Assume first that Σ = Pρ. We already know that
πPρ : RPρ → TPρ is an isomorphism of complete intersections over O and MP := M is free of
rank 2d over TPρ (cf. Theorem 5.1 if Pρ = ∅ and Proposition 5.5 together with Fujiwara [Fuj06a,
Theorem 9.1] in general).

Assume now that the theorem holds for some Σ ⊃ Pρ, that is to say πΣ : RΣ → TΣ is an
isomorphism of complete intersections over O and that MΣ is free over TΣ. In particular, we
have #ΦΣ

f = #(O/ηΣ
f ), where f is a newform contributing to M.

Let q be a prime outside Σ not dividing p. Put Σ′ = Σ ∪ {q}.
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It follows directly from Proposition 6.5 and Definition 5.11 that

#ΦΣ′

f 6 #ΦΣ
f · #H0(Fq, (Ad0(ρf,p) ⊗ Qp/Zp)(1)).

By Theorem 6.2 and Proposition 6.3, the theorem will hold for Σ′ if we construct a
surjective homomorphism TΣ′ ։ TΣ compatible with the surjections θΣ

f and θΣ′

f and a TΣ′ -

linear injective homomorphism ξ : MΣ →֒ MΣ′ inducing a surjection ξ̂ : MΣ′ ։ MΣ such that
ξ̂ ◦ ξ(MΣ) = T · MΣ for some T ∈ TΣ satisfying

#(O/θΣ
f (T )) = #H0(Fq, (Ad0(ρf,p) ⊗ Qp/Zp)(1)). (38)

This is done on a case-by-case basis, depending on the local behavior of ρ at q

(cf. Definition 4.2).

The case q ∈ Σρ\Sρ is relatively straightforward, since adding such a prime does not change
MΣ. We distinguish two more cases.

(1) Assume that q /∈ Σρ. In this case ρq ⊗ ν−1
q is unramified.

By Theorem 3.1 and Proposition 3.3, the homomorphism

pr∗
3 pr∗

1 + pr∗
3 pr∗

2 + pr∗
4 pr∗

1 : M⊕3
Σ = Hd(YΣ, VO)[ψ, ν̃φ]⊕3

mρ
→ Hd(YΣ′ , VO)[ψ, ν̃φ]mρ

is injective with flat cokernel.

The characteristic polynomial of U ′′
q acting on M⊕3

Σ is X(X2 − TqX + SqNF/Q(q)) and X = 0
is simple root modulo ̟ of this polynomial. Hence, the localization of the above injection at
(U ′′

q , Uu − αu) yields another injection with flat cokernel:

ξ : MΣ
∼→ (M⊕3

Σ )U ′′
q

→֒ MΣ′ .

This gives a surjective homomorphism TΣ′ ։ (T 3
Σ )U ′′

q

∼= TΣ. Computations performed by

Wiles [Wil95, § 2] and Fujiwara [Fuj06a, § 10] show that ξ̂ ◦ ξ(MΣ) = T · MΣ with

T = (NF/Q(q) − 1)(T 2
q − Sq(NF/Q(q) + 1)2).

Then (38) follows by a straightforward computation.

(2) Assume that q ∈ Sρ. In this case dim(ρq ⊗ ν−1
q )Iv = 1.

By Proposition 3.3 there is an exact sequence whose last arrow has a flat cokernel:

0 → Hd(YKΣ·K′′′
q
, VO)[ψ, ν̃φ]mρ

(pr∗
1,−pr∗

2)−−−−−−−→Hd(YΣ, VO)[ψ, ν̃φ]⊕2
mρ

pr∗
3 + pr∗

4−−−−−−−→Hd(YΣ′ , VO)[ψ, ν̃φ]mρ ,

where K ′′′
q = ker(K1(q

cq−1)
det−→ o×

q

ν̃qφ−→ O ×).

The characteristic polynomial of U ′′
q acting on (pr∗

3 + pr∗
4)(M⊕2

Σ ) is X(X − U ′
q) and X = 0

is simple root modulo ̟ of this polynomial. Hence, the localization of the map pr∗
3 + pr∗

4 at
mΣ′ = (mΣ, U

′′
q) yields an injection with flat cokernel:

ξ : MΣ
∼→ (M⊕2

Σ )U ′′
q

→֒ MΣ′ .

This gives a surjective homomorphism TΣ′ ։ (T 2
Σ )U ′′

q

∼= TΣ. Computations performed by

Wiles [Wil95, § 2] and Fujiwara [Fuj06a, § 10] show that ξ̂ ◦ ξ(MΣ) = T · MΣ with

T =

{
NF/Q(q) − 1 if ρq is decomposable,

NF/Q(q)2 − 1 if ρq is indecomposable.

As above, (38) is obtained by a straightforward computation. ✷
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6.3 Towards the modularity of a quintic threefold

We now give an example coming from the geometry where Theorem A applies. Consani and
Scholten [CS01] consider the middle degree cohomology of a quintic threefold X̃ (a proper
and smooth Z[1/30]-scheme with Hodge numbers h3,0 = h2,1 = 1, h2,0 = h1,0 = 0 and h1,1 =

141). They show that the GQ-representation H3(X̃
Q
,Qp) is induced from a two-dimensional

representation ρ̃ of G
Q(

√
5) and conjecture the modularity of ρ̃. As explained in [DD06],

Theorem 6.6 implies the following proposition.

Proposition 6.7 [DD06]. Assume that p > 7 and that ρ̃ is congruent modulo p to the p-adic
Galois representation attached to a Hilbert modular form on Q(

√
5) of weight (2, 4) and some

prime to p level. Then ρ̃ is modular and, in particular, the L-function associated with H3(X̃
Q
,Qp)

has an analytic continuation to the whole complex plane and satisfies a functional equation.

7. Cardinality of the adjoint Selmer group

In this section we give a proof of Theorem B. It is enough to establish part (ii), since then
the finiteness of H1

f (F,Ad0(ρf,p) ⊗ Qp/Zp) implies part (i) by the same argument as in [DFG04,
§ 2.2].

Choose a finite set Σ of primes not dividing p, containing the auxiliary prime u and all primes
(not dividing p) at which Ad0(ρf,p) is ramified. Denote by fΣ the automorphic form contributing
to MΣ corresponding to the newform f of Theorem B.

7.1 Periods of automorphic forms

For J ⊂ JF denote by ǫJ the corresponding character of the Weyl group
(
1 0
0 ±1

)JF ⊂ GL2(F ⊗Q R).

Put F∞ =
(
1 0
0 −1

)JF ∈ GL2(F ⊗Q R).

We fix an isomorphism C ∼= Qp extending the embedding ιp : Q →֒ Qp. Since MΣ is free over
the principal domain O, Lemma 6.4(ii) implies that MΣ[f, ǫJ ] is a free O-module of rank one,
where [ǫJ ] denotes the eigenspace for this character and [f ] denotes

⋂
v/∈S ker(Tv − c(f, v)).

Let Sk(KΣ; ψ, ν̃φ) be the C-vector space of automorphic forms on GL2(F )\GL2(A) which
are holomorphic of weight (k; w0) at infinity and right K0(nΣ)-equivariant for the character(
a b
c d

)
7→ ψ(a)ν̃φ((ad − bc)/a2). In particular, such a form is right KΣ-invariant. Let

δJ : Sk(KΣ; ψ, ν̃φ) → Hd
cusp(YΣ, VC)[ψ, ν̃φ, ǫJ ], and

δ :
⊕

J⊂JF

Sk,J(KΣ; ψ, ν̃φ) → Hd
cusp(YΣ, VC)[ψ, ν̃φ] (39)

denote the Matsushima–Shimura–Harder isomorphisms (cf. [Hid94, Proposition 3.1, Equa-
tion (4.2)]).

Definition 7.1. For every J ⊂ JF , we fix a basis bf,J of MΣ[f, ǫJ ] and define the period
ΩJ
f = δJ(fΣ)/bf,J ∈ C×/O ×.

Remark 7.2. Classically, the Matsushima–Shimura–Harder periods of a newform f of level n

are defined using a basis of the free rank-one O-module Hd(Y1(n), VO)[f, ǫJ ] (cf. [Dim05, § 4.2]).
As shown in [Dim05, Theorem 6.6, §§ 4.4 and 4.5] the value at one of the imprimitive adjoint
L-function divided by those periods measures the congruences modulo p between f and other
Hilbert modular eigenforms of the same weight, level and central character. However, in general
the corresponding local Hecke algebra does not have a Galois theoretic interpretation whereas,
as proved in Theorem 6.6, TΣ does, hence our choice to define the periods using MΣ[f, ǫJ ].
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Next we explain the relation between the Petersson inner product and the modified Poincaré
pairing defined in § 2.5 under the Matsushima–Shimura–Harder isomorphism.

The Atkin–Lehner involution ι=
(

0 −1
nΣ 0

)
induces an isomorphism

Sk(KΣ; ψ, ν̃φ)
∼−→ Sk(KΣ; ψ−1, (ν̃φ)−1), f 7→ f(·ι) ⊗ ψ−1. (40)

The Hecke operator [KΣxKΣ] acts on the left Sk(KΣ; ψ, ν̃φ) by sending f on
∑

i f(·xi), where
KΣxKΣ =

∐
i xiKΣ. One can easily check that for diagonal x one can choose the xi so that we

simultaneously have KΣxKΣ =
∐
i xiKΣ and Kι

ΣxK
ι
Σ =

∐
i xiK

ι
Σ, where Kι

Σ = ιKΣι
−1. In the

following commutative diagram the horizontal arrows are isomorphisms.

Sk(KΣ; ψ, ν̃φ)
ι

//

[KΣι
−1xιKΣ]

��

Sk(K
ι
Σ; ψ, ψφ−1ν̃−1)

⊗ψ−1
//

[Kι
ΣxK

ι
Σ]

��

Sk(KΣ; ψ−1, (ν̃φ)−1)

ψ(det(x))[KΣxKΣ]

��

Sk(KΣ; ψ, ν̃φ)
ι

// Sk(K
ι
Σ; ψ, ψφ−1ν̃−1)

⊗ψ−1
// Sk(KΣ; ψ−1, (ν̃φ)−1)

(41)

Finally, for f1, f2 ∈ Sk(KΣ; ψ, ν̃φ) we define the normalized Petersson inner product by

(f1, f2) = [K(1) :K0(nΣ)]−1

∫

Y ad
Σ

f1(g)f2(g)|det(g)|w0 dg. (42)

We have ([KΣxKΣ] ·f1, f2) = |det(x)|−w0(f1, [KΣx
−1KΣ] ·f2) = ψ(det(x))(f1, [KΣιxι

−1KΣ] ·f2).

It follows that the Hecke eigenvalues of fΣ are complex conjugates of those of

fΣ(·ι) ⊗ ψ−1 = fΣ(·ι)ψ(det(·)−1) = fΣ(det(·)−1 · ι)|det(·)|−w0 = fΣ((·)∗ι)|det(·)|−w0 ,

where we use the notation from § 2.5. Using Lemma 6.4(ii) we deduce by strong multiplicity
one that these two forms differ by a constant, which turns out to be in O × (the arguments
of [DFG04, Lemma 2.13] involving local epsilon factors can be adapted to our setting). Hence,
in the computation that follows, this constant can be ignored, as well as NF/Q(nΣ) and powers
of two:

(fΣ, fΣ)O = [δ(fΣ), δ(fΣ((·)∗ιF∞))]O = 〈δ(fΣ), δ(fΣ(·F∞))〉O = 〈δJ(fΣ), δJF \J(fΣ)〉O.

From here and Definition 7.1 we obtain the relation we have been looking for:

〈bf,J , bf,JF \J〉O =
(fΣ, fΣ)

ΩJ
fΩ

JF \J
f

O. (43)

7.2 The Rankin–Selberg method

The Rankin–Selberg method relating the Petersson inner product to the value at one of the
adjoint L-function has been carried out by Shimura for Hilbert modular newforms f of level
K1(n). Since the level structures KΣ that we consider are more general, the resulting formula
in our case slightly differs from Shimura’s. While Shimura’s formula relates the Petersson inner
product of f with the imprimitive adjoint L-function, in our setting the Petersson inner product
of fΣ will be related to adjoint L-function outside Σ. We follow Jacquet’s adelic version of the
Rankin–Selberg method for GL2 and our main reference is Bump [Bum97].
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All integrals that we consider are with respect to Haar measures on the corresponding
algebraic groups. The normalized Petersson inner product (42) can be rewritten as

(fΣ, fΣ) =

∫

GL2(F )A× \GL2(A)
|fΣ(g)|2|det(g)|w0 dg. (44)

The automorphic form fΣ admits an adelic Fourier expansion:

f(g) =
∑

y∈F×

W
((y 0

0 1

)
g
)
, (45)

where W (g) =
∫
A/F λ(x)f

((
1 x
0 1

)
g
)
dx is the adelic Whittaker function with respect to an additive

unitary character λ. Explicitly, one can take λ : A/F → AQ/Q → C× where the first map is
the trace, whereas the second is the usual non-trivial additive character λQ such that λQ|R =
exp(2iπ·) and for every prime number ℓ, ker(λQ|Qℓ

) = Zℓ. Hence, for every finite place v we have
ker(λv) = v−δvov, where δv denotes the valuation at v of the different d of F .

The following decomposition can be found in [Bum97, Theorem 3.5.4], but one should be
careful to replace the usual kτ/2 by (−w0 − kτ )/2 since we are using the arithmetic (non-unitary)
normalization (cf. [DT04, pp. 566–567]):

W

((
y 0
0 1

))
=

∏

τ∈JF

y−(w0+kτ )/2
τ exp(−2πyτ )

∏

v

Wv

((
yv 0
0 1

))
. (46)

Let ϕ be the Schwartz function on A × A defined as product of the following local functions:

ϕτ (x, y) = exp(−π(x2 + y2)) and ϕv =

{
char(ov) ⊗ char(ov) for v /∈ Σ;

char(vcv+dv) ⊗ char(o×
v ) for v ∈ Σ.

(47)

For g ∈ GL2(A) put ε(g) = ζF,Σ(2s)−1πsdΓ(s)−d|det(g)|s
∫
A

×

F
|t|2sϕ(t(0, 1)g) dt.

Then ε is a right K0(nΣ) SO2(F ⊗Q R)-invariant function on GL2(A) such that ε(1) = 1 and
ε

((y x
0 y′

)
g
)

= |y/y′ |sε(g). Consider as in [Bum97, § 3.7] the Eisenstein series:

E(g, s) =
∑

B(F )\GL2(F )

ε(γg). (48)

The Rankin–Selberg unfolding yields (cf. [Bum97, pp. 372–373]):
∫

GL2(F )A× \GL2(A)
E(g, s)|fΣ(g)|2|det(g)|w0 dg

=

∫

B(A)\GL2(A)

∫

A
×

F+

∣∣∣∣W
((

y 0
0 1

)
g

)∣∣∣∣
2

ε

((
y 0
0 1

)
g

)
|y|w0−1|det(g)|w0 dy dg.

Here A×
F+ = (F ⊗ Ẑ)×(F ⊗Q R)×

+ denote the subgroup of ideles with totally positive infinite part.

In [Bum97] the integration is over A×
F but this makes no difference, since A×

F = A×
F+F

× and the
adelic Fourier expansion of f(g) is supported only by totally positive elements. Using Iwasawa
decomposition

GL2(A) =B(A) GL2(o ⊗ Ẑ) SO2(F ⊗Q R),
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and the right SO2(F ⊗Q R)-invariance of the integrand, we further rewrite this integral as∏
τ Zτ

∏
v Zv, where

Zv =

∫

GL2(ov)

∫

F×
v

∣∣∣∣Wv

((
y 0
0 1

)
g

)∣∣∣∣
2

εv

((
y 0
0 1

)
g

)
|y|w0−1 dy dg,

and

Zτ =

∫ ∞

0

∣∣∣∣Wτ

(
y 0
0 1

)∣∣∣∣
2

ετ

(
y 0
0 1

)
|y|w0−1d×y

=

∫ ∞

0
exp(−4πy)ys+kτ −1d×y = (4π)−s−kτ+1Γ(s+ kτ − 1).

Furthermore, for v /∈ Σ (respectively v ∈ Σ) the function |Wv|2 = |Wv · (φvν̃v)
−1 ◦ det|2 is right

GL2(ov)-invariant (respectively,K0(v
cv+dv)-invariant). Moreover εv

((
y 0
0 1

)
g
)

|y|−s is by definition
the characteristic function of GL2(ov) (respectively, K0(v

cv+dv)). Hence, for all v:

Zv =

∫

F×
v

∣∣∣∣Wv

(
y 0
0 1

)∣∣∣∣
2

|y|s+w0−1 dy.

For v /∈ Σ we have Zv = NF/Q(vδv)s(1 + NF/Q(v)−s)Lv(Ad0(ρf,p), s) (cf. [Bum97, Proposi-
tion 3.8.1]).

For v ∈ Σ, Wv is annihilated by Uv, hence Zv = NF/Q(vδv)s. Therefore,

∫

GL2(F )A× \GL2(A)
E(g, s)|fΣ(g)|2|det(g)|w0 dg =

NF/Q(d)sLΣ(Ad0(ρf,p), s)

ζF,Σ(2s)ζF,Σ(s)−1

∏

τ∈JF

Γ(s+ kτ − 1)

(4π)s+kτ −1
.

By [Bum97, Proposition 3.7.5], E(g, s) has a pole at s= 1 with residue independent of g and
equal to the residue at s= 1 of the function ζF,Σ(2)−1πd

∫
A

∫
A× |t|2sϕ(t, tx) dt dx. One readily

computes
∫

R

∫

R×

|t|2ϕ(t, tx) dt dx=
1

π

∫

R

dx

(1 + x2)
= 1,

and
∫

Fv

∫

F×
v

|t|2sϕ(t, tx) dt dx

=

{
(1 − NF/Q(v)1−2s)−1 for v /∈ Σ;

(1 − NF/Q(v)−1)(1 − NF/Q(v)1−2s)−1NF/Q(v)(1−2s)(cv+dv) for v ∈ Σ.

(fΣ, fΣ) =
NF/Q(nΣd)

2|k| Γ(Ad0(ρf,p), 1)LΣ(Ad0(ρf,p), 1) =
LΣ(Ad0(ρf,p), 1)

π|k|+d

∏
τ (kτ − 1)!

4|k|NF/Q(nΣd)−1
.

(49)

Since, by our assumptions,
∏
τ (kτ − 1)!/4|k|NF/Q(nΣd)−1 ∈ Z

×
(p) it follows that

(LΣ(Ad0(ρf,p), 1))/(π|k|+d(fΣ, fΣ)) ∈ Z
×
(p). Since, by definition,

Γ(Ad0(ρf,p), s) =
∏

τ∈JF

π−(s+1)/2Γ

(
s+ 1

2

)
(2π)−(s+kτ −1)Γ(s+ kτ − 1)
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we obtain
Γ(Ad0(ρf,p), 1)LΣ(Ad0(ρf,p), 1)

(fΣ, fΣ)
∈ Z

×
(p). (50)

7.3 End of the proof of Theorem B(ii)

Recall that MΣ is endowed with a perfect TΣ-linear pairing: 〈·, ·〉Σ : MΣ × MΣ → O.

Since for all J ⊂ JF , MΣ[f, ǫJ ] is free of rank one over TΣ it follows that

(ηΣ
f )2 = disc(MΣ[f, ǫJ ] ⊕ MΣ[f, ǫJF \J ]) = 〈bf,J , bf,JF \J〉2O.

Using (43) we obtain

ηΣ
f = 〈bf,J , bf,JF \J〉O =

(fΣ, fΣ)

ΩJ
fΩ

JF \J
f

O. (51)

Keeping the notation of § 5.6, since ρ|GF (ζp)
is irreducible by (LIIndρ), Schur’s lemma imply

H0(F,Ad0(ρf,p) ⊗ Qp/Zp) = H0(F, (Ad0(ρf,p) ⊗ Qp/Zp)(1)) = 0.

Then [DFG04, Lemma 2.1], which remains valid over F , yields

FittO(H1
Σ(F,Ad0(ρf,p) ⊗ Qp/Zp))

= FittO(H1
f (F,Ad0(ρf,p) ⊗ Qp/Zp))

∏

v∈Σ

FittO(H1
f (Fv,Ad0(ρf,p)(1))∗),

where ( )∗ denotes the Pontryagin dual. By [FP94, Proposition I.4.2.2(i)] and [DFG04, p. 708,
Lemma 2.16]

Tam(Ad0(ρf,p)) =
∏

τ

Tamτ (Ad0(ρf,p))
∏

v

Tamv(Ad0(ρf,p)) =
∏

v∈Σ

Tamv(Ad0(ρf,p)).

Furthermore, by [DFG04, (57)] and by [FP94, Proposition I.4.2.2(ii)] and its proof, for v ∈ Σ we
have

Tamv(Ad0(ρf,p)) = Tamv(Ad0(ρf,p)(1)) = FittO(H1
(
Iv,Ad0(ρf,p)(1)

)GFv

tor
)

= FittO((H1(Iv,Ad0(ρf,p)(1))
GFv
tor )∗)

=
FittO(H1

f (Fv,Ad0(ρf,p)(1))∗)

FittO(H1(GFv/Iv, (Ad0(ρf,p)(1))Iv)∗)

=
FittO(H1

f (Fv,Ad0(ρf,p)(1))∗)

FittO(H0(Fv, (Ad0(ρf,p) ⊗ Qp/Zp)(1)))

= Lv(Ad0(ρf,p), 1) FittO(H1
f (Fv,Ad0(ρf,p)(1))∗).

From the three previous equations we deduce that

Tam(Ad0(ρf,p)) FittO(H1
f (F,Ad0(ρf,p) ⊗ Qp/Zp))

=
∏

v∈Σ

Lv(Ad0(ρf,p), 1) FittO(H1
Σ(F,Ad0(ρf,p) ⊗ Qp/Zp)). (52)

Finally, since ρf,p is a Σ-ramified deformation of ρ= ρf,p (cf. Definition 4.6) and Σ ⊃ Pρ
(cf. Definition 4.2), Theorem 6.6 yields

FittO(H1
Σ(F,Ad0(ρf,p) ⊗ Qp/Zp) = ηΣ

f . (53)

The theorem results by putting together the equations (50), (51), (52) and (53).
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thank my colleagues there, and in particular Löıc Merel, for many useful conversations. Finally,
I would like to thank very heartily the referee for the careful reading of the manuscript and his
constructive criticism. His insightful comments completely transformed the earlier version of the
paper. Needless to say, responsibility for inaccuracies or errors is entirely my own.

References

BR93 D. Blasius and J. Rogawski, Motives for Hilbert modular forms, Invent. Math. 114 (1993), 55–87.

Bre99 C. Breuil, Une remarque sur les représentations locales p-adiques et les congruences entre formes
modulaires de Hilbert, Bull. Soc. Math. France 127 (1999), 459–472.

BL84 J.-L. Brylinski and J.-P. Labesse, Cohomologie d’intersection et fonctions L de certaines variétés
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