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On Thara’s lemma for Hilbert modular varieties

Mladen Dimitrov

ABSTRACT

Let p be a two-dimensional modulo p representation of the absolute Galois group of a
totally real number field. Under the assumptions that p has a large image and admits
a low-weight crystalline modular deformation we show that any low-weight crystalline
deformation of p unramified outside a finite set of primes will be modular. We follow
the approach of Wiles as generalized by Fujiwara. The main new ingredient is an Ihara-
type lemma for the local component at p of the middle degree cohomology of a Hilbert
modular variety. As an application we relate the algebraic p-part of the value at one of
the adjoint L-function associated with a Hilbert modular newform to the cardinality
of the corresponding Selmer group.
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1. Introduction

1.1 Statement of the main results

Let F be a totally real number field of degree d, ring of integers o and Galois closure F.
Denote by Jr the set of all embeddings of F' into R. The absolute Galois group of a field L
is denoted by Gr..

Let f be a Hilbert modular newform over F' of level n (an ideal of o), cohomological
weight k=3 c; k:7 (kr =2 of the same parity) and put wo =max{k; —2|7 € Jp}. For a
prime p and an embedding ¢; : Q — Q, one can associate with f and ¢, a p-adic representation
(cf. [Tay89, Tay97]):

Pty Gr — GL2(Qp), (1)
which is irreducible, totally odd, unramified outside np and characterized by the property that
for each prime v not dividing np we have tr(py,(Frob,)) = ¢,(c(f,v)), where Frob, denotes a
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ON THARA’S LEMMA FOR HILBERT MODULAR VARIETIES

geometric Frobenius at v and ¢(f, v) is the eigenvalue of f for the standard Hecke operator T;,. The
embedding ¢, defines a partition Jp = [[, Jr,, where v runs over the primes of F' dividing p and
JF, denotes the set of embeddings of F;, in @p. Then py gy, is known to be de Rham of Hodge—
Tate weights ((wo — k7)/2 + 1, (wo + kr)/2)rep, , unless wg =0, pyy, is residually reducible but
not nearly ordinary, d is even and the automorphic representation associated with f is not a
discrete series at any finite place (cf. [BR93| and [Kis08]). If p > wg + 2 is unramified in F' and
relatively prime to n, then py,|g, is crystalline (cf. [Bre99]).

Such a py ), is defined over the ring of integers O of a finite extension E of Q,. Denote by x
the residue field of O and let p;, be the semi-simplification of the reduction of py;, modulo a
uniformizer w of O. We say that a two-dimensional irreducible p-adic (respectively, modulo p)
representation of Gg is modular if it can be obtained by the above construction. The following
conjecture is a well-known extension to an arbitrary totally real field F' of a conjecture of Fontaine
and Mazur [FM97].

CONJECTURE. A two-dimensional, irreducible, totally odd p-adic representation of Gp
unramified outside a finite set of primes and de Rham at all primes v dividing p with distinct
Hodge—Tate weights for each F, <—>@p, is modular, up to a twist by an integer power of the
p-adic cyclotomic character.

We provide some evidence for this conjecture by proving the following modularity lifting
theorem.

THEOREM A. Let p:Gp — GLa(F,) be a continuous representation. Assume that:

(Mod,) p is unramified in F', p—1> % _; ((wo + k7)/2) and there exists a Hilbert modular
newform f of level prime to p and cohomological weight k, such that p;, = p; and

(LI1ng,) the image of Gz by ® Indg p= ®T€QQ/ng(T*1 -T) Is irreducible of order divisible
by p.

Then all crystalline deformations of p of weights between zero and p — 2 which are unramified

outside a finite set of primes are modular.

Remark 1.1. We have greatly benefited from the work [Fuj06a] of Fujiwara, although we use a
different approach (cf. § 1.2 for a more detailed discussion). Furthermore, the proof of Theorem A
relies on Fujiwara’s results in the minimal case. Let us mention, however, that if P,=@
(cf. Definition 4.2), then Theorem A is independent of the results of [FujO6a] (cf. Theorem 5.1).

Remark 1.2. One can show that if F' is Galois over Q and if f is a Hilbert modular newform
on F which is not a theta series nor a twist of a base change of a Hilbert modular newform on
E C F, then for all but finitely many primes p, p = p;,, satisfies (LIIndp) for all ¢, : Q — @p.

Remark 1.3. The level lowering results of Jarvis [Jar99a, Jar99b|, Fujiwara [FujO06b] and
Rajaei [Raj01], generalizing classical results of Ribet [Rib90] et al. to the case of an arbitrary
totally real field F', imply that the newform f in (Mod p) can be chosen so that pf,, is a minimally
ramified deformation of p in the sense of Definition 4.6.

To a Hilbert modular newform as above, Blasius and Rogawski [BR93| attached, when wqy > 0,
a rank-three motive over F with coefficients in Q, pure of weight zero and autodual. For all Lp, its
p-adic realization Ado(pﬁp) is given by the adjoint action of Gr via py, on the space of two-by-
two trace-zero matrices. Denote by L(Ad%(py,), s) and T'(Ad%(py,,), s) the associated L-function
and I'-factor.
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In this setting, Beilinson and Deligne conjecture that the order of vanishing of L(Ad°(p fp)5)
at s =1 equals dim H} (F, Ad°(p;,) ® Qp) — dim H(F, Ad%(p;,) ® Qp), where H} is the Selmer
group defined by Bloch and Kato (cf. [DFG04, §2.1]). By a formula due to Shimura we know
that L(Ad%(ps,), 1) is a non-zero multiple of the Petersson inner product of f, hence does not
vanish. Since py,, is irreducible, by Schur’s lemma H°(F, Ad%(p;,) ® Q,) = 0. Therefore, in our
case, the Beilinson-Deligne conjecture is equivalent to the vanishing of H} (F, Ad%(p £p) ©Qp).

Let Tam(Ad"(ps,)) C O be the Tamagawa ideal introduced by Fontaine and Perrin-Riou
(cf. [FP94, §§L.4.1 and I1.5.3.3]).

THEOREM B. Assume that p is unramified in F' and let f be a Hilbert modular newform over F’
of level prime to p and cohomological weight k satisfyingp —1> > _; ((wo + k;)/2). If p=Dpy,,
satisfies (LI}, q,) then:

(i) the Beilinson-Deligne conjecture holds, H:(F, Ad®(ps,) ® Q,) = 0; and

. I'(Ad%(pys,p), DL(AA (psyp), 1)
(11) LP 7 J \J
Q"

>O = Tam(AdO(Pf,p)) Fitto (Hf (F, AdO(Pf,p) ® Qp/Zyp));

where J C Jp and Q, Q;F V) are Matsushima-Shimura-Harder periods as in Definition 7.1.

An immediate corollary is that for p as in the theorem, the p-adic valuation of Qf Q;F \ does
not depend on J, nor change when we twist f by a Hecke character.

Theorem B is a first step towards the generalization to an arbitrary totally real field of the
work [DFG04] of Diamond, Flach and Guo on the Tamagawa number conjecture for Ad"(py,,)
over Q. When F' is not Q, it is an open problem how to identify the periods Q% used in
Theorem B with the motivic periods attached to f used in the formulation of the Tamagawa
number conjecture.

1.2 General strategy of the proof

The method we use originates in the work of Wiles [Wil95] and Taylor—Wiles [TW95], later
developed by Diamond [Dia97b| and Fujiwara [Fuj06a].

Let p be as in Theorem A and let ¥ be the finite set of primes of F' not dividing p.
In §4.2 we define the notion of a Y-ramified deformations of p. By Mazur [Maz97] and
Ramakrishna [Ram93], the functor assigning to a local complete Noetherian O-algebra A with
residue field x, the set of all Y-ramified deformations of p to A, is representable by an O-
algebra Ry, called the universal deformation ring. Since p is absolutely irreducible and odd,
Ry is topologically generated as O-algebra by traces of images of elements of Gp (cf. [Wil95,
pp. 509-510]). Moreover, by the Cebotarev density theorem, it is enough to take traces of images
of Frobenius elements outside a finite set of primes.

Let S be a large finite set of primes and let 7s; be the O-subalgebra of [] 7 O generated
by (¢p(c(f,v)))vgs where f runs over all Hilbert modular newforms of weight k& such that py,,
is a Y-ramified deformation of p. The O-algebra 7y is local complete Noetherian and reduced.
By the above discussion 7x; does not depend on the choice of S and the natural homomorphism
Rs; — [ O factors through a surjective homomorphism of local O-algebras 75, : Ry, — 7. Then
Theorem A amounts to proving that 7y is an isomorphism.

We follow Wiles’ method consisting of showing first that my is an isomorphism (the minimal
case) and then in proving, by induction on the cardinality of 3, that my is an isomorphism
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(raising the level). In order to prove that Ry is ‘not too big’ we use Galois cohomology via
Proposition 6.5. In order to prove that 7y is ‘not too small’ we realize it geometrically as a
local component of the Hecke algebra acting on the middle degree cohomology of some Shimura
variety and then use this interpretation to study congruences.

It is on that last point that our approach differs from Fujiwara’s. Whereas Fujiwara uses some
quaternionic Shimura curves or Hida varieties of dimension zero, we use the d-dimensional Hilbert
modular variety. The main ingredient in our approach is a result from [Dim05] guaranteeing the
torsion freeness of certain local components of the middle degree cohomology of a Hilbert modular
variety, which is recalled in the next section.

In the minimal case our modularity result is strictly included in Fujiwara’s since we only
treat the case P, = @ (cf. Definition 4.2) and furthermore we do not consider the ordinary non-
crystalline case. On the other hand, our level raising results are new, thanks to an Ihara-type
lemma for the middle degree cohomology of Hilbert modular varieties (cf. Theorem 3.1). Our
proof relies substantially on the g-expansion principle, which is available for Hilbert modular
varieties.

Finally, let us observe that whereas modularity lifting results similar to Theorem A may
be obtained in various ways (cf. [SW99, SW0la, SWO01b, Tay06] or [Kis09]), the use of the
cohomology of Hilbert modular varieties seems to be inevitable in order to obtain results on
the adjoint L-functions and Selmer groups such as Theorem B.

2. Cohomology of Hilbert modular varieties

In this section we state and prove a slightly more general version of a theorem in [Dim05]. We
take advantage of this opportunity to correct a wrong assumption in [Dim05], coming from a
mistake in [DT04]. We thank the referee for pointing out this error to us.

2.1 Hilbert modular varieties
Denote by Z the profinite completion of Z and by A= (F ® Z) X (F' ®g R) the ring of adeles
of F. For a prime v, let w, denote a uniformizer of F,.

For an open compact subgroup U of (0 ® Z)X we denote by Cy (respectively, C{; ) the class
group A*/F*U(F ®gR)* (respectively, the narrow class group A*/F*U(F ®qR)}, where
(F ®g R)} denotes the open cone of totally positive elements in (F' @g R)*).

For an open compact subgroup K of GLa(F ® Z) we denote by Yy the Hilbert modular
variety of level K with complex points GL2(F)\GL2(A)/K - SO2(F ®q R)(F ®g R)*. By the
strong approximation theorem for GLs, the group of connected components of Y is isomorphic

Jr
t0 Clet(r):

We consider the Hilbert modular varieties as analytic varieties, except in the proofs of
Theorem 3.1 and Propositions 3.3 and §5.5 where we use integral models.

For an ideal n of 0, we consider the following open compact subgroups of GLa(F

®7):
Ko(n):{<z Z)EGLg(O@Z) cEn}, Kl(n):{@ Z)eKo( a—len }
Ku(n)—{<i Z)eKl(n) d—len}, and K(n)-{(i 2>6K11 }

For 7=0,1,11, @ let Y7(n) be the Hilbert modular variety of level K- (n).
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Consider the following assumption:
(NT) n does not divide two, nor three, nor Nz q(0).
In [DT04, Lemma 1.4] it is shown that under the assumption (N'T), for all z € GLy(F & Z),

the group GLo(F) Nz Ky (n)x~H(F ®g R)* SLa(F ®g R) is torsion free. This is not sufficient to
claim that Yj(n) is smooth. Here is a corrected statement.

LEMMA 2.1. (i) The variety Yi is smooth if, and only if, for all x € GLo(F ® 2), the quotient
of the group GLo(F) Nz Kz~ (F ®g R)* SLa(F ®g R) by its center is torsion free.
(ii) If n satisfies (N'T), then Yi1(n) is smooth.
(iii) Let u be a prime ideal of F above a prime number q such that:
e ¢ splits completely in F(\/e|e€ o*, for all T € Jp, 7(€) > 0); and
e ¢ =—1 (mod 4¢) for all prime numbers ¢ such that [F((;) : F] = 2.
Then Yy(u) is smooth.

(iv) If K' < K and Yk is smooth, then Yy is smooth and the natural morphism Yy — Y
is étale with group K/K'(K N F*).

Proof. Claims (i) and (iv) are well known, claim (ii) follows easily from [DT04, Lemma 1.4]. We
omit the proof of claim (iii) since it is very similar to the proof of Lemma 2.2(i) given below. O

From now on, we only consider compact open subgroups K factoring as a product [], K,
over the primes v of F', such that K, is maximal for all primes v dividing p and Y is smooth.
We denote by X5 the set of primes v where K, is not maximal.

For an O-algebra A, we denote by V4 the sheaf of locally constant sections of
GLa(F)\(GLa(A) x Va)/K - SO3(F g R)(F ©g R)* — Yy, (2)

where V4 denotes the algebraic irreducible representation ). JF(det(wO_kT)/ 21 @ Symh—2 A?)
of GLg(A)’F 2 GLy(0® A) and K acts on the right on V4 via its p-component [, Ko
Note that for K’ C K, there is a mnatural projection pr:Yyx — Yx and pr*V, =Vy,. For
g€ GLy(F ®Z) N My(o ® Z) we define the Hecke correspondence [KgK] on Yk by the usual
diagram.

g
YKﬂgKg*1 - YgflKgﬁK or (3)

y \2
Yk Yk
The Hecke correspondences act naturally on the left on the Betti cohomology groups
H*(Yk,V4) and on those with compact support HS(Yx,Vy4) (cf. [Hid88, §7]). If K,=
GLa(0,), we define the standard Hecke operators T, = [K, (§ o, ) K] = [Ky (%) Ky] and
SU — [K’U (wU 0 ) K’U] — [(wv 0 ) Kv}

0 wy 0 wy

2.2 Adjoint Hilbert modular varieties

For an open compact subgroup K of GLy(F ® 2) we define the adjoint Hilbert modular variety
of level K:

Y4 = GLo(F)\GL2(A)/AX K - SO5(F ®q R). (4)

Again, we have Betti cohomology groups H® (Yf}d, V4) and Hecke action on them. In
particular, if K, = GLz(0,), there is a Hecke operator T}, (the operator .S, acts by Ng/q(v)™°).
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We call Y;}d adjoint since it can be rewritten in terms of the adjoint group PGLy as follows:
V4 = PGLy(F)\PGLy(A) /K - PSOo(F ®g R), (5)
where K is the image of K in PGLy(F ® Z).

The group of connected components of Yy is isomorphic to the quotient of Ci

det(K)
by the image of A*2 hence it is a 2-group. If det(K)= (0 ®Z)*, then the group of
connected components of Yy is isomorphic to the narrow class group C;E of F', while the
group of connected components of Y24 is isomorphic to the genus group C}r /C%, %C; / (C;)Q.
Each connected component of Yf;d can be defined more classically using the Hurwitz—Maass
extension of the Hilbert modular group.

LEMMA 2.2. (i) Let u be a prime ideal of F' above a prime number q, such that:
e ¢ splits completely in the ray class field of F' modulo 4; and
e g =—1 (mod 4¢) for all prime numbers ¢ such that [F({;) : F')] = 2.
Then Y24(u) is smooth.

ii) If K’ <« K and Y24 is smooth, then Y2 is smooth and the natural morphism Y2¢ — Y24
K K K K
is étale with group K/K'(K NA*).

Proof. We show by contradiction that for all z € GLy(F ® 2), the quotient of the group
GLo(F) Nz Ko(u)z 1AX SLy(F ®g R) by its center is torsion free. Suppose that we are given
an element v in that group which is torsion of prime order ¢ in the quotient. Consider the
(quadratic) extension F[y] = F[X]/(X? —tryX +det ) of F. Since 7, € Ko(u)F., it follows
that u splits in F[y]/F.

If ¢ is odd, then necessarily F[y] = F((s). Our second assumption on ¢ implies then that u is
inert in F'[y], which is a contradiction.

If /=2, then try=0 and dety € F* N (Z ® 0)*A*2. By class field theory, the extension
F(y/det v) corresponds to a quotient of the class group C(1+4Z®0)X ,

on ¢, u splits in F'(y/det 7). On the other hand, by the second assumption u is inert in F'(/—1),
hence u is inert in F'(y/—det ) = F[y], which is a contradiction.

This proves part (i). The proof of part (ii) is left to the reader. O

hence by our first assumption

2.3 Twisted Hilbert modular varieties and Hecke operators

Let U be an open compact subgroup of (o (E@i)X and let K be an open compact subgroup
of GLa(F ® Z) such that Ki1(n) C K C Ko(n), for some ideal n C 0. Assuming that U and K
decompose as a product over all primes v, so does the group

K'={x € K | det(z) € U}. (6)

We define the twisted Hecke operators T, = [K} (§ ) K}] and S, = [K}, (7 m(,)v) K]], for
vin, and U, = (K} (§ Q) K}, for v | n.

Note that if v ¢ Xk, then T}, S} and U], coincide with the standard Hecke operators. In
general, they depend on the choice of w, in the following way: if we replace w, by @), then
T}, and U} are multiplied by the invertible Hecke operator Us := (K}, (3 9) K}] = (} 9) K}, with
d =wl /w, € 0, whereas S), is multiplied by its square.

For a Hecke character 1) of Cgrnpx, we denote by [¢] the ¢-isotypic part for the action of the
Hecke operators SyNp/q(v)™*°, v & XK.
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For a character v of (0 ® Z)*, trivial on U, we denote by [v] the v-isotypic part for the action
of the Hecke operators Us for § € o).

2.4 Freeness results

Consider the maximal ideal m, = (@, T, — tr(p(Froby)), S, — det(p(Frob,))Ng/q(v) ') of the
abstract Hecke algebra TS = O[T, S, |v ¢S], where S is a finite set of primes containing
Yx U{v|p}.

THEOREM 2.3. Let K=1][, K, C GLQ(F@Z) be an open compact subgroup, maximal at
primes v dividing p and such that Y is smooth. Under the assumptions (Mod,) and (LIing,):

(i) He(Yk, Vo)m, = H* (Y, Vo)m, = HY(Yk, Vo )m, is a free O-module of finite rank;
(i) H*(Yx, VE/0)m, =H'(Yk, Vg o)m, is a divisible O-module of finite corank and the
Pontryagin pairing HY (Y, Vo)m, x H (Yx, Vi/0)m, — E/O is a perfect duality.

Moreover, if Y2 is smooth, then parts (i) and (ii) remain valid when we replace Y by Y24.

Proof. For K = K1(n) the theorem is proved in [Dim05, Theorems 4.4 and 6.6], except for the
following issues.

e The assumption (LIiq,) in [Dim05, §3.5] is formulated as follows: the restriction of p to
G is irreducible of order divisible by p, and is not a twist by a character of any of its other
d — 1 internal conjugates. This is clearly implied by (LIi,q ,). Conversely, if the assumption
from [Dim05, § 3.5] holds, then by [Dim05, Lemma 6.5] every irreducible Gz-representation

annihilated by the characteristic polynomial of (® Indg p)|gﬁ is isomorphic to (® Ind% P)\va
so in particular (® Indg p)‘gﬁ is irreducible. Therefore, these assumptions are equivalent.

e Theorem 4.4 is proved under the assumption (MW). However, this assumption is only
used through [Dim05, Lemma 4.2] and under the assumption (LIiq,) we can apply the
stronger [Dim05, Lemma 6.5], hence the results of [Dim05, Theorems 4.4] remain valid.

e The part of (Mod p) assuming that p is modular is only used through the knowledge of its
weights for the tame inertia. Actually, the proof only uses the fact that the highest weight
> regp ((wo + k) /2) occurs with multiplicity one in the tame inertia action of ® Ind(% p-
This fact is a consequence from [Dim05, Corollary 2.7(ii)] and the theory of Fontaine-
Laffaille, if we assume that p — 1 is bigger than > ; ((wo + k7)/2). In contrast to the
claim made in [Dim05], assuming that p —1 is bigger than »_ ., (k; —1), which is
the difference between the highest and the lowest weights, is not sufficient for both the
above argument and for Faltings’ comparison theorem.

Let us now explain how these results extend to more general level structures. Observe first that
a conjugate of K has a normal subgroup of the form K (n) for some ideal n C 0. Hence, a conjugate
of K contains Ki1(n) N Ko(n?) as a normal subgroup. Therefore, Y admits a finite étale cover
isomorphic to Y| m)nKy(n2), and the latter has a finite abelian cover Y (n?) =11, Mi(c,n?),
(+1+Z®n2)x
defined in [Dim05, § 1.4]. The following morphisms of Hilbert modular varieties are étale:

where ¢ runs over a set of representatives of C and M{ (¢, n?) are the fine moduli spaces

Y (n%) —= Y11 (n*) —= Vi, (n)nko(n?) —> Y —= V<. (7)
Recall that each M7 (¢, n?) is a fine moduli space admitting an arithmetic model endowed with

a universal Hilbert—Blumenthal abelian variety. In [Dim05, DT04] one proves various geometric
results concerning Mll(c, n), such as the existence of minimal compactifications, the existence of
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proper smooth toroidal compactifications over Z, and the extension of certain vector bundles to
these compactifications, the construction of a Berstein—Gelfand—Gelfand complex for distribution
algebras over O, having as consequence the degeneracy at E; of the Hodge to de Rham spectral
sequence. By applying those constructions to each component of Y7} (n?), it follows that the

highest weight > ; ((wo + k:)/2) of ® Indg p does not occur in Hi(Ylll(nz)@, V) for ¢ < d.
By [Dim05, Theorem 6.6] Hi(Ylll(HQ)@, Vi)m, vanishes for i < d (it is important observe that the

Hodge to de Rham spectral sequence is T“-equivariant; we refer to [Dim05, § 2.4] for a geometric
definition of the Hecke correspondences).

If Y — Yio is an étale morphism of smooth Hilbert modular varieties with group A, the
corresponding Hoschild—Serre spectral sequence is Hecke equivariant and yields

B}’ = (A, H (Vier, Vi)m,) = ™ (Yier, Vi), ®

Starting from the vanishing of H* (Y} (n?), V) , for i <d, then applying (8) to the morphisms
of (7) yields the vanishing of H'(Yk, V,)m, and H (Y24, V,)m,) for i <d. The theorem then
follows by exactly the same arguments as in [Dim05, Theorems 4.4 and 6.6]. O

PRrROPOSITION 2.4. Suppose that we are given an étale morphism of smooth Hilbert modular
varieties Y — Yg with group A. Assume that A is an abelian p-group and that O is large
enough to contain the values of all of its characters. Then, under the assumptions (Mod p) and

(LIna p), HY(Yk, Vo)m, is a free O[A]-module and HY(Yy, Vo)m, ®oja) O = HY(Yi, Vo)m, as
TS-modules.

Proof. By Theorem 2.3(i) HY(Yx, Vo )m, is free over O, hence by Nakayama’s lemma the desired
freeness over O[A] is equivalent to the freeness of HY(Y, Vo)m, ®o k over A := k[A].

Since A is a local Artinial ring, freeness is equivalent to flatness. Hence, we have to show that
Tor} (H4 (Y, Vie)m,, ) = 0 for i >0 and HY (Y, Vi)m, @4 £ 2 HY(Yir, Vi), .

We reproduce here Fujiwara’s perfect complex argument (cf. [Fuj06a, Lemma 8.16]) following
the presentation of Mokrane and Tilouine (cf. [MT02, §10]).

Let C*® be the Godement resolution of the sheaf V,, on the (complex) variety Yx. It has a
natural action of A and there is a hypertor spectral sequence:

EY7 = Tor®,(H/(C*), k) = H (C* @4 k).
By definition, H/(C®*) = H/ (Y, V,). Since Yx — Yi- is étale with group A, it is a standard

property of Godement’s resolution that H7(C® ®4 k) = H/ (Y, V,) (cf. [Fuj06a, Lemma 8.18]).
Hence, the spectral sequence becomes

EL = Tor,(H/ (Yx, V), k) = HH (Yo, V).

Since the Hecke operators are defined as correspondences, the spectral sequence is T*-equivariant
and we can localize it at m,. By Theorem 2.3(i), we have H(Yk, V,)m, =0, unless j = d.
Therefore, the m,-localization of the spectral sequence degenerates at Eg, and gives

Torﬁi (Hd(YK7 Vﬂ)mw "Q) = HH_d(YK’a Vl@)mp-

Another application of Theorem 2.3(i) yields H+4 (Y, Vo )m , =0, unless i = 0.
Hence, Tor®,(H*(Yx, Vi)m,, &) =0, unless i = 0 in which case

HY(Yie, Vi)m, ®a & = Torh (H4 (Y, Vi)m,, £) 2 HY(Vier, Vi) m

P

as desired. O
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2.5 Poincaré duality

In this section we endow the middle degree cohomology of a Hilbert modular variety with various
pairings coming from the Poincaré duality.

We define a sheaf V5 on Yx by replacing the GLo(O)7F-representation Vp, in the definition
of Vo in §2.1, by its dual
Vé/ — ® det (—wo—k+)/2+1 ® Syka_2(O2).

T€JR
The cup product followed by the trace map induces a pairing;:
[ ) ] : HZ(YKv VO) X Hd(YKv Vé) - Hgd(YKﬂ O) — 0, (9)

which becomes perfect after extending scalars to E. The dual of the Hecke operator [Kx K| under
this pairing is the Hecke operator [Kz ! K] (cf. [Fuj06a, §3.4]). In particular, for v ¢ S, the dual
of T, (respectively, S,) is T;,S, ! (respectively, S;!). We modify the pairing (9) in a standard
way, in order to make it Hecke equivariant.

First, the involution z+ 2* = (detx) !z of GLy induces a natural isomorphism
HY(Yk, VY) 2 HY(Yi+, Vo). Assume next that (K*.~! = K, where ¢= (9 ') for some ideal
n of o prime to p. Then *Vp = Ve and there is a natural isomorphism: HY(Yg~, Vo) 22

HY(Y, g+,1, Vo) = H4 Yk, Vo). Since for all 2 diagonal tz*.~! = det(2z*)(z*)~! = 2~! we have
the following commutative diagram.
HY(Yic, Vi) — = HY(Yic, Vo) — e HUY, o1, Vo) ——— HY(Y, Vo) (10)
(Ka—'K] (K* (2= 1) K] (KzK]
HY(Yie, V) — = HY(Yic-, Vo) — e H(Y, e, 1, Vo) ——— H(Yi, Vo)

By composing the pairing (9) with the first line in the diagram we obtain a new pairing:
(. ) =1, ("] :HAYk, Vo) x H Yk, Vo) — O, (11)

that we call the modified Poincaré pairing. It has the advantage of being equivariant for all of
the Hecke operators [Kxz K] with = diagonal (this is not a restrictive assumption as long as we
are concerned with commutative Hecke algebras). In particular, the pairing (11) is T -linear,
and under the assumptions of Theorem 2.3(i) its m,-localization yields a perfect duality of free
O-modules:

(, ) H' Yk, Vo)m, x H (Y, Vo)m, — O. (12)

We now introduce a variant of this pairing for cohomology groups with fixed central character.
Let 1 be a character of Cynpx. Consider the sheaf V}g of locally constant sections of

GLy(F)\(GLa(A) x Vo) /AXP K SO (F ©g R) — Y34, (13)

where the prime to p ideles AX®) act on Vi via 1| - |7%0/| - |30, Since 9 is trivial on K NAX,
this is compatible with the action of K on V. The cup product followed by the trace map
induces a pairing:

[, ] HAYR, VE) x BUYR, (VE)Y) — R4V, 0) — O, (14)

and again, the action of the Hecke operator [Kz K] is dual to the action of [Kz~!K]. Note that
the involution z +— x* sends the sheaf (Vlé)v to Vlé. Similarly to (11) we define the T*-linear
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modified Poincaré pairing:
(o) =10 )] HAYVR V) x HYYRS, V) — O (15)

Finally, under the assumptions of Theorem 2.3(i) there is a natural isomorphism
HY(Yik, Vo) []m, = HI (Y2, V%)mp and a perfect duality of free O-modules:

() HY YK, Vo) [§]m, x H Yk, Vo) [¢)]m, — O. (16)
3. Thara’s lemma for Hilbert modular varieties

Recall our running assumptions that K factors as a product [[, K, over the primes v of F', that
K, is maximal for all primes v dividing p and that Y is smooth.

Let g be a prime not dividing p and let S be a finite set of primes containing those dividing
pq and the set of primes X where K is not maximal.

Consider the maximal ideal m, = (w, T}, — tr(p(Froby)), S, — det(p(Frob,))Np/q(v) 1) of the
abstract Hecke algebra T° = O[T, S, | v ¢ S]. The Betti cohomology groups H%(Yx, Vo) defined
in §2.1 are modules over T,

3.1 Main theorem

Fix a finite index subgroup U of o, and suppose that Kq= {z € GL2(0q) | det(z) € U}. In §2.3
we defined Hecke operators Ty, Sy (respectively, Uy) acting on HY (Y, V) (respectively, on

HY (Yo (g0 Va))-

Consider the degeneracy maps pry, pry : Ying, (g — Yk used in the definition of the Hecke
correspondence Ty

THEOREM 3.1. Assume that (Mod,) and (Llma,) hold. Then the m,-localization of the

TS-linear homomorphism:
pri + pry s HY (Y, Vo)®? — H*(Yini (), Vo)

is injective with flat cokernel.

Proof. Our proof is geometric and relies on the existence of smooth models Vg (respectively,
YVinko(q) of Yi (respectively, Y g, (q) over an unramified extension of Z, and on the existence
of smooth toroidal compactifications thereof. One should be careful to observe that K N Ky(q)
is maximal at primes dividing p. By the Betti-étale comparison isomorphism the cohomology
groups

Wi=H"(Yy 5, Vi)m, and Wo(q) :=H Yir (g3 Ve)mp:

are endowed with a structure of T°[Gg] modules. The theorem is equivalent to the injectivity of
T%[Gg]-linear homomorphism:

pry +pry : W& — Wo(q).
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The image of ']I‘S in End,(WW) is a local Artinian ring and (miW)z>0 is a finite
decreasing filtration of W by T® [Gg]-modules. By the torsion freeness result in Theorem 2.3(i),
both W and the graded pieces m! W/m’HW are quotients of two T®[Gg]-stable O-lattices
in HY(Y, k.0 YO)m, ®0 E. By a theorem of Brylinski and Labesse [BL84], it follows that the

characteristic polynomial of ® Ind% p annihilates the x[Gg|-module m!, W/m W (cf. also [Dia98,
Lemma 3]). It follows then from (LIpq,) and [Dim05, Lemma 6.5] that every Gz-irreducible
subquotient of W is isomorphic to ® Indg p. The same arguments apply also to Wy(q). Therefore,
we can check the above injectivity by checking it on the last graded pieces of the corresponding
Fontaine-Laffaille modules.

By Faltings’ étale-crystalline comparison theorem and the degeneracy of the Hodge to
de Rham spectral sequence (cf. [Dim05, Theorem 5.13]) the claim would follow from the following
lemma (although this part of the argument relies on the existence of toroidal compactifications
of Vi and Vgnr,(q), by Kocher’s principle we can omit them as long as we are concerned with

global sections of the invertible bundle w* ® r=%0/2; ¢f. [Dim05, §§1.5 and 1.7]). a

LEMMA 3.2. The following homomorphism is injective

pry{ + pl”; : HO(yK/“’ gk ® H_w0/2)@2 - HO(yKﬁKo(q)/m Qk X Z_w0/2)'

Proof. Let (¢', g) be an element of the kernel: pri(¢g’) = — pri(g).

Since the homomorphism is U, él—equivariant for the U, a—action on the left-hand side given by the

a 1)
—SeNF/q(a) 0/
that ¢’ is an eigenvector for Sg. This implies that ¢’ is a multiple of g, hence pr3(g) = —prj(g’)
is a multiple of pri(g). On the other hand, prj(g) has the same g-expansion as g, whereas the

matrix ( we may assume that (¢’, g) is an eigenvector for Uél. Similarly may assume

g-expansions of pri(g) and g are related as follows: for every x € F ® Z,

-1
. c(g, vwwg’) if zqwy Leog,
c(pri(g), ) = { 0T ) e S (1)
0 othervvlse.
It follows that ¢(g, ) =0 for all z, which in virtue of the g-expansion principle implies g = 0.
The proof of Theorem 3.1 is now complete. O

3.2 More cohomological results
Fix a finite index subgroup U of oy, and suppose that Kq={z € Ki1(q¢™1) | det(x) € U}, for
some integer ¢ > 1. Consider the degeneracy maps

pry, pry : YKﬂKl(qC) — YKmKo(qC) —Yg and (18)
Pr3, Py YinK, (q9)nKo(qe+t) — YKNK(q°)

used in the definition of the Hecke correspondence U, (’] in §2.3.
PROPOSITION 3.3. Assume that (Mod,) and (Lliq,) hold. Then the m,-localization of the
TS-linear sequence:

(pri,—pr3) 9 DPri+pr; 4

0 — HY(Yk, Vo) H(Yicnre, (q¢) Vo)? H(Yien e, (qo)nio(qe+1) VO)

is exact and the last arrow has flat cokernel.
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Proof. We follow closely Fujiwara’s argument [FujO6a, Proposition 5.13], except for the last part
of it where we use a geometric argument instead (Fujiwara uses open compact subgroups which
do not satisfy our running assumption to be maximal at primes dividing p).

It is enough to prove the exactness after tensoring with x, which by Theorem 2.3(i) amounts
to replacing Vo by V. Put Ko =K, K1 = K N Ki1(q°),

KF(T;' ?) (K 0 K1 (q%)) (wgl (1)> and

K= (G0 ) e nm@ nmaet) (7)) =K@ K@),

where K%(q) = (%q (1)) Ky(q) (wogl ?) is the opposite parahoric subgroup.

For +=0,1, 2,3 put Y; = Yg,. By the above computations it is equivalent then to prove the
exactness of the sequence:

(pry *,—prh *) prf *+prf *
—_— —_—

0— HY Yy, Vi)m HY(Y1, Vi)m, ® HY (Y2, Vi)m HY(Y3, Vi) m,,

where
‘”3/ \
\ /

prl pr2

and the projections are induced by the inclusion of the open compact subgroups.

Taking models of the ¥; (0 <i<3) over Q and using Betti-étale comparison isomorphisms
turns the above sequence into a sequence of T°[Gg]-modules W; := H4( Y, 5> Vi)m,. As in the
proof of Theorem 3.1, the condition (LIrq,) implies that every Gz-irreducible subquotient of

W; (0 <4< 3) is isomorphic to ® Indg p. Therefore, it is enough to check the exactness on the
last graded pieces of the Fontaine—Laffaille modules. This is the object of the following result. O

LEMMA 3.4. The following sequence is exact:

0 — HO (Yo, wF @ pw0/2) PP D),

prl3 *+pr£1 *
—_

- Ho(yl/m w ®wa0/2) 2] HO(yQ/m Qk ®Ziw0/2) Ho(y?)/m Qk ®27w0/2)' (19)

Proof. We adapt the analytic argument of [FujO6a, Lemma 5.14] in order to show that the
coproduct y1 ]_[y Y5 is isomorphic to )y as k-schemes.
For 0 < i < 3, there exists a fine moduli scheme y1 such that y1 — Y; is a finite étale with
group
F Nndet(K;)
(FX N Kz)2 ’
where Aj = Ay = A3 —» Ay (recall that by definition y} has the same number of connected

components as };). Since y} — y§ is Aj-equivariant (where the action on y& is via the surjection
A; — Ayp), we have Y ]_[y_l y& =~ ), for all 7. Hence, it is enough to show that yll Hy§ Yy = y&.

A=
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We show this claim using the following functorial description of the y}:

(i) Vg classifies polarized Hilbert-Blumenthal abelian varieties A with pqe—1-level structure P
and some additional level structures that we ignore since they are the same for y} for all
0<i<3;

(ii) Vi classifies polarized Hilbert-Blumenthal abelian varieties A with piqe-level structure Q;

(iii) V3 classifies polarized Hilbert-Blumenthal abelian varieties A with a pg-subgroup C and a
pge-level structure @ in A/C;

(iv) Vi classifies polarized Hilbert-Blumenthal abelian varieties A with ige-level structure @
and a pg-subgroup C' disjoint from the group generated by Q.

The morphisms pr;- in the diagram above come from forgetful functors described as follows:

(1) pri(4, Q) = (A, Q9), where Q9 is the pge-1-level structure deduced from @ obtained by
composing with the dual pige-1 < piqe of the natural projection 0/q° — 0/q¢L;

(i) prh(A, @, C) = (A, Q%) where it is important to observe that Q% is a well-defined fige—1-level
structure on A (not only in A/C);
= (4,

(iv) pry(4, @, C) = (A, Q mod C,C), where @ mod C'is a piqe-level structure on A/C, since
C' is disjoint from the group generated by Q.

We have pr} o prs(A4, Q,C) = (A, Q) = (A, (Q mod C)9) =prhopr)(4,Q,C).

We have to show that given any two homomorphisms h; : yll — X and ho : y21 — X such that
hy o pry = hg o prly, there exists a unique homomorphism g : V¢ — X such that hy = hgopr}
and hg = hg o prh. By the functorial description of the )} and the pr; the claim is reduced to
a simple lemma from group theory saying that, if Ky is generated by K; and K5, then the
coproduct Ky/K; HKO/K3 Ky/Ky=Ky/K; HKO Ky/ K3 is a singleton.

Hence, )4 Hy3 Yy 22 ) yielding an exact sequence of sheaves over ):

0— b @u /2 = prl, prf *wF @ 2 @ prhy . prh Wk @ /2 - pr, prf wF @ pTw/2,

Since the functor of global sections is left-exact, this implies the lemma. a

4. Twisting

Let p: Gr — GL2(k) be a totally odd, absolutely irreducible representation.

4.1 Local twist types

For a prime v of F', we identify Gr, with a decomposition subgroup of Gr and denote by I, its
inertia subgroup. Let p, be the restriction of p to Gr,. We normalize the local class field theory
isomorphism so that the uniformizer w, corresponds to the geometric Frobenius.

Over a totally real field F', twists of minimal conductor exist locally, but not necessarily
globally. This observation motivates the following definition, due to Fujiwara.

DEFINITION 4.1. Let v be a prime of F' not dividing p. A local twist type character for p, is a
character v, : Gr, — k* such that p, ® v, 7! has minimal conductor amongst all twists of p, by
characters of G, . For any prime v we choose once and for all a local twist-type character v, and
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use the same notation for the character of F, coming from local class field theory. For simplicity,
we choose w, and v, so that v,(w,) =1. Denote by v the character [], v, of (o ® Z)*.

DEFINITION 4.2. Let X, be the set of primes v not dividing p such that p, ® v, ! is ramified.
Let S, be the set of primes v € ¥, such that p, is reducible.

Let P, be the set of primes v € ¥, such that p, is irreducible but p,|7, is reducible, and
Np/g(v) =—1 (mod p).

Note that X,, S, and P, do not change when we twist p by a character.

4.2 Minimally ramified deformations
For a character u taking values in K, we denote by g its Teichmiiller lift.

Let A be a local complete Noetherian O-algebra with residue field x and p, : Gr, — GL2(A)
be a lifting of p,. For F'=Q, the following definition coincides with the notion introduced
in [Dia97a].

DEFINITION 4.3. We say that p, is a minimally ramified if det p,|7, = d/e_t\g,hv and, in addition:

e ifv¢ X, then p, ® v, ! is unramified;

e if vES,, then (p, ® v, 1) #£ 0;

e if ve P, and (p, @ py ) # 0 for some character p, : I, — £*, then (p, ® ;1)1 #0.
Remark 4.4. (i) If p, is a minimally ramified lifting of p,, then p, ® 1 is a minimally ramified
lifting of p, ® u for all characters p: Gp, — £*.

(ii) If p, is a minimally ramified lifting of p,, then the Artin conductors of p, and p, coincide
and det py |z, is the Teichmiiller lift of det p,|7,. The converse holds if p, has minimal conductor
among its twists and v ¢ P, (cf. [Dia97a, Remark 3.5]).

Let x; : G — Z, be the p-adic cyclotomic character.

DEFINITION 4.5. Let ¢: Gg — O be a finite p-power order character of conductor prime to p.
Define v : Gr — O as the unique character such that ¢ =2 is the Teichmiiller lift of (X;;’O“
mod p) - det p.

DEFINITION 4.6. Let X be a finite set of primes of F' not dividing p. Let A be a local complete
Noetherian O-algebra with residue field k. We say that a deformation p: Gp — GLo(A) of p to
A is Y-ramified, if the following three conditions hold:

e /) ® ¢! is minimally ramified at all primes v ¢ 3, v{p (cf. Definition 4.3);

e pis crystalline at each prime v dividing p with Hodge-Tate weights ((wo — k;)/2 + 1, (wo +
ko)/2)re s,
o det p= le“’O_lw.

A @-ramified deformation is called minimally ramified.

Note that if ps,, is a ¥-ramified deformation of p, then the central character of f has to be
|- |7, Since p is odd, every p-power character of G has a square root, hence the determinant
of any finitely ramified low-weight crystalline deformation of p is of the form x,, wo—1y) for some 1)
as above.
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4.3 Auxiliary level structures

Under the assumption (LIpg,), which implies in particular that the restriction of p to the
absolute Galois group of any totally real extension of F' is absolutely irreducible, a standard
argument (cf. [Jar99b, §12]) using the Cebotarev density theorem implies that there exist
infinitely many primes u of F' as in Lemma 2.2(i), such that:

(i) NF/Q(u) #1 (mod p) and
(ii) ¢ and p are unramified at u; and tr(p(Froby))? # ¥ (W)Np/qu)*° (N/g(u) + 1)? (mod w).

In particular, this implies that L, (Ad%(p), 1) € *. Let us fix such a prime u and denote by
ay, and fy the eigenvalues of p(Froby,).

LEMMA 4.7. The natural projection Tp, () — 7p, is an isomorphism.

Proof. This amounts to proving that if f is a newform of weight k, central character |- |~*°
and level prime to p, and if py, is a deformation of p, then the local component 7, of the
associated automorphic representation 7 is unramified. Since p,, is unramified, if 7, is ramified,
then necessarily the valuation of its conductor is one or two. Since 7, has unramified central
character this implies that dim wfo(u) =1 or dim wfo(ug) = 1. In the first case m, is a special
representation, hence a, = G, N F/@(u)jEl (mod w). In the second case my, is either a ramified
principal series, in which case N (1) =1 (mod p), or a supercuspidal representation, in which
case Np/g(u) = —1 (mod p) and tr(p(Froby)) =0 (mod ). In both cases this contradicts our
assumptions. O

By Lemmas 2.1(iii) and 2.2(i), for all K C Ko(u), Yx and Y4 are smooth. However, by
Lemma 4.7 the additional level at u does not modify the local components of the Hecke algebras
and cohomology modules that we consider, hence we omit it in our notation.

4.4 Level structures and Hecke operators associated with p

The cohomology of the Hilbert modular varieties for the level structures that we introduce in
this section play an important role in the study of modular deformations of p.

For v not dividing p denote by ¢, be the valuation of the Artin conductor of p, ® v, ~! and

by d, the dimension of (p, ® v~ 1)v (cf. Definition 4.1). Put ¢, = d,, = 0 if v divides p. Define
K| = ker(K;(v®™) det, 0x %9, 0*), and (20)
K!" =ker(K1(v®) N Ko(vetd) det, 0x %d, 0*).

For all but finitely many primes v, we have v,| or = @l ox =1L

For a prime u as in Lemma 2.2(i) and a finite set of primes ¥ of F' not dividing p we put
ny =ul] s peotdy vaz v and

Ky =Ko n [[ K ][] K} € Ko(ns) and K,=Ks. (21)
vEX vgX

As in § 2.3 we define Hecke operators Us := ({ §) K7, and S5 := (3 9) K, for all v where 6 € 0.5;
T)=[K,(}2) K] and S, = [K], (5 2 ) K/] for v ¢ ¥ such that ¢, = 0; U, = [K], (§ 2 ) K}] for

Wo

v ¢ ¥ such that ¢, > 0; U = [K]] (§ 2 ) K] for v € X.
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Let @ be a finite set of primes g of F' such that Np/g(q) =1 (mod p). Put

Koo=K,N ] Ko(a) and K9=K,n ][] K (22)
qeQ aeqQ
where K? is the kernel of the composition of Ko(q) — (0/q)*, (¢ %) + aq/dq with the natural
projection from (0/q)* to its p-Sylow Ag.
For qe€@ and 0€oy, the operator Ss:= [(8 g) chi)] is trivial, the operator Us:=
[Kg2 9 Kg)] depends only on the image of J in Ay, and the operator Ug:= [Kfl2 ((1] £q) Kg)]
depends on the choice of @wq as described in §2.3.

4.5 Decomposing the central action

Since our aim is to study automorphic forms with fixed central character, we only consider open
subgroups K C K, such that K N A* = K, N A*. Consider the idele class group

Cp:=Crc ax - (23)

The natural inclusions induce the following commutative diagram, where all morphisms are
étale for the indicated (abelian) groups.

FXK F*K
¥, R Y (o) (24)
Cp Citzong)x
A*K AXK,
yad 1(00)/ A7 Kp g

If v € ¥, the p-Sylow subgroup of (0/v)* injects naturally in A* K (ng)/A* K, (a fortiori in
F*Ki(ng)/F*K,), hence acts freely on Ypad and Y. It follows that the étale morphism Y, — Yj‘g
factors through an étale morphism Y, — YpA with group the p-group

A = (p-Sylow of C,) x [ (03 /ker(¢y)). (25)
vEX,

Recall that [¢)] denotes the -isotypic part for the action of the Hecke operators
SyNp/(v)™™°, v ¢ X, where ¢ is seen as a finite-order Hecke character of C,, and that [¢7]
denotes the intersection of the ¢,v,-isotypic parts for the action of the Hecke operators Us for
d € 0 (cf. Definitions 4.1 and 4.5).

For v ¢ ¥, we have U, 62 = S5 and since p is odd, the ¢,-action at those v is determined by the
action of the central character.

Hence, the [¢, U¢] part is the intersection of the [¢?, ¢] part for the action of the p-group
Afﬁ with the [1)¢~2, D]-isotypic part for the action of a prime to p order group. This geometric
description of the Hecke action of A? will play an important role in the proof of Proposition 5.9.

5. Modularity of the minimally ramified deformations

Let p: G — GLa(k) be a continuous representation satisfying (LI, 4,) and (Mod ).

The main aim of this section is to prove the following.
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THEOREM 5.1. Suppose that P,=@. Then all minimally ramified deformations of p are
modular.

In the notation of § 1.2, the above theorem amounts to prove that 7 : R — 7 is an isomorphism
(since ¥ = @ in the entire section, we omit the subscripts). Our proof uses a stronger version,
due to Fujiwara [FujO6a, § 2], of a method invented by Wiles [Wil95] and Taylor-Wiles [TW95]
and known as a Taylor-Wiles system (a similar formalism has been found independently by
Diamond [Dia97b]).

The construction of a Taylor—Wiles system occupies the entire section. It includes namely a
geometric realization of 7 as a Hecke algebra acting on the local component M at p of the middle
degree cohomology of a Hilbert modular variety. The torsion freeness of M is a crucial ingredient
(cf. Theorem 2.3(i)). Lemmas 5.4, 5.6 and 5.7 are proved using standard fact about automorphic
representations and local Langlands correspondence for GL(2), whereas Propositions 5.5, 5.8
and 5.9 use finer geometric arguments.

Note that Fujiwara’s formalism is not essential for us since we know that M is free over 7p,
and 7p, is Gorenstein. This fact is an important ingredient in the proof of Theorem A, and is
shown in Proposition 5.5 without assuming P, = @. Actually, we only assume P, = & in §5.6.

5.1 The formalism of Taylor—Wiles systems, following Fujiwara
DEFINITION 5.2. Let Q be a family of finite sets of primes q of F' such that Np/g(q) =1 (mod p).
A Taylor-Wiles system for Q is a family {R, M, (Rg, M?)geo} such that:
(TW1) Rgq is alocal complete O[Ag]-algebra, where Ag =[], Ag and Aq is the p-Sylow of
(o/a)”;

(TW2) R is a local complete O-algebra and there is an isomorphism of local complete O-
algebras Rq ®ojag) O =R;

(TW3) M is a non-zero R-module, and M% is an Rg-module, free of finite rank over O[Ag]
and such that M% Ro[Ag] O is isomorphic to M as R-module.

We denote by 7 the image of R — Endp(M).

When Q = {Q,,|m € N}, we write Ry, M, . . . instead of Rg,,, M, .. ..

THEOREM 5.3 (Fujiwara [Fuj06a, §2]). Let {R, (Rm, Mm)men} be a Taylor-Wiles system.
Assume that for all m:

(i) for all ¢ € Qm, Np/g(q) =1 (mod p™);
(ii) R, can be generated by #Q,, =r elements as a local complete O-algebra.

Then, the natural surjection R — 7 is an isomorphism. Moreover, these algebras are a flat
and complete intersection of relative dimension zero over O and M is free over T .

5.2 The rings Rq
Let @ be a finite set of auxiliary primes q of F' satisfying;:

() Nijg(a)=1 (mod p); and
ii) ¢ and p are unramified at q, and p(Froby) has two distinct eigenvalues ay and (4 in k.
q q q

For such a @ we can associate by §1.2 a universal deformation ring R¢, endowed with
a canonical surjection Rg - Ry =: R. By a result of Faltings (cf. [TW95, Appendix]) R is a
O[AgJ-algebra and Rg ®p[a,] O = R. Thus, conditions (TW1) and (TW2) hold.
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More generally, for any set of primes P disjoint from @, Rqup is a O[Ag]-algebra and
Rqup ®0o[ag)] O=TRp. (26)

In particular, Rqup, is a O[Ag]-algebra.

5.3 The module M
Denote by Y, the Hilbert modular varieties of level K, defined in §4.4.

Let S be a finite set of primes containing ¥, U {v|p} U {u} U {v|¢v, ramified} = X, U
{v|p}. Denote by m, the maximal ideal of T = O[T}, S, |v ¢S] corresponding to p. With

the notation introduced in §§4.4 and 4.5, we fix an eigenvalue «,, of p(Frob,) and consider the
O-module:

M= Hd(YPa VO)[¢7 ggb](mp,Uu—ozu)' (27)

Let T’ be the image of T in the ring of O-linear endomorphisms of M.

By Theorem 2.3(i) the m,-localization of the T*-module H4(Y,, V() is free over O. Hence, M
is free over O as a direct factor of free O-module.

Moreover, M is non-zero by (Mod p) and Remark 1.3. For any newform f contributing to M,
consider the maximal ideal

my = (w, T, — 1p(c(f,v)), Sy, — Lp(w(v))NF/@(v)wo, Uy — ple(f,0");v ¢ Yo v e )

of Tl = O[T), Sl;v ¢ ¥,][U/,; v € £,]. Note that my 0TS =m,,.
Let T (respectively, m) be the image of T™! (respectively, my) in the ring of O-linear
endomorphisms of Hd(Yp, Vo)[y, ve].

LEMMA 5.4. We have the following results:
(i) there is a unique isomorphism of T°-algebras T; P, I\
(ii) M ® C is free of rank 2% over Tp, ® C; and

(iii) the natural injective algebra homomorphism T' < Ty, is an isomorphism.

Proof. (i) By Lemma 4.7, we have Tp 1} = 7p,. Since O-algebras Tp )y and T’ are torsion
free (the first by definition, the second because M is free over O), it is enough to show that
there is a unique isomorphism of T ® C-algebras between 7; p,ufu} ® Cand T’ ® C (tensors being
over O for some fixed embedding O — C).

Consider a (cuspidal) automorphic representation 7 generated by a holomorphic newform f
of weight k, central character 1| - |~"° and prime to p conductor. By definition, 7 contributes to
T ® C if, and only if, for all primes v{pu, v¢ P,, ¢~ ' ® is a minimally ramified
dgch)Jl:{ILrll}ation of py. ' b v ? e pf,p|QF1, '

For v ¢ P,, v #u, Remark 4.4 shows that ¢! ® ps,|g,. is a minimally ramified deformation
of py if, and only if, (¢7,) " ® psplgs has conductor ¢,. By Carayol’s theorem [Car86] on the
compatibility between the local and the global Langlands correspondences this is equivalent to
(w0 ® (¢7)7HFH™) 2 w67, ] £ 0.

If ve P, then dim(ps, ® (¢7,) 1) =dim(p ® v, 1)* =0, hence (¢7,)7t ® Pfplgr, has
conductor ¢, and so (7, @ (¢pv7,) 1)KL (™) £,

Finally, the argument of Lemma 4.7 shows that m, is unramified, hence Wﬁ( o) s two
dimensional and contains a unique eigenline for U, with eigenvalue a, congruent to oy
modulo w.
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Therefore, m contributes to M ® C. By the Matsushima—Shimura—Harder isomorphism, this is
equivalent to 7 contributing to T/ ® C. Conversely, if 7 contributes to T’ ® C, the same arguments
show that 7 contributes to 7p, ) ® C.

(ii) Let 7 be an automorphic representation contributing to T/ ® (C As a byproduct of the

computations in part (i) we have dim 7, Ko(u )[U —ay] =1 and dim m, Ky [pry] =1 for all v #u.
By the Matsushima-Shimura-Harder isomorphism, the [f]-part of M ® C is 2¢-dimensional.

(iii) We have to show that for all v € S the image T, (or U,) in Endp(M) belong to T.
The argument uses local Langlands correspondence and the fact that M is torsion free. As
observed in §1.2 there exists a P,-deformation p of p with coefficients in 7p, and by part (i)

there is a unique isomorphism of T algebras 7; P, = T'. It remains to prove that the resulting
homomorphism Tp — Ty, is surjective.

If vé¢ Ep, then the eigenvalue of T, on o [gbl/v] equals the eigenvalue of T, on (m, ®
(¢p77,) 1)KL (™) Recall that v,(w,)=1. Hence, the action of T on M is given by tr(p®
(¢7) 1) (Froby,) € Tp,.

If ve Sp, then the eigenvalue of U] on i [(;51/1,] equals the eigenvalue of U, on (m, ®

(¢77,) 1)KL (") Hence, the action of U’ on M is given by the eigenvalue of (5 @ (¢77,)~ 1) (Frob,)
on the line (p ® (¢7,) ') hence belongs to 7p, .

If v € £,\S,, then U}, = 0. This completes the proof. O

PROPOSITION 5.5. The local component M is free of rank 2% over Tp, and Tp, is Gorenstein.

Proof. Put W =H4(Y,, V)[4, Ul (m,, Uy—ay)- By Lemma 5.4 and [Dim05, Lemma 6.8], it is
enough to show that W[m] = M ®r__ & is a k-vector space of dimension at most 2%.
As in the proof of Theorem 3.1, the condition (LIiq,) implies that every Gz-irreducible

subquotient of W{m] C W[m,] is isomorphic to ® Indg p. Therefore, it is enough to check that
the last graded piece of the Fontaine-Laffaille module attached to W[m] has dimension at most
one. Again as in the proofs of Theorems 2.3 and 3.1, this amounts to showing that

dim H(Y, /., " @ v/ 1h, v, m] < 1. (28)

By the g-expansion principle, a Hilbert modular form in H® Y, /K wh @ y—wo/ 2) is uniquely
determined by the coefficients of its g¢-expansion. The coeflicients are indexed by (F®
7)* | 11, ker(v), hence a form in Ho(yp/mgk@)g_“’o/z)[y] is uniquely determined by the

subset of its coefficients indexed by (F ® Z)* /(0o ® Z)* which can be identified with the set
of ideals of F', and is it a standard fact that coeflicients at non-integral ideals vanish.

Finally, the coefficients of a form in H*(, ., w* ® v~0/2)[y][h, m] are uniquely determined,
since they are related to the eigenvalues of T}, S, and U], and those are fixed in the [¢), m]-part. O

5.4 The modules M®
Denote by Yy o (respectively, Y¥¢) the Hilbert modular varieties of level Kq ¢ (respectively, K@)
introduced in § 4.4. The natural homomorphism Y9 — Yy, induced by the inclusion K QcC K, 0,Q>
is étale with group Ag.

Assume that S contains ¥, U {v | p} UQ U {u} U {v | ¢v, ramified} = X o U {v|p}.

Let T&Q be the image of the Hecke algebra T in the ring of O-linear endomorphisms of

Mo,g =H' (Y00, Vo)1, 70 (m, Uu—aw,UqaqaeQ)- (29)
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Let Tf, be the image of the Hecke algebra T[Ag] in the ring of O-linear endomorphisms of
MQ = Hd(YQv V(’))W}v quﬂ(mp,Uu—au,Uq—aq;qu)- (30)

The group Ag acts on Hd(YQ, Vo) via the Hecke operators Us, 6 € UcXp q € @ defined in §4.4.
Note that whereas Uq € Endo(H*(Y?, Vo)[1), 7¢)|m,) depends on the choice of a uniformizer, the
ideal (o, Uq — arq) does not, so M% does not.

Again by Theorem 2.3(i) the modules Mo g and M are free over O, hence T, , and T, are
torsion free.

By Lemma 5.4, for all q € @, the Hecke operators Ty and Sq belong to 7p, = T, hence act on
M. By §5.2 and Hensel’s lemma the polynomial X% — ToX + SqNr/o(q) € 7p,[X] has a unique

root ag € Tp, (respectively, Bq € Tp,) above aq (respectively, fq).

LEMMA 5.6. There exists a unique isomorphism of T*-algebras T, 0 ST,

Proof. As in Lemma 5.4(i) it is enough to show that there is an isomorphism of TS-algebras
6,@ RCST ®C.

The local component at q of an automorphic representation = contributing to T(),Q ® C (or
Mo,q® C) admits invariants by Ko(q) and cannot be special (since og# BqNp/g(dq)= by our
assumptions in §5.2); hence, it is necessarily an unramified principal series and so contributes
to M ® C and T’ ® C. Moreover, 7 contributes with the same multiplicity both in Mg q® C
and M @ C. The proof of this fact is very similar to the proof of Lemma 5.4(ii), once we note
that for every such m, TI'é(O(q) is two dimensional and contains a unique eigenline for Uy with
eigenvalue congruent to aq modulo w. O

LEMMA 5.7. There is a unique isomorphism of T*[Ag]-algebras Tp,uq — Th-

Proof. Both 7p,uq and T’Q are defined as images of T”[Ag] hence the uniqueness. For the
existence, as in Lemma 5.4(i), it is enough to show that there is an isomorphism of T[Ag]-
algebras between 7p,,o ® C and T, ® C.

Consider a (cuspidal) automorphic representation 7 generated by a holomorphic newform f
of weight k, central character 1| -|~*° and prime to p conductor.

If © contributes ’]I"Q ® C, then it necessarily contributes to 7p,uq ® C, since by the proof of
Lemma 5.4(i) ps, satisfies all of the deformation conditions at primes outside @, and there is
no deformation conditions at primes in Q).

Conversely, suppose that 7 contributes to 7p,ug ® C. By [TW95, Appendix], pf’p|qu

is decomposable and pyp|r, = x @ x~! where x factors through the natural surjective
homomorphism Iq — o7 — (0/q)* — Ag. By the local Langlands correspondence 74 is a principal

series induced from two characters whose restriction to o ; are x and y~!. It follows that

Kq {Trffo(q) if x is trivial, (31)

(mq® ) K@) g (mq® x DK@ if v is non-trivial.

In both cases ﬁé{ q

is two dimensional and splits under the action of Uy as a direct sum of two
lines, one with eigenvalue oy congruent to crg modulo @ and one with eigenvalue (34 congruent

to 84 modulo w. Hence, Wé{q[Uq — ag] # 0. Note that whereas Uq and the eigenvalue depend on
the choice of a uniformizer, the decomposition does not.
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Also, note that by local Langlands correspondence, the Ag-action on T’Q ® C coming from

the Hecke action of Ky(q) on ﬂ'é(q, corresponds to the Ag-action on 7p,ug ® C coming from the
Iaction on py .

The above discussion at primes in @ together with the arguments of Lemma 5.4(i) at the
primes outside @ imply that 7 contributes to M% @ C, hence to T’Q ® C. O

5.5 The condition (TW3)

PROPOSITION 5.8. There is a TS-linear isomorphism M = Mo, such that the Ug-action on
Ma,q corresponds to the ag-action on M.

Proof. We may assume that @ = {q} and prove the lemma with K, replaced by Ko,g\(q in the
definitions of Y, T" and M. Consider the TS-linear homomorphism:

M= M2 e (x, —Bq~x).

S 1: . 2 . . Tq 1 .
Let Uq be the T-linear endomorphism of M= given by the matrix (*NF/@(CI) Sq 0) acting on

the left. Since its eigenvalues o and Eq are distinct modulo w, it induces an isomorphism:

M 5 (M) (v —ag)-

Consider the natural degeneracy maps pry, pry : Yy 4 — Y, used in the definition of the Hecke
correspondence Tqin §2.1. The TS-linear homomorphism pr} + pr} : Hd(Yp, Vo)? — Hd(Yo,q, Vo)
yields (after taking [1), v¢] parts and localizing at m,):

& HY(Y,, Vo), 7¢lh, — H (Y00, VO) ¥, 7¢]m, -

From the definition of Uy acting on M? we see that £ is U, gqlinear. It is also Uy,-linear, hence
after localization at (w, Uq — ag, Uy — oy,) induces

¢ (M2)(Uq—aq) — Mo,q-

It is enough to show then that £ is an isomorphism.

By Lemma 5.6 and its proof, we see that & ® C is an isomorphism. It remains to prove that
¢ (hence, &') is injective with flat cokernel.
Let £ be the dual of £ with respect to the modified Poincaré pairing defined in §2.5. The
: = . 2 2 . 1+NF/Q(C[) Tq
matrix of £ o0& : (M ® k) — (M ® k)* is given by ( STy 14+Npo(d
assumptions on g. Therefore, € is injective with flat cokernel. O

). It is invertible by our

By §5.2, Rp,uq is a O[Ag]-algebra. Hence, the surjective homomorphism of local O-algebras
7y : Rp,ug — Tp,uq defined in § 1.2 endows 7p,uq with O[Ag]-algebra structure.

PROPOSITION 5.9. The local component M% is a free O[Ag]-module and M@ ®o[ag) O =
Mo g as TS-modules.

Proof. By Theorem 2.4(i) HY(Y?, Vo)m, is free over O[Ag] and the TS-module of its Ag-
coinvariants is isomorphic to H4(Yp g, Vo)m ,- If the class group C, defined in §4.5 has order
prime to p (in particular, ¢ is trivial), then the claim follows simply by taking the [¢), V]-part. In
fact, the [, V]-part, for the action of a prime to p order group, of a free O[Ag|-module is a free
O[Ag]-direct factor.
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In the general case, denote by Ag the p-Sylow subgroup of C, x Hvezp(oj/ ker(¢y)). As
in §4.5 the p-group Hvezp(off/ ker(¢,)) injects in A*Ky(Qng)/A*Kyq and a fortiori in
AXKy(Qng)/AXK®?. Also the morphisms Yy — Yé‘d and Yy o — YO%dQ are étale with group C,,.
Hence, the étale morphism Yg — Yaﬂg (respectively, Yp g —>YQa‘iZ) factors through an étale
morphism Yy — YQA (respectively, Yo, — Y(J’AQ) with group Af;. Then Theorem 2.4(i) applies to
each of the five étale morphisms in the following diagram.

31 = (32)
g
N

Aﬁ A Aq
Yoo

Yo,Q

In particular, HY(Y?, V¢ )m, is free over O[Aﬁ) x Ag), hence HY(Y?, Vo )m, [¢] is free over O[Ag)]
and

HY (Y9, Vo )m, [¢] ®ojag) O = (HAY?, Vo)m, @opag O] = H (Y00, Vo)m,[¢].

Further taking the [¢)¢~2, D] part, for the action of the prime to p order group (CP/A?) X
[L,(0;/ ker(v,)), and using the argument invoked in the beginning of the proof, yields the desired
result. O

So far we have constructed a Taylor-Wiles system {R, M, (Rg, M%)geco} for the family Q
of sets @) containing a finite number of primes ¢ as in §5.2. The aim of the next section is to find
a subfamily {Q, | m € N} satisfying the conditions (i) and (ii) of Theorem 5.3.

5.6 Selmer groups

We assume in this section that P, =@. Let py;, be a modular deformation of p as in (Mod).
For r > 1 we put p, := py, mod w@", so that p; = p.

We use Galois cohomology techniques in order to control the number of generators of Rq.

DEFINITION 5.10. For v |p the subgroup H}(F,, Ad® p,) € HY(F,, Ad° p,) consists of classes
corresponding to crystalline extensions of p, by itself.

For v{p the subgroup of unramified classes H}(F,, Ad? p,) C H(F,, Ad° p,) is defined as
H'(Gr, /I, (Ado pr)™).

DEFINITION 5.11. The Selmer groups associated with a finite set of primes ¥ are defined as

Hy (F, Ad” p,) = ker (Hl(F, Ad° p,) — @ H'(F,, Ad” p,) /H} (F,, Ad" m)
vg¢Y

and

H,(F, Ad° prp, © Qp/Z) = lim HL(F, Ad° p,).
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The dual of Ad® p is canonically isomorphic to its Tate twist Ad® p(1). The corresponding
dual Selmer group HL. (F, Ad® p(1)) is defined as the kernel of the map

H'(F, Ad° p(1)) — @ H'(F,,, Ad° p(1)) €D H'(F,, Ad° p(1))/H} (F,, Ad® p(1)).
veEY vy

The Poitou-Tate exact sequence yields the following formula:

#H%(FvAdO p) _ #HO FAdO H #H FvaAd Pv) H FvaAd Pv)
#HL, (F,Ad° p(1))  #HO(F, Ad" p s #HO(F,, Ad° p, Joe HO(F,, Ad° p,)’

A proof for FF'=Q can be found in [Wil95, Proposition 1.6], but as mentioned in [DDT97,
Theorem 2.19] the same argument works over an arbitrary number field.

By (LIinq ) we have HO(F, Ad® p) = HO(F, Ad” p(1)) = 0. Since p is totally odd, for all v | co
we have dim HO(F,, Ad® pv) = 1. Since p is crystalline at all places v dividing p we have

dim H} (F,, Ad° p,) — dim H(F,, Ad" p,) < [F, : Q) (34)

(cf. [Fujo6a, Theorem 3.20] and also [DFGO04, Corollary 2.3]). Finally, for all q€ @,
dim HO(Fy, Ad° p4(1)) = 1. Putting all of this together we obtain the following result.

(33)

LEMMA 5.12. We have dim Hj)(F, Ad® p) < Hp. (F, Ad° p(1)) + #Q.

Finally, by the same arguments as in [Wil95, § 3] we obtain the following lemma.

LEMMA 5.13. Let m >1 be an integer. Then for each non-zero element x € HY. (F, Ad° p(1))
there exists a prime q such that:

* Npjg(q) =1 (mod p™);
e p is unramified at q and p(Frobg) has two distinct eigenvalues in k; and

e the image by the restriction map of x in H} (Fy, Ad° p(1)) is non-trivial.

Put r := dim HY. (F, Ad® p(1)). For each m > 1, let Q,, be the set of primes q corresponding
by the above lemma to the elements of a basis of H0 (F,Ad° p(1)). Then H0 (F,Ad° p(1)) =0

and by Lemma 5.12 we obtain dim HOQm (F, Ad® p) < #Q,n. Therefore, Rm is generated by at
most #Q),, = r elements. This completes the proof of Theorem 5.1.

6. Raising the level

6.1 Numerical invariants

DEFINITION 6.1. For a local complete Noetherian O-algebra A endowed with a surjective
homomorphism 64 : A — O, we define the following two invariants:

e the congruence ideal 74 :=64(Anng(ker 64)) C O; and
e the module of relative differentials ® 4 := Qi&/o =ker 04/ (ker 64).

Here we state Wiles’ numerical criterion.

THEOREM 6.2 [DDT97, Theorem 3.40]. Let 7w : R — 7 be a surjective homomorphism such that
Or =mofr. Assume that 7 is finite and flat over O and nr # (0). Then the following three
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conditions are equivalent:
() #Pr <#(O/n7);
(ii) #Pr =#(O/nr); and
(iii) R and T are complete intersections over O and 7 is an isomorphism.
We consider couples (7, M) consisting of a finite and flat O-algebra 7 and a 7-module
M which is a finitely generated free O-module endowed with a perfect 7-linear pairing

(,) : M x M — O and such that M ® E is free over 7 @ E of a given rank (in our application
this rank will be 2). The pairing induces an isomorphism of 7-modules M —~~ Hom(M, O).

From [DDT97, Lemma 4.17] and [Dia97b, Theorem 2.4] we deduce the following.

PROPOSITION 6.3. Let (7, M) and (7', M’) be two couples as above. Assume that we have a
surjective homomorphism 7' — T and a T’-linear injective homomorphism & : M — M’ inducing
via (-, -) a surjective homomorphism &M - M.

If M is free over T and if € o EM)=T- M for someT €T then

#(O/nT)#(0/01 (1)) < #(O/n17).
Moreover, equality holds if, and only if, M’ is free over T".

6.2 Proof of Theorem A
Let X be a finite set of primes containing P,. We start by redefining 7s; geometrically.
Let Ys; be the Hilbert modular variety of level Ky, defined in §4.4.
Let S be a finite set of primes containing ¥, U X U {v | p} U {u} U {v| ¢7, ramified} = X, U
{vp}.
Let T% be the image of TS in the ring of O-linear endomorphisms of
Ms = H(Ys, Vo), 76] (im0 —an Ufsaes)- (35)

By Theorem 2.3(i) My is free of finite rank over O.
For every Hilbert modular newform f occurring in 7s: we denote by 0? : Ty, — O the projection
on the f-component and by 77? the corresponding congruence ideal.

LEMMA 6.4. We have the following:
(i) there is a unique isomorphism of T*-algebras Tk = Tx;

(ii) My ® C is free of rank 2% over 7z, ® C and Uq acts as zero on it for all q € ¥.

Proof. We follow closely the proofs of Lemmas 5.4 and 5.7. The main point here is to show
that, if f is a Hilbert modular newform occurring in 7y ® C and 7 denotes the corresponding
automorphic representation, then for all q € X,

(Trq)K,q, [qbng] = (Wq ® gbq—lljgl)Kl(ch)ﬁKO(querQ)

contains a unique eigenline for Ua’ with eigenvalue congruent to zero modulo w (and this
eigenvalue is actually zero). We distinguish three cases.

o If (Ugpq) ' ® pgp is unramified at q, then necessarily dq= 2, cq=0 and

dim((mq ® ¢ g 1) Kol@)) =3,
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The characteristic polynomial of Uf = [Ko(q?) ((1) woq) Ko(g?)] acting on it is given by
X(X? = c(f, )X + (@) Npyo(a)™) = 07 (X (X? - TeX + SNryo(a)),

and X =0 is a simple root modulo w of this polynomial.
o If dim((Vgdq) ' ® prp)fa=1, then dq > 1 and
dim (74 ® qs;la;l)Kl(q“*)ﬂKo(qu*dq’) =2.
The characteristic polynomial of Uél' = [Ko(q¢atda) ((1) £q) Ko(g¢t?a)] acting on it is given
by
X(X = elf,q) = 7 (X(X — 1),
where Uj = [Ko(qo@a1) (6 £q) Ko(g¢otda1)] and X =0 is simple root modulo @ of this

polynomial.
e Finally, if (7q0q) ™! ® psp)Ta={0}, then

dim((7q ® ¢ 7y ")V —
and Ug =0 on it.

This completes the proof. O

By §1.2 we have a surjection my; : Ry — 75;. Therefore, we may endow Ry with a surjective
homomorphism 9? o7y : Ry — O and we denote by <I>J§ the corresponding numerical invariant.

PRrROPOSITION 6.5 (Wiles [Wil95, Proposition 1.2]). We have
Homp (07, E/O) 2 Hy(F, Ad°(psp) ® Qp/Zy).
By (16) there exists a perfect 7y-linear pairing:
(,) : My X My — O, (36)
analogous to that defined in [DFGO04, 1.5.3, 1.8.1] in the case F' = Q (note that since ¥ D P, we

do not need the rather technical [DFG04, Lemma 1.5]).
Theorem A is implied by the first part of the following.

THEOREM 6.6. Let p:Gp — GLo(F,) be a continuous representation satisfying (LI, ,) and
(Mod p). Let ¥ be a finite set of primes containing P,. Then s, : Ry, — 7Tx, is an isomorphism of
complete intersections over O and My is free of finite rank over Tx.. In particular, all ¥-ramified
deformations of p are modular.
Moreover, for all Hilbert modular newforms f such that p;, is a Y-ramified deformations
of p:
#H5, (F, Ad(prp) ® Qp/Zy) = #(O/nF) < o0. (37)

Proof. We proceed by induction on #X. Assume first that ¥ = P,. We already know that
mp,: Rp, — Tpp is an isomorphism of complete intersections over O@ and Mp := M is free of
rank 2¢ over Tp, (cf. Theorem 5.1 if P, = @ and Proposition 5.5 together with Fujiwara [Fuj06a,
Theorem 9.1] in general).

Assume now that the theorem holds for some ¥ O P,, that is to say 7y : Ry — 7y is an
isomorphism of complete intersections over O and that My, is free over 7x. In particular, we
have #®% = #(O/n?), where f is a newform contributing to M.

Let q be a prime outside ¥ not dividing p. Put ¥’ =X U {q}.
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It follows directly from Proposition 6.5 and Definition 5.11 that
#OF < #PF - #H(Fy, (A (psp) @ Qp/Zp) (1))

By Theorem 6.2 and Proposition 6.3, the theorem will hold for ¥’ if we construct a
surjective homomorphism 7y — 7y. compatible with the surjections 9? and 9?/ and a Tyy-
linear injective homomorphism ¢ : My, — My, inducing a surjection E : My — My, such that
Eo&(My)=T - My, for some T € Ty, satisfying

#(0/05(T)) = #H (Fg, (A (psp) ® Qp/Zp)(1)). (38)

This is done on a case-by-case basis, depending on the local behavior of p at q
(cf. Definition 4.2).

The case q € ¥,\S, is relatively straightforward, since adding such a prime does not change
My, We distinguish two more cases.

(1) Assume that q ¢ X,. In this case pq® v is unramified.

By Theorem 3.1 and Proposition 3.3, the homomorphism

prj pri + prj prj + prj pri : M5 = HY(Ys, Vo)[¢, vgla — H' (Ysr, Vo) [, V6] m,
is injective with flat cokernel.

The characteristic polynomial of Uy acting on M is X (X2 — TyX + SqNp /0(q)) and X =0
is simple root modulo w of this polynomial. Hence, the localization of the above injection at
(Ugs Uy — ) yields another injection with flat cokernel:

§ . MZ g <M%3)Ug — ME"
This gives a surjective homomorphism 7y —» (’]'E?’)Ug = 75,. Computations performed by
Wiles [Wil95, § 2] and Fujiwara [Fuj06a, § 10] show that go E(Myx) =T - My, with
T = (Npyq(a) — 1)(T§ — SqNr/g(a) +1)%).
Then (38) follows by a straightforward computation.
(2) Assume that g € S,. In this case dim(pq ® Vq_l)lv =1.
By Proposition 3.3 there is an exact sequence whose last arrow has a flat cokernel:
~ (pri,—pr3)
0 — H(Yigy,.iczr, VO) [U0, D¢ m, ——
where K[ = ker(K(q° ') det, 0y Ve, 0%).
The characteristic polynomial of Uy acting on (prj + pr})(ME?) is X(X — Uy) and X =0

is simple root modulo w of this polynomial. Hence, the localization of the map prj + pr) at
myy = (my, Uy) yields an injection with flat cokernel:

£: My = (M%Z)Ué{ — Myy.

~ r; -+ prj ~
Hd(YXb VO)W, Vd)]?i MHd(YE'a VO)W» V¢]mp7

This gives a surjective homomorphism 7y — (TEQ)Ug >~ 75.. Computations performed by
Wiles [Wil95, § 2] and Fujiwara [Fuj06a, § 10] show that o EMyx) =T - My, with

T Np/g(q) =1 if pq is decomposable,
B NF/Q(q)2 —1 if pqis indecomposable.

As above, (38) is obtained by a straightforward computation. O
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6.3 Towards the modularity of a quintic threefold

We now give an example coming from the geometry where Theorem A applies. Consani and
Scholten [CSO01] consider the middle degree cohomology of a quintic threefold X (a proper
and smooth Z[1/30]-scheme with Hodge numbers h??=h?1 =1 h20=hp10=0 and nl'! =
141). They show that the Gg-representation H3()Z'@, Qp) is induced from a two-dimensional
representation p of Gg(vs) and conjecture the modularity of p. As explained in [DDO6],
Theorem 6.6 implies the following proposition.

PROPOSITION 6.7 [DD06]. Assume that p > 7 and that p is congruent modulo p to the p-adic
Galois representation attached to a Hilbert modular form on Q(v/5) of weight (2,4) and some

prime to p level. Then p is modular and, in particular, the L-function associated with H? ()N(@, Qp)
has an analytic continuation to the whole complex plane and satisfies a functional equation.

7. Cardinality of the adjoint Selmer group

In this section we give a proof of Theorem B. It is enough to establish part (ii), since then
the finiteness of H} (F, Ad%(ps,) ® Qp/Z,) implies part (i) by the same argument as in [DFG04,
§2.2).

Choose a finite set % of primes not dividing p, containing the auxiliary prime u and all primes
(not dividing p) at which Ad"(p;,,) is ramified. Denote by f5 the automorphic form contributing
to My, corresponding to the newform f of Theorem B.

7.1 Periods of automorphic forms
For J C Jp denote by €; the corresponding character of the Weyl group (% iol)JF C GL2(F ®q R).
Put Foo = (3 %)’" € GLy(F ®g R).

We fix an isomorphism C & @p extending the embedding ¢, Q= @p. Since My is free over

the principal domain O, Lemma 6.4(ii) implies that Mx[f, €] is a free O-module of rank one,
where [€;] denotes the eigenspace for this character and [f] denotes [, ¢g ker(Ty, — c(f, v)).

Let Si(Kx;,v¢) be the C-vector space of automorphic forms on GLo(F)\GL2(A) which
are holomorphic of weight (k;wg) at infinity and right Ko(ny)-equivariant for the character
(¢8) — ¥(a)rd((ad — be)/a?). In particular, such a form is right Ky-invariant. Let

67 Sp(Ks; v, v¢) — HL (Y, Vo) [0, ¢, €],  and

5: @D Ska(Kssw,5) — Hi, (Y, Vo) [, ) (39)
JCJp

denote the Matsushima—Shimura—Harder isomorphisms (cf. [Hid94, Proposition 3.1, Equa-
tion (4.2)]).

DEFINITION 7.1. For every J C Jp, we fix a basis by ; of Mx[f,es] and define the period
Qf:5J(fz)/bf7J€(CX/OX.

Remark 7.2. Classically, the Matsushima—Shimura—Harder periods of a newform f of level n
are defined using a basis of the free rank-one O-module H4(Y;(n), Vo)[f, €] (cf. [Dim05, §4.2]).
As shown in [Dim05, Theorem 6.6, §§4.4 and 4.5] the value at one of the imprimitive adjoint
L-function divided by those periods measures the congruences modulo p between f and other
Hilbert modular eigenforms of the same weight, level and central character. However, in general
the corresponding local Hecke algebra does not have a Galois theoretic interpretation whereas,
as proved in Theorem 6.6, 75, does, hence our choice to define the periods using Mx|f, e].
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Next we explain the relation between the Petersson inner product and the modified Poincaré
pairing defined in § 2.5 under the Matsushima—Shimura—Harder isomorphism.

The Atkin—Lehner involution ¢ = (noE _01) induces an isomorphism

Sk(Ks; 1, v9) = Sp(Ks; ™!, (09) 1), f flo) @y (40)

The Hecke operator [KxzKx] acts on the left Si,(Kx; ¢, v¢) by sending f on ). f(-x;), where
KyxzKsy, =[], iKx. One can easily check that for diagonal x one can choose the z; so that we
simultaneously have Ky Ky =[], 2;Ky and KKy, =[], 2; K%, where K§ = (Kxu™ 1. In the
following commutative diagram the horizontal arrows are isomorphisms.

@1

Su(Ks: ¥, 79) C e SW(KL; b, wé 1) Se(Kespl (@)Y (41)
[KstlauKy) Ky K] P(det(z))[KezKs]
Su(Ks: ¥, 7) e S ) — 2 5 (K, (59) )

Finally, for fi, fo € Sp(Kx; v, v¢) we define the normalized Petersson inner product by

(f1, f2) = [K(1) : Ko(nz)] ™ ) f1(9) f2(g)|det(g)[* dg. (42)

Yy

We have ([KsxKy)] - f1, fo) = |det(x)| 70 (f1, [Kex ' Kyx] - f2) = ¢(det(2))(f1, [Kxtzt ' Kx] - f2).

It follows that the Hecke eigenvalues of fsx are complex conjugates of those of

fe) @9~ = fe()w(det(-) ™) = fe(det() ™" - o)ldet(-)| 7 = fe(()*0)|det ()| ",

where we use the notation from §2.5. Using Lemma 6.4(ii) we deduce by strong multiplicity
one that these two forms differ by a constant, which turns out to be in O* (the arguments
of [DFG04, Lemma 2.13] involving local epsilon factors can be adapted to our setting). Hence,
in the computation that follows, this constant can be ignored, as well as N g(ns) and powers
of two:

(fs, f£)O=[8(f), 8(f((-)"1tFx))]O = (0(fx), 0(f(-Fx)))O = (04(fs), 6.7\ s (f£))O.

From here and Definition 7.1 we obtain the relation we have been looking for:

(fs, f2)
(bf,7,b5,7:\0)0 = WO- (43)
20 f

7.2 The Rankin—Selberg method

The Rankin—Selberg method relating the Petersson inner product to the value at one of the
adjoint L-function has been carried out by Shimura for Hilbert modular newforms f of level
K1(n). Since the level structures Ky, that we consider are more general, the resulting formula
in our case slightly differs from Shimura’s. While Shimura’s formula relates the Petersson inner
product of f with the imprimitive adjoint L-function, in our setting the Petersson inner product
of fx will be related to adjoint L-function outside . We follow Jacquet’s adelic version of the
Rankin—Selberg method for GLy and our main reference is Bump [Bum97].
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All integrals that we consider are with respect to Haar measures on the corresponding
algebraic groups. The normalized Petersson inner product (42) can be rewritten as

(fr. fx) = / s (g)Pldet(g)[* dg. (44)
GLa(F)A*X\GL2(A)

The automorphic form fs. admits an adelic Fourier expansion:
_ y 0
f@) =3 w((y 7)) (45)
yeFx

where W (g) = fA/F Az)f((}%)g) da is the adelic Whittaker function with respect to an additive

unitary character \. Explicitly, one can take \:A/F — Ag/Q — C* where the first map is
the trace, whereas the second is the usual non-trivial additive character Ag such that Ag|gr =
exp(2im-) and for every prime number ¢, ker(Ag|g,) = Z,. Hence, for every finite place v we have
ker(A,) = v=%0,, where 8, denotes the valuation at v of the different d of F.

The following decomposition can be found in [Bum97, Theorem 3.5.4], but one should be
careful to replace the usual k; /2 by (—wo — k;)/2 since we are using the arithmetic (non-unitary)
normalization (cf. [DT04, pp. 566-567]):

W((ﬁ f)) = I 0 expl2my) T W, ((% (f)) (46)

TE€JR
Let ¢ be the Schwartz function on A x A defined as product of the following local functions:

char(o,) ® char(o,) for v ¢ %;

47
char(v®*%) ® char(0)) for v e X. (47)

¢r(z,y) = exp(—m(2® +y%)) and ¢, = {

For g € GLy(A) put e(g) = Crn(2s) ' m*IT(s)|det(g)|* [, [t**¢(t(0, 1)g) dt.

Then ¢ is a right Ky(ny) SO2(F ®g R)-invariant function on GL2(A) such that (1) =1 and
e((§ ;/) 9) = ly/y'|*e(g). Consider as in [Bum97, §3.7] the Eisenstein series:

E(g,s)= Y.  e(rg). (48)

B(F)\GL2(F)

The Rankin—Selberg unfolding yields (cf. [Bum97, pp. 372-373)):

/ B9, )| (0) Pldet()* dg
GLa(F)AX\GLa(A)

2
0 0 . y
_/B(A)\GL (A)/A W <(Z(/) 1) g) c ((g 1) g) [y|“o~|det(g)["° dy dg.
2

Here Ap, = (F® Z) *(F ®g R)% denote the subgroup of ideles with totally positive infinite part.
In [Bum97] the integration is over A but this makes no difference, since Ay, = Ay, F* and the
adelic Fourier expansion of f(g) is supported only by totally positive elements. Using Iwasawa
decomposition

X
F+

GLy(A) = B(A) GLy(0o ® Z) SOo(F @ R),
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and the right SOy(F ®qg R)-invariance of the integrand, we further rewrite this integral as

IL, Z- 11, Zv, where
2
0 0 o
Wy ((‘g 1) g) € ((g 1> g) ly[*0~" dy dy.

GL2(ov) Fv><
2
y 0 wo—1 X
e (5 )

y 0
w [ )

o
N / exp(—4my)y* 1A%y = (4m) T (s + Ky — 1),
0

and

Furthermore, for v ¢ ¥ (respectively v € ¥) the function |[W,|? = |[W,, - (¢u7,) "' o det|? is right
GLa(0,)-invariant (respectively, Ko(v® ™% )-invariant ). Moreover &, ((} %) g) |y|~* is by definition
the characteristic function of GLa(0,) (respectively, Ko(v+%)). Hence, for all v:

2
0
Zv:/ Wv<y >
o 0 1

For v ¢ ¥ we have Z, = NF/Q(06”)8(1 + NF/Q(U)_S)LU(AdO(pﬂp), s) (cf. [Bum97, Proposi-
tion 3.8.1]).

For v € X, W, is annihilated by U,, hence Z, = Np /Q(v‘sv)s. Therefore,

it dy.

E(g, s)|fs(g)|?|det(g)[*° dg =

NF/Q(D)SLE(AdO(ﬁ)’f,zlu)a s) I T(s+kr — 1)

/GL2<F>AX\GL2<A> Crx(25)Crx(s)” = (41

By [Bum97, Proposition 3.7.5], E(g, s) has a pole at s = 1 with residue independent of g and
equal to the residue at s =1 of the function (px(2)7'7? [, [« [t[**¢(t, tz) dt dz. One readily

computes
// 1t12(t, tz) dt do = /d =1
o 141 T (Ta?)

nd
// t|%%o(t, tx) dt dz
W JFX

_ (1 = Npjg(v)t=29)~! for v ¢ ¥;
(1 — NF/Q(’U)_I)(]. — NF/Q(U)I_QS)_INF/Q( )(1_28)(c“+dv) forveX.

. _
[(Ad%(psyp), DLs(Ad%(pfy), 1) = LE(Aik(i];p) 1)4“}'11\;;/]1;("210))!_1

(49)

NF/Q(TIZD)
olk|

(fs, fs) =

Since, by our assumptions, HT(k:T—1)!/4‘k‘NF/Q(ngD)_1GZE;) it follows that
(L(Ad°(pyp), 1)/ (x*+4(fs, f)) € Zy,. Since, by definition,

LA (psp)s) = [ =01 < = 1) (2m) "+ DD(s 4 ky — 1)

Te€JR
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we obtain
F(Ado(pf,p)a 1)LE(Ad0(pf,p)7 1)
(fe, fx)

€Ly (50)

7.3 End of the proof of Theorem B(ii)
Recall that My, is endowed with a perfect 7y-linear pairing: (-, -)y : My x My — O.
Since for all J C Jp, Mx[f, €s] is free of rank one over 7Ty, it follows that

(n7)? = disc(Mz[f, 5] ® Mslf, €5,01)) = (bg,1: by g)° O

Using (43) we obtain

(fs, fx) s f5)

Qi oy

nf = (bg.y, by, )0 =

Keeping the notation of § 5.6, since p|gF( &) is irreducible by (LI}, 4 p), Schur’s lemma imply

HO(Fa Ado(pf’p) ® Qp/Zp) = HO(E (AdO(Pf,p) ® Qp/Zp)(1)) =0.
Then [DFGO04, Lemma 2.1], which remains valid over F', yields
FittO(HlE(Fa Ado(ﬂf,p) ® Qp/Zyp))
— Fitto(H}(F, Ad%(py,) © Qp/Z) [ Fitto(HE(Fy, Ad(p7,)(1)"),
veEY

where ( )* denotes the Pontryagin dual. By [FP94, Proposition 1.4.2.2(i)] and [DFGO04, p. 708,
Lemma 2.16]

Tam(Ad"(py,)) = [ [ Tamr(Ad°(pyp)) [ Tams(Ad%(ps,)) = [ Tamu(Ad®(pyp)).-
T v VEX

Furthermore, by [DFG04, (57)] and by [FP94, Proposition 1.4.2.2(ii)] and its proof, for v € 3 we
have

Tamv(AdO(pﬁp)) = Tamv(AdO(pﬁp)(l)) = Fitto(H H! (Iv, Ad° ,of,p)(l))gF“)
)

= Fitto (! (1, Ad(p7,) (1) )*
Fitto (Hf (Fy, Ad%(pr,) (1))
~ Fitto(H'(Gr, /1o, (Ad(pg,)(1)7)7)
_ Fitto(Hi(Fo, Ad%(pyp)(1))")
Fitto (HO(F,, (AdO(Pf,p) ® Qp/Zp)(1)))
= Ly(Ad(py,), 1) Fitto (Hf (Fo, Ad®(ps,)(1))").
From the three previous equations we deduce that
Tam(AdO(pﬁp)) Fitt@(H%(F, Ado(ﬂf,p) ® Qp/Zyp))

= I Lu(Ad%(pyp), 1) Fitto (H(F, Ad% (o) © Qp/Zyp)). (52)
VEX

Finally, since py, is a Y-ramified deformation of p=p;, (cf. Definition 4.6) and X D P,
(cf. Definition 4.2), Theorem 6.6 yields

Fitto (Hy(F, Ad%(psp) © Qp/Zy) =15 (53)
The theorem results by putting together the equations (50), (51), (52) and (53).
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