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ABSTRACT
Image auto-annotation, i.e., the association of words to whole
images, has attracted considerable attention. In particu-
lar, unsupervised, probabilistic latent variable models of
text and image features have shown encouraging results,
but their performance with respect to other approaches re-
mains unknown. In this paper, we apply and compare two
simple latent space models commonly used in text anal-
ysis, namely Latent Semantic Analysis (LSA) and Proba-
bilistic LSA (PLSA). Annotation strategies for each model
are discussed. Remarkably, we found that, on a 8000-image
dataset, a classic LSA model defined on keywords and a
very basic image representation performed as well as much
more complex, state-of-the-art methods. Furthermore, non-
probabilistic methods (LSA and direct image matching) out-
performed PLSA on the same dataset.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods

General Terms
Algorithms, Theory

Keywords
automatic annotation of images, semantic indexing

1. INTRODUCTION
Searching image collections is intuitive when adequate an-

notations are available. Words are inherently semantic, and
standard keyword-based search techniques can efficiently com-
pute similarities between text-based queries and image cap-
tions, satisfying the requirements of many image users. Of
course, images have to be first annotated, but most of them
are not labeled at production time, and off-line annotation
is laborious and expensive. It is hence not suprising that im-
age auto-annotation has attracted attention in the literature
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[2, 1, 4, 7, 3]. In this rich domain, we refer to annotations
as nouns that describe the image content, i.e., objects (e.g.
“mountain”) or concepts (e.g., “sunset”).

Image auto-annotation has been addressed from two dif-
ferent perspectives. The first one defines annotation as a
supervised learning problem, and associates words to im-
ages by first defining classes, each one corresponding to a
word [4], or a set of words defining a concept [7], followed
by training of each visual class model with manually labeled
images, image classification into one or more classes, and
finally annotating by propagating the corresponding class
words. This approach clearly separates the textual from the
visual components, computing similarity at the visual level.

The second approach takes a differing viewpoint, and at-
tempts to discover the statistical links between visual fea-
tures and words on an unsupervised basis, by estimating
the joint distribution of words and regional image features,
and elegantly posing annotation as statistical inference in
a graphical model [1]. The proposed joint models account
for the distinct data nature, and do not need labeled data.
Further work has also investigated region naming, i.e., the
association of words to specific image regions [1, 3].

Given the recent emergence of this field, no common cor-
pora, evaluation measures and protocols have been defined.
Furthermore, objectively assessing the quality of image auto-
annotation is in itself a complex problem [1, 7]. While it is
not possible to derive a direct comparison between current
algorithms (most of which are complex), several questions
of interest remain open. First, how superior are state-of-
the-art methods compared to simpler approaches? Second,
is annotation by propagation better than annotation by in-
ference in practice? Third, how well do methods scale up?

This paper addresses the first two questions for the case
of unsupervised methods. We apply and compare two well-
known latent space models for discrete data: LSA [6] and
PLSA [8]. Our work advocates for a systematic, compara-
tive evaluation of algorithms using common measures and
datasets, acknowledging the difficulty of the annotation eval-
uation tasks, and describes two interesting and somewhat
surprising empirical results. First, we show that a very sim-
ple approach performs as well as state-of-the art methods
[1]. Second, we show that non-probabilistic methods based
on annotation by propagation (LSA and direct image match-
ing) outperformed the probabilistic formulation, which per-
forms annotation by inference.

The paper is organized as follows. Section 2 describes the
representation of annotated images as discrete data. Section
3 discusses LSA and PLSA. Section 4 describes their appli-



cation to auto-annotation. Section 5 presents the results
and discussion. Section 6 concludes the paper.

2. ANNOTATED IMAGES IN A VECTOR
SPACE REPRESENTATION

Several models for collections of discrete data have been
proposed and successfully applied to text analysis [6, 8]. In
such models, each document di in a collection consists of a
set of words, and is represented in a simple vector format,
where the j-th vector component is the frequency of wj , the
j-th word in the vocabulary. A text corpus is hence summa-
rized by a term-by-document matrix A ∈

� N∗M , where N is
the number of documents and M is the vocabulary size.

Annotated images (multimedia documents) can naturally
be embedded in such a vector-space representation in or-
der to apply text analysis methods, via a quantized image
representation [9, 10]. In this paper, we use a very simple
one. Images are first segmented into three fixed regions that
comprise the image center, and the upper and lower parts
(Fig. 1) (professional images like Corel’s often depict the
main objects in their center). For each region, a 6 × 6 × 6
RGB color histogram is computed, leaving an image feature
vocabulary of 648 terms. More elaborate features could be
added in a straightforward fashion [1, 4, 7].

0
1
1
0
0
0
1
0

0311
horses
plane
1555

grass
garden

1252

2000
UPPER HALF

CENTER

LOWER HALF
horses mare foal grass

Figure 1: From annotated image to vector-space. The

four digits numbers are the visual keywords: the first digit

encodes the region number and the last three digits are

the coordinates of the 6x6x6 RGB value.

Annotated images are modeled by concatenated feature
vectors of word and image features (Fig. 1). When a dis-
tinction in needed, a keyword will refer to the words, and
visual keyword to the visual features. More generally, we
refer to keywords and visual keywords as terms, and the
vocabulary is therefore the set of all observed terms in a
dataset. Non-annotated images are represented in the full
vocabulary vector space, with all elements corresponding to
keywords set to zero.

3. LATENT SPACE MODELS
Two documents can be similar from a semantic viewpoint

even if their words or visual features are not identical: dif-
ferent words can be used to express the same concept (syn-
onymy), and several colors can represent the same object.
Furthermore, the same word (or color) might have different
meanings depending on the context (polysemy). Modeling
directly at the word or visual feature level would miss these
ambiguities [6]. Existing approaches are based on the defini-
tion of a latent space where the documents are represented
in a disambiguated form. Latent Semantic Analysis (LSA)
[6] and Probabilistic Latent Semantic Analysis (PLSA) [8]
are two such algorithms, investigated here in the context of
auto-annotation.

3.1 LSA
A classic algorithm arising from linear algebra, LSA de-

composes the term-by-document matrix in three matrices

by a truncated Singular Value Decomposition (SVD),

A ∼= USV T , (1)

where A ∈
� N∗M , U ∈

� N∗K , S ∈
� K∗K and V ∈

� M∗K .
The operation performs the optimal least-square projection
of the original space onto a space of reduced dimensionality
K. The subspace representation has been empirically shown
to capture to some degree the semantic relationships across
terms in a corpus. LSA has been extensively used in text
analysis, and more recently to improve retrieval of multi-
media news documents [9, 10]. Unfortunately, LSA lacks a
clear probabilistic interpretation [8].

3.2 PLSA
PLSA [8] models each term in a document as arising from

a mixture model. The mixture components are multinomial
latent variables that represent aspects or topics. A word can
come from more than one aspect, and documents can there-
fore contain multiple aspects. In this model, each observed
term wj is conditionally independent of the document di it
belongs to given an aspect variable zk. The term-document
joint probability, assuming K aspects, is given by:

P (wj , di) = P (di)
K�

k=1

P (wj | zk)P (zk | di). (2)

As usual, maximum likelihood parameter estimation is
performed with the Expectation-Maximization (EM) algo-
rithm. The large number of parameters in the model (M ∗K
for P (wj | zk) and K ∗N for P (zk | di)) makes PLSA prone
to overfitting, and requires a tempered version of EM [8].

4. IMAGE AUTO-ANNOTATION
We now discuss three studied annotation strategies. The

first two are based on comparison and annotation propaga-
tion. The third one is based on statistical inference.

4.1 Annotation by direct match
The simplest method consists of two steps: (i) similar-

ity computation in the vector space between the image to
annotate and each image in the annotated corpus, using a
standard cosine measure, and (ii) keyword propagation from
the corpus on an image-by-image basis, depending on the
similarity rank.

4.2 Annotation with LSA
Once a document collection has been processed (section

3.1), the similarity between an unannotated image q ∈
�

1∗M

and the annotated image corpus is measured in the latent
space. q is first projected by right multiplying by V, the
terms expressed in the latent space basis,

q̂ = q ∗ V.

After projection, the similarity between q̂ and each row of
U (representation of the collection in the latent space) is
computed using the cosine measure. The annotation is then
propagated from the ranked documents. Annotations are
less reliable as the similarity between documents decreases.

4.3 Annotation with PLSA
Unlike LSA, PLSA allows us to define annotation as a

process of computing probabilities, in particular, the pos-
terior distribution of the terms of the vocabulary given an



unannotated image q. From Eq. 2,

P (wj | q) =
K�

k=1

P (wj | zk)P (zk | q).

For annotation, the distributions P (wj | zk) are estimated
once from the training set, while the P (zk | q) topic mixture
for each unannotated image q is computed following the pro-
cedure described in [8] 1. The posterior distributions over
keywords are then selected and renormalized, which creates
a soft annotation over the full keyword vocabulary.

5. RESULTS AND DISCUSSION

5.1 Dataset
Large public annotated image datasets are not common.

Different subsets of the Corel image collection (60000 im-
ages annotated with 3 to 5 describing keywords) have been
used in recent work [1, 7, 4]. However, no common samples
have been defined. Barnard et. al. [1] presented a study of
different auto-annotation methods on a subset of 80 Corel
CDs, from which 10 different training and test sets were
sampled. The average number of images for training is 5200
and 1800 for testing. Performance evaluation is especially
well addressed in their work, and therefore we have used a
similar dataset for comparison. We recreated nine of the
10 datasets, with more than 98% intersection with [1]. Fur-
thermore, as in [1], the keyword vocabulary size was reduced
from an average of 1876 to 149 keywords, by retaining only
the keywords appearing more than 20 times in the training
set. The resulting empirical keyword distributions for one
of the nine training subsets is shown in Fig. 2.
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Figure 2: Empirical keyword distribution in sample set

1. The 23 most common keywords, accounting for 50% of

the probability mass are (in order): water, sky, people,

trees, grass, clouds, bird, snow, stone, street, building,

jet, pattern, buildings, texture, tree, plane, fish, coast,

rocks, mountains, beach, and ground.

5.2 Performance Evaluation
Many different measures can be considered to evaluate

the annotation accuracy of an algorithm, but some impor-
tant points have to be considered. First, annotations in test
data might not include some “correct” keywords. For com-
parative purposes, this does not represent a problem as all
algorithms have to deal with this issue, but the estimated
measures can indeed be over-pessimistic. Second, the vocab-
ulary statistics (Fig. 2) must be taken into account, because
predicting very frequent words like “water” or “people” are
safer guesses than less frequent words. An automatic anno-
tation method should therefore perform better than simply

1PLSA is not a fully generative model. See [3] for discussion.

using the empirical word distribution of the training set.
Third, the number of correctly predicted words r for an im-
age has to be somewhat penalized by an increasing number
of wrong predicted words w with respect to the vocabulary
size N . We use the normalized score measure [1],

Emethod
NS = r/n − w/(N − n),

where n denotes the actual number of keywords in the test
image. This measure is related to precision and recall. Pre-
dicting exactly the right n keywords implies ENS = 1, pre-
dicting all but the right n keywords produces a value of -1,
and predicting all the vocabulary produces a zero value.

This measure can be used for any of the annotation pro-
cedures described in Section 4. For PLSA and empirical
words distribution, the normalized score is plotted by vary-
ing a threshold level and predicting the words with a poste-
rior probability higher than this refuse to predict level. For
LSA and direct match, no probability is attached to each
ranked keyword, hence the threshold level cannot be ap-
plied directly. To overcome this problem, we first compute
the average number of predicted words for PLSA at each
threshold level over all the nine subsets. The normalized
scores for LSA and direct match methods are then com-
puted at each threshold level for the corresponding average
number of predicted words.

5.3 Experimental Results
For our experiments we limited the number of visual key-

words for each image by an empirical threshold of 0.04 on
the normalized RGB histograms: visual keywords with a
lower probability are not attached to the image. This leads
to an average of 18.5 visual keywords per image, which is
a trade-off between keeping enough visual information and
balancing the amount of visual and textual keywords (the
latter with an average number of 3.6). Given this threshold,
525 visual keywords are present on average in each sampled
vocabulary.

For the aspect models, we varied the number of aspects
from 15 to 80, and reported the corresponding maximum
normalized score in Table 1. PLSA results barely changed
with varying number of aspects, while a larger improve-
ment was observed when increasing the number of aspects
for LSA. We tried to initialize the EM training prodedure
in PLSA with probabilities derived from the LSA decom-
position of the training set2, but this did not improve the
perplexity and the annotation performance over the stan-
dard random initialization. In the rest of the paper, the
results correspond to 60 latent aspects for both PLSA- and
LSA-based annotation methods3.

Method Number of aspects K

15 40 60 80
LSA 0.495 0.526 0.531 0.535
PLSA 0.447 0.449 0.452 0.446

Table 1: Maximum normalized score vs. number of

latent aspects K for PLSA and LSA.

Figure 3 shows the normalized score of five annotation
methods: usage of the empirical word distribution (emp.),
2An empirical method to derive probabilities from LSA is sug-
gested in [5].
3More results will be made available in an extended version
of this paper.



propagation after direct match in the original feature space
(dir.), propagation after LSA on all the terms (LSA 1), prop-
agation after LSA on visual features only (LSA 2), and com-
putation of the posterior probability of each keyword given
the unannotated image by PLSA (PLSA). For all the the
five methods, the average number of predicted words corre-
sponding to the best annotation performance (highest Nor-
malized Score) is around 40.
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Figure 3: Normalized score for all the methods vs.

refuse to predict level x (p = 10−x/10 where p is the prob-

ability threshold).

The maximum normalized score increases over the empir-
ical distribution for our methods is shown in Table 2. For
comparison with the state-of-the-art, the results reported
in [1] range from 0.107 for MoM-LDA model to 0.179 for
binary-D-2-region-cluster and binary-I-2-region-cluster ; typ-
ical increase is 0.160. It is interesting to notice that even
with very basic image features such as the one used in this
paper, standard methods such as LSA on image features
only (LSA 2) can achieve similar annotation results com-
pared to complex, fully generative probabilistic models.

Measure Method
dir. LSA 1 LSA 2 PLSA

diff 0.125 0.148 0.153 0.069

Table 2: Difference between the maximum normalized

score of the empirical distribution (0.383) and the max-

imum of each discussed methods (diff = max(Emethod
NS )−

max(Eemp
NS )).

The fact that the PLSA annotation score is lower than
LSA is somewhat contradictory with the results presented
in [8], where PLSA outerperforms LSA for retrieving text.
Several reasons could explain this difference. One possi-
ble reason could be that propagating annotation can lead to
good results especially when annotation is uniform in a given
subset: if some images are systematically annotated with the
same set of words, propagation methods can find the exact
annotation if the right image is retrieved. This phenomena
is illustrated in Figure 4. On the first and second images,
direct match and LSA methods have retrieved an example
with a very similar annotation to propagate the keywords
from, thus finding a highly accurate annotation. PLSA,
which attempts to model complete distributions, can find
a relevant annotation for the last image but annotates the
second image with completely off-topic words. On the first
image, PLSA provides the words grass trees and sky, which
are not in the original annotation from Corel but could be
appropriately attached to the image. This ability of PLSA
to handle polysemy [8] could be penalized by the way of
evaluating annotation.

lion cat mane cactus saguaro tree sunset people build. trees street

mane lion cat sunset cactus saguaro water scot. mount. water shore

mane lion cat sunset cactus saguaro water scot. mount. water people

grass trees sky ocean rock coral reef trees street build. tree

Figure 4: Annotation examples with four keywords:

first line is the annotation from Corel, second is di-

rect match, third is LSA 1 and last is PLSA. The key-

words order is defined by the original Corel annotation

for propagation-based methods (direct match and LSA).

PLSA annotation is ordered by posterior probabilities.

The empirical word distribution annotation is the same

for all images: water sky people trees.

6. CONCLUSION AND FUTURE WORK
We tested and evaluated two latent space models on a very

basic representation of annotated images. The performance
of auto-annotation derived from some of these simple models
were comparable to much more complex methods on a 8000-
images dataset. Annotation by propagation (LSA and direct
match) outperformed annotation by inference (PLSA), sug-
gesting that propagation is a good strategy for that type of
dataset and vocabulary size (∼150 keywords). The meth-
ods performance on a larger vocabulary remains an open
question that will be addressed in the future.
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