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Abstract Principal Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA) are two important feature extraction methods and have been widely applied in 

a variety of areas. A limitation of PCA and LDA is that when dealing with image data, 

the image matrices must be first transformed into vectors, which are usually of very 

high dimensionality. This causes expensive computational cost and sometimes the 

singularity problem. Recently two methods called two-dimensional PCA (2DPCA) 

and two-dimensional LDA (2DLDA) were proposed to overcome this disadvantage by 

working directly on 2D image matrices without a vectorization procedure. 2DPCA 

and 2DLDA significantly reduce the computational effort and the possibility of 

singularity in feature extraction. In this paper, we show that these matrices based 2D 

algorithms are equivalent to special cases of image block based feature extraction, i.e. 

partition each image into several blocks and perform standard PCA or LDA on the 

aggregate of all image blocks. These results thus provide a better understanding of the 

2D feature extraction approaches. 

Index Terms: PCA, LDA, feature extraction, face recognition, two-dimensional 

PCA (2DPCA), two-dimensional LDA (2DLDA), block based feature extraction. 



I. Introduction 

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) 

are two powerful tools for feature extraction and data representation. They have been 

widely used in a variety of areas such as pattern recognition, computer vision, 

machine learning, neural networks, bioinformatics and finite automata. Among others, 

a most successful application is the human face recognition. Kirby and Sirovich [1] 

were the first to employ Karhunen-Loeve transform to represent facial images. Their 

work immediately led to the PCA “Eigenface” technique [2]. Although PCA ensures 

the features extracted have least reconstruction error, it may not be optimal from a 

discrimination standpoint. Etemad et al. [3], Belhumeur et al. [4] and Zhao et al. [5] 

then proposed the LDA “Fisherface” method to extract features that have the best 

discrimination ability. Eigenface and Fisherface methods have by now become a de 

facto standard and common performance benchmarks in the field. 

However, PCA and LDA have a common disadvantage when working on images. 

In face recognition for example, each datum is an image matrix. To perform PCA or 

LDA, the 2D image matrices must be previously transformed into 1D vectors. The 

resulting vector space is usually of a very high dimensionality: An image of 

256 256×  resolution then becomes a 65536 -dimensional vector. The high 

dimensionality makes PCA and LDA difficult to implement. For on the one hand, 

PCA and LDA both involve eigenvalue decomposition, which is extremely 

time-consuming for high dimensional vectors. On the other hand, if the 

dimensionality exceeds the number of data points, LDA becomes a singularity 



problem and cannot be solved directly. Considerable efforts have been made to deal 

with these problems. For details, see [6], [7] and a large number of references therein. 

Recently several authors independently proposed a technique which extracts 

features directly from 2D images without a vectorization preprocessing. The methods 

were termed two-dimensional Principal Component Analysis (2DPCA) [8], [9], and 

two-dimensional Linear Discriminant Analysis (2DLDA) [10], [11], [12], as 

generalizations of classical PCA and LDA respectively. The main idea of these 2D 

methods is to construct image covariance matrix and image scatter matrices directly 

using the original image matrices. Compared to their counterparts in PCA and LDA, 

i.e. vector covariance matrix and scatter matrices, the image covariance matrix and 

image scatter matrices have a much smaller size. Therefore, 2DPCA and 2DLDA 

significantly reduce the computational cost and avoid the singularity problem. 

Another line of research in feature extraction and face recognition is the 

block-based methods. In these methods, an image is partitioned into several blocks. 

Often, all blocks have the same size. Features are extracted from the block images. 

Block-based method was first appeared in Hidden Markov Models (HMM) based face 

recognition [13] dating back to 1994 [14]. Fredembach et al. [15] recently presented 

an Eigenregion algorithm, which performs PCA on segmented image regions. Other 

works related to this method include [16], [17], which make use of image fragments 

to represent objects. 

In this correspondence, we show that the 2D methods are equivalent to special 

cases of the block image based feature extraction. In particular, 2DPCA is equivalent 



to line-based PCA. That is, if each block is an image line, and taking all these line 

blocks as data samples, then applying standard PCA to the aggregate of the line 

examples results in 2DPCA. We further show that 2DLDA is equivalent to line, 

column or more complex image block-based LDA depending on the dimensionality 

reduction. The proofs adopt a technique used in [18]. 

The remainder of this paper is organized as follows. We briefly review 2DPCA 

and 2DLDA algorithms in Section II. In Section III, we establish the equivalence 

theorems. And finally we give a conclusion in Section IV. 

II. A Brief Review of the 2D Methods 

A. PCA and 2DPCA 

The goal of PCA and 2DPCA is to extract features that can best approximate the data. 

In standard PCA, the data set consists of Euclidean vectors. Let 1 2, , , NTS x x x=< >  

( d
ix ∈ ) be the training sample set. PCA algorithm takes TS  as input and returns 

M  feature vectors 1 2, , , Mw w w , d
iw ∈ . The M  feature vectors constitute an 

orthogonal basis of a linear subspace, which achieves least reconstruction error of 

TS  among all M -dimensional subspaces. It is well-known [19] that the features 

1 2, , , Mw w w  are the M  leading eigenvectors of the sample covariance matrix 
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In 2DPCA however, the data are image matrices. The sample set is 



(1), (2), , ( )TS X X X N=< > , where ( )X i  is a r -row c -column image matrix. 

Instead of vectorizing each data to a r c× -dimensional vector, 2DPCA directly 

defines an image covariance matrix 
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= ∑  is the mean of all sample matrices. Note that IMS  has a 

much smaller size than the covariance matrix S  of the vectorized data. The former is 

a c c×  matrix, while the latter is r c×  by r c× . 2DPCA then extracts features from 

IMS . The features are eigenvectors of IMS  corresponding to the M  largest 

eigenvalues. Clearly, the features are all c -dimensional vectors. 

Like PCA, features obtained by 2DPAC can be used to reconstruct the data with 

small error. For details, the reader is referred to [8], [9]. In Section III, we will show 

the equivalence of 2DPCA and line-based PCA. The reconstruction problem can 

therefore be understood as the reconstruction of the image lines by standard PCA. 

For notational convenience, the normalizing factor 1/ N  of the image covariance 

matrix (see (2)) will be dropped in the rest of this paper. And when discussing 2DPCA, 

we will assume that, without loss of generality, data matrices have been shifted so that 

they have zero mean, i.e. 
1

1 ( ) 0N

i
X X i

N =
= =∑ . Accordingly, the image covariance 

matrix reduces to a simpler form 
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B. LDA and 2DLDA 

Both LDA and 2DLDA aim to extract features that well discriminate a set of data that 

belong to a number of classes. In classical LDA, the sample set is 

1 2, , , NTS x x x=< > , where each data is a vector in d . The data come from K  

classes, denoted by 1 2, , , KC C C . Assume that class iC  contains iN  data, hence 

1

K
ii

N N
=

=∑ . The between-class scatter matrix is defined as 
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and the within-class scatter matrix is defined as 
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LDA chooses M  optimal feature vectors so that the following objective function 

is maximized [20] 

 1[( ) ( )].T T
W Btr W S W W S W−  (6) 

where tr  denotes the trace, and W  is a column orthogonal matrix with each 

column a feature vector, i.e. 1 2( , , , )MW w w w= . The optimal features 

1 2, , , Mw w w  are M  directions. Projecting original data vectors onto these 

directions, the resulting within-class scatter matrix has the minimum trace while the 

between-class scatter matrix has maximum trace simultaneously. It is well-known that 

the LDA features 1 2, , , Mw w w  are eigenvectors corresponding to the largest M  

eigenvalues of the following generalized eigenvalue problem 



 ,B i i W iS w S wλ=   1, 2, ,i M=  

The 2DLDA however, deals with data in image matrices representations. Again, 

let the sample set be (1), (2), , ( )TS X X X N=< > , and ( )X i  a r -row c -column 

matrix. Similar to 2DPCA, 2DLDA introduces image within-class scatter matrix IM
WS  

and image between-class scatter matrix IM
BS  defined as follows 
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2DLDA searches such optimal directions that after projecting the original data 

onto these directions, the resulting image within-class scatter matrix has the minimum 

trace, while the image between-class scatter matrix has the maximum trace. Unlike 

LDA which performs linear projections of vectors, 2DLDA considers bilinear 

projections of image matrices. More precisely, 2DLDA involves two sets of projection 

directions 1
1{ }l

i iu =  and 2
1{ }l

i iv = , where r
iu ∈  and c

iv ∈  ( 1l r≤ , 2l c≤ ). These 

vectors define two matrices 
11 2[ , , , ]lL u u u=  and 

21 2[ , , , ]lR v v v= . The bilinear 

projection of a r c×  data matrix ( )X i  is 

 ( ) ( ) .TY i L X i R=  (9) 

where the resulting ( )Y i  is a 1 2l l×  matrix smaller than ( )X i . Denote IM
WS , IM

BS  

the image within-class and between-class scatter matrices of the projected data ( )Y i ’s, 

2DLDA then chooses L  and R  so that the following objective function is 



maximized 
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However, there is no closed form solution of this optimization problem. 2DLDA 

instead adopts an iterative algorithm. For a fixed R , computes the optimal L , then 

fix L  to compute best R , and this procedure is repeated for a series of rounds. It is 

obvious that each time the optimization is to solve a generalized eigenvalue problem 

(compare to (6) and see also [10]). 

2DLDA has more flexibility than LDA. Note that in 2DLDA one can make 

different choices of the dimensionalities of the left and right projections. In Section III 

we will show that the choices of projection dimensionality correspond to different 

kinds of image blocks in block-based LDA. 

III. The Equivalence of 2D Methods to Block-Based Approaches 

A. 2DPCA 

In this section we show that 2DPCA is equivalent to a special case of the image 

block based PCA. In particular, each block is an image line. The procedure of image 

line based PCA is as follows: First partition each image whose resolution is r c×  

into r  image lines. Each image line is considered as a Euclidean vector of 

dimensionality c . Then the N  images in the sample set are decomposed to N r⋅  

vectors. Finally, applying standard PCA on these N r⋅  vectors, i.e. computing the 



leading eigenvectors of the covariance matrix of the N r⋅  data vectors, we obtain the 

line-based PCA features. 

Theorem 1 

2DPCA is equivalent to image line-based PCA.        □ 

For a detailed proof, please see [18]. The main idea is that the image covariance 

matrix IMS  (see (3)) of 2DPCA is exactly the ordinary sample covariance matrix of 

all the N r⋅  image lines considered as vectors in c . More precisely, suppose that 

(1), (2), , ( )X X X N  are image matrices of size r c× . Let 1 2( ) , ( ) , , ( )rx i x i x i  be 

the r  lines of ( )X i : 
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and 
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Hence the two methods are equivalent. 

B. 2DLDA 

The equivalence of 2DPCA and line-based PCA is established based upon the fact that 

the image covariance matrix IMS  is just the covariance matrix of all image lines. 

Note that there is a strong similarity between the image covariance matrix in 2DPCA 

and the image scatter matrices in 2DLDA (see (2) and (7), (8)). Hence the preceding 



arguments may be applied to prove the equivalence of 2DLDA and block based LDA. 

However, 2DLDA is a little more complicated because of the bilinear projection 

involved. So to begin with we consider two simple cases of 2DLDA, for which the 

bilinear projections reduce to linear projections. We show that the two simple versions 

of 2DLDA are equivalent to line and column based LDA respectively, i.e. partition 

each image into r  lines or c  columns, and then perform LDA on these image 

line/column data vectors. 

Theorem 2 

 2DLDA is equivalent to column based LDA if the right projection R  is identity. 

Proof 

 If the right projection R  is identity, 2DLDA’s criterion (10) then reduces to 

maximizing the following objective function with respect to L  
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Let 
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where ( )hx j , ( )hM i  and hm  are the h th column vector of ( )X j , ( )M i  and 

M  respectively. We thus have 
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In analogy, we also have 

 [ ][ ] [ ][ ]
1

( ) ( ) ( ) ( ) .
c

T T
h h h h

h

M i M M i M m i m m i m
=

− − = − −∑  

The 2DLDA objective function (14) is then written as 
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From (16) it is clear that the image within/between-class scatter matrices are exactly 

the within/between-class scatter matrices of all image columns ( )hx j , 1, 2, ,j N= , 

1, 2, ,h c= . Comparing the above formula to the standard criterion of LDA (6), it is 

readily seen that this is the criterion of column based LDA.      □ 

In the same manner, we can prove the following theorem. 

Theorem 3 

2DLDA is equivalent to line-based LDA if the left projection L  is identity. □ 

As described in Section II, 2DLDA aims to choose two sets of features 

11 2[ , , , ]lL u u u=  and 
21 2[ , , , ]lR v v v= . The above two special cases (imposing L  

or R  to be identity) extract only one set of features. If neither L  nor R  is identity, 

2DLDA becomes more complicated. There is no closed form solutions of L  and R  

simultaneously. In [10] the authors suggested a two-stage optimization algorithm: Fix 

R  optimize L , and then fix L  optimize R . 

Consider the first step. If R  is fixed, the optimization is very similar to the case 

that R  is identity (see (10) and (14)). The only differences are that the terms 

[ ][ ]( ) ( ) ( ) ( ) TX j M i X j M i− − and [ ][ ]( ) ( ) TM i M M i M− −  in (14) are replaced by 
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identity. 

If we denote 
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and ( )hx j , ( )hm i  and hm  are the h -th column vectors of ( )X j , ( )M i  and M  

respectively. The above formulae indicate that ( )hx j , ( )hm i  and hm  are linear 

combinations of all columns of image matrices ( )X j , ( )M i  and M  respectively. 

Using the arguments in previous proofs, we readily obtain the following theorem. 

Theorem 4 

The first optimization step of 2DLDA, i.e. fix R  to choose optimal L , is 

equivalent to perform LDA on a set of vectors, each of which is a linear combination 

of the original image columns.            □ 

Similarly, we have the following theorem. 

Theorem 5 



The second optimization step of 2DLDA, i.e. fix L  to choose optimal R , is 

equivalent to perform LDA on a set of vectors, each of which is a linear combination 

of the original image lines.             □ 

Theorems 2 to 5 apply to different stages of 2DLDA. We have mentioned that 

2DLDA involves a series of rounds. Initially, 2DLDA assumes R  to be identity and 

optimizes L . According to theorem 2, this is equivalent to perform ordinary LDA on 

all the image columns. At a further round, the current R  (or L ) is not identity. But 

due to theorem 4 (or 5), one can compute linear combinations of the image columns 

(rows), where the weights correspond to the entries of the current R  ( L ). Then 

conducting LDA on these vectors obtains the same result as 2DLDA. 

IV. Conclusion 

We established the equivalence between image matrices based and image block 

based feature extraction methods. Specifically, we show that 2DPCA is equivalent to 

image line based PCA, and 2DLDA is equivalent to line, column or their linear 

combination based LDA depending on the dimensionality of its left and right 

projection. 

Acknowledgement 

The authors would like to thank the reviewers and the editor for their careful and 

constructive comments. This work is supported by NKBRPC (2004CB318000). 



References 

[1] M. Kirby and L. Sirovich, “Application of the Karhunen-Loeve Procedure for the 

Characterization of Human Faces,” IEEE Trans. Pattern Anal. Machine Intell., vol. 12, no. 1, pp. 

103-108, 1990. 

[2] M.A. Turk and A.P. Pentland, “Face Recognition Using Eigenfaces,” in Proceeding of the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 1991. 

[3] K. Etemad, R. Chellappa, “Discriminant Analysis for Recognition of Human Face Images,” J. Opt. 

Soc. Am. A, vol. 14, no. 8, pp. 1724-1733, 1997. 

[4] P.N. Belhumeur, J.P. Hespanha and D.J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition 

Using Class Specific Linear Projection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, no. 7, 

pp. 711-720, 1997. 

[5] W. Zhao, A. Krishnaswamy, R. Chellappa, D.L. Swets and J. Weng, “Discriminant Analysis of 

Principal Components for Face Recognition, ” In H. Wechsler, P.J. Phillips, V. Bruce and T. 

Huang, editors, Face Recognition: From Theory to Applications, pp. 73-85, Springer-Verlag, 

1998. 

[6] J. H. Friedman, “Regularized Discriminant Analysis,” J. Am. Statistical Assoc., vol. 84, no. 405, 

pp. 165-175, 1989. 

[7] J. Ye, R. Janardan, C.H. Park and H. Park, “An Optimization Criterion for Generalized 

Discriminant Analysis on Undersampled Problems,” IEEE Trans. Pattern Anal. Machine Intell., 

vol. 26, no. 8, 2004. 

[8] J. Yang and D. Zhang, “Two-Dimensional PCA: A New Approach to Appearance-Based Face 

Representation and Recognition,” IEEE Trans. Pattern Anal. Machine Intell., vol. 26 no. 1, pp. 

131-137, 2004. 

[9] J. Yang and J.Y. Yang, “From Image Vector to Matrix: a Straightforward Image Projection 

Technique—IMPCA vs. PCA,” Pattern Recognit. vol. 35, no. 9, pp. 1997-1999, 2002. 

[10] J. Ye, R. Janardan and Q. Li, “Two-Dimensional Linear Discriminant Analysis,” In Proceedings 

Neural Information Processing Systems (NIPS), 2004. 

[11] J. Ye, “Generalized Low Rank Approximations of Matrices,” In Proceedings International 

Conference on Machine Learning (ICML), 2004. 

[12] M. Li and B. Yuan, “2D-LDA: A Novel Statistical Linear Discriminant Analysis for Image 

Matrix,” Pattern Recognit. Lett., vol. 26, no. 5, pp. 527-532, 2005. 

[13] M. Kim, D. Kim, and S. Lee, “Face Recognition Using the Embedded HMM with Second-Order 

Block-Specific Observations,” Pattern Recognit., vol. 36, no. 11, pp. 2723-2735, 2003. 



[14] F. Samaria and S. Young, “HMM-Based Architecture for Face Identification.” Image Vision 

Comput., vol. 12, no. 8, pp. 537-543, 1994. 

[15] C. Fredembach, M. Schroder and S. Susstrunk, “Eigenregions for Image Classification,” IEEE 

Trans. Pattern Anal. Machine Intell., vol. 26, no. 12, pp. 1645-1649, 2004. 

[16] S. Ullman, E. Sali and M. Vidal-Naquet, “A Fragment-based Approach to Object Representation 

and Classification,” In IWVF, 2001. 

[17] M. Vidal-Naquet and S. Ullman, “Object Recognition with Informative Feature and Linear 

Classification,” In Proceedings International Conference on Computer Vision (ICCV), 2003. 

[18] L. Wang, X. Wang, X. Zhang and J. Feng, “The Equivalence of Two-Dimensional PCA to 

Line-Based PCA,” Pattern Recognit. Lett., vol. 26, no. 1, pp. 57-60, 2005. 

[19] I.T. Jolliffe, Principal Component Analysis, Springer-Verlag, New York, 1986. 

[20] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, San Diego, 1990. 


