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Let Z be a character of the symmetric group 5P~. The immanant  of an n x n matrix 
A =  [-a•] with respect to X is Zw~snZ(w)al,,~(t)...an, w~,). Goulden and Jackson 
conjectured, and Greene recently proved, that immanants  of Jacobi-Trudi matrices 
are polynomials with nonnegative integer coefficients. This led one of us 
(Stembridge) to formulate a series of conjectures involving immanants ,  some of 
which amount  to stronger versions of the original Goulden-Jackson conjecture. 
In this paper, we prove some special cases of one of the stronger conjectures. 
One of the special cases we prove develops from a generalization of the theory of 
permutat ions with restricted position which takes into account the cycle structure 
of the permutations. We also present two refinements of the immanant  conjectures, 
as well as a related conjecture on the number  of ways to partition a partially 
ordered set into chains. © 1993 Academic Press, Inc. 

1. INTRODUCTION 

Let A = [a~] be an n x n  matrix, and for each partition £ of n, let Z x 
denote the associated irreducible character of the symmetric group 5°~ 
[ JK] .  The function 

Immx(A) = ~ Z;(w) (l ai, wu) 
w ~ N~n i = l 
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is called the immanant of A with respect to 2. When 2 = (ln), X x is the sign 
character and Imm;~(A)= det(A), the determinant of A. When 2 = (n), .Zx is 
the trivial character and Immx(A)=per(A),  the permanent of A. For 
previous work on immanants, see [G] ,  and the references cited there. 

Suppose that # = (/~1, ...,/~,) and v = (v~, ..., v,) are partitions with v __c # 
(i.e., weakly decreasing sequences of integers with 0-<< v~</x~ for all i). 
Define the matrix 

gu/v = gu/v(x ) = [ hm-  vj + j -  i] l <~ i.j<~n, 

where h k = h k ( x ) = h k ( x  1, x2, ...) denotes the kth complete homogeneous 
symmetric function, i.e., the formal sum of all monomials of degree k in the 
variables x =  (xl,  x2 .... ). Following the usual conventions, we set h _ , = 0  
for k > 0 and ho = 1. Under these terms, the matrix H,/~ is called a Jacobi-  
Trudi matrix, named after Jacobi and his student Trudi, who established 
the special case v = ~ of the identity 

det H,/~ = s~/~, (1.1) 

where s,/~ denotes the skew Schur function indexed by the skew shape #Iv 
[M] .  (When v = ~ ,  s , / e  becomes the ordinary Schur function st. ) 

In an interesting recent paper, Goulden and Jackson [G J ]  investigated 
the immanants of H~/v. In particular, they conjectured that Immx H~/~ 
is a nonnegative linear combination of monomials, or equivalently, of 
monomial symmetric functions. This conjecture was subsequently proved 
by Greene [G] ,  who applied the representation theory of the symmetric 
group to a reduction of the problem previously given by Goulden and 
Jackson. Meanwhile, the work of Goulden and Jackson led one of us to 
formulate a series of conjectures involving immanants [Ste2], some of 
which amount to stronger versions of the original Goulden-Jackson con- 
jecture (or theorem of Greene). One of these (Conjecture 4.2(a) of [Ste2])  
is the conjecture that Immx Hu/v is a nonnegative linear combination of 
Schur functions, a fact recently proved by Haiman via Kazhdan-Lusztig 
theory [H] .  

There is an even stronger version of the Goulden-Jackson conjecture in 
[Ste2] which remains open. To describe this conjecture, we define 

F~/v(x, y)  = ~ sx(y)  Immx H~/v(X), 

where the notation 2 ~ n  indicates that 2 is a partition of n. Note that 
F,/v(x, y)  is independently a symmetric function of the variables 
x = (Xl, x2, ...) and y = (Ya, Y2 .... ). Following the notation of [M] ,  let pC. 
denote the power-sum symmetric function indexed by 2, and for w e 5P,, let 
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p(w) denote the cycle-type of w, i.e., the partition formed by the lengths of 
the cycles of w. Since Pp(w/=~]x~  X~(w) s~. [Stal,  (44)], [M, (7.8)], we 
have 

Fn/~(x, y)= ~ pp(~)(y) h~+6 ~(~+6)(x), (1.2) 
w ~ ~9°n 

where 6 = ( n -  1, n -  2, ..., 0), h= = h~,.., ha,, and w(e) = (c~(1) ..... ew(,)}. 
Since F,/~ is homogeneous of degree N := [#1 - Iv[ with respect to x (where 
L#I denotes Z P~), it has an expansion in terms of Schur functions of degree 

o _EO/~(y) denote the coefficient of So(X) in N in x. For 0 ~ N ,  let E,/~- 
F,/~(x, y), so that 

G/v(x, y) = E (1.3) 
O ~ - - - N  

Note that E°~/~ is homogeneous of degree n. 
The following is equivalent to Conjectures 4.1 and/or 4.1' of [Ste2]. (In 

fact, E°/~ is the symmetric function corresponding to the 5e,-class function 
0 in [Ste2].) labeled as F,/~ 

1.1. Conjecture. E°u/~ is a nonnegative linear combination of h~'s. 

We remark that 

h~=~K~,~s~, (1.4) 
2 

where Ka,~ denotes the Kostka number [Stal,  (26)], [M, 1.6], so (1.2) and 
(1.3) imply 

= Z (1.5) 
w E SPn 

It should be emphasized that Ko,~+~-w(v+~ is interpreted as 0 whenever 
any component of p + 6 - w ( v + 6 )  is negative; in view of (1.4), this is 
consistent with the convention that h_k--0  for k > 0. 

The fact that the Kostka numbers are nonnegative shows that Conjec- 
ture 1.1 would indeed be stronger than the result that Imm~ Hp/~ is a 
nonnegative linear combination of Schur functions (cf. (1.3) and (1.4)). 

Our contributions to Conjecture 1.1 are the following: 

I. An explicit formula for E°/~ when #/v is a border-strip (i.e., 
Pi+l--Vi=l for all i) which transparently proves the validity of 
Conjecture 1.1 for this case. 

II. A formula for r(N) that we can use to verify Conjecture 1.1 for the u / v  

special case 0 = (N) whenever the pattern of zeroes in the matrix H~/v is 
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confined to a "small" region. The case 0 = (N) is particularly interesting 
since it turns out that P~N) has a natural description in terms of permuta- 
tions with restricted position. This suggested to us the idea of developing 
a generalization of the classical enumerative theory which takes into 
account the cycle structure of the permutations. (See Section 3.) 

III. Some conjectures for expressing E°~/~ as a linear combination of the 
special E~.m's of IL These conjectures will essentially be generalizations of 
our solution to I. We also have a conjecture, suggested by the theory we 
developed for II, on the number of ways to partition a partially ordered set 
into chains. (See Section 5.) 

We should point out that there is a well-known analogue of (1.1) (see 
[ M ] )  in which the symmetric function hr is replaced by the elementary 
symmetric function e r; namely, 

det [e~,_ ~j+j_ i] = s.,/~,, 

where #' denotes the conjugate of/ t .  It would be natural to investigate 
various positivity questions involving immanants of these matrices as well. 
However, the map hr ~ er extends to an involutory automorphism of the 
ring of symmetric functions in which s~ ~ s~, [M, (2.7)], so it follows that 
the Schur function expansions of the immanants of these new matrices 
can be easily obtained from those of the Jacobi-Trudi matrices (and 
conversely). Similarly, Conjecture 1.1 is equivalent to the conjecture 
that the analogues of E°/~ for these new matrices are nonnegative linear 
combinations of G's. 

2. THE BORDER-STRIP CASE 

The skew shape #Iv is a border-strip if # i + l - v i = l  for l<~i<n. 
Geometrically, this means that the Young diagram of #Iv is rookwise 
connected and contains no 2 × 2  subdiagram [M, p. 31]. This is also 
equivalent to having l's along the first subdiagonal of H~/~ (i.e., in positions 
(2, 1), (3, 2) ..... (n, n -  1)). 

Recall t h a t a  composition of N is an ordered sequence ~ =  (~i ..... at) of 
positive integers with sum N. A refinement of ~ is obtained by replacing 
each term ~i by a composition of ~i. If fi is a refinement of ~, we .will say 
conversely that ~ is a meld of ft. Note that the compositions of I (the length 
of ~) can be used to index the melds of ~. For example, if l =  5, then the 
meld indexed by (2, 1, 2) is (~1 + ~2, ~3, ~4 + as). In general, we will write 
~1~ for the meld of ~ indexed by 7. 
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2.1. LEMMA. If#Iv is a border-strip, then 

E°~/. = ~ Ko,(~ ~)t,P~l "'" P~,, 

summed over all compositions c~ of  n. 

Proof  Consider the description of E°/v in (1.5). A little thought shows 
that when Ix/v is a border-strip, one has # + 6 - w(v + 6) >~ 0 if and only if 
the cycles of w are (ai, a i - 1 , . . . , a i _ ~ + l )  for i = l  .... ,/, where 0 = a 0 <  
al < .-. < at = n is some increasing sequence of integers. (This fact was also 
used by Goulden and Jackson [GJ,  Sect. 5].) Therefore, let us define 
~i = a ~ -  a¢_ 1, so that ~ = (e j, ..., c~t) is a composition of n. There will be 
one nonzero term in/x + (5 - w(v + 6) corresponding to each of the 1 cycles 
of w. Using the fact that/x i+ 1 - v j  = 1, it follows that the ith such nonzero 
term will be 

ai 

j = a i - l +  l 

In short, (/x - v)l~ is the subsequence of positive terms in # + 8 - w(v + 6). 
Apply (1.5). | 

Let us consider the special case #Iv = (1" ) /~  in more detail. We write Jo 
as an abbreviation for E°,/, in this case. Since the Kostka number Ko,~l ...... ,) 
does not depend on the order of the terms cq, we may rewrite the 
expansion of Lemma 2.1 in the form 

~(~)! 
Jo = ~ ml(c~)! m2(c~)! --. K°'~P"' (2.1) 

where m~(c~) denotes the number of parts of ~ equal to i, and ((~) denotes 
the total number  of (positive) parts of ~. 

It follows that if we regard Jo as the characteristic ch(ff °) of a certain 
class function ~0 of 5e, (following the terminology of [M, 1.7]), then 

~o(~) = #(c~)! ~1"'" cqKo,~. (2.2) 

The property that Jo is a nonnegative (integer) linear combination of Schur 
functions is equivalent to ~0 being a true character (not merely a virtual 
character) of 5P~. Similarly, having Jo be a nonnegative (integer) linear 
combination of h,'s is equivalent to ~0 being the character of a permuta- 
tion representation whose transitive components are isomorphic to the 
action of 5°, on the cosets of Young subgroups 5P~ = 5~ × . . .  × 5e~ (cf. 
[-Ste2, Sect. 4]). 

We do not know of a "natural" representation of ~ with character ~0, 
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except when 0=(n) .  In this case, one has K0,~= 1 for all ~---n, and so 
(2.1) and (2.2) become 

~(~)! 

J(") = ~ ml(c~)! m2(~)! ." 

~(./(~) = ~(~)! ~ "'" ~ t .  

P~ 

This character of 5a, and the corresponding symmetric function J(,) were 
studied previously in [B-l, [Sta3], [Stel] .  In particular, from the work of 
DeConcini and Procesi, one knows that ¢(") is the character of an action 
of ~ on the cohomology ring of a certain toric variety; see [Sta3, p. 529]. 
Recently, Dolgachev and Lunts [DL,I showed that the fact that ~")  is a 
permutation character of the sort described above can be deduced from the 
geometry of this toric variety. 

For the sake of completeness, we include a direct, elementary proof that 
J(n) is indeed a nonnegative (integer) linear combination of h~'s. Similar 
proofs can be found in [GJ, Sect. 5,l, [Stel, Sect. 3]. 

2.2. PROPOSITION. We have 

( )_1 
J(~)t"= 1 -  ~ p , t  ~ = 

n>~O n>~l 

~n>~O hn tn 
1 - Z ~ l ( n - 1 ) h n t  ~" 

Proof For the first equality, consider 

1 -  Z Pn t" = 2 • pnt ~ = pal. . .pjal+.. .+a,  , 
n>~l l>10 n>~l l ~  ai>~l 

and apply Lemma 2.1, using ~/v = (1")/~,  0 = (n), and Ko.(a, ...... ,) = 1. 
The second equality (which Goulden and Jackson attribute to I. Gessel) 

is an immediate consequence of the identity 

( ~  Pntn)(~> hntn)= ~ nhn tn, 
n>~l n ~ O  n>~O 

which in turn is equivalent to I-M, (2.10),l. | 

A corollary of this result is the following explicit expansion of J(n) as a 
nonnegative linear combination of h~'s, 

J(n) = ~ (al - 1)...  (a t -  1) h a o h a l  . . . h a , ,  

summed over all "compositions" (ao ..... at) of n in which ao is allowed to 
be zero. 
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We now return to analysis of the general border-strip #/v. 
Recall that a standard Young tableau (SYT) of shape 0 w--N may be 

regarded as a placement of the numbers 1, 2, ..., N without repetition into 
the cells of the Young diagram of 0 so that every row and column is 
increasing. For  example, 

1 2 3 5 

4 7 8 

6 9 

is an SYT of shape 0 = (4, 3, 2). For  any such tableau T, the descent set 
D(T) is defined to be the set of all i (1 <~i<N) such that i +  1 appears in 
a row lower than the row of i. In the above example, we have D(T)= 
{3,5,8}. 

For  any composition a = ( c q  ..... at) of N, let S ( a ) =  {cq, a l + a 2  ..... 
al + - - - +  at_i},  a subset of {1, 2, ..., N - 1  }. The following simple result 
appears in Prop. 4.1 of [Sta2].  

2.3. LEMMA. I f  a is any composition of N, then the number of SYT  T of 
shape 0 satisfying D(T)~_ S(a) is the Kostka number Ko,~. 

The following is the main result of this section. 

2.4. THEOREM. I f  WV is a border-strip, then 

E°,/v = Z J(~,) "" J(~,), (2.3) 
T 

where T ranges over all SYT  of shape 0 with D(T) ~_ S ( # -  v), and a = a(T) 
is defined by D(T) = S((U - v)]~). 

Proof. By Lemmas 2.1 and 2.3, we have 

E°/~ = ~ Z P~I""P~k, (2.4) 
fl 7- 

where the inner sum ranges over all SYT T of shape 0 with D(T)~_ 
S((#-v)L~) .  If we interchange the order of summation, we will obtain an 
outer sum over SYT with D(T)~_S(I~-v). Each such T will have the 
property that D(T)= S((t~-v)Is) for some composition a of n, so the inner 
sum will range over all refinements fl of a. 

On the other hand, Lemma2.1  also implies that J(n)=Y',pel...p~k, 
where fl ranges over all compositions of n, and more generally, 

J ( a l )  " ' "  J(o:r) "= ~ P,~, " '"  P f lk ,  
fl 
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where the sum ranges over all refinements of ~. Thus, the amount 
contributed to (2.4) by a given SYT T with D(T)=  S ( ( # -  v)I~) will be 
J(~,)'"J(~l), which proves (2.3). | 

As a consequence of Proposition 2.2 and this result, we may deduce 
that E°/v is a nonnegative linear combination of h~'s whenever #Iv is a 
border-strip; i.e., 

2.5. COROLLARY. Conjecture 1.1 & valid whenever #Iv & a border-strip. 

2.6. PROPOSITION. Let t be a positive integer. I f  Conjecture 1.1 /s valid 
for a given skew shape #Iv (and all 0), then Conjecture 1.1 is also valid for 
t * (#/v), where 

t * (#/v) = (t# + ( t -  1) 6)/(tv + ( t -  1) 6). 

We remark that border-strips are closed under the .-operator,  so this 
result does not by itself extend the domain to which Corollary 2.5 applies. 

Proof Let R denote the ring of "functions" which are independently 
symmetric in the variables x =  (Xl, x2 .... ) and y =  (Yl, Y2 .... ). Since the 
symmetric functions hi(x) and hi(y) for i~> 1 are algebraically independent 
and generate R (as an algebra over Z), there is a unique algebra 
endomorphism 7 = 7 , : R ~ R  satisfying ~)(hi(x))=hti(x ) and 7(hi(y)) = 
hi(y) for all i~> 1. One easily checks that if we apply 7 to each entry of the 
matrix H,/v(x), then we obtain H t . (,/v). In particular, 7(So(X))= st .  o(X) for 
all 0. Now from the definition of Fu/~(x, y) there follows 

7(F~/v(x, Y)) = Ft .  (,/v)( x, Y). 

Now apply 7 to (1.3). Since the Littlewood-Richardson rule implies that 
any skew Schur function is a nonnegative (integral) linear combinat ion of 
ordinary Schur functions l-M, 1.9], it follows that E°.,/v is a nonnegative 
(integral) linear combination of E~/~'s. | 

3. PERMUTATIONS WITH RESTRICTED POSITION 

In the following, we write [n]  as an abbreviation for {1, 2 .... , n) and 
regard I n ] 2 -  - I-n] x I-n] as an n x n chessboard. The classical theory of per- 
mutations with restricted position is concerned with the number of ways to 
place n non-attacking rooks on some subset B of In]  2. Each such place- 
ment corresponds to a permutation w c 5e~, viz., w ( i ) = j  if a rook occupies 
position (i, j). We then call w a B-compatible permutation. Note that the 
number of legal placements of n rooks on B, or equivalently, the number 
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of B-compatible permutations, is the permanent of the 0-1 matrix [ao.] 
with a o. = 1 for (i, j)  e B. 

In this section, we consider not just the number of B-compatible 
permutations, but also their distribution by cycle-type. Thus define the 
cycle indicator Z[B] of B to be the symmetric function 

Z[B] = Z = Z " , 
w w 

where m~(w) is the number of/-cycles of w, and the sum is extended over 
all B-compatible permutations w. For example, if B =  [n] 2, then every 
permutation is B-compatible, and we get the well-known formula (e.g., see 
Example 1.9 on p. 20 of [M] )  

Z [ B ] =  ~ po(w~=n!hn. (3.1) 
w E S~n 

Let us now recall from the classical theory of permutations with 
restricted position (e.g., [R, Chap. 7]) that the Principle of Inclusion- 
Exclusion may be used to prove 

r/(B) -- Z ( -  1) k (n - k)! rk(/~), (3.2) 
k 

where t/(B) denotes the number of B-compatible permutations, and rk(B) 
denotes the number of ways to place k non-attacking rooks on the com- 
plementary board/~. The factor ( n -  k)! represents the number of ways to 
extend a set of k non-attacking rooks to a full set of n non-attacking rooks. 
In order to extend this reasoning to compute Z[B] instead of merely 
tl(B) =Z[B](pi~  1), we need to determine the cycle indicator for the set 
of permutations that extend a given set of k rooks (i.e., a "partial permuta- 
tion"). However, unlike the classical case, these cycle indicators do not 
depend only on n and k. 

To describe our solution to this problem, let S c [ n ]  2 denote a 
placement of (at most n) non-attacking rooks, and define 

Z=_s= ~ Pp(w), 
w 

summed over all w s 5~ with w(i)= j for all (i, j )~  S. In the following, it 
will be convenient to regard S (or indeed, any subset of I n ]  2) as a directed 
graph with vertex set [n]. In these terms, S must be a union of disjoint 
directed paths and cycles. We define the type of S to be the pair of parti- 
tions (e; fl) such that (1) the numbers of vertices in the directed paths of 
S are c~1, a2 ..... and (2) the lengths of the cycles of S are ill, f12,---. Note 
that I~[ + [fll = n and that the number of isolated vertices in S is ml(a), the 
multiplicity of 1 in e. 
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The following result shows that the cycle indicators Z=_s are closely 
related to the "forgotten" symmetric functions f~ [M, p. 15]. These 
symmetric functions are usually defined by setting 

f)~ = co(m~), 

where m~ denotes the monomial symmetric function of type 2, and. co 
denotes the automorphism of the ring of symmetric functions such that 
~o(p~) = ( - 1 )I~1 - e(~)p~ [M, 1.2]. These symmetric functions are considered 
forgotten since explicit descriptions of them are hard (but not impossible) 
to find; see [Db] .  

3.1. LEMMA. If So  In] 2 is of type (~;fl) then 

Z~-s= (--1) Ic~l - ¢(~) m l ( ~ ) !  m 2 ( ~ ) ! " '  "f~Pl~. 

Proof Clearly, each j-cycle of S contributes a factor of p1 to Z=_s, so we 
may henceforth assume / ~ = ~  and [~1 =n.  Now for any 2 ~--n, the coef- 
ficient ofp~. in Z=_s is the number of w e ~  that contain S as a subgraph 
and have type ( ~ ;  2). Since there are a total of n!/ml(~)! m2(~)! ..- graphs 
of type (~; C) ,  this coefficient can also be expressed as 

ml(e)! m2(7)!-" ~ (3.3) 
n! I~, 

where IX~ denotes the number of inclusions $1 c $2 of digraphs in which $1 
and Sz are of type (e; ~Z~) and ( ~ ;  2), respectively. 

Now by Proposition 1.1 of [Ste2] (a description of the virtual character 
~b ~ whose characteristic ch(~b ~) is the monomial symmetric function m~), we 
have 

1 
( -1)n-e(~)m~=~. .  ~ sgn(w)I~(w)pp(w), 

where Is(w) denotes the number of subgraphs of type (~; ~ )  contained in 
the graph of w. By applying the automorphism o~, we obtain 

(--1)n-~(~° f~,=-~w~ l~,(w) pp(w ~, 

so the coefficient of p~ in f~ is 

( - 1 )  n - ~  
n! I~. 

The claimed identity now follows upon comparison with (3.3). | 
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3.2. THEOREM. For any B~_ [HI 2, we have 

Z[-B] = ~ (-1)l~l ml(~)! m2(c0! ...r~,~(B)f~p~, (3.4) 
~,~ 

where r~,~(B) denotes the number of subgraphs of type (c~;fl) in the 
complement B. 

Proof By the Principle of Inclusion-Exclusion, we have 

ZEB]= ~ (--1)lsIZ~s, 
s_=B 

summed over all non-attacking rook placements on B. Apply Lemma 3.1, 
using the fact that IS[ = ]el + [fll-#(c~) for S of type (e;/3). | 

4. THE CASE 0 = (N) 

0 We now return to consideration of the symmetric functions E,/~. 
Note that the pattern of zeroes in the matrix H~/v (i.e., the set of posi- 

tions (i, j )  where # i - v j  + j - i <  0) will in general be the Young diagram of 
some partition ~=~(/~/v)___6 in the southwest corner of the matrix. 
Conversely, every Young diagram that fits below the main diagonal of an 
n x n matrix arises as the pattern of zeroes for some H~/v. For example, if 
#/v = (3, 3, 3, 2, 2)/(2, 1, 0, 0, 0), then 

l 
hl h3 hs h6 h 7 1  
1 h 2 h 4 h s h 6 

H,/v= 0 hi h3 h4 hs , 

0 0 hi h2 h3 

0 0 1 hi h2 

and so the pattern of zeroes is the Young diagram of a = (2, 2, 1). 
Let B,  c_ I n ]  2 denote the board obtained by removing the diagram of 

from the southwest corner of [HI2; i.e., 

B , =  {(i, j ) 6  En] 2 : j>6n_i+l}.  

Thus, B. is a Young diagram of shape a, and if a = a(l~/v) then B,  is the 
set of positions in H,/v with nonzero entries. Under these circumstances, we 
have I~ + 6 - w(v + g)) >~ 0 if and only if w is B,-compatible. Therefore, since 
K(N),~= 1 for all compositions c~ of N, we may deduce the following 
from (1.5): 
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4.1. PROPOSITION. [f  O = (N) and ~ = a(l~/V), then E°/~ = Z[B~]. 

Thus, in the special case 0 = (N), Conjecture 1.1 amounts to the assertion 
that for every a co_ 6, Z[B~] is a nonnegative linear combination of h='s. 
This section is devoted to proving this fact whenever a is small, by which 
we mean cq + E(a) ~< n. 

In order to use Theorem 3.2 in this investigation of Z[B~], we need to 
know the h= expansion of each term in (3.4). However, if a is small, then 
the graph of /~  will have no directed paths of length two or more. 
Therefore, the graph of any placement of non-attacking rooks on B~ will 
be of type (2kl"-'~k; ~ )  for some k<~n/2. 

+ [ n - k - j - l ] ] h  n jhj. 4.2. LEMMA. f2q.-2k=Y~=O(--1)k--J[(n~kTJ ) , k--j 1 ~" -- 

Proof Let a = (r n-r) (an r × ( n - r )  rectangle), so that w is B,-com- 
patible if and only if w belongs to the Young subgroup 5¢~ × 5~_ r. Clearly, 
Z[B,~]=r! (n-r ) !hrh , ,_r  (cf.(3.1)). On the other hand, we may use 
Theorem 3.2 to compute the cycle indicator of B~. Since there are 
k!('~)(n~ r) ways to place k non-attacking rooks on B~ (and the graph of 
each such placement is of type (2kl ~ 2k; ~ ) ) ,  we obtain 

( r ) ( n - r )  
r!(n - r)! hrhn_ r = (k!)  2 (n -- 2k)! f2gl.-2k, 

~=o k k 

or equivalently, 

r (r l - -2k~f2kl , ,_2k"  h._rh.= \ r - k ~  
k=O 

Thus we have a triangular system of equations that uniquely determines 
the h=-expansion of each forgotten symmetric function fgq. 2k. To complete 
the proof, it therefore suffices to substitute the claimed formula in the right 
side of the above expression and collect coefficients. This leaves us to verify 

(.-2qF(.- 
k=j - - j - - 1  " 

for j <<. r <~ n/2. This is equivalent to 

( - 1 ) k ( n - 2 k ' ~ [ ( n - k )  ( n - k -  1 ) 1 = 3 r  o 
e=o \ r - k J L \  k J +  k - 1  ' 

(4.1) 

for 0 <<. r <<. n/2, via the change of variables k ~ k + j, r --+ r + j, n --+ n + 2j. If 
we define 

( n -  2k'](n k )  

k=O 
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then the left side of (4.1) (for r > 0) can be identified as gl(n) - g,- 1(n - 2). 
Now 

gr(n)=C(-1) k k(;)(n;k)=(-lYg;)(n:rk-:r) 
=(-I)“-’ ,--‘, =I 

i > 

by a Vandermonde convolution, and so (4.1) follows. 1 

Let rk(~) denote the number of ways to place k non-attacking rooks o,n 
B,. The following result shows that Z[B,] is indeed a nonnegative linear 
combination of h,‘s whenever g is small. 

4.3. THEOREM. Assume CJ is small, and let m = min(e(o), CJ~). We have 

Z[B,] = c j!(n - 2j) R,(o) h,-,h,+ m!(n - 2m)! r,(a) h+,h,, 
jim 

where R,(o) denotes the number of ways to place n - j - 1 non-attacking 
rooks on [n-j- 11’ so that exactly j rooks occupy positions belonging to 
the Young diagram of shape CT in the southwest corner of [n-j- 11”. 

Proof. If c is small, then as we remarked earlier, the graph of any 
placement of non-attacking rooks on B, will be of type (2kl”P2k; 125) for 
some k <m, and so Theorem 3.2 implies 

Z[B,] = f k!(n - 2k)! rk(c) f2klnm2k. 
k=O 

If we apply Lemma 4.2, using the fact that 

except when j = k = m, we obtain 

Z[B,] = m! (n - 2m)! r,(a) h,-,h, 

+ c j!(n-2j)h llpJh, c (-l)“-j (n-k-j-l)! rk(o). 
jccm k2.i 

Therefore, to complete the proof, we need only verify that 

R,(o)= c (-l)“-’ T (n-k-j-l)!r,(o) 
k>J 0 
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for j < m. However, this is a straightforward application of the Principle of 
Inclusion-Exclusion (cf. (3.2)). We should point out that since a is small, 
we have max(f  (a), a l ) ~ n - m ,  so the Young diagram of a will indeed fit 
inside a square board of order n -  j -  1 whenever j < m. | 

Thus Conjecture 1.1 is valid when 0 = (N) and a(#/v) is small. 

4.4. Remark. It is interesting to note that in the above proof, no use is 
made of the fact that the cells of B~ form a Young diagram. Indeed, the 
proof applies equally well to any board B obtained by deleting from In] 2 
any subset of the southwestern m x ( n - m )  rectangle. These boards are 
distinguished by the fact that the graph of B is bipartite. By Theorem 3.2, 
it follows that for such B, we have 

Z[ B ] = ~ k! (n - 2k)! rk(/~) f 2kl,- 2k, 
k 

where in this case (cf. (3.2)), rk(B) equals the number of k-edge matchings 
in the graph of B. In this context, the fact that Z[B] has a nonnegative 
ha-expansion could be equivalently viewed as the assertion that matching 
polynomials of bipartite graphs satisfy a certain system of linear 
inequalities. Although there is a considerable amount known about 
matching polynomials (e.g., see EGG], EGo]), these inequalities seem to 
be new. 

5. SOME CONJECTURES 

In this section, we use Z~ as an abbreviation for the cycle-indicator 
Z[B~], or equivalently (Prop. 4.1), for E ° in the case 0=(N) ,  where ,u/v 
G = ~(~tv) .  

The following conjecture, if true, would reduce Conjecture 1.1 to the case 
0 = (N). 

5.1. Conjecture. E°/v is a nonnegative integer linear combination of 
Z j s .  

We remark that the integer constraint is necessary for this conjecture to 
be interesting. Indeed, for any ~ ~--n, there exist boards B~ with the 
property that w is Bo-compatible if and only if w belongs to the Young 
subgroup 5e~. For such ~r, one has 

Z~ = cq! ...c~t! h~, 

and so Conjecture 1.1 would trivially imply that any E°/v is a nonnegative 
rational linear combination of Z~'s. 
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5.2. EXAMPLE. For n = 2, there are two partitions cr such that a _  6 = 
(1, 0); namely, ~ and (1). For these partitions, we have Z ~  = p~ + P2 and 
Z(~ I = p~. It follows that F;/~(x, y) has the decomposition (cf. (1.1), (1.2)) 

F,/~(x, y ) =  p2(y) h,,_~t(x) h~,2_v2(x) + P2(Y) h~,,-~2+ ~(x) h~2_~ ~ ~(x) 

= Z(II(Y) s~/~(x) + Z ~ ( y )  h,~_ ~2+ l(x) h,2_ ~_ l(X). 

The coefficient of So(X) in the above expression can be easily shown to 
be a nonnegative integer combination of the Z~'s via (1.4) and the 
Littlewood-Richardson rule [M, 1.9]. 

5.3. EXAMPLE. For n = 3, there are five partitions a such that a ~ 6 = 
(2, 1, 0); the corresponding cycle indicators Z~ are 

Z ~ = p ~ + 3 p 2 p ~ + 2 P ~ ,  Z(2)=Z(~,~)=P~+P2P~ 

Z(~) = p~ + 2p2p~ + P3, Z(2,1) = P~. 

In this case, judicious applications of (1.1) can be used to show that 

Fn/v(x, y) = Z(2,1)(Y) su/v(x) + Z(2)(Y)[hm-~3s(~,m)/(~,,v2)- su/v'1(x) 

-~- Z ( 1 , 1 ) ( Y )  [-h/z I - vls(bt2,#3)/(v2,v3) - s # / v ' 1 ( x )  

+ Z(I)(y)[h~3- vl- 2s(~1 + 1,m+ 1)/(~a,,,3) 

+ h,l-~3+ 2s(~2,~3)/(~ + 1,~2+ 1)](x) 

+ Zr~(y) h,, _ ~3 + =(x) h~2_ ~2(x) hu3_ Vl __ 2 ( X ) .  

Again, the Littlewood-Richardson rule can be used to verify that for each 
0, the coefficient of So(X) in the above decomposition is a nonnegative 
integer combination of Z~'s. 

Recall that the Kostka number Ko,~ can be interpreted as the number of 
tableaux (also known as reverse column-strict plane partitions) of shape 0 
and content c~ [M, (6.4)-1, [Stal,  (27),1; i.e., the number of integer arrays of 
shape 0 in which: (a) the rows are weakly increasing, (b) the columns are 
strictly increasing, and (c) the number i occurs e~ times. For instance, 

1 1 1 2 2 

2 2 3 5 

3 5 

is a tableau of shape (5, 4, 2) and content (3, 4, 2, 0, 2). 
Note that (1.5) shows that the coefficient ofp~ in E°,/~ is Ko.,-v,  whereas 

the coefficient of p~' in Z~ is always 1. Thus, whenever E°/~, is expressed as 
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a linear combination of Z j s ,  the sum of the coefficients must be Ko,,_v. 
We have a (not completely precise) conjecture that there should exist a 
"natural" decomposition of E°/~ proving Conjecture 5.1, in which the terms 
of the decomposition are indexed by the tableaux of shape 0 with content 
# - v .  

To describe this conjecture, suppose we have a pair of partitions a, 
such that a _ 6(r) and z _~ 6(n - r), where 6(r) = (r - 1, r - 2 ..... 0) denotes 
the rth staircase. Let o-(9 v_~3(n) denote the partition whose diagram is 
obtained by adjoining o- and ~ to the sides of an r x ( n -  r) rectangle. In 
these terms w ~  will be Boer-compatible if and only if w=w~w2~  
~ x  5P~_~, where w~ (resp., w2) is compatible with B~ (resp., B~). We 
therefore have 

where the superscripts r and n - r  remind us that the cycle indicators are 
taken with respect to boards of order r and n - r, respectively. We will refer 
to o-Or  as a factorization of type (r, n -  r). More generally, given any 
composition ~ = (q  .... , rt) of n, together with partitions a y~_ 6(ry), we will 
refer to o-~ • --" • o-! as a factorization of type a. 

5.4. Conjecture. If O ~ - N =  I~1- Ivl and a=o-(/~/v), then 

0 Eu/v = ~ Z~( T), 
T 

summed over all tableaux T of shape 0 and content # - v ,  where a(T)  is 
some partition satisfying o- _c o-(T)~ 6. Moreover, for each T there exists 
Some sort of "descent set" S = { j l  ..... j t } _ c [ n - 1 ]  satisfying (but not 
necessarily defined by) the following properties: (1) If every j +  1 lies in a 
lower row of T than every j, then j ~  S; (2) if no j +  1 lies in a lower row 
of T than any j', then j ¢ S; (3) a(T) has a factorization a°(T) ® .-. ® at(T) 
of type (Jl, J 2 - J l ,  ..., n - J l ) ,  for suitable partitions ai(T). 

This conjecture is imprecise on two counts: we do not know how to 
define the descent set S, and given S, we do not know how to define the 
component partitions ai(T). When #Iv is a border-strip, it is easy to see 
that the summands of (2.3) are in one-to-one correspondence with the 
tableaux of shape 0 and content # - v  (cf. Lemma 2.3). Furthermore, in 
view of-the fact that 

J(al) ""J(a0---ZG, where a = f ( a l -  1)® . . -  ® 6 ( a l -  1), 

one may verify that Theorem 2.4 does agree with the terms of our conjec- 
ture, provided that we define the descent set of a tableau T to consist of 
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those numbers j with the property that there exists some j in a higher row 
of T than some j + 1. 

Our final conjecture is based on the observation that for any partition 
a __ ~, the positions of In] 2 indexed by B~ can be used to define a partial 
order P~ of In] in which i >  j if and only if (i, j ) ~ / ~ .  

For any partition e of n, let us define c~(P) to be the number of ways 
to partition an n-element poset P into (unordered) chains of cardinality 
~1, c~2, ..., and let g~(P):---ml(e)! m2(~)! ""ca(P) denote the number of 
partitions of P into ordered chains of cardinality cq, e2, .... When B =  B~, 
the quantity m~(e)! m2(~)! ...r~.~(/7) appearing in Theorem3.2 can be 
identified as g~(P~). Thus by Proposition 4.1 and Theorem 3.2, the special 
case 0 = (N) of Conjecture 1.1 is equivalent to the assertion that 

is a nonnegative linear combination of the hx's. Since the automorphism 09 
maps f~ to ms and hx to the product of elementary symmetric functions ez 
[M, 1.2], this conjecture could also be expressed as the assertion that if 
P = P~, then 

g~(P).m~ (5.1) 

is a nonnegative linear combination of the e)'s. 
Since (5.1) is well-defined for any n-element poset P, it is natural to con- 

sider the problem of determining the class of posets that share with the P j s  
the (conjectured) property that the coefficient of ex in (5.1) is nonnegative 
for all partitions 2 of n. We will refer to this condition as the Poser-Chain 
(PC) property. 

Recall that a poser P is an induced subposet of Q if there is an order- 
preserving injection of P into Q whose inverse is also order-preserving. By 
a theorem of Dean and Keller [DK] ,  the posets P~ are characterized by 
the fact that they do not contain [3] + [1] or [ 2 ] +  [2] as induced 
subposets, where " + "  denotes disjoint union of posets, and by abuse of 
notation, [k]  denotes the k-element chain {1 < .. .  < k}. This suggests the 
possibility that the presence of [3] + [1] and/or [2] + [2] as an induced 
subposet destroys the Poset-Chain property. However, Remark 4.4 shows 
that any poset P that contains no three-element chain (a class which 
includes many examples containing induced copies of [2] + [2]) does 
satisfy the Poset-Chain property. Thus we are left with [3] + [1] as a 
possible culprit. 

We have used the computer algebra package Maple to classify all posets 
on ~<7 vertices according to whether or not they contain [3] + [1] as an 

582a/62/2-7 
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induced subposet, and whether or not they satisfy the Poset-Chain 
property. The following table lists the number in each category. 

Number of vertices 4 5 6 7 

PC true, no induced [3] + [1] 15 49 173 639 
PC false, no induced [3] + [1] 0 0 0 0 
PC true, induced [3] + [1] 0 5 39 468 
PC false, induced [3] + [1] 1 9 106 938 

5.5. Conjecture. Any partial order that does not contain I-3] + [1] as 
an induced subposet satisfies the Poset-Chain property. 

5.6. Remark. For any B _  [n] 2, let gz(B) denote the coefficient ofh)~ in 
Z[B]. There is a standard inner product <., -> of symmetric functions 
[M, 1.4] for which the hz's and m/ s  are dual bases. We therefore have 
g~(B) = ( Z [ B ] ,  m~ >. Since h. = Z~ ~ n m~ and (p;~, h. ) = 1 for all 2 ~-- n, 
it follows that 

, (B)  = < z [ e ] ,  h.> = y~ g~(a), 

where, as in Section 3, t/(B) denotes the number of B-compatible permuta- 
tions. This suggests that for B = B ~  (or any board arising from a poset 
satisfying the Poset-Chain property), it should be possible to assign a 
partition 2 to each B-compatible permutation so that gx(B) counts the 
number of these assigned to 2. 
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