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Abstract   

A simple non-linear stress resultant  four node shell finite 

element is presented. The underlying shell theory is developed 

from the three dimensional continuum theory via standard 

assumptions on the displacement field. A model for thin shells 

is obtained  by approximating terms describing  the shell 

geometry. In this work the rotation  of the shell director  is 

parameterized by the two Euler angles, although other 

approaches can be easily accommodated. A procedure is 

provided to extend  the presented approach  by including  the 

through-thickness variable material  properties.  These may 

include a general non-linear elastic material  with varied degree 

of orthotropy, which is typical for fibre reinforced composites. 

Thus a simple and efficient model suitable for analysis of 

multilayered composite  shells is attained.  Shell kinematics  is 

consistently linearized,  leading to the Newton-Raphson 

numerical  procedure, which preserves quadratic rate of 

asymptotic convergence.  A range of linear and non-linear  tests 

is provided  and compared with available solutions  to illustrate 

the approach. 

 

 

 

Introduction

 

Lower order elements  present  the majority of finite elements 

that are currently  employed  in engineering  practice. The four 

node shell elements  based on isoparametric interpolation 

scheme have been commonly used for the finite element 

implementation of different  shell theories of the Mindlin- 

Reissner type. In the recent works of Parisch (1991), Sansour 

and Bufier (1992), Sima et al. (1989a, b, 1990) and Wriggers and 

Gruttmann (1993) the four node elements  take part in 

non-linear formulations capable to describe large displacements 

and  large rotations of shells. 

 

These finite element formulations arise from the shell theories 

based on the direct  approach (Sima and Fox 1989a) or, 

alternatively,  they may be derived from the three dimensional  

continuum theory  by employing  either Green-Lagrange 

(Parisch 1991; Stander  et al. 1989) or Biot (Sansour and Bufier 

1992; Wriggers and Gruttmann 1993) strain measures. The 

strain  measures are typically restricted  to be small. 

 
 
 
 

 

 

A strong analogy of the formulations based on the 

degenerated continuum approach (e.g. Stander  et al.  1989) and 

those based on shell theories  can be noticed  (see Buchter and 

Ramm 1992), if a certain versions  of an explicit integration 

or a numerical  integration through  the shell thickness  are 

performed  in the former.  For instance,  Buchter and Ramm 

(1992) showed, that the numerical integration across the 

thickness in the degenerated continuum model leads to the 

strain  tensor, which is consistent with the so-called first 

approximation of a geometrically  non-linear shell theory for 

small strains  including  transverse shear  deformations (Ba9ar 

and Ding 1990, Naghdi 1972). 

 

The displacement  based formulations suffer from t h e  

so-called transverse shear locking, a phenomena which is closely 

connected  with the underlying assumptions typical for the shell 

theories of the Mindlin-Reissner type. It is therefore essential 

that the solutions  are based on mixed variational formulations. 

A current  'standard' to avoid transverse shear locking is 

the so-called ANS (Assumed  Natural Strain)  approach,  first 

suggested  by Dvorkin and Bathe (1984). Other interesting 

schemes, arising from mixed variational formulations, that 

improve  the membrane and/or bending  behaviour of the four 

node element (especially for a coarse meshes),  can be found  in 

the works of Simo et al. (l989b, 1990), Pian and Sumihara (1984) 

and recently Andelfinger and Ramm (1993). Andelfinger 

and Ramm (1993) use the so-called  EANS (Enhanced  Assumed 

Natural Strain) approach. Another  type of possible errors  arise 

from the type of discretisation. In that sense an attempt  to 

modify the four node elements  to be capable to describe curved 

geometries was made by Gebhardt  and Schweizerhof ( 1993). 

 

In many non-linear shell theories the description of the rigid 

motion of the shell normal is required. Large rotations  therefore 

take an important part in the computational models. Moreover, 

they are treated as a critical  part of the finite element 

implementation of the variational formulation. Large rotation 

formulations are mostly based either on an elementary rotations 

(Stander  et al. 1989, Wriggers and Gruttmann 1993) or on 

a rotational vector (Parisch  1991, Sansour  and Bufier 1992, 

Simo and Fox 1989a). The elementary rotation  is considered 

to be a rotation  around  a fixed axis. A sequence  of elementary 

rotations then may be used to describe  rotation  in a three- 

 






































