
On Implementing a Language for Specifying Active Database
Execution Models*

Shahram Ghandeharizadeh, ltichard Hull,+ Dean Jacobs
Jaime Castillo, Martha Escobar-Molano, Shih-Hui Lu, Junhui Luo, Chiu Tsang, Gang Zhou

Computer Science Department,
University of Southern California

Los Angeles, California 90089

Abstract

A key issue when incorporating rules

into database systems concerns under-
strnding alternative semantics of rule
application. The database progrsm-
ming language Heraclitus[Alg,C] is an

HI RMIIUS

extension of C that supports the rela-
tional algebra and novel constructs re-
lated to the specification of these se-

mantics. In particular. the language supports delta aa “first-
&se citizens” .- theue are values corresponding to database

updates, which may or may not be applied. Deltas are use-

ful in representing the effect of rule firings, and for repre-
senting virtual dntabaae states, as they arise in the specifi-
cation of several active database systems. Unlike previous
work on clilTerential files and hypothetical relations, Hera-
clitun supports operators for combining deltas, and also al-
ternative implementations that incorporate the impact of

deltas into conventional database operators (e.g., join). The
framework alAo appcsarw useful in connection with hypothet-
ical database acrens, vcrsiou control, specifying concurrency
protocols, and thr resolution of update conflicts. This pa-
per dencribea the design and preliminary implementation
of Heraclitus[Alg,C]. Two strategies for providing access to

d&au have been implemented, one hash-based and the other
sort-based. Initial evaluation of system performance demon-
strates the feasibility of the language.

*This work was supported in part by the NSF under grants
IRI-9110522, IHI-910705S,INT-8817874, NYI award IRI-9258362,
and tire USC FRIF under grant 22-1509-9440.

tThis author’s current address: Computer Science Depart-
ment, University of Colorado, Boulder, CO 80309.

Yrrmirrion to copy wiihout fee all or part of thir material is
granted provided that the copier are not made or distributed for
direct commercial advantage, the VLllB copyright notice and the
title oJ the publication and itr date appear, and notice ir given that
copying ir by petmirrion OJ the Very Large Data Bare Endow-
mrnt. l’o copy otherwire, or to republirh, require4 a Jee and/or
special permirsion from the Endowment.

Proceedings of tbe 19tb VLDB Conference
Dublin, Ireland 1993

1 Introduction

“Active” databases generally support the automatic
triggering of updates as a response to user-requested or
system-generated updates. Many active database sys-
tems, e.g., [CCCR+SO, Coh86, MD89, Han89, dMS88,
SIG89, SJGPSO, WF90, ZH90], use a paradigm of
rules to generate these automatic updates, in a man-
ner reminiscent, of expert systems. Active databases
have been shown useful for constraint maintenance
[Mor83, CW90, HJSla], incremental update of material-
ized views [CW91], query rewriting [SJGPSO], database
security [SJGPSO]; and hold the promise of providing
a new family of solutions to the view and derived data
update problem [CHM92] and issues in heterogeneous
databases [CWSZ]. Active database technology will also
play an important role in the development of “media-
tors” [Wie92] for supporting database interoperation.

As discussed in Section 2 (see also [HJSla, HW92,
Sto92]), each of the active database systems described
in the literature uses a different semantics or “execution

model” for rule application. The variety of alternatives
found in active database systems highlights the fact that
the “knowledge” represented in them stems from two
distinct components: the rule base and the execution
model [Abi88]. It appears that different execution

models will sometimes be appropriate even within a

single database, and that a fixed collection of choices
is unlikely to suffice. There is a need for high-
level constructs that permit database designers and

programmers to specify and implement system modules
using customized execution models.

The Heraclitus project [HJSlb, JH91, GHJ92] is
focused on the development of database programming
language constructs and techniques that can be used
to specify and implement alternative, interchangeable
execution models for active database systems. Our

current focus is to provide language constructs that
support (a) the use of multiple virtual states in rule
conditions and (b) a wide variety of semantics for
applying rules and combining their effects. We are

441

currently working with the pure relational model (no
duplicates or tuple-ids). Extensions to incorporate
tuple-ids and to generalize to the object-oriented data
model are a part of our future research direction.

The basic novelty in the Heraclitus framework is to
elevate deltas, i.e., values corresponding to database up-
dates, which may or may not be applied, to be “first-
class citizens” in database programming languages. Op-
erators are provided for explicitly constructing, access-
ing and combining deltas. Of particular importance is
the when operator that permits hypothetical expression
evaluation: expression E when 6 evaluates to the value
that E would have if the value of 6 were applied to the
current state. This allows deltas to be used to represent
virtual states, and also supports hypothetical database
access.

We have implemented Heraclitus[Alg,C], a database
programming language (DBPL) that extends C to incor-
porate the relational algebra and deltas and their opera-
tors. The implementation has two primary components,
a pre-processor and HERALD (HEraclitus Relational
ALgebra with Deltas), a library of functions supporting
relational and delta operators. Of particular interest
is the support of “hypothetical” relational operators,
which correspond to the traditional relational operators
(e.g., select, join) evaluated under a when. HERALD
was initially implemented [GHJ92] on the Wisconsin
Storage System (WiSS) [CDKK85], and has now been
ported to the Exodus system [CDRS86]. HERALD cur-
rently supports two strategies for incorporating the ef-
fect of deltas on the relational operators, one hash-based
and the other sort-based.

This paper describes the design and preliminary
implementation of Heraclitus[Alg,C]. Section 2 discusses

the conceptual underpinnings of deltas and their use
in specifying active database execution models and

other database applications. Section 3 introduces
Heraclitus[Alg,C], p resenting both algebraic operators
and language constructs. Section 4 describes tl1e current
implementation of the language, along with analysis of
the expected running times for the various algebraic
operators. Section 5 presents an overview of initial
benchmarking activities performed to experimentally

verify the analysis of Section 4. Brief conclusions are

offered in Section 6

2 Deltas, Virtual States, and Active
Database Execution Models

This section lays a conceptual framework for un-
derstanding much of the current research in active
databases. In particular, we show how access to both
deltas and virtual states are useful in the context of
active databases, and illustrate how the Heraclitus

paradigm can be used to provide tl1is access. SOIII~ of
this material also appears in [HJglb], and is included
here to make the current paper more self-contained. At
the end of the section we briefly sketch othar dntahaw

applications where this paradigm may be useful. XIICI
compare our deltas with related work on hypoth(*tic$
relations and differential files.

2.1 Active databases

A wide range of active database systems have been
proposed in the literature. The most crucial differencew
between their execution models stem from choices
concerning (a) how and when rules should be fired, (b)
the expressive capabilities of the rules, and (c) how
the effects of rule firiugs should bc combirlrd. With
regards to (a), three approaches have been proposed:
(i) transaction loundary rule firing, which occurs only at*
the end of the user transaction (e.g., Starburst, 1’1.1)1,1,
LOGRES, AP5); (ii) interlenued rule firing, where rule
application is it1terleaved with lhe atomic commnutls
of a user transaction (e.g., POS’lX;RES [SJ<;I’YO],
among others [IIan89, KDM88, MP90, MDBS]); and (iii)
concurrent rule firing (e.g., [MD89, BM91]), in which
rules niay spawn concurrent proce.sst% in a rccutsivc
fashion. The Iieraclitus paradigm can be used to specify
many of these design choices; in this subsection we focus

on transaction boundary rule firing, :md briefly discus9
interleaved rule firing.

Under transaction boundary rule firing, rule applica-
tion constructs a sequence of %irtual states”

s wig, sprop , s2, s3, . . . , SC”,,

of the database, where Sorig is the “original” state and

S p+Op is the result of applying to Sorig the set of us(lr-

proposed updates collected during the transaction. ‘I’hc:
subsequent virtual states result from a sequence of rule
firings according to the execution model. SC,,, denotes
the “current” virtual state that is being cousiderrd
by the execution model. Execution terminates cithcr
whrn the execution model reaches a fixpoint,, in which
ca9e the final virtual state replaces Sorig, or aborts
the transaction. Proininent systems following this
paradigm include the Starburst Rule System [WF90,

CW90], RDLl [dMS88], LOGRES [CCCR+QO] and
AP5 [Coh86, ZH90], and also expert systems such as
OPS5 [BFKM85]. (Other paradigms shall bc considered
below .)

As a simple example, consider a relational database
for inventory control in manufacturing. Figure 1
shows two relations used by a hypothetical bicycle

manufacturer. The Suppliers relation t1olds suppliers
and the parts they supply, and the Order8 rrlntion
st1ows currently unfilled orders for parts. Ollicr

relations, not, shown here, rniglit hold inforn1atiou

442

Part Quantity Supplier Expected
frrrtnc 1 400 1 Trek 1 a/31/93
brakes 1 150 I Canopy I 9/1/93

Order8

Figure 1: Relations for Inventory Control Example

about the parts usage of different bicycle models, and
the expected demand for these parts based on the
production schedule of the company.

Consider now the referential integrity constraint
stating that if there is an order for part p from supplier
8, then the pair (s,p) should be in relation Suppliers.
A possible rule for enforcing this might be written as

II.1 : if Orderr(parl, qly, mpp, erp) and
not Supplierr(supp, part)

then -Ordrrs(parl, qiy, supp, ezp)

ln the pidgen syntax used for this rule we follow the
style of many active database systems. In particular,
(a) the “if” part, or con&lion, is a boolean expression
.- the rule can “fire” only if this expression evaluates
to true; (b) the “then” part, or &ion is an imperative
command that executes when the rule fires; and (c) it
is implicit which virtual state(s) are being considered
by the conditions and actions. In typical active
dntabsse systems, if at some point in the application
of rules the state Scurr satisfies the condition of Rl for
some assignment of variables, then the action may be
fired, depending on the presence of other rules whose
condition is true. We say thst rule Rl uses a “one-state”
logic, because the rule condition examines a single state,
namely the “current” one. RDLl, LOGRES, and moet
expert systems (e.g., OPS5 [BFKMSS]) support only a
one-state logic.

In the context of databam, a problem with rule Rl is
that the appropriate response to 8 constraint violation
may depend on how the violation arose. Rule R2 below
Metes dl violating orders if a pair is deleted from the
Suppliers relation, but if the violation is the result of
an update to Ordore, then II.3 undoes that individual
update and transmits a warning.

R2 : if -Suppliorr(uupp,pcrrl)
then -Ordrrr(p&, a, rupp, *)

R3 : if +Orders(part, pty, supp, exp) and
not Supplisrs(supp, part)

then -Ordarr(part, pty, supp, ezp) and
rsnd-warning(pati, qty, supp, ezp)

The signed atoms in the conditions of these rules refer
to proposed updates, rather than any database state.
The action of R2 uses “wildcards” (denoted ‘*‘); these
match any value.

In essence, the conditions of rules R2 and R3 make
explicit reference to the delta between two virtual states.
Of course, some design choice needs to be made about
which pair of virtual states should be considered. The
AP5 system focuses on the delta between Soti* and
S lwrr :

s . Sprop, sz, s-3, * * *, sow oyg , ,

Assuming this semantics for a moment, note that a
one-state execution model cannot simulate the effect of
rules R2 and R8 without using “scratch paper relations”
that essentially duplicate the contents of Swig. Another
natural semantics for rule conditions supporting explicit
access to a delta would be to use the delta between
S prop and Sam. The Starburst Rule System is even
more intricate: it uses the delta between virtual states

8 ad seutr~ where i is determined by the rule under
consideration and the history of previous firings of that
rule.

Consider finally the rule

R4 : if the firing of rules results in
a 20% drop in orders

then invmtoryaarning()

Here we need to consider the change in orders between
S prop ad Sam:

s orig,
El

Sprop 9 4 I ss, * . . I sewr
cl

While this could be expressed using explicit access to
a delta, it is much easier to express it in terms of the
virtual states, i.e., to write:

R4’ : if
count(Orderr) “in Seurr”

count(Orderr) “in Sprop”
< .8

then inventorysarning0

In current DBPL’s there is no mechanism to write
expressions such as the condition of R4’, because
they do not provide explicit access to virtual states.
The Heraclitus paradigm provides this by using deltas
and the special rhen operator. As mentioned in the
introduction, the expression E uhon 6 evaluates an

443

arbitrary side-effect free expression E in the state that
would arise if the value of 6 wen applied to the existing
database state. Evaluation of such an expression does
not change the existing database state. One way
to express rule R4’ in the Heraclitus paradigm is to
construct deltas corresponding to the virtual states
s P+oP and Scurt as follows:

- A,,,, -

l ALprop ’
Rule R4’ can be expressed within the Heraclitus

paradigm as:

R4” : if
count(Orders) when A,,,,

count(0rders) when Apro,
< .8

then invantoryuarning()

We now describe how the Heraclitus paradigm can
specify a large family of execution models that use
transaction boundary rule firing. During execution, the
database state will remain untouched, and deltas will
be constructed to represent the virtual states needed
for evaluating rule conditions. (An alternative would
be to update the database state with each rule firing,
and maintain “negative” deltas that simulate previous
virtual states in the sequence.) Rules are represented
as functions that have as input zero or more deltas
(corresponding either to virtual states or deltas between
them), and produce as output a delta corresponding to
the effect of the rule firing. The rules might also invoke
additional procedures such as inventorysarning(1.
Although not done here, triggers (which are logically
a part of the condition, but whose value can typically
be determined in a very efficient manner) can also
be incorporated into the framework. Rules can be
arranged to provide either “tuple-at-a-time” or “set-
at-a-time” operation [WF90]. Algebraic operators are
provided in Heraclitus for manipulating deltas. so
that deltas corresponding to new virtual stat- WII

be constructed from previous deltas and rule outputs.
Using this approach, the execution models of AP5,
RDLl, LOGRES and the Starburst Rule Syste~~r cm

be specified within Heraclitus[Alg,C] (see also [HJ91b]).
Variations on this theme can be developed. As a
simple example, a rule-base can be “stratified”, and

the execution model can fire each layer to a fixpoint
before moving to the next layer. More complex firing
patterns subsuming the rule algebra of [IN881 are easily
expressed.

Returning now to the full range of design choices
for active database execution models, the Heraclitus

paradigm can also specify interleaved rule firing. la
this case, the user transaction and the rule actions are
broken into a sequence of atomic updates, and rules
are invoked immediately upon a condition becoming
true. There is the possibility of intricate rt!curaivc
rule tiring, and it is hard to aasocia~r an intuitivr
meaning to the sequence of virtual staten constructccl.
As a result, the rule conditions in these systems
typically give explicit access to the “old” and “nc*w”
valuca of certain tuples, but not to multiple virtual
states. Heraclitus also permits “hybrid” execution
models, which combine aspects of hoth interleaved
and transaction boundary rule firing. At I)~WIIC, the
primary focus of the Haraclitus project is on Heqnentinl
processing; incorporation of concurrt?nt rnlc firing is a
subject, of future research.

Heraclitus gives broad latitude with regards to dimcn-
sions (b) and (c) mentioned above. For this reason, th(*
Heraclitus paradigm, and Ileraclitux[Alg,C] in particu-
lar, can serve in a flexible platform for Hpccifying a witlc
variety of execution models for aclivc dalahBRcg. WC
expect this to be useful both in developing customiec’d
execution models, and in comparing them, both cxp(‘r-
imentally and analytically.

2.2 0 thor applications

We now briefly outline a few other applications of
the Heraclitns paradigm. We feel that the Iierncli-
tus paradigm will be useful in inrplcmenting and un..
derstanding a variety of database issue#, including (I)
hypothetical database access, (2) version control, (3)
concurrency protocols, and (4) update conflict resole-
tion. With regards to (l), it is possible within Heracli-
tus to specify deltarr that have meanings such m “Add
2 weeks to the Exprctod value for all ordnrs with qutw

tity > 500” or “Cancel all orders with Expected is lhc
month of October”, Queries are now c,asiIy spccificcl
against hypothetical states using arbitrary combina-
tions of these deltas and the when operator (see Sub-
section 3.3). With regards to (2), alternative versions
might he represented using deltas. Hecause Heraclitus
provides explicit access to deltas, it can provide both
a flexible platform for developing customized version
control frameworks, and for experimentally comparing
them. Turning to (3), deltas appear eupecially useful in
connection with long transactions. For example, prolo-
cols could be developed in which certain short transar-
tions can be executed during the running of a long trs.ns-
action, and a delta recording the impact of the short
transaction could be stored and applied after tht: loug
transaction finishes. This kind of “soft commit” could
increase concurrent access to databases. Finally, (4) ad-
dresses situations in which multiple conflicting npdatcs
are prescnt,ed to a database system. This could arise, for

444

C~Xil.llllll~~, ill III;iIIagiIIg ii fc’rc:Ht fire, whc*rc: difrerent ob-
s(~rvcrs givcb colillicl.iug it~fortnalion idm~t currciit status

of 1.l~ lircx. Out- iblblm)acIi to fiuding a coberent update is

I.(, c*xtc~ntl a.ctiv<x tlatabasc: techniques, so that rule condi-
I ions can c*xplicitly ilc(:ess Inultiple deltas corresponding
to the dilfercut proposed updates.

‘L’hin s&ion concludes with a brief comparisou of the
Ileraclitus paradigm with related techniques.

IXfIi~rcutial files [SL7G] arc a low-level implementa-

tion lcxchuique lliirt support efficient representation of
lllultiple versions of a tlata.bme. IJnlike differential files,

doltas in the Ilcraclitus framework are manipulated di-
rectly by constructs in the user-level programming lan-
guage. Furthermore, we support a family of operators
for clxplicitly constructing and combining deltas, in ad-
dition to those. for explicitly and hypothetically access-
iiig tlicrn.

A vcrsiou ol’ hypothct~ical rclhms is introduced iu

[WSKI]. While 141~ work there &scribes carefully
criiflcxl iiliI)leliieril,ation strategies for sucli relations, it
CNIIIIO~ c:a.rily be extended to provide the full generality
of delta usage supported in the Heraclitus framework.

It 1~~ been suggested that a reasonable approach to
support the basic functionality of the when operator
would br to augiucut existing concurrency control mech-
rruianls, using the following steps: (a) evaluate E when 6

by applying 6 it to the database (but don’t commit),
(b) eva1uat.e E in the context of the new database, and
(c) rollback the transaction in order to undo 6. While
this rollback techirique will be useful in some contexts,
it in just one of several feasible implementation stratc-
gies that warrant investigation. In the cake of colnplex
alg&raic expressions involving several not necessarily
~~cstrtl deltas, it may be more efficient to incorporate op-
titllizatiou of when into the conventional optimization of

tlic other algebraic operators, rather than relegating it
to thts orthogonal rollback mechanism. Also, 1.11e use of
rc,Ilbacks to support hypothetical databasr access may

<alIsC uuacceptnhlt~ delays in the concurrency system,
corllplicntc the transaction protocols, aud degrade the
I)&)riiiaiicc* 01’ 11~: system.

3 Heraclitus[Alg,C]

This section dcscribcs the language Heraclitus[Alg,C]

front a us(bc’s pcmpectivc. The discussion begins with an
abstract persprctivc! on deltas, then presents a specific
rc*aIixatiou for the relational model of deltas and their
;rlg:c:l)rai~ operators, and finally describes how this is
r111bcddc4 iuto the C language.

3.1 The abstract pcrspoctivr:

‘Mrc foundation of the lleraclitus paradigm is the> notion

of delta values, sometimes called simply deltas; these
are functions that map database states to database
states. Intuitively, a delta can be thought of as a
“delayed update”, i.e., a command that can be used
t,o update a given database state, but is not necessarily
applied. Three operations are fundamental to deltas:
applying them to the current database state to obtain
a new one; composition, and when. The when operator
provides hypothetical expression evaluation: the value
of E when 6 in state DB is the value of expression E

evaluated in the state resulting from the application of
the value of delta expression 6 on DB.

The notion of delta and these basic operators provide
a powerful paradigm for supporting a wide variety
of database applications, across a wide spectrum of
database models. In the first phase of the Heraclitus
prqject we are focusing on the development of a
comprehensive realization of this paradigm and its
application for the pure relational model; we plan to
extend the paradigm to an object-oriented database
model in the neat future.

Several factors affect the design of a specific realiza-
tion of the Heraclitus paradigm. Obviously, we expect
that all deltas considered are computable. Furthermore,
the family of deltas that can created should be closed
under composition. Even in this case, there is a trade-
off between the expressive power of the family of deltas
incorporated, and the efficiency with which they can be
stored, manipulated, and accessed. In Heraclitus[Alg,C]
we provide a natural tabular representation for a re-
stricted family of deltas that permits efficient manipu-
lation. Importantly, the family of deltas supported is
sufficient to specify a wide variety of active database
execution models.

3.2 The algebraic perspective

‘ro understand the family of deltas supported in Heracli-
tus[Alg,C], we first describe the tabular representation
used for t,hem, and the function that, each represents.

A signed atom is an expression of the form -I- < reln-
nunie > < tuple > or - < reln-name > < tuple >; intu-

itively these correspond to “insertions” and “deletions”,
respectively. In the context of Heraclitus[Alg,C], a delta,
is represented as a finite set of signed atoms (referring
to relations in the current database schema) which does
not include both positive and negative versions of the

same atom. An example is:

+Suppliers(Shimano, brakes),

A1 =
+Suppliers(Trek, frame),

-Orders(brakes, 150, Campy, 9/l/93),
+ Orders(brakes, 150, Shimano, 9/S/93) I

445

Supplier Part

Trek frame

Campy brakes

C=nPY pedals
Shimano brakes

Suppliers

Part Quantity Supplier Expected
frame 1 400 1 Trek 1 8131193
brakes 1 150 I Shimano 1 g/6/93

Orders

Figure 2: Result of applying A1

We also include a special delta value fail, that corre-
sponds to inconsistency.

For non-fail delta A, we set

A+ = (A~+AEA}
A- = {AI-AEA)

The consistency requirement on deltas states that Ah+ 17
A- = 0. A represents the function which maps
a database state ’ DB to (DB u A+) - A-,
which, due to the consistency requirement, is equal to
(DB - A-+) U A+. Speaking informally, applying A
has the affect of adding tuples of A preceded by a ‘+‘,
and deletes tuples preceded by a ‘-‘.

The result of applying A1 to the instance of Figure 1
is shown in Figure 2. Because we are working with the
pure relational model, the signed tuple +Suppliers(Z’rek,
frame) can be viewed as a “no-op” in this context; it has
no impact when apply is used on the instance of Figure
1. Deletes are “no-ops” if the associated tuple is not
present in the underlying instance. A mechanism to
express “modifies” is also incorporated; see Subsection
3.3

We call the composition operator for these deltas
smash, denoted ‘!‘. The smash of two delta values is
basically their union, with conflicts resolved in favor of
the second argument. For example, given

+Suppliers(Cat Paw, light),

A2 =
-Suppliers(Campy, pedals),

- Orders(brakes, 150, Shimano, g/6/99),

+ Orders(brakes, 500, Shimano, 9/2U/93) I

‘In this context, we view the database state to be a set of

atoms, e.g., { Srpplierr(Trek, frame), Srpplierw(Campy, brakea),
. . .) Orders(frame, 400, Trek, a/31/93), . . .}.

then Al!Az equals

I

+Supplisrs(Shimano, brakes),

+Suppliers(%k, frame),

+Suppliers(Cat Paw ligh,l),
-Suppliers(Campy, pedals),

- Orders(brakes, 150, Campy, 9/l/93),

-Ordrrs(brakes, 150F Shimano, g/6/99),
+ Orders(bmkea, 500, Shimano, 9/W/93)

Formally, for non-fail A1 and A? their srnitsh is tl4inctl

by
(AI ! A2)+ = A.fu(A;-A;)

(AI ! A2)- = A,u(A;-A,+)

It is easily verified that smash realizt3 function cornpo-
sition for the family of deltas.

Most active database systems 11s~ smiwh when ~OIII-
bining the impact of different, rule firings. In contri~~t,
AP5 uses a special “merge” operator. ‘l’hr m.er.qr, de
noted ‘E’, of two non-fail deltas AI and A:! is givc>n
by:

(AI 8~ AZ) =
1

A1 U AZ if this is consistent

fail otherwise

Thus, the merge of the two deltas of the previous
example is fail. The use of merge yields a 1norC
declarative flavor than smash; this has been c?xploitc:tl
in [ZH90] to obtain sufficient, conditions on rule-bwrs to
ensure consistent termination of rule firing sequenccw.

Several other binary operators for con&ring deltaa
can be defined, for example, weak-mergr, i.e., union
but deleting all conflicting pairs of aigncd atoms (cf.
[SdM88, CCCR+90]), or union giving priority to inscqrts
in the case of conflict. At present lleraclit,us[Alg,(!]
provides explicit, constructs for sn~~ash, merge and WV;&-

merge; other binary operators can be built up front tnorc

primitive Heraclitus[Alg,C’] constructs.

3.3 Embedding into C

We now describe how relational deltas and the alp .brai(
operators described above are embedded into t!. ‘l’hc
primary focus is on IIeraclitus[Alg,C] expressions for (a)
creating deltas, (b) combining deltas, and (c) accessing
deltas.

Heraclitus[Alg,C] supports the manipulation of both

persistent and transient relations n.nd dc!ltiti. Supposc~
that Suppliers and Orders are persistent relations ;IM
defined in the previous section. The following dccl~lrc~s

two variables for these, and a variable for transicnl.
relation Big:

relation Supp, Ord, Big;

SUPP = access,relation(“Suppliers”) ;
Ord = access,relation(“Orders”) ;

Big = empty,relation(Part : char [JOI,

pty:int,
Sup : char 1301 ,
Exp:int);

Signatures for variables Supp and Ord are taken from
the corresponding persistent relations. The signature
for transient relation variable Big must be specified
explicitly upon initialization. While coordinate names
may br associated with relation types as indicated here
at present the algebra is based on coordinate positions.
Ilowcver, most of our examples will use coordinate
IGLIII~S to simplify the exposition. (We assume that Ord
has I.he nitnltb field names &LI Big, and that Supp has
lic>ld ~mrnes Sup and Part.) In Subsection 3.4 we use
pure llernclitus[Alg,(!] syntax.

‘l’hc algebra used is essentially the standard relational
algcbrrt, except that system- and user-defined scalar
functions c:tn be 11~1 in projection target lists, and
in selection and join conditions (e.g.? project([Part,
qty*21, srlect({foo(Sup)>qty}, Ordera)) for user-
clcfiuc~l function f 00).

Deltas are supported in Heraclitus[Alg,(?] by the type
delta. Delta can be created using alo7nic commands,
NllCll ilS

delta Dl, D2;
Dl = [de1 Supp(“Campy” ,“pedala”)] ;
D2 = [ins Big(“brakes” ,500, ‘%himano”,

“9/20/93”)1 ;

A Tbrr cxccu tion D 1 has { -Supplitvs(Campy, pedals)}

m1(1 D2 has { flr*mpl4(6robes, 500, Shintono, 9/20/03)),

wllc*rc% Ictnpl4 is lhc relation identifier chosen during
progrRlu cbxc?crlt.ion for the transient relation Big. The:
hulk Opwittor ran bc used to const.ruct a “large” delta
froul data currc*ntly in the database. For example,

bulk(ins Big(Part, City, Sup, Exp),
select(Cqty > 3001, Ord))

cvaluatcx in the context of Figure 2 to

(+trtryI4(Jrunre, 400, Trek, 8/31/93) }

hlorca g~~nt~rally, the first argument to bulk must be,
what rullouutri to, an atomic delta expression containing

sc;rI;Ir cxprcnsnions built up from colurtr~~ names and
scalar VILIIICH. ‘I’hc:s~~ names are a5signed possible values

by the nccontl argument to bulk, which must be a
rrlation expression. Thus, a bulk operator can be

viewed a~ a composition of relational projection followed
by parallel creation of atomic delta expressions.

Ileraclitus[AIg,C] alsosupports atomic inodijy expres-
xhs, SIIC~I as [mod Ord(“brakes”, 150, “Campy”,
-9/i/93; “brakes”, 150, “Shimano”, “9/6/93”)1.

Evaluation of this expression depends on the current
state: if (brakes, 150, Campy, 9/l/93) is present in
Orders (as it is in Figure 1) this expression evaluates to

{

-Orders(brakes, 150, Campy, 9/l/93),
+Orders(brakes, 150, Shimano, 9/G/93) >

On the other hand, if (brakes, 150, Campy, 9/l/93)
is not present in Orders (as in Figure 2) then the
expression evaluates to the empty delta. We have
experimented with permitting explicit modifies inside
of delta values, on an equal footing with deletes and
inserts. However, as reported in [GHJ92], the semantics
for consistency and for smash become quite cumbersome
in that framework. This has lead us to the compromise
that they can be written explicitly, but their value
depends on the state. Regardless of this decision, the
presence of modify expressions in a program may give
the compiler opportunities for optimization (e.g., by
avoiding two traversals of an index).

Ileraclitus[Alg,C] also permits “wildcards” in delete
and modify commands. Wildcards, denoted by ‘*‘,
match any value. Evaluation of expressions with
wildcards again depends on the current database state.

Deltas may be combined using smash (!), merge (a),
and weak-merge explicitly. A fourth operator, compose,

is also supported; this is described shortly.
We now turn to th& four operators for accessing

deltas. The first is apply: the command apply 6;
first evaluates S and applies the resulting delta value to
the current state. Hypothetical expression evaluation is
supported by the when operator. As a simple example,

Big = select((qty > 3001, Ord) when
([mod Ord(“brakes”, 150, “Shimano” , “9/6/93” ;

“brakes”, 500, “Shimano” , “9/20/93”)] 8
[ins Ord(“light”,300,“Cat Pau”,“9/3/93”)1);

when evaluated in Figure 2 yields {(frame, 400, Trek,

8/31/93), (brakes, 500, Shimano, g/20/93)}. Impor-
tantly, side-effect free functions can be called within the
context of a when. Nesting of when’s is also permitted -
it is easily verified that

(E when 61) when 62 5 E when (62 ! (61 when 62) 1

This plays a key role in the implementation of delta

expressions consisting of nested ahen’s.
The final operators for accessing deltas are peeking

expressions; these permit the programmer to directly
inspect a delta. The expression peekins(R,6) evalu-

ates to the relation containing all tuples that are to be
inserted into R according to the value of 6, and the ex-
pression peekdel (R, 6) evaluates analogously. For ex-
ample, peekdel(Supp, [de1 (“Campy”, *)I) evaluates
in Figure 2 to {(Campy, brakes), (Campy,pedals)}.

447

The compose operator, denoted ‘II’, has the property
that the command apply (61 # 62) is equivalent to
(apply 61; apply 62 ;). Compose is defined in terms of
smash and when, by 61 # 62 = 61 ! (62 when 61). This
definition indicates the difference between smash and
compose. In 61 ! 62, both 61 and 62 are evaluated with
respect to the current state, then smashed, and then
applied to the current state. In 61 # 62, 62 is evaluated
in the state resulting from the application of 61 to the
current state. This is reminiscent of the “phantom”
problem in database transaction processing. It is

straightforward to verify that compose is associative.
Compose is especially useful in the context of hypo-

thetical database access. We present an example involv-
ing two functions. The first function builds a delta that
has the effect of canceling all October orders:

delta cancel,Oct,orders()
{return bulk(de1 Ord(Part,Qty,Sup,Exp);

select((in-Oct(Exp)),Ord);)

The second one builds a delta that delays the expected
date by two weeks of all orders with t&y > 500:

delta delay-big-orders0
(return bulk(mod Ord(Part,Qty,Sup,Exp;

part ,Qty,sup,
add-two-weeks(Exp)),

select((qty > SOO), Ord));)

Suppose that the function totalbrakes-on-order com-
putes the total number of brakes on order. Then the
expression

total-brakes-on-order0 when
cancel-Oct,orders() # delay-big-orders0

performs a hypothetical evaluation of total-brakesnn-
order, assuming that first the October orders where
canceled, and then the big orders were delayed. Note
the value resulting from the call to delaybig-orders
takes into account the updates proposed by the value of
cancelDctnrders. The following performs the hypo-
thetical evaluation, but with the application of the two
delta functions reversed.

total-brakes-on-order0 when
delay,big,orders() # cancel,Oct,orders()

In general these two expressions will evaluate to differ-
ent values.

3.4 Active database examples

This subsection provides a brief indication of how Her-
aclitus[Alg,C] can be used to specify, and thereby im-
plement, a variety of active database execution models.

To simplify, we omit consideration of “triggers”, md

assm-ne rules to have the form:

if < condition > then < actioTa >

Because Ileraclitus[Alg,C] provides explicit peeking,
triggers can easily he incorporated into the syntax.

Recall the? discussion of Subsection 2.1. Wr atlolbt
here the convention for this discussion that the original
database state remains unchanged during rule firing,
and that appropriate virtual states are reprc*sentcd
and manipulated using deltas. We now specify in
Heraclitus[Alg,C] the rules R2 and H.4 of Suhscction
2.1. It is sssumcd that deltas corresponding to Yrop
and S,,,, are maintained by the execution model. Both
rules will be functions with two arguments, although R2
uses only the delta corresponding to S,,,,.

In Heraclitus[Alg,CJ, coordinate positions are indi-
cated using the ‘a’ symbol. Typing information is also
included here to simplify the tssk of pro-processing illto
C, given the fact that relation signatures can change

over the lifetime of a progrnnl. ‘~‘IIus, in tlica rult:
rule-R2, @cl refers to the lirst, coordinate of the out-
put of the peekdel, which has type characlcr string.

delta rule,R2(prop,curr)
delta prop,curr;
(return bulk(de1 Ord(QcZ,*,Oci,+);

peekdel(Supp,curr)); 1

delta rule,M(prop,curr)
delta prop,curr;

c if ((count(Ord) when curr)
/ (count(Ord) when prop) < .8)

inventory_warningO;
return empty,delta; 3

Suppose now that a total of 25 rules arc written to
capture the purchasing policy for this application, all
using input variables corresponding to Spr,,p and S,,,,,.
They can be combined into an array of delta fnnrt.ions
aa follows:

delta (*policy C241) 0 ;
policyCO1 = rule&i;
policy til = rulrR2;

policy C241 = ruleR26;

The following function specifies mi execution model

that takes in a delta corresponding to a user-requested
update and applies the rules according to a spc-
cific algorithm. Here we use the copy (‘<<‘) oper-

ator; ‘curr << prop;’ copies the signed atoms asso-
ciated with delta variable prop into the delta vari-
able curr. The assignment temp = emptydelta ini-
tializes temp as a transient delta holding the empty

dr1t.a. The expression curr !<< temp; is equivalent to
curr << curr ! temp;, and analogously for &<<. The
boolean drquiv checks equality of deltas.

boolean apply-policy(prop)
delta prop

(
delta curr, prev, temp;

if (prop == fail) return (false);
curr << prop;
do C prev << curr;

tamp = empty-delta;
for (i=O; i<26; i++)

(tsmp b<< (*policyCil)(prop,curr) 3;
curr !<c tamp; 3

uhilo (curr I- fail b& !dequlv(prov,curr));
if (curr == fail)

< return (false) ; 3
else

(apply curr;
return (true); 3;

3

Here, the inner loop corresponds to a single, indepen-

dent (set-oriented) application of each rule in policy,
and combines the results using merge. Note that in the
inner loop, each rule is evaluated on prop and curr, and
the resulting deltas are accumulated in variable temp.
‘I’hc outer loop repeatedly performs the inner loop, us-
ing smash to fold the results of each iteration into the
value of curr already obtained. The outer loop is per-
formed until either a fixpoint is reached, or the inner
loop produces the delta fail (either because one of the
rules explicitly called for an abort by producing fail, or

because in some execution of the inner loop, two rules

produced conflicting deltas).

Suppose now that there is a second array keys of
rule functions capturing key constraints, and that the
above execution model is to be modified so that after
each execution of the inner loop the rules in keys

are to be fired until a fixpoint is reached. Suppose
further that these rules use only a single input delta,
corresponding to Scurr. Now let function applymles

have the following signature

delta apply-rules(curr, rule-base, size)
delta curr ;
delta (+rule,baroCI30;
int size;

arid suppose that it applies the rules in rulebase until
a fixpoint is reached. Then the desired modification to
apply-policy can be accomplished by adding

curr !<< apply,ruler(curr,keys,lS);

as the last line of the inner loop. This very briefly
indicates the kind of flexibility that Heraclitus[Alg,C]
provides in specifying active database execution models.

We arc currently implementing in Heraclitus[Alg,C]
the (kernel of the) execution models of the Starburst
Rule System, AP5, and POSTGRES systems. Specifi-
cations for Starburst and AP5 in Heraclitus pseudocode
were presented in [HJSlb].

4 The Implementation of
Heraclitus[Alg,C]

The implementation of Heraclitus[Alg,C] has two com-
ponents: HERALD, a library of relational and delta
operators built on top of Exodus, and a pm-processor
that maps Heraclitus[Alg,C] programs into C programs
with calls to HERALD. We discuss the pm-processor
first.

4.1 The pre-processor

The pm-processor for HeraclitusAlg,C] was implemented

by modifying the GNU C compiler. We mention here
only of several significant aspects of the preprocessor,

namely, the implementation of when%.

Consider the expression join(< cond > , R, S)

when D. This cannot be evaluated in the traditional
bottom-up manner, because the relationships of D with R
and S are lost if the join is performed. Instead, the when
must be “pushed” inwards, through the join operator,
to directly modify the relations. A naive approach to
this problem is to have the compiler “replace” the above
expression by join(< cond >, R when D, S when D).
before passing it to HERALD. A complication arises,
however, because Heraclitus[Alg,C] permits functions
that reference the database state to be called in the
context of a when, e.g., goo(u,v) when D. This means
that essentially any expression may have to be evaluated
hypothetically, but the relevant delta is known only at
runtime. In the current implementation we maintain
a “runtime when stack”. During the execution of a
program the top of the stack holds a delta that reflects
the full effect of all deltas relevant to the evaluation of
the expression currently under consideration. This has
the same impact as pushing when’s to the leaves of the
syntax tree.

As an aside, we note that in the context of database
programming languages such as Heraclitus[Alg,C], quer-
ies are generally accessible only at runtime due to
the presence of function calls. This highlights one
of the key differences between query processing in
conventional databases, where the full query tree is
available at compile time, and query processing in
database programming languages.

449

4.2 HERALD

A central aspect of the HERALD system is to combine
the evaluation of whm’s with evaluation of the algebraic
operators, in a manner reminiscent of the traditional re-
lational optimization of combining selects and projects
with joins. For example, HERALD provides a hypotliet-
ical join function join-when, that evaluates the expres-
sion join(< cond >, R when D, S when D). without
materializing R when D or S when D. HERALD cur-
rently supports two strategies for obtaining access to
deltas in connection with the hypothetical algebraic op-
erators and other delta operators, one based on hashing
and the other on a sort-merge paradigm.

Conceptually, HERALD represents a delta as a
collection of pairs (Ri, R,), specifying the proposed
inserts and deletes for each relation variable R in the

program. Here, Ri and R, are called sub-deltas, and
are stored as relations (actually, files) in Exodus. Hash-
based access is best suited for the situation where a

subdelta pair (Ri, R,) fits into main memory, and sort-
based access is better when a subdelta pair is bigger
than main memory.

In the remainder of the section we discuss hash-based
and sort-based access to deltas.

4.2.1 Hash-based access to deltas

When sub-deltas are small enough to lit in main
memory, HERALD maintains a hash index on 0x11 sub-
delta. The hash index key value to address this hash
table is composite and computed based on the values of
all fields (or attributes) of a record. As demonstrated

in Section 5, this implementation technique is effective
as long as a delta fits in main memory. We now describe
the low-level algorithms for two representative delta
operators, namely select-when and join-when.

Select-when. The input arguments of this operator
are: a relation R, a selection condition, a delta A, and
an output relation. Logically, this operator selects tu-
ples of R that satisfy the selection condition in the hy-
pothetical state proposed by A and stores the resulting
tuples in the output relation. Its implementation is as
follows:

1. open a scan on R

2. get the first tuple of R (say t)

3. while not EOF(R) do

a.

b.

C.

d.

evaluate the selection condition for t. If the tuple
does not qualify go to step e.
probe the hash index of Ri with t for a matching
tuple, if found go to step e.
probe the hash index of R, with t for a matching

tuple, if found go to step e.
insert 1 into the output relation.

e. get the next tupla t in R.

4. for each tuple t of Ri do
a. evaluate the selection condition for t. If I satisfies

this condition, then insert li into the output

relation.

Note that we probe the hwh index ouly if the? tuplc

satisfies the selection condition. This miniiilixcs the?
number of disk accesses because probing t,he IIMII in&,x
may result in a disk read operation.

We briefly analyze the expected l/O costs of this
implementation of selectBhen. Suppose that Iii, R,
are small enough to fit into main memory, and that
s% of the tuples in R satisfy t.he selection condition.
Assuming that s > 0, the algorithm will call for the
following J/OS:

(a) scan ll

(b) scan hash tables for Ri, RI.
(c) probe R- for s% of R
(d) ? probe R, for s% of R

(e) scan Ri

(f) write output relation

Tllus, the expected overhead in I/O is roughly c~~unl to
the number of pages of the hash tables for /CL nnd /li,
anti the nnmhrr of pages of Ri antI Ii, that arc rtaful

during parts (1~) and (c). (A n additional nmii of all of
Ri and R, is needed if hash tables are not maintaincbd.)
This was confirmed in our benchmarking experiments.

Join-when. In the current implcmcntation, the bi-
nary relational operators use sort-based implementa-

tions. In the case of hash-based delta access, a key

subroutine for all of them is eort-when. Suppose Ihat
R is ultsortcd. The conventional approach to sorting R
is to use heap-sort on short (c.g., 100 page) segments of
R, and then to perform n-way merges of these scgrncnts.
In aortrhen, the impact of a delta is incorporated into
the heap-sort. For example, on relation R, a~ portions
of R arc read in for heap-sorting, a hash-table for II,
is probed, and the matching tuples arc not plncFd itIt.
the heap. Also redundant tuples in fZi are marked, to
prevent later duplication. After H is completely rend,
the remainder of Ri is also processed hy the heap sort
to provide additional sorted segments. ‘l’hc>tr out* or

more merges is invoktbd to create a sorted file. III tht:
current implementation for join with hash-basetl delta
access, sort-when is used to sort R (azq impacttad by
@, R,) and S (as impacted by Si,Si), and then 8~
binary merge is used to create the join. Although uol.

currently ilnplemented, this could be optimized by COIII-

bining the final merge with the separate merges inside

the two calls to sort-when.

450

Wbc:u IIH~II~ hwh-ba4 delta accem for thrse oper-
aI.ors, thcrc is a.11 ilnportant interaction brtwern the
amount of buflcr space used by the heap vs. the hash
tables. To illustrate, suppose in the abstract that the
total available buflirr pool consists of 100 frames (and
so the heap-sort can perform loo-way merges). More-
over, assume that, R consists of 1000 pages, R- has
about 90 pages that will be probed during a pass of
R (termed “hitting” pages), and R+ is empty. In this
ctase a lo-page heap could be established, and R - R-
would be broken into roughly 100 (or fewer) sorted seg-
ments. Now a single loo-way merge will yield a sorted
version of apply(R, It-); total cost is 21111+ IR-I. Sup-
pose now that II haa 2000 pages, R- has about 80 “hit-
liug” pages, and R+ is empty. It is now optimal to
tlevotcb 20 pages to the heap-sort and the other 80 to
hash probing. (Fcwcr pages for the heap-sort results in
more merge passes; and fewer pages for the hash prob-
iug may result in thrashing.) Thus, providing optimal
support for h,ash-based delta access requires the ability

to dynamically partition the buffer pool belween these
two tasks. This capability is supported by Exodus, and
we plan to investigate these trade-offs in our future re-
search.

4.2.2 Sort-bawd access to deltas

A delta may be so large that it does not fit in main
nlcmory, in which case the hash-based implementation
will thrash. To rclnedy this, we have designed and
implemented algorithms that access deltas using a

sort and merge technique. We now present the
low level algorithm for the select,uhen operator;
the implementation of other operators is analogous.
Ileraclitus[Alg,C] maintains information on whether
relations and subdeltas are sorted, so that one or more
of the sorting steps of these sort-bared algorithms can
br eliminated.

select ,when. The input arguments of this operator

are: a relation)2, a selection condition, a delta A,
and an output relation. We assume that, no order is
maintained for any of the inputs. A key function used
here is sslect-rort which take w input a relation
and a selection condition. As with sort-when, this

implements a two-phase sort, but in the heap-sort phase
it deletes all tuplca violating the selection condition.

In the following algorithm, if no tuples satisfy
the selection condition (i.e., Temp is empty), then
Ri is scanned for the qualifying tuples and returns.
Otherwise, it sorts the qualifying tuples found in each
of R, and Ri into two diflerent temporary relations.
Next, it performs a three way merge on these relations,
inserting one occurrence of entries of R that match
with Ri (prevent duplicates) and eliminating those that

match with R, (tuples proposed to be deleted).

1. relsctsort (R, selection condition) into a tempo-
rary relation Temp.

2. if Temp is empty, then

3.

4.

5.

6.

a.

b.

for each tuple t of Ri, evaluate the selection
condition for t. If t satisfies this condition, then
insert t into the output relation.
return aa the output relation and exit.

selectsort (R,, selection condition) into a tem-
porary relation Temp- .

selectsort (Ri, selection condition) into a tem-
porary relation Tempt.

retrieve the first tuple in Temp (say r), Temp- (say

d-), and Tempt (say d+).

while not EOF(Temp) OR not EOF(Temp-) OR
not EOF(Temp+) do

a. assign t to be the tuple with minimum value
among r, d+, and d-.

b. If t is not equivalent to d-, then insert t into the
output relation.

c. If t is equivalent to T, then get the next tuple r
from Temp.

d. If t is equivalent to d-, then get the next tuple
d- from Ternpa.

e. If t is equivalent to d+, then get the next tuple
d+ from Ternpi.

We now analyze the expected I/O cost of this
implementation of selectahen, under the assumption
that the inputs are not maintained in sorted order. Let
P(R) represent the number of disk pages for relation R,
SP(R) represents the number of disk pages that satisfy
the selection condition, and analogously for Ri and Ri.
We assume that SP(R) 5 the square of the number of
available pages in the buffer pool (i.e., that only one n-
way merge is need to sort R), and similarly for Ri and
Ri. The total number of I/OS incurred by the above
algorithm can be estimated aa the sum of:

select-sort(R) : P(R) + 2 * Sk’(R)
select-sort(Ri) : P(Rh) + 2 * SP(Ri)
select-eort(Ri) : P(R,) + 2 * SP(R;;)
merge : 2 * SP(R) + 2 * SP(Ri) + SP(R,)

This cost function is a worst case estimate because it
assumes: (1) SP(R) is not empty, (2) the tuples of

SP(R) are not redundant with those in SP(Ri), causing
all their entries to be written to the output relation, and
(3) the tuples of SP(R) do not match with the tuples

found in R,.
The implementation also handles the case where the

input relation and delta are sorted. In this case, only
steps (5) and (6) of the algorithm are executed, and the
selection condition is incorporated into step (6).

451

5 An Evaluation of HERALD

Heraclitus[Alg,C] and the underlying library HERALD
are currently operational on a Sun SPARCstation 2 us-

ing the UNIX operating system. Using this implemen-
tation, we characterized the performance of HERALD
for executing the delta operators and hypothetical re-
lational operators. The goals of this evaluation were
to: (a) characterize the tradeoffs associated with the
alternative techniques employed by HERALD, and (b)
quantify the different factors that impact the perfor-
mance of the implementation. We analyzed the alter-
native implementation of deltas as a function of alter-
native buffer pool, disk page, relation, and delta sizes.
Several other factors were also considered including con-
flicts between deltas, and the percentage of redundant
tuples between two deltas. All experiments confirmed
our hypotheses that: (1) the hash based implementa-
tion is efficient for small deltas that fit in main mem-
ory, and degrades due to thrashing of the buffer pool

as the delta size grew larger than main memory, (2)
the sort-baaed implementation is appropriate for large
deltas, (3) the sort-based implementation benefits from
a “lazy” application of deltas (see below) as long as the
deltas are smaller than the referenced relations, (4) the
hash-based implementation does not necessarily benefit
from a lazy application, (5) the number of I/OS per-
formed by the sort-based implementation decreases as a
function of larger disk page sizes, (6) the hash-based im-
plementation benefits from the larger disk page size to
a certain point, beyond which, it results in a thrashing
behavior, and (7) when executing a program, if the or-
der of records in both the referenced delta and relation

are maintained, on small deltas the sort-based access
can provide performance identical to hash-based access.

To illustrate our evaluation, we present here the most
interesting experiment conducted, which compares lazy
vs. eager application of deltas. For this experiment
we generated HERALD with 4 kilobyte pages and a
128 page buffer pool. In our experiments we used the
number of disk read and write operations performed by
our storage manager as the measurement criteria. We
did not use the response time of the system, because
the obtained results would not have been meaningful
as we had no control over the buffer pool replacement
policy employed by the underlying UNIX operating
system [StoBl]. The use of the number of disk I/O
operations is justified as it constitutes the dominant
portion of the system response time2.

Figure 3 presents the percentage savings provided by
evaluating the expression apply(DB,Ar ! AZ) (termed
“lazy application”) as compared to applp(apply(DB,

2With a 25 MIPS SPARC CPU, the CPU processing time of

an operator is not as significant aa compared to the service time
of its disk read or write operations.

-7” I,
0% so% loi%

Conftict (‘lb)

Figure 3: Lazy vs. Eager delta application

Ai),Az) (termed “eager applicatiou”); these have equiv-
alent impact on the database state. An with all of
our experiments, we used benchmark relations based on
the standard Wisconsin benchmark relations [BI)T83].
Each relation consisted of tuples that are 208 bytes
wide. For this experiment we focused on a relatiou hav-
ing 10K tuples (about 500 pages), and deltas ranging
in size from 5% to 70% of the relation size. The size of
the two deltas Ar,Al was identical, with each of A$,
A;, A:, and A; containing the same number of signed
atoms. In addition to varying the size of the deltas, we
varied the amount of cc@icf between them. Bcre, 0%
conflict means that the smash of Ai and Az is equal to
their union. At the other extreme, lOO% conflict means
that each signed atom in AZ “undoes” a signed atom
in Al; in this case Al ! A2 = Az. For example, then,
in the case of 20% deltas (about 106 pages each), the
smash with 0% conflict has about 200 pages, the smash
with 50% conflict has about 150 pages, and the smash
with 100% conflict has about 100 pages.

In these experiments, the system was configured to
use both the size of the input deltas and the buffer pool

in order to choose the implementation of an operator
that resulted in the best performance. For example,
each 5% delta is small enough (25 pages) to fit in

the buffer pool and the system uses the hash-based
implementation of both smash (!‘) and apply operators.

The 70% delta, on the other hand, is larger than
the buffer pool and the system uses the sort-based
implementation in order to prevent, thrashing associatcrl
with the buffer pool. The 20% delta required a hybrid

452

implenleutation: for the lazy case, the hash-based apply
could bc! used, but for the eager case with OYO or 50%
conflict, the result of the smash was bigger than the
buffer pool, and so the sort-based apply was used.

The obtnined results show two general trends. First,
aa the percentage conflict between two deltas increases
the percentage tiavings obtained by the lazy application
of deltns incresscs. This is because the lazy application
requires a smash between A1 and AZ to generate a new
conflict free delta (As). The size of As with a 100%
conflict is one half that with a 0% conflict, reducing
both the number of writes to generate As and reads
to process the subsequent apply operator. Second, ss
the size of A1 and AZ increases, the benefits of lazy
application decreases. One reason for this is that in the
cw of Iazy application, the processing associated with
Ag (e.g., building a hash table for it) has increased cost.
A larger granularity reason is that the system starts to
use the sort-hased implementation of operators, and so
the cost of performing the smash (with lazy application)
approaches that of apply (with eager application). An
exception to this trend is the 20% delta; this is because,
sa noted above, for the cases of 0% and 50% a sort-
based apply was used in the case of lazy evaluation,
whereas hash-based applies could be used by the eager
evaluation.

6 Conclusions

This paper describes the current status of the Heracli-
tus project. A long-range goal is to develop and imple-
ment language constructs and techniques for the flexible
specification and implementation of a wide variety of ex-
ecution models for active databases. The current focus
has been on the development of the language Heracli-
tue[Alg,C], that extends C with the relational algebra,
deltas, and delta operators, and uses Exodus to provide
hulk data access. The main research contributions of
the implementation have been (a) understanding fea-
sible physical implementations of the algebraic opera-
tors, and (b) understanding the implications of embed-
ding the Heraclitus paradigm for database access into
an imperative programming language. As shown here,
the delta paradigm and Heraclitue[Alg,C] are especially
well-suited for working with virtual states, as arise in
several active databases in the literature, and for speci-
fying how the results of fired rules should be combined.
The preliminary performance evaluation shows that the
cost of both explicit and implicit manipulation of deltas
is not prohibitive, and provides the first step towards a
substantial optimization effort.

A primary short-range goal of the project is the fur-
ther development and improvement of Heraclitus[Alg,C].
Enhancements will proceed along two dimensions: (a)
work on further optimization, both at the compiler

and storage manager levels, including investigation of
the use of indexes (e.g., B+-trees) and parallelism,,
and (b) the development of high level macros to facil-
itate the specification of execution models. Over the
longer term, we intend to generalize to the framework
of object-oriented databases, and to incorporate concur-
rency. We also plan to investigate the use of deltas in
connection with other applications, including hypothet-
ical database access, version control, specifying concur-
rency protocols, and resolving update conflicts.

7 Acknowledgments

We would like to thank Hsun-Ko Chan, Elton Chen, Vera
Choi, Yuji Enzaki, Sanjay Joshi, Yoram Landau, Michel Liu,
Aris Prsssinos, Babar Saeed, Howard Ungar and Jackie Yu
for assisting in the research and implementation effort in
connection with this paper. We would also like to thank
Serge Abiteboul, Eric Simon, and Roger King for useful
discussions on the topics covered in the paper.

References

[Abi88] Serge Abiteboul. Updates, A new frontier. In
Proc. of Intl. Conf on Database Theory, 1988.

[BDT83] D. Bitton, D. J. Dewitt, and C. Turbyfill.
Benchmarking Databases Systems: A Systematic
Approach. In Proc. of Intl. Conf. on Very Large Data
Basrs, pages 8-19, 1983.

[BFKM85] L. Brownston, R. Farrell, E. Kant, and
N. Martin. Programming Expert Systems in
OPS5: An Introduction to Rule-Baaed Programming.
Addison-Wesley, Reading Massachusetts, 1985.

[BM91] C. Beeri and T. Mile. A model for active object
oriented database. In Proc. of Intl. Conf. on Very

Large Data Bases, pages 337-349, 1991.

[CCCR+90] F. C acace, S. Ceri, S. Crespi-Reghizzi,
L. Tanca, and R. Zicari. Integrating object-
oriented data modeling with a rule-based program-
ming paradigm. In Proc. ACM SIGMOD Symp. on
the Management of Data, pages 225-236, 1990.

[CDKK85] H-T. Chou, D. Dewitt, R. Katz, and
T. Klug. Design and implementation of the Wisconsin
Storage System (WiSS). Soflware Practices and
Experience, 15(10), October 1985.

[CDRS86] M. J. Carey, D. J. Dewitt, Joel E. Richard-
son, and E. J. Shekita. Object and file management
in the EXODUS extensible database system. In Proc.
of VLDB, pages 91-100, 1986.

[CHM92] I.-M. A. Chen, R. Hull, and D. McLeod.
Derived data update via limited ambiguity, December
7 1992. USC technical report.

[Coh86] D on C h o en. Programming by specification and
annotation. In Proc. of AAAI, 1986.

453

[CW90] Stefano Ceri and Jennifer Widom. Deriving
production rules for constraint maintenance. III hoc.

of Infl. Conj. on Very Large Dais Bases, 1990.

[CW91] Stefano Ceri and Jennifer Widom. Deriving
production rules for incremental view maintenance.
In Proc. of Intl. Conj. on Very Large Data Bases,
pages 577-589, 1991.

[CW92] S. Ceri and J. Widom. Managing semantic
heterogeneity with production rules and persistent
queues. Technical Report RJ 9064 (80754), IBM Re-
search Division, Almaden Research Center, October
30 1992.

[dMS88] C. de Maindreville and E. Simon. Modeling
non-deterministic queries and updates in deductive
databases. In Proc. ojInt1. Conj. on Very Large Data
Bases, 1988.

[GHJ92] S. Ghandeharizadeh, R. Hull, and D. Jacobs.
Implementation of delayed updates in Heraclitus.
In Proc. of Intl. Conj. on Extending Data Base

Technology, 1992.

[Han891 E.N. Hanson. An initial report on the design of
Ariel: A DBMS with an integrated production rule
system. SIGMOD Record, 18(3):12-19, September
1989.

[HJSla] R. Hull and D. Jacobs. On the semantics
of rules in database programming languages. In
J. Schmidt and A. Stogny, editors, Next Generation
Information Systkm Technology: Proc. of the First
International East/West Database Workshop, Kiev,
USSR, October 1990, pages 59-85. Springer-Verlag
LNCS, Volume 504, 1991.

[HJSlb] R. Hull and D. Jacobs. Language constructs for
programming active databases. In Proc. of Intl. Conj.
on Very Large Data Bases, pages 455-468, 1991.

[HW92] E. N. Hanson and J. Widom. An overview
of production rules in database systems. Technical
Report RJ 9023 (80483), IBM Almaden Research
Center, October 12, 1992.

[IN881 T. Imielinski and S. Naqvi. Explicit control of
logic programs through rule algebra. In Proc. ACM
Symp. on Principles of Database Systems, pages 103-
116, 1988.

[JH91] D. Jacobs and R. Hull. Database programming
with delayed updates. In Intl. Workshop on Database
Programming Languages, pages 416-428, San Mateo,
Calif., 1991. Morgan-Kaufmann, Inc.

[KDM88] A.M. Kotz, K.R. Dittrich, and J.A. Miille.
Supporting semantic rules by a generalized event /
trigger mechanism. In Intl. Conj. on Extending Data
Base Technology, pages 76-91, 1988.

[MD891 Dennis It. McCarthy and Umeshwar Dayal.
The architecture of an active data base management
system. In Proc. ACM SIGMOD Symp. on the
Management of Data, pages 215-224, 1989.

[Mor83] M. Morgenstern. Active databases as a
paradigm for enhanced computing environments. In
Proc. of I&l. Conf. on Very Large Data Bases, Imgc*
34-42, 1983.

[MPQO] C.B. Medeiros and P. Pfeffer. A mwllatlinrtl

for managing rules in an object-oriented tlatnhase.
Technical report, AR&r, 1990.

[SdM88] E. Simon and C. de Maindreville. Deciding
whether a production rule is relational computable.
In Proc. of Intl. Conj. on Database Theory, Pngm
205-222, 1988.

[SIG891 SIGMOD Record 18:9, “Special Issue on Rule
Management and Processing in Expert Dntab,ase

Systems”, September 1989.

[SJGPOO] M. Stonebraker, A. Jhingran, J. GOB, and

S. Potamianos. On rules, procedures, caching and
views in data base systems. In Proc. ACM SIGMOD
Symp. on the Management of Data, pages 281. 290,

1990.

[SL76] D.G. Severance and G.M. Lehman. Differential
files: Their application to the maintenance of large
databases. ACM Ifnns. on Dntahase Syslcms, l(3),
September 1976.

[Sto81] M. Stonebraker. Operating system support for
database management. Communicaiions of Ihe ACM,
24(7):412-418, July 1981.

[Sto92] M. Stonebraker. The integration of rule systems
and database systems. IEEE ‘%ans. on h’nowledge

and Data Engineering, 4(5):415-423, October 1992.

[WF90] Jeunifer Widom and Sheldon J. Finkclstein.
Set-oriented production rules in relational datahnse
systems. In Proc. ACM SIGMOD Symp. on the
Management of Data, pages 259-264, 1990.

[Wie92] Gio Wiederhold. Mediators in the architecture
of future information systems. IKEh Computer, pages
38-d!). \larch 1992.

[WS83] J. Woodfuill and M. Stonebrakcr. An imple-
mentation of hypothetical relations, In Proc. of lntl.
Conj. on Very Large Data Bases, pages 157..165,
September 1983.

[ZH90] Y. Zhou and M. 11s~. A theory for rule
triggering systems. In Intl. Couj. on Ezlcnding nata
Base Technology, pages 407-421, 1990.

454

