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On implementing a primal-dual interior-point

method for conic quadratic optimization

E. D. Andersen∗, C. Roos†, and T. Terlaky‡

December 18, 2000

Abstract

Conic quadratic optimization is the problem of minimizing a linear
function subject to the intersection of an affine set and the product
of quadratic cones. The problem is a convex optimization problem
and has numerous applications in engineering, economics, and other
areas of science. Indeed, linear and convex quadratic optimization is
a special case.

Conic quadratic optimization problems can in theory be solved ef-
ficiently using interior-point methods. In particular it has been shown
by Nesterov and Todd that primal-dual interior-point methods devel-
oped for linear optimization can be generalized to the conic quadratic
case while maintaining their efficiency. Therefore, based on the work
of Nesterov and Todd, we discuss an implementation of a primal-dual
interior-point method for solution of large-scale sparse conic quadratic
optimization problems. The main features of the implementation are
it is based on a homogeneous and self-dual model, handles the rotated
quadratic cone directly, employs a Mehrotra type predictor-corrector
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extension, and sparse linear algebra to improve the computational ef-
ficiency.

Computational results are also presented which documents that
the implementation is capable of solving very large problems robustly
and efficiently.

1 Introduction

Conic quadratic optimization is the problem of minimizing a linear objective
function subject to the intersection of an affine set and the direct product of
quadratic cones of the form







x : x2
1 ≥

n
∑

j=2

x2
j , x1 ≥ 0







. (1)

The quadratic cone is also known as the second-order, the Lorentz, or the
ice-cream cone.

Many optimization problems can be expressed in this form. Some ex-
amples are linear, convex quadratic, and convex quadratically constrained
optimization. Other examples are the problem of minimizing a sum of norms
and robust linear programming. Various applications of conic quadratic op-
timization are presented in [11, 17].

Over the last 15 years there has been extensive research into interior-
point methods for linear optimization. One result of this research is the
development of a primal-dual interior-point algorithm [16, 20] which is highly
efficient both in theory and in practice [8, 18]. Therefore, several authors have
studied how to generalize this algorithm to other problems. An important
work in this direction is the paper of Nesterov and Todd [22] which shows
that the primal-dual algorithm maintains its theoretical efficiency when the
nonnegativity constraints are replaced by a convex cone as long as the cone
is homogeneous and self-dual or in the terminology of Nesterov and Todd a
self-scaled cone. It has subsequently been pointed out by Güler [15] that the
only interesting cones having this property are direct products of R+, the
quadratic cone, and the cone of positive semi-definite matrices.

In the present work we will mainly focus on conic quadratic optimization
and an algorithm for this class of problems.

Several authors have already studied algorithms for conic quadratic opti-
mization. In particular Tsuchiya [27] and Monteiro and Tsuchiya [21] have
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studied the complexity of different variants of the primal-dual algorithm.
Schmieta and Alizadeh [3] have shown that many of the polynomial algo-
rithms developed for semi-definite optimization immediately can be trans-
lated to polynomial algorithms for conic quadratic optimization.

Andersen [9] and Alizadeh and Schmieta [2] discuss implementation of
algorithms for conic quadratic optimization. Although they present good
computational results then the implemented algorithms have an unknown
complexity and cannot deal with primal or dual infeasible problems.

Sturm [26] reports that his code SeDuMi can perform conic quadratic
and semi-definite optimization. Although the implementation is based on the
work of Nesterov and Todd as described in [25] then only limited information
is provided about how the code deals with the conic quadratic case.

The purpose of this paper is to present an implementation of a primal-
dual interior-point algorithm for conic quadratic optimization which employs
the best known algorithm (theoretically), which can handle large sparse prob-
lems, is robust, and handles primal or dual infeasible problems in a theoret-
ically satisfactory way.

The outline of the paper is as follows. First we review the necessary du-
ality theory for conic optimization and introduce the so-called homogeneous
and self-dual model. Next we develop an algorithm based on the work of
Nesterov and Todd for the solution of the homogeneous model. After pre-
senting the algorithm we discuss efficient solution of the Newton equation
system which has to be solved in every iteration of the algorithm. Indeed
we show that the big Newton equation system can be reduced to solving
a much smaller system of linear equations having a positive definite coeffi-
cient matrix. Finally, we discuss our implementation and present numerical
results.

2 Conic optimization

2.1 Duality

In general a conic optimization problem can be expressed in the form

(P ) minimize cT x
subject to Ax = b,

x ∈ K
(2)
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where K is assumed to be a pointed closed convex cone. Moreover, we
assume that A ∈ Rm×n and all other quantities have conforming dimensions.
For convenience and without loss of generality we will assume A is of full
row rank. A primal solution x to (P ) is said to be feasible if it satisfies all
the constraints of (P ). Problem (P ) is feasible if it has at least one feasible
solution. Otherwise the problem is infeasible. (P ) is said to be strictly
feasible if (P ) has feasible solution such that x ∈ int(K), where int(K)
denote the interior of K.

Let
K∗ := {s : sT x ≥ 0, ∀x ∈ K} (3)

be the dual cone, then the dual problem corresponding to (P ) is given by

(D) maximize bT y
subject to AT y + s = c,

s ∈ K∗.
(4)

A dual solution (y, s) is said to be feasible if it satisfies all the constraints
of the dual problem. The dual problem (D) is feasible if it has at least one
feasible solution. Moreover, (D) is strictly feasible if a dual solution (y, s)
exists such that s ∈ int(K∗).

The following duality theorem is well-known:

Theorem 2.1 Weak duality: Let x be a feasible solution to (P ) and (y, s)
be a feasible solution to (D), then

cT x − bT y = xT s ≥ 0.

Strong duality: If (P ) is strictly feasible and its optimal objective value
is bounded or (D) is strictly feasible and its optimal objective value is
bounded, then (x, y, s) is an optimal solution if and only if

cT x − bT y = xT s = 0

and x is primal feasible and (y, s) is dual feasible.

Primal infeasibility: If

∃(y, s) : s ∈ K∗, AT y + s = 0, bT y∗ > 0, (5)

then (P ) is infeasible.
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Dual infeasibility: If

∃x : x ∈ K, Ax = 0, cT x < 0, (6)

then (D) is infeasible.

Proof: For a proof see for example [11]. ✷

The difference cT x− bT y stands for the duality gap whereas xT s is called
the complementarity gap. If x ∈ K and s ∈ K∗, then x and s are said to be
complementary if the corresponding complementarity gap is zero.

For a detailed discussion of duality theory in the conic case we refer the
reader to [11].

2.2 A homogeneous model

The primal-dual algorithm for linear optimization suggested in [16, 20] and
generalized by Nesterov and Todd [22] does not handle primal or dual in-
feasible problems very well. Indeed one assumption for the derivation of
the algorithm is that both the primal and dual problem has strictly feasible
solutions.

However, if a homogeneous model is employed then the problem about
detecting infeasibility vanish. This model was first used by Goldman and
Tucker [13] in their work for linear optimization. The idea of the homo-
geneous model is to embed the optimization problem into a slightly larger
problem which always has a solution. Furthermore, an appropriate solution
to the embedded problem either provides a certificate of infeasibility or a
(scaled) optimal solution to the original problem. Therefore, instead of solv-
ing the original problem using an interior-point method, then the embedded
problem is solved. Moreover, it has been shown that a primal-dual interior-
point algorithm based on the homogeneous model works well in practice for
the linear case, see [6, 28].

The Goldman-Tucker homogeneous model can be generalized as follows

Ax − bτ = 0,
AT y + s − cτ = 0,

−cT x + bT y − κ = 0,
(x; τ) ∈ K̄, (s; κ) ∈ K̄∗

(7)
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to the case of conic optimization. Here we use the notation that

K̄ := K × R+ and K̄∗ := K∗ × R+.

The homogeneous model (7) has been used either implicitly or explicitly
in previous works. Some references are [12, 23, 25].

Subsequently we say a solution to (7) is complementary if the comple-
mentary gap

xT s + τκ

is identical to zero.

Lemma 2.1 Let (x∗, τ ∗, y∗, s∗, κ∗) be any feasible solution to (7), then

i)

(x∗)T s∗ + τ ∗κ∗ = 0.

ii) If τ ∗ > 0, then (x∗, y∗, s∗)/τ ∗ is a primal-dual optimal solution to (P ).

iii) If κ∗ > 0, then at least one of the strict inequalities

bT y∗ > 0 (8)

and
cT x∗ < 0 (9)

holds. If the first inequality holds, then (P ) is infeasible. If the second
inequality holds, then (D) is infeasible.

Proof: Statements i) and ii) are easy to verify. In the case κ∗ > 0 one has

−cT x∗ + bT y∗ = κ∗ > 0

which shows that at least one of the strict inequalities (8) and (9) holds. Now
suppose (8) holds then we have that

bT y∗ > 0,
AT y∗ + s∗ = 0,
s∗ ∈ K∗

(10)
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implying the primal problem is infeasible. Indeed, y∗ is a Farkas type certifi-
cate of primal infeasibility. Finally, suppose that (9) holds, then

cT x∗ < 0,
Ax∗ = 0,

x∗ ∈ K
(11)

and x∗ is a certificate the dual infeasibility. ✷

This implies that any solution to the homogeneous model with

τ ∗ + κ∗ > 0 (12)

is either a scaled optimal solution or a certificate of infeasibility. Therefore,
an algorithm that solves (7) and computes such a solution is a proper solution
algorithm for solving the conic optimization problems (P ) and (D). If no such
solution exists, then a tiny perturbation to the problem data exists such that
the perturbed problem has a solution satisfying (12) [11]. Hence, the problem
is ill-posed. In the case of linear optimization this is never the case. Indeed
in this case a so-called strictly complementary solution satisfying (12) and
x∗ +s∗ > 0 always exist. However, for example for a primal and dual feasible
conic quadratic problem having non-zero duality gap, then (12) cannot be
satisfied. See [11] for a concrete example.

3 Conic quadratic optimization

In the remaining part of this work we restrict our attention to cones which
can be formulated as the product of R+ and the quadratic cone. To be
specific, we will work with the following three cones:

Definition 3.1 R+:
R+ := {x ∈ R : x ≥ 0}. (13)

Quadratic cone:

Kq := {x ∈ Rn : x2
1 ≥ ‖x2:n‖2 , x1 ≥ 0}. (14)

Rotated quadratic cone:

Kr := {x ∈ Rn : 2x1x2 ≥ ‖x3:n‖2 , x1, x2 ≥ 0}. (15)
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These three cones are homogeneous and self-dual, see Definition A.1. With-
out loss of generality it can be assumed that

K = K1 × . . . × Kk.

i.e. the cone K is the direct product of several individual cones each one of
the type (13), (14), or (15) respectively. Furthermore, let x be partitioned
according to the cones i.e.

x =













x1

x2

...
xk













and xi ∈ Ki ⊆ Rni

.

Associated with each cone are two matrices

Qi, T i ∈ Rni×ni

which are defined in Definition 3.2.

Definition 3.2 i.) If Ki is R+, then

T i := 1 and Qi = 1. (16)

ii.) If Ki is the quadratic cone, then

T i := Ini and Qi := diag(1,−1, . . . ,−1). (17)

iii.) If Ki is the rotated quadratic cone, then

T i :=



















1√
2

1√
2

0 · · · 0
1√
2

− 1√
2

0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



















(18)

and

Qi :=



















0 1 0 · · · 0
1 0 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1



















. (19)
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It is an easy exercise to verify that each Qi and T i are orthogonal. Hence

QiQi = I and T iT i = I.

The definition of the Q matrices allows an alternative way of stating the
quadratic cone because assume Ki is the quadratic cone then

Ki = {xi ∈ Rni

: (xi)T Qixi ≥ 0, xi
1 ≥ 0}

and if Ki is a rotated quadratic cone, then

Ki = {xi ∈ Rni

: (xi)T Qixi ≥ 0, xi
1, x

i
2 ≥ 0}.

If the ith cone is a rotated quadratic cone, then

xi ∈ Kq ⇔ T ixi ∈ Kr.

which demonstrates that the rotated quadratic cone is identical to the qua-
dratic cone under a linear transformation. This implies it is possible by
introducing some additional variables and linear constraints to pose the ro-
tated quadratic cone as a quadratic cone. However, for efficiency reason we
will not do that but rather deal with the rotated cone directly. Nevertheless,
from a theoretical point of view all the results for the rotated quadratic cone
follow from the results for the quadratic cone.

For algorithmic purposes the complementarity conditions between the
primal and dual solution are needed. Using the notation that if v is a vector,
then capital V denotes a related “arrow head” matrix i.e.

V := mat (v) =

[

v1 vT
2:n

v2:n v1I

]

and v2:n :=









v2
...

vn









.

The complementarity conditions can now be stated compactly as in Lemma
3.1.

Lemma 3.1 Let x, s ∈ K then x and s are complementary, i.e. xT s = 0, if
and only if

X iSiei = SiX iei = 0, i = 1, . . . , k, (20)

where X i := mat (T ixi), Si := mat (T isi). ei ∈ Rni

is the first unit vector of
appropriate dimension.
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Proof: See the Appendix. ✷

Subsequently let X and S be two block diagonal matrices with X i and Si

along the diagonal i.e.

X := diag(X1, . . . , Xk) and S := diag(S1, . . . , Sk).

Given v ∈ int(K), then it is easy to verify the following useful formula

mat (v)−1 = V −1 =
1

v2
1 − ‖v2:n‖2





v1 −vT
2:n

−v2:n

(

v1 − ‖v2:n‖2

v1

)

I +
v2:nvT

2:n

v1



 .

3.1 The central path

The guiding principle in primal-dual interior-point algorithms is to follow
the so-called central path towards an optimal solution. The central path is
a smooth curve connecting an initial point and a complementary solution.
Formally, let an (initial) point (x(0), τ (0), y(0), s(0), κ(0)) be given such that

(x(0); τ (0)), (s(0); κ(0)) ∈ int(K̄)

then the set of nonlinear equations

Ax − bτ = γ(Ax(0) − bτ (0)),
AT y + s − cτ = γ(AT y(0) + s(0) − cτ (0)),

−cT x + bT y − κ = γ(−cT x(0) + bT y(0) − κ(0)),
XSe = γµ(0)e,

τκ = γµ(0),

(21)

defines the central path parameterized by γ ∈ [0, 1]. Here µ(0) is given by the
expression

µ(0) :=
(x(0))T s(0) + τ (0)κ(0)

k + 1
.

and e by the expression

e :=









e1

...
ek









.

The first three blocks of equations in (21) are feasibility equations whereas
the last two blocks of equations are the relaxed complementarity conditions.
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In general it is not possible to compute a point on the central path ex-
actly. However, using Newton’s method a point in a neighborhood of the
central path can be computed efficiently. Among the possible definitions of
a neighborhood we will use the following definition

N (β) :=



























(x, τ, s, κ) : (x; τ), (s; κ) ∈ K̄, min















√

(x1)T Q1x1(s1)T Q1s1

...
√

(xk)T Qkxk(sk)T Qksk

τκ















≥ βµ



























,

and

µ :=
xT s + τκ

k + 1

where β ∈ [0, 1]. Given this definition we can state Lemma 3.2.

Lemma 3.2 i) N (β) ⊆ N (β′) where 1 ≥ β ≥ β′ ≥ 0.

ii) (x; τ), (s; κ) ∈ N (1) implies X iSiei = µei and τκ = µ.

The interpretation of Lemma 3.2 is that the size of the neighborhood
N (β) increases with the decrease in β. Moreover, the neighborhood N (1)
conincides with the central path.

3.2 Scaling

For later use we need the definition of a scaling.

Definition 3.3 W i ∈ Rni×ni

is a scaling matrix if it satisfies the conditions

W i ≻ 0,
W iQiW i = Qi,

where W i ≻ 0 means W i is symmetric and positive definite.
A scaled point x̄, s̄ is obtained by the transformation

x̄ := ΘWx and s̄ := (ΘW )−1s,

where

W :=















W 1 0 · · · 0

0 W 2 ...
...

... · · · . . . 0
0 · · · 0 W k














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and
Θ = diag(θ11n1 ; . . . ; θk1nk).

1ni is the vector of all ones having the length ni and θ ∈ Rk.
Hence, W is a block diagonal matrix having the W is along the diagonal

and Θ is a diagonal matrix.
In Lemma 3.3 it is shown that scaling does not change anything. For

example if the original point is in the interior of the cone K then the scaled
point is in the interior too. Similarly, if the original point belongs to a certain
neighborhood, then the scaled point belong to the same neighborhood.

Lemma 3.3 i) (xi)T si = (x̄i)T s̄i.

ii) θ2
i (x

i)T Qixi = (x̄i)T Qix̄i.

iii) θ−2
i (si)T Qisi = (s̄i)T Qis̄i.

iv) x ∈ K ⇔ x̄ ∈ K and x ∈ int(K) ⇔ x̄ ∈ int(K).

v) Given a β ∈ (0, 1) then

(x, τ, s, κ) ∈ N (β) ⇒ (x̄, τ, s̄, κ) ∈ N (β).

Proof: See the Appendix. ✷

4 The search direction

As mentioned previously the main algorithmic idea in a primal-dual interior-
point algorithm is to trace the central path loosely. However, the central path
is defined by the nonlinear equations (21) which cannot easily be solved, but
an approximate solution can be computed using Newton’s method. Indeed
if one iteration of Newton’s method is applied to (21) for a fixed γ, then a
search direction (dx, dτ , dy, ds, dκ) is obtained. This search direction is given
as the solution to the linear equation system:

Adx − bdτ = (γ − 1)(Ax(0) − bτ (0)),
AT dy + ds − cdτ = (γ − 1)(AT y(0) + s(0) − cτ (0)),

−cT dx + bT dy − dκ = (γ − 1)(−cT x(0) + bT y(0) − κ),
X(0)Tds + S(0)Tdx = −X(0)S(0)e + γµ(0)e,

τ (0)dκ + κ(0)dτ = −τ (0)κ(0) + γµ(0).

(22)
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where

T :=















T 1 0 · · · 0

0 T 2 ...
...

... · · · . . . 0
0 · · · 0 T k















.

This direction is a slight generalization of the direction suggested in [1] to
the homogeneous model. A new point is obtained by moving in the direction
(dx, dτ , dy, ds, dκ) as follows

















x(1)

τ (1)

y(1)

s(1)

κ(1)

















=

















x(0)

τ (0)

y(0)

s(0)

κ(0)

















+ α

















dx

dτ

dy

ds

dκ

















(23)

for some step size α ∈ [0, 1]. This is a promising idea because if the search
direction is well-defined, then the new point will be closer to being feasible
to the homogeneous model and complementary as shown in Lemma 4.1.

Lemma 4.1 Given (22) and (23) then

Ax(1) − bτ (1) = (1 − α(1 − γ))(Ax(0) − bτ (0)),
AT y(1) + s(1) − cτ (1) = (1 − α(1 − γ))(AT y(0) + s(0) − cτ (0)),

−cT x(1) + bT y(1) − κ(1) = (1 − α(1 − γ))(−cT x(0) + bT y(0) − κ(0)),
dT

x dT
s + dτdκ = 0,

(x(1))T s(1) + τ (1)κ(1) = (1 − α(1 − γ))((x(0))T s(0) + τ (0)κ(0)).

(24)

Proof: The first three equalities are trivial to prove, so we will only prove
the last two equalities. First observe that

A(ηx(0) + dx) − b(ητ (0) + dτ ) = 0,
AT (ηy(0) + dy) + (ηs(0) + ds) − c(ητ (0) + dτ ) = 0,

−c(ηx(0) + dx) + bT (ηy(0) + dy) − (ηκ(0) + dκ) = 0,

where
η := 1 − γ. (25)

This implies

0 = (ηx(0) + dx)
T (ηs(0) + ds) + (ητ (0) + dτ )(ηκ(0) + dκ)

= η2((x(0))T s(0) + τ (0)κ(0))
+η((x(0))T ds + (s(0))T dx + τ (0)dκ + κ(0)dτ )
+dT

x ds + dτdκ.

(26)
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Moreover,

(x(0))T ds + (s(0))T dx + τ (0)dκ + κ(0)dτ = eT (X(0)Tds + S(0)Tdx) + τ (0)dκ + κ(0)dτ

= eT (−X(0)S(0)e + γµ(0)e) − τ (0)κ(0) + γµ(0)

= (γ − 1)µ(0)k.

These two facts combined gives

dT
x ds + dτdκ = 0

and
(x(1))T s(1) + τ (1)κ(1) = (1 − α(1 − γ))((x(0))T s(0) + τ (0)κ(0)).

✷

Unfortunately the Newton search direction is only guaranteed to be well-
defined in a narrow neighborhood around the central path [21]. However,
one way to make sure that the search-direction is well-defined is to scale the
problem appropriately before applying Newton’s method and then scale the
resulting search direction back to the original space. The resulting search
direction belongs to the Monteiro-Zhang family of search directions and is
defined by the linear equation system

Adx − bdτ = (γ − 1)(Ax(0) − bτ (0)),
AT dy + ds − cdτ = (γ − 1)(AT y(0) + s(0) − cτ (0)),

−cT dx + bT dy − dκ = (γ − 1)(−cT x(0) + bT y(0) − κ),
X̄(0)T (ΘW )−1ds + S̄(0)TΘWdx = −X̄(0)S̄(0)e + γµ(0)e,

τ (0)dκ + κ(0)dτ = −τ (0)κ(0) + γµ(0).

(27)

Given A is of full row rank and an appropriate choice of the scaling ΘW
then it can be shown that the scaled Newton direction is uniquely defined.
Moreover, all the properties stated in Lemma 4.1 are true for the scaled
search direction as well. Finally, polynomial complexity can be proven, see for
example Monteiro and Tuschiya [21]. Among the different possible scalings
analysed in [21] the best results are obtained using NT scaling suggested in
[22]. In the NT scaling ΘW is chosen such that

x̄ = s̄, (28)

holds which is equivalent to require that the scaled primal and dual points
are identical. Note that the relation (28) implies

s = (Θ2W 2)x. (29)
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In the case of NT scaling both Θ and W can be computed cheaply for each
of our cones as demonstrated in Lemma 4.2.

Lemma 4.2 Assume that xi, si ∈ int(Ki) then

θ2
i =

√

√

√

√

(si)T Qisi

(xi)T Qixi
. (30)

Moreover, if Ki is

i) the positive half-line R+, then:

W i =
1

θi

((X i)−1Si)
1
2 .

ii) a quadratic cone, then:

W i =







wi
1 (wi

2:ni)
T

wi
2:ni I +

wi

2:ni(wi

2:ni)
T

1+wi

1







= −Qi +
(ei

1+wi)(ei

1+wi)T

1+(ei

1)T wi

(31)

where

wi =
θ−1

i si + θiQ
ixi

√
2

√

(xi)T si +
√

(xi)T Qixi(si)T Qisi

. (32)

Furthermore,
(W i)2 = −Qi + 2wi(wi)T . (33)

iii) a rotated quadratic cone, then:

W i = −Qi +
(T iei

1 + wi)(T iei
1 + wi)T

1 + (ei
1)

T T iwi
(34)

where wi is given by (32). Furthermore,

(W i)2 = −Qi + 2wi(wi)T . (35)

Proof: In case of the quadratic cone the Lemma is derived in [27], but we
prefer to include a proof here for completeness. See the Appendix details. ✷
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Lemma 4.3 Let be W i be given as in Lemma 4.2 then

(θiW
i)−2 = θ−2

i Qi(W i)2Qi.

Proof: Using Definition 3.3 we have that W iQiW i = Qi and QiQi = I
which implies (W i)−1 = QiW iQi and (W i)−2 = Qi(W i)2Qi. ✷

One observation which can be made from Lemma 4.2 and Lemma 4.3 is
that the scaling matrix W can be stored by using an n dimensional vector
because only the vector wi has to be stored for each cone. Furthermore,
any multiplication with W or W 2 or their inverses can be carried out in
O(n) complexity. This is an important fact that should be exploited in an
implementation.

4.1 Choice of the step size

After the search direction has been computed then a step size has to be
chosen. It can be shown given the primal-dual algorithm is initiated with a
solution sufficiently close to the central path and γ is sufficiently close to 1,
then the unit step size (α = 1) is always a suitable choice which also makes
sure that the iterates stay in a close neighborhood of the central path.

However, in practice an aggressive choice of γ give rise to vastly improved
performance. This makes it necessary to use a step size smaller than one,
because otherwise the updated solution may move too far from the central
path and even be infeasible with respect to the cone constraint.

In general the step size α should be chosen such that

(x(1), τ (1), s(1), κ(1)) ∈ N (β) (36)

where β ∈ (0, 1) is a fixed constant. Next we will discuss how to compute
the step size to satisfy this requirement.

First define

vx1
i := (xi)T Qixi, vx2

i := 2dT
xiQixi, and vx3

i := dT
xiQidxi

and define vs1
i , vs2

i , and vs3
i in a similar way. Next define

fx
i (α) := (xi + αdxi)T Qi(xi + αdxi) = vx1

i + αvx2
i + α2vx3

i , (37)

and
f s

i (α) := (si + αdsi)T Qi(si + αdsi) = vs1
i + αvs2

i + α2vs3
i . (38)
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Note given the v vectors have been computed, then fx
i (·) and f s

i (·) can be
evaluated in O(k) complexity. Now define αmax such that it is maximal and
satisfies

(ei)T (x(0) + αdx) ≥ 0, ∀i, α[0, αmax],
(ei)T (s(0) + αds) ≥ 0, ∀i, α[0, αmax],

(ei)T Qi(x(0) + αdx) ≥ 0, ∀i, α[0, αmax],
(ei)T Qi(s(0) + αds) ≥ 0, ∀i, α[0, αmax],

τ + αdτ ≥ 0, ∀α[0, αmax],
κ + αdκ ≥ 0, ∀α[0, αmax],

fx(α) ≥ 0, ∀α[0, αmax],
fs(α) ≥ 0, ∀α[0, αmax].

The purpose of the first four inequalities is to make sure that the appropriate
elements of x and s stay positive. The choice of αmax implies that for any
α ∈ (0, αmax) we have

(x(1); τ (1)), (s(1); κ(1)) ∈ int(K̄).

Next a decreasing sequence of αl’s for l = 1, 2, . . . in the interval (0, αmax) is
chosen and the largest element in the sequence which satisfies

√

fx(αl)fs(αl) ≥ β(1 − αl(1 − γ))µ(0),

(τ (0) + αldτ )(κ
(0) + αldκ) ≥ β(1 − αl(1 − γ))µ(0),

(39)

is chosen as the step size. Enforcing the condition (39) is equivalent to enforce
the condition (36).

4.2 Adapting Mehrotra’s predictor-corrector method

Several important issues have not been addressed so far. In particular noth-
ing has been stated about the choice of γ. In theoretical work on primal-dual
interior-point algorithms γ is usually chosen as a constant close to one but in
practice this leads to slow convergence. Therefore, in the linear case Mehro-
tra [19] suggested a heuristic which chooses γ dynamically depending on how
much progress that can be made in the pure Newton (affine scaling) direc-
tion. Furthermore, Mehrotra suggests using a second-order correction of the
search direction which increases the efficiency of the algorithm significantly
in practice [18].
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In this section we discuss how these two ideas proposed by Mehrotra can
be adapted to the primal-dual method based on the Monteiro-Zhang family
of search directions.

Mehrotra’s predictor-corrector method utilizes the observation that

mat (Tx) + mat (Tdx) = mat (T (x + dx))

which implies

(X + Dx)(S + Ds)e = mat (T (x + dx)) mat (T (s + ds)) e
= XSe + SDxe + XDse + DxDse,

where
Dx := mat (Tdx) and Ds := mat (Tds) .

When Newton’s method is applied to the perturbed complementarity condi-
tions

XS = γµ(0)e

then the quadratic term
DxDse (40)

is neglected and the search direction is obtained by solving the resulting
system of linear equations. Instead of neglecting the quadratic term, then
Mehrotra suggests estimate it using the pure Newton direction. Indeed,
Mehrotra suggests to compute the primal-dual affine scaling direction

(dn
x, d

n
τ , d

n
y , d

n
s , d

n
κ)

first which is the unique solution of (27) for γ = 0. Next this direction is
used to estimate the quadratic term as follows

DxDse ≈ Dn
xDn

s e and dτdκ ≈ dn
τ d

n
κ.

In the framework of the Monteiro-Zhang family of search directions this im-
plies that the linearized complementarity conditions in (27) are replaced by

X̄(0)T (ΘW−1ds + S̄(0)TΘWdx = −X̄(0)S̄(0)e + γµ(0)e − D̄n
xD̄n

s e,
τ (0)dκ + κ(0)dτ = −τ (0)κ(0) + γµ(0) − dn

τ d
n
κ

where

D̄n
x := mat (TΘWdn

x) and D̄n
s := mat

(

T (ΘW )−1dn
s

)

.
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Note that even though the corrector term is included in the right-hand side
then it can be proved that the final search direction satisfies all the properties
stated in Lemma 4.1.

Mehrotra suggests another use of the pure Newton direction because he
suggests to use it for a dynamic choice of γ based on how much progress
that can be made in the affine scaling direction. Now let αmax

n be the max-
imum step size to the boundary which can be taken along the pure Newton
direction. According to Lemma 4.1 this implies that the residuals and the
complementarity gap are reduced by a factor of

1 − αmax
n .

Then it seems reasonable to choose γ small if αmax
n is large. The heuristic

γ = min(δ, (1 − αmax
n )2)(1 − αmax

n )

achieve this, where δ ∈ [0, 1] is a fixed constant.

4.3 Adapting Gondzio’s centrality correctors

In Mehrotra’s predict-corrector method the search direction is only corrected
once. An obvious idea is to repeat the corrections several times to obtain
a high-order search directions. However, most of the computational exper-
iments with this idea has not been successful. More recently Gondzio [14]
has suggested another modification to the primal-dual algorithm for linear
optimization which employs so-called centrality correctors. The main idea
underlying this approach is to compute corrections to the search direction in
such a way that the step size increases and hence faster convergence of the
algorithm is achieved.

The idea of centrality correctors can successfully be adapted to the case
when the earlier presented homogeneous primal-dual algorithm is applied
to a linear optimization problem[6]. Therefore, in the present section we
will discuss how to adapt the centrality corrector idea to the case when the
optimization problem contains quadratic cones.

As mentioned previously then the iterates generated by our algorithm
should stay in a close neighborhood of the central path or, ideally,

(x(1), τ (1), s(1), κ(1)) ∈ N (1).
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This implies that we are targeting

√

(xi(1))T Qixi(1)(si(1))T Qisi(1) = τ (1)κ(1) = µ(1).

However, this is in general a too ambitious target to reach and many itera-
tions of Newton’s method may be required to compute a good approximation
of such a point. However, it might be possible to reach the less ambitious
target

µl ≤

















√

(x
(1)
1 )T Q1x

(1)
1 (s

(1)
1 )T Q1s

(1)
1

...
√

(x
(1)
k )T Qkx

(1)
k (s

(1)
k )T Qks

(1)
k

τ (1)κ(1)

















≤ µu (41)

where µl and µu are suitably chosen constants. We will use the perhaps
natural choice

µl = λγµ(0) and µu = λ−1γµ(0)

for some λ ∈ (0, 1).
Now assume a γ and a search direction (dx, dτ , dy, ds, dκ) have been com-

puted as discussed in the previous sections and if for example

√

fx
i (α̂)f s

i (α̂) < µl (42)

for a reasonably chosen α̂, then we would like to compute a modification of
the search direction such that the left-hand side of (42) is increased when
the corrected search direction is employed.

This aim can be achieved as follows. First define

f i =











µlei − (X̄(0) + α̂D̄x)(S̄
(0) + α̂D̄s)e

i, fx
i (α̂)f s

i (α̂) ≤ (µl)2,
µuei − (X̄(0) + α̂D̄x)(S̄

(0) + α̂D̄s)e
i, fx

i (α̂)f s
i (α̂) ≥ (µu)2,

0ei, otherwise
(43)

and

fτκ =











µl − (τ (0) + α̂dτ )(κ
(0) + α̂dκ), (τ (0) + α̂dτ )(κ

(0) + α̂dκ) ≤ µl,
µu − (τ (0) + α̂dτ )(κ

(0) + α̂dκ), (τ (0) + α̂dτ )(κ
(0) + α̂dκ) ≥ µu,

0, otherwise.
(44)
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Moreover, let

f :=









f 1

...
fk









and

µc := γµ(0) − eT f + fτκ

k + 1
, (45)

then we will define a corrected search direction by

Adx − bdτ = (γ − 1)(Ax(0) − bτ (0)),
AT dy + ds − cdτ = (γ − 1)(AT y(0) + s(0) − cτ (0)),

−cT dx + bT dy − dκ = (γ − 1)(−cT x(0) + bT y(0) − κ),
X̄(0)T (ΘW )−1ds + S̄(0)TΘWdx = −X̄(0)S̄(0)e + µce − D̄n

xD̄n
s + f,

τ (0)dκ + κ(0)dτ = −τ (0)κ(0) + µc − dn
τ d

n
κ + fτκ.

(46)

Note compared to the original search direction then only the right-hand side
of the linearized complementarity conditions have been modified. Next let η
be given by (25) then due to

A(ηx(0) + dx) − b(ητ (0) + dτ ) = 0,
AT (ηy(0) + dy) + (ηs(0) + ds) − c(ητ (0) + dτ ) = 0,

−cT (ηx(0) + dx) + bT (ηy(0) + dy) − (ηκ(0) + dκ) = 0,

holds the orthogonality of the search direction holds as well i.e. (26) holds.
Furthermore, we have that

(x(0))T ds + (s(0))T dx + τ (0)dκ + κ(0)dτ

= eT (X̄(0)T (ΘW )−1ds + S̄(0)TΘWdx) + τ (0)dκ + κ(0)dτ

= eT (−X̄(0)S̄(0)e + µce − D̄n
xD̄n

s + f − τ (0)κ(0) + µc − dn
τ d

n
κ + fτκ)

= −(x(0))T s(0) − τ (0)κ(0) + µc(1 + eT e) − eT D̄n
xD̄n

s e − dn
τ d

n
κ + eT f + fτκ

= (γ − 1)((x(0))T s(0) + τ (0)κ(0))

because of the fact
eT D̄n

xD̄n
s e + dn

τ d
n
κ = 0

and the definition of t and tτκ. The combination of these facts leads to the
conclusion

dT
x ds + dτdκ = 0.
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Hence, the search direction defined by (46) satisfies all the properties of
Lemma 4.1.

After the corrected search direction defined by (46) has been computed
then the maximal step size αmax is recomputed. However, there is nothing
which guarantees that the new maximal step size is larger than the step size
corresponding to original search direction. If this is not the case, then the
corrected search direction is discarded and the original direction is employed.

Clearly, this process of computing corrected directions can be repeated
several times, where the advantage of computing several corrections is that
the number of iterations (hopefully) is further decreased. However, the com-
putation of the corrections is not free so there is a trade-off between the
time it takes to compute an additional corrected search direction and the
expected reduction in the number of iterations. Therefore, the maximum
number of corrections computed is determined using a strategy similar to
that of Gondzio [14]. Moreover, an additional correction is only computed if
the previous correction increases the step size by more than 20%.

5 Computing the search direction

The computationally most expensive part of a primal-dual algorithm is the
computation of the search direction because this involves the solution of a
potentially very large system of linear equations. Indeed, in each iteration of
the primal-dual algorithm, a system of linear equations of the form

Adx − bdτ = r1,
AT dy + ds − cdτ = r2,

−cT dx + bT dy − dκ = r3,
X̄(0)T (ΘW )−1ds + S̄(0)TΘWdx = r4,

τ (0)dκ + κ(0)dτ = r5

(47)

must be solved for several different right-hand sides r. An important fact
is that for most large-scale problems appearing in practice, then the ma-
trix A is sparse. This sparsity can and should be exploited to improve the
computational efficiency.

Before proceeding with the details of the computation of the search direc-
tion then recall that any matrix-vector product involving the matrices X̄(0),
S̄(0), T , W , Θ, W 2, and Θ2, or their inverses, can be carried out in O(n)
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complexity. Hence, these operations are computationally cheap operations
and will not be considered further.

The system (47) can immediately be reduced by eliminating ds and dκ

from the system using

ds = ΘWT (X̄(0))−1(r4 − S̄(0)TΘWdx),
dκ = (τ (0))−1(r5 − κ0dτ ).

(48)

Next let (g1, g2) and (h1, h2) be defined as the solutions to
[

−(ΘW )2 AT

A 0

] [

g1

g2

]

=

[

c
b

]

(49)

and
[

−(ΘW )2 AT

A 0

] [

h1

h2

]

=

[

r2 − ΘWT (X̄(0))−1r4

r1

]

. (50)

Given A is of full rank, then these two systems have a unique solution.
Moreover, we have that

dτ =
r3 − cT h1 + bT h2

(τ (0))−1κ(0) + cT g1 − bT g2

and
[

dx

dy

]

=

[

g1

g2

]

+

[

h1

h2

]

dτ .

After dτ and dx have been computed, then ds and dκ can be computed using
relation (48). Therefore, given (49) and (50) can be solved efficiently, then
the search direction can be computed efficiently as well. Now the solution to
(49) and (50) is given by

g2 = (A(ΘW )−2AT )−1(b + A(ΘW )2c),
g1 = −(ΘW )−2(c − AT g2),

and

h2 = (A(ΘW )−2AT )−1(r1 + A(ΘW )2(r2 − (ΘWTX̄(0))−1r4)),
h1 = −(ΘW )−2(r2 − ΘW (X̄(0))−1r4 − AT h2),

respectively. Hence, we have reduced the computation of the search direction
to computing

(A(ΘW )−2AT )−1
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or equivalently to solve a linear equation system of the form

Mh = f

where
M := A(ΘW )−2AT .

Recall W is a block diagonal matrix having the W is along the diagonal.
Moreover, Θ is a positive definite diagonal matrix. This implies (ΘW )2 is
a positive definite block diagonal matrix and hence M is symmetric and
positive definite. Therefore, M has a Cholesky factorization i.e.

M = LLT

where L is a lower triangular matrix. It is well-known that if the matrix M is
sparse, then the Cholesky factorization can usually be computed efficiently in
practice. This leads to the important questions whether M can be computed
efficiently and whether M is likely to be sparse.

First observe that

M = A(ΘW )−2AT =
k
∑

i=1

θ−2
i Ai(W i)−2(Ai)T ,

where Ai is the columns of A corresponding to the variables in xi. In the
case the ith cone is R+ then W i is a scalar and Ai is a column vector. This
implies the term

Ai(W i)−2(Ai)T

can easily be computed and is sparse if Ai is sparse. In the case the ith cone
is a quadratic or a rotated quadratic cone then

Ai(W i)−2(Ai)T = AiQi(−Qi + 2wi(wi)T )Qi(Ai)T

= −AiQi(Ai)T + 2(AiQiwi)(AiQiwi)T ,
(51)

which is a sum of two terms. The term

(AiQiwi)(AiQiwi)T

is sparse if the vector
AiQiwi (52)

is sparse and Ai contains no dense columns. Note if ni is large, then it
cannot be expected that (52) is sparse, because the sparsity pattern of (52)
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is identical to the union of the sparsity patterns of all the columns in Ai.
The term

AiQi(Ai)T (53)

also tends to be sparse. Indeed in the case the ith cone is a quadratic cone
then the sparsity pattern of (53) is identical to the sparsity pattern of Ai(Ai)T

which is likely to be sparse given Ai contains no dense columns. In the case
of the rotated quadratic cone we have that

AiQi(Ai)T = Ai
:1(A

i
:2)

T + Ai
:2(A

i
:1)

T − Ai
:(3:ni)(A

i
:(3:ni))

T .

This term is likely to be sparse except if the union of the sparsity patterns
in Ai

:1 and Ai
:2 are dense or Ai contain dense columns. (Ai

:j denotes the jth
column of Ai and Ai

:(j:k) denotes the columns j to k of Ai.)

In summary if all the vectors wi are of low dimmension and the columns
of Ai are sparse, then M can be expected to be sparse which implies that the
Newton equation system can be solved very efficiently using the Cholesky
factorization.

In the computational results reported in Section 8 we use this approach.
Details about how the Cholesky decomposition is computed can be seen in
[5, 6].

5.1 Exploiting structure in the constraint matrix

In practice most optimization problems have some structure in the constraint
matrix which can be exploited to speed up the computations. In our imple-
mentation we exploit the following two types of constraint structures:

Upper bound constraints: If a variable xj has both a lower and an upper
bound, then an additional constraint of the form

xj + xk = u

must be introduced where xk is a slack variable and therefore occurs in
only one constraint.

Singleton constraints: For reasons that becomes clear in Section 7.1, con-
straints of the form

xj = b
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frequently arises where xj only occurs in one constraint. Moreover,
we will assume that xj does not belong to a linear cone because such
variable can simply be substituted out of the problem.

Exploiting the upper bound constraints is trivial and similar to the pure
linear optimization case as discussed in for example [7]. Therefore, we will
not discuss this case further and the subsequent discussion is limited to the
singleton constraints case only.

After a suitable reordering of the variables and the constraints, we may
assume A has the form

A =

[

0 A12

I 0

]

where
[ I 0 ]

corresponds to the set of singleton constraints. This observation can be
exploited when solving the systems (49) and (50). Subsequently we will
demonstrate how to do this for the system (49).

First assume that the vector g and the right-hand side of the system has
been partitioned similar to A and according to the partition of

H :=

[

−H11 −H12

−H21 −H22

]

= −(ΘW )−2.

This implies the system (49) may be written as











−H11 −H12 0 I
−H21 −H22 AT

12 0T

0 A12 0 0
I 0 0 0





















g1
1

g1
2

g2
1

g2
2











=











c1

c2

b1

b2











.

This large system can be reduced to the two small systems

[

−H22 AT
12

A12 0

] [

g2
1

g1
2

]

=

[

c2

b1

]

+

[

H21b2

0

]

(54)

and
[

−H11 IT

I 0

] [

g1
1

g2
2

]

=

([

c1

b2

]

−
[

−H12 0
0 0

] [

g2
1

g1
2

])

(55)
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that has to be solved in the order as stated. First observe that the second
system (55) is trivial to solve whereas system (54) is easily solved if the
inverses or appropriate factorizations of the matrices

H22

and
A21H

−1
22 AT

21 (56)

are known. Next observe that A21 is of full row rank because A is of full
row rank. Finally, due to H is positive definite, then H22 is positive definite
which implies that matrix (56) is positive definite.

Since matrix H22 is identical to H, except some rows and columns have
been removed, then H22 is also a block diagonal matrix where each block
originate from a block in H. Subsequently we will show that the inverse of
each block in H22 can be computed efficiently.

In the discussion we will assume that H22 consists of one block only. It
should be obvious how to extend the discussion to the case of multiple blocks.
Any block in H can be written in the form

−Q + 2wwT ,

where we have dropped the cone subscript i for convenience. Here Q is either
of the form (17) or (19) and w is a vector. Next we will partition the block
to obtain

−
[

Q11 Q21

Q12 Q22

]

+ 2

[

w1

w2

] [

w1

w2

]T

.

After dropping the appropriate rows and columns we assume we are left with
the H22 block

−Q11 + 2w1w
T
1

which we have to compute an inverse of. First assume Q11 is nonsingular
then by the Sherman-Morrison-Woodbury formula1 we have that

(−Q11 + 2w1w
T
1 )−1 = −Q−1

11 − 2
Q−1

11 w1w
T
1 Q−1

11

1 − 2wT
1 Q−1

11 w1

which is the required explicit representation for the inverse of the block.

1If the matrices B and matrix B + vv
T are nonsingular, then 1 + v

T
B

−1
v is nonzero

and (B + vv
T )−1 = B

−1 − B
−1

vv
T

B
−1

1+vT B−1v
.
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In most cases Q11 is a nonsingular matrix, because it is only singular if
the block corresponds to a rotated quadratic cone and either x1 or x2 but not
both variables are fixed. This implies that in the case Q11 is singular then it
can be assumed that Q11 has the form

Q11 =

[

0 0
0 I

]

.

Now let

w1 =

[

w̄1

w̄2

]

where w̄1 is a scalar and it can be verified that w̄1 > 0. It is now easy to
verify that

−Q11 + 2w1w
T
1 = FF T

where

F :=

[ √
2w̄1 0√
2w̄2 I

]

and F−1 =

[

1√
2w̄1

0

− w̄2

w̄1
I

]

.

Hence,

(−Q11 + 2w1w
T
1 )−1 = (FF T )−1

=





1+2‖w̄2‖2

2w̄2
1

− w̄T

2

w̄1

− w̄2

w̄1
I





=





1+2‖w̄2‖2

2w̄2
1

0

0 I



− 1
w̄1





[

0
w̄2

]

eT
1 + e1

[

0
w̄2

]T


 ,

which is the explicit representation of the inverse of the H22 block we were
looking for. In summary instead of computing a factorization of A(ΘW )−2AT ,
then it is sufficient to compute a factorization of the potentially much smaller
matrix (56) plus additional cheap linear algebra.

6 Starting and stopping

6.1 Starting point

In our implementation we use the simple starting point:

xi(0) = si(0) = T iei
1.

28



Moreover, let y(0) = 0 and τ (0) = κ(0) = 1. This choice of starting point
implies that

(x(0), τ (0), s(0), κ(0)) ∈ N (1).

In the special case of linear optimization, the algorithm presented here is
equivalent to the algorithm studied in Andersen and Andersen [6]. However,
they employ a different starting point, than the one suggested above, which
improves the practical efficiency for the linear case. Therefore, it might be
possible to develop another starting point which works better for most prob-
lems occurring in practice. However, this is a topic left for future research.

6.2 Stopping criteria

An important issue is when to terminate the interior-point algorithm. Ob-
viously the algorithm cannot be terminated before a feasible solution to the
homogeneous model has been obtained. Therefore, to measure the infeasi-
bility the following measures

ρ
(k)
P :=

‖Ax(k)−bτ (k)‖
max(1,‖Ax(0)−bτ (0)‖)

,

ρ
(k)
D :=

‖AT y(k)+s(k)−cτ (k)‖
max(1,‖AT y(0)+s(0)−cτ (0)‖)

,

ρ
(k)
G := |−cT x(k)+bT y(k)−κ(k)|

max(1,|−cT x(0)+bT y(0)−κ(0)|)

are employed which essentially measure the relative reduction in the primal,
dual, and gap infeasibility respectively. Also define

ρ
(k)
A :=

|cT x(k) − bT y(k)|
τ (k) + |bT y(k)| =

|cT x(k)/τ (k) − bT y(k)/τ (k)|
1 + |bT y(k)/τ (k)| (57)

which measures the number of significant digits in the objective value. The
kth iterate is considered nearly feasible and optimal if

ρ
(k)
P ≤ ρ̄P , ρ

(k)
D ≤ ρ̄D, and ρk

A ≤ ρ̄A,

where ρ̄P , ρ̄D, ρ̄A ∈ (0, 1] are (small) user specified constants. In this case the
solution

(x∗, y∗, s∗) = (x(k), y(k), s(k))/τ (k)

is reported to be the optimal solution to (P ).
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The algorithm is also terminated if

ρ
(k)
P ≤ ρ̄P , ρ

(k)
D ≤ ρ̄D, ρ

(k)
G ≤ ρ̄G, and τ (k) ≤ ρ̄I max(1, κ(k)),

where ρ̄I ∈ (0, 1) is a small user specified constant. In this case a feasi-
ble solution to the homogeneous model with a small τ has been computed.
Therefore, it is concluded that the problem is primal or dual infeasible. If
bT y(k) > 0, then the primal problem is concluded to be infeasible and if
cT x(k) < 0, then the dual problem is concluded to be infeasible. Moreover,
the algorithm is terminated if

µ(k) ≤ ρ̄µµ
(0) and τ (k) ≤ ρ̄I min(1, κ(k))

and the problem is reported to be ill-posed. ρ̄A, ρ̄G, ρ̄µ, ρ̄I ∈ (0, 1] are all user
specified constants.

7 Implementation

The algorithm for solving conic quadratic optimization problems have now
been presented in details and we will therefore turn the attention to a few
implementational issues.

7.1 Input format

In practice an optimization problem is usually specified by using an MPS file
or a modeling language such as AIIMS, AMPL, GAMS, or MPL. However,
none of these formats allow the user to specify that a part of x belongs to
a quadratic cone (or a semi-definite cone). Indeed they can only handle
constraints of the type2

g(x) ≤ 0.

However, the two quadratic cones the proposed algorithm can handle is given
by

{x ∈ Rn : x2
1 ≥ ‖x2:n‖2 , x1 ≥ 0}

and
{x ∈ Rn : 2x1x2 ≥ ‖x3:n‖2 , x1, x2 ≥ 0}

2Of course these formats can also handle equalities, but that does not help.

30



which are quadratic constraints of the form

g(x) =
1

2
xT Qx + aT x + b ≤ 0. (58)

plus some additional bounds on the variables. Hence, it is possible to spec-
ify any conic quadratic optimization problem using quadratic inequalities.
Therefore, any input format which allows description of linear and quadratic
constraints can be used as an input format. Such an input format will of
course also allow the specification of nonconvex quadratic problems and
therefore it is necessary to require that Q has a particular form. In our
implementation we require that Q has the form













q11 0 · · · 0
0 q22 · · · 0
...

...
. . .

...
0 0 · · · qnn













(59)

or
































q11 0 . . . · · · · · · · · · 0
0 q22 . . . · · · · · · · · · 0
...

...
. . . · · · · · · · · · 0

...
...

... 0 qij · · · 0
...

...
... qji 0 · · · 0

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · qnn

































. (60)

First note that by introducing some additional variables and linear con-
straints then it can be assumed that no two Q matrices has a nonzero in
the same positions. Moreover, by introducing some additional linear con-
straints and by rescaling the variables then it can be assumed that all the
elements in the matrices Q belong to the set {−1, 0, 1}.

We will therefore assume this is the case. After this transformation it
is checked whether any of the quadratic inequalities falls into one of the
following cases.

Case 1: Q has the form (59). Moreover, assume all the diagonal elements in Q
are positive, a = 0, and b ≤ 0. In this case the constraint (58) can be
written as

u =
√
−2b,

xT Qx ≤ u2, u ≥ 0,
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where u is an additional variable.

Case 2: Q has the form (59) and all the diagonal elements are positive. In this
case the constraint (58) can be written as

u + aT x + b = 0,
xT Qx ≤ 2uv, u, v ≥ 0,

v = 1,

where u and v are two additional variables.

Case 3: Q has the form (60) and all the diagonal elements are positive except
the jth element i.e., qjj < 0. Moreover, the assumptions xj ≥ 0, a = 0,
and b ≥ 0 should be satisfied. In this case the constraint (58) can be
written as

u =
√

2b
(xT Qix − qjjx

2
j) + u2 ≤ −qjjx

2
j ,

where u is an additional variable. If b = 0, then it is not necessary to
introduce u.

Case 4: Q has the form (60) and all the diagonal elements are positive and
qij < 0. Moreover,the assumptions xi, xj ≥ 0, a = 0, and b ≥ 0 should
be satisfied. In this case the constraint (58) can be written as

u =
√

2b,
xT Qx − 2qijxjxi + u2 ≤ −2qijxixj,

where u is an additional variable.

Observe that it is computationally cheap to check whether one of the four
cases occurs for a particular quadratic inequality.

In all four cases a modified quadratic inequality is obtained possibly af-
ter the inclusion of some linear variables and constraints. Moreover, these
quadratic inequalities can be represented by quadratic cones implying a conic
quadratic optimization problem in the required form is obtained. (This may
involve the introduction of some additional linear constraints to make the
appropriate variables in the cone free i.e. instead of letting xi be a member
of a cone, then a constraint having the form xi = xj is introduced and we let
xj be a member of the cone.)
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Hence, in our implementation we assume that the user specifies the conic
quadratic optimization problem using linear constraints and quadratic in-
equalities. Moreover, it is implemented such that the system checks whether
the quadratic inequalities can be converted to conic quadratic form and this
conversion is automatic if the quadratic inequalities satisfy the weak require-
ments discussed above.

7.2 Presolving the problem

Before the problem is optimized it is preprocessed to remove obvious redun-
dancies using most of the techniques presented in [4]. For example fixed
variables are removed, obviously redundant constraints are removed, linear
dependencies in A are removed. Finally, some of the linear free variables are
substituted out of the problem.

8 Computational results

A complete algorithm for solution of conic quadratic optimization problems
has now been specified and we will now turn our attention to evaluating the
practical efficiency of the presented algorithm.

The algorithm has been implemented in the programming language C and
is linked to the MOSEK optimizer3. During the computational testing all
the algorithmic parameters are held constant at the values shown in Table 1.
In the computational results reported, then the method of multiple correc-
tors is not employed because it gave only rise to insignificant saving in the
computation time.

The computational test is performed on a 333MHZ PII based PC having
256MB of RAM. The operating system used is Windows NT 4.

In Table 2 the test problems are shown along with the size of the problems
before and after the presolve procedure has been applied to the problems.
The test problem comes from different sources. The problems belonging to
the nb*, nql*, qssp*, and *socp families are all DIMACS Challenge prob-
lems [24]. The dttd* family of problems are multi load truss topology design
problems, see [11, p. 117]. The traffic* problems arises from a model de-
veloped by C. Roos to study a traffic phenomena. The remaining problems
have been obtained by the authors from various sources. The problems in

3See http://www.mosek.com
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Constant Value Section
β 10−8 3.1
δ 0.5 4.2
ρ̄P 10−8 6.2
ρ̄D 10−8 6.2
ρ̄A 10−8 6.2
ρ̄G 10−8 6.2
ρ̄I 10−10 6.2
ρ̄µ 10−10 6.2

Table 1: Algorithmic parameters.

the nql* and qssp* families have previously been solved in [10] and are dual
problems of minimum sum of norms problems.

It is evident from Table 2 that the presolve procedure in some cases is
effective at reducing the problem size. In particular the nql* and traffic*

models are reduced significantly by the presolve procedure.
The purpose of the subsequent Table 3 is to show various optimizer related

statistics i.e. the size of the problems actually solved and performance related
statistics. Recall that in some cases additional constraints and variables are
added to the problems to state them in the required conic quadratic form.
The first two columns of Table 3 show the number of constraints and the
number of cones in each problem. Next the total number of variables, the
number variables which has both a finite lower and upper bound, and the
number of variables which is member of a cone are shown. Finally, the
number interior-point iterations performed to optimize the problems, the
time spend in the interior-point optimizer, and the total solution time are
shown.

The main conclusion that can be drawn from Table 3 is even though some
of the problems are large, then the total number of interior-point iterations
required to solve each problem are small. An important observation is that
the number of iterations tend to grow slowly with the problem size. This can
for instance be observed for the nql* and qssp* problems.

Finally, in Table 4 we show feasibility and optimality related measures.
The columns primal and dual feasibility report the numerator in ρ

(∗)
P and

ρ
(∗)
D respectively. The first “primal objective” and “Sig fig.” columns show

the value cT x∗ the number figures that are identical in the optimal primal
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and dual objective values as reported by the interior-point optimizer. In all
cases those numbers demonstrate that the required accuracy is achieved and
about 8 figures in the reported primal and dual objective values are identi-
cal. The final two columns of Table 4 shows the optimal primal objective
value reported to the user specified model and the corresponding number of
significant figures. Recall, that the optimization problems are specified using
quadratic inequalities but is solved on conic form. Hence, the solution to the
conic model has to be converted to a primal and dual solution to the model
based on the quadratic inequalities.

In general it can be seen that the primal objective value reported by the
interior-point optimizer and the one corresponding to the converted primal
solution is almost identical. However, the number of significant figures is not
so high. This indicates the dual solution looses some of the accuracy when
it is converted.

9 Conclusion

The present work discusses a primal-dual interior-point method designed to
solve large-scale sparse conic quadratic optimization problems. The main
theoretical features of the algorithm is that it employs the Nesterov-Todd
search direction and the homogeneous model. Moreover, the algorithm has
been extended with a Mehrotra predicter-corrector scheme, treats the rotated
quadratic cone without introducing additional variables and constraints and
employs structure and sparsity exploiting linear algebra.

The presented computational results indicates that the suggested algo-
rithm is capable of computing accurate solutions to very large sparse conic
quadratic optimization problems in a fairly low amount of time.

Although the proposed algorithm works well then, some work is left for the
future. Particularly it might be possible to invent a heuristic for computing a
good starting point which might improve the efficiency of the algorithm. Also
it should be possible to specify the problem directly in conic form instead of
using the implicit form based on quadratic inequalities. This would make it
easy to report an accurate optimal dual solution.

Acknowledgement: We would like to thank K. D. Andersen and A.
Nemirovskii for helping us during the collection of the test problems.
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A Appendix

Definition A.1 Let K be a pointed and closed convex cone, then K is self-
dual if

K = K∗

and homogeneous if for any x, s ∈ int(K) we have

∃B ∈ Rn×n : B(K) = K, Bx = s.

Self-dual and homogeneous cones have been studied extensively in the liter-
ature and is called self-scaled by Nesterov and Todd.

Proof of Lemma 3.1:

We first prove X iSi = 0 implies (xi)T si = 0. Observe that

eT XSe =
n
∑

i=1
(ei)T X iSiei

=
k
∑

i=1
(T ixi)T T isi

= xT s.

(61)

This implies that any solution satisfying (20) is also a complementary solu-
tion. Next we prove if (xi)T si = 0, then X iSiei = 0. In explicit form the
complementarity conditions can be stated as

(xi)T si = 0,
(T ixi)1(T

isi)2:n + (T isi)1(T
ixi)2:n = 0.

Note that T ixi, T isi ∈ Kq. This implies if either (T ixi)1 = 0 or (T isi)1 = 0
then (20) is true as claimed. Therefore, assume this is not the case. Since x
and s are complementary then

0 = xT s

=
k
∑

i=1
(T ixi)T T isi

≥
k
∑

i=1
(T ixi)1(T

isi)1 − ‖(T ixi)2:n‖ ‖(T isi)2:n‖

≥
k
∑

i=1

√

(xi)T Qixi(si)T Qisi

≥ 0
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The first inequality follows from the Cauchy-Schwartz inequality and the
second inequality follows from T ixi, T isi ∈ Kq. This implies that both
(xi)T Qixi = 0 and (si)T Qisi = 0 are the case. Moreover, we conclude that

(T ixi)1(T
isi)1 =

∥

∥

∥(T ixi)2:n

∥

∥

∥

∥

∥

∥(T isi)2:n

∥

∥

∥ .

However, this can only be the case if

∃α : (T ixi)2:n = α(T isi)2:n

for some α ∈ R. Therefore, given the assumptions we have

0 = (xi)T si

= (T ixi)1(T
isi)1 + α ‖(T isi)2:ni‖2

and

α = −(T ixi)1

(T isi)1

implying the complementarity conditions (20) are satisfied.

Proof of Lemma 3.3:

i), ii), and iii) follows immediately from the definition of a scaling. iv) is
proved next. In the case Ki is R+ then the statement is obviously true. In
the case Ki is the quadratic cone then due to W iQiW i = I we have that

w2
1 − ‖w2:n‖2 = 1,

where w denotes the first row of W i because. This implies

x̄1
i = (ei)T x̄i

= (ei)T ΘW ixi

= θi(w1x
i
1 + wT

2:nx
i
2:n)

≥ θi(w1x
i
1 − ‖w2:ni‖ ‖xi

2:n‖)
= θi(

√

1 + ‖w2:ni‖2xi
1)

≥ θix
i
1

≥ 0

and
(x̄i)T Qix̄i = θi(x

i)T Qixi ≥ 0.
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Hence, xi ∈ Ki implies x̄i ∈ Ki for the quadratic cone. Similarly, it easy
to verify xi ∈ int(Ki) implies x̄i ∈ int(Ki). Now assume Ki is a rotated
quadratic cone and xi, si ∈ Ki. Let x̂i := T ixi and ŝi := T isi then x̂i, ŝi ∈ Kq.
Therefore, a scaling θ̂iŴ

i exist such that

ŝi = T isi = (θ̂iŴ
i)2T ixi = (θ̂iŴ

i)2x̂i,

where

θ̄2
i =

√

(T isi)T Q̂iT isi

(T ixi)T Q̂iT ixi

= θ2
i .

This implies
si = θ̂2

i T
i(̂W i)2T ixi

which shows W i = T iŴ iT i. We know that θ̂iŴ
iT ixi ∈ Kq and hence

θ̂iT
iŴ iT ixi = θiW

ixi ∈ Kr. vi) Follows from v) and the fact
√

xT QxsT Qs =
√

x̄T Qx̄s̄T Qs̄.

Proof of Lemma 4.2:

(30) follows immediately from Lemma 3.3. It is trivial to compute W i in the
case Ki is R+. Next assume Ki is a quadratic cone. First define

w̃1 := wi
1 and w̃2 := wi

2:ni

then

W iW i =

[

w̃1 w̃T
2

w̃2 I +
w̃2w̃T

2

1+w̃1

] [

w̃1 w̃T
2

w̃2 I +
w̃2w̃T

2

1+w̃1

]T

=







‖w̃‖2
(

1 + w̃1 + ‖w̃2‖2

1+w̃1

)

w̃T
2

(

1 + w̃1 + ‖w̃2‖2

1+w̃1

)

w̃2 w̃2w̃
T
2 +

(

I +
w̃2w̃T

2

1+w̃1

)2







= −Qi + 2wi(wi)T ,

(62)

because
(wi

1)
2 −

∥

∥

∥wi
2:ni

∥

∥

∥

2
= 1

follows from the definition of Qi and the fact W iQiW i = Qi. When (62) is
combined with (29) one has

si = θ2
i (−Qi + 2wi(wi)T )xi

38



and
(xi)T si = θ2

i (−(xi)T Qixi + 2((wi)T xi)2).

Therefore,

2θ2
i ((w

i)T xi)2 = (xi)T si + θ2
i (x

i)T Qixi

= (xi)T si +
√

(xi)T Qixi(si)T Qisi

and then

wi =
θ−1

i si + θiQ
ixi

√
2

√

(xi)T si +
√

(xi)T Qixi(si)T Qisi

.

Clearly,

(xi)T si +
√

(xi)T Qixi(si)T Qisi > 0

when xi, si ∈ int(K)i. Now assume Ki is the rotated quadratic cone. Let
x̂i := T ixi and ŝi := T isi then x̂i, ŝi ∈ int(Kq). Moreover, define

Q̂i := T iQiT i

and
Ŵ i := T iW iT i.

Since T iT i = I and W iQiW i = Qi then W̄ iQ̂iŴ i = Q̂i. Further by definition
we have that si = θ2

i (W
i)2xi which implies

ŝi = T isi

= θ2
i T

i(W i)2xi

= θ̂2
i (T

iW iT i)2T ixi

= θ̂2
i (Ŵ

i)2x̂i

(63)

because

θ̂2
i =

√

(T isi)T Q̄iT isi

(T ixi)T Q̄iT ixi

= θ2
i .

Now x̂i, ŝi ∈ int(Kq) which implies we can use relation (31) to compute the
scaling Ŵ i in (63). Therefore,

ŵi =
θ̂−1
i

ŝi+θ̂iQ̂
ix̂i

√
2

√

(x̂i)T ŝi+
√

(x̂i)T Q̂ix̂i(T isi)T Q̂iT isi

=
θ−1
i

T isi+θiT
iQixi

√
2

√

(xi)T si+
√

(xi)T Qixi(si)T Qisi

= T iwi
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and
Ŵ i = −Q̂i +

(ei

1+ŵi)(ei

1+ŵi)T

1+ŵi

= T i

(

−Qi +
(T iei

1+wi)(T iei

1+wi)T

1+(ei

1)T T iwi

)

T i

= T iW iT i

from which (34) follows.
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Before presolve After presolve
Name Constraints Variables Nz(A) Constraints Variables Nz(a)
drttd-11-11-2 14853 36026 70017 14853 36026 70017
drttd-11-7-2 6093 14526 27757 6093 14526 27757
drttd-11-7-7 21323 43576 89887 21323 43576 89887
drttd-21-7-1 10992 32131 58661 10991 32130 47950
drttd-21-7-2 21983 53551 106612 21983 53551 106612
drttd-9-9-2 6699 16021 30350 6699 16021 30350
nb 916 2383 191519 916 2381 191293
nb L1 1708 3176 192312 915 2381 190500
nb L2 962 4195 402285 961 4192 402050
nb L2 bessel 962 2641 208817 961 2638 208582
nql21 1820 1765 8287 1720 1666 8287
nql30 3680 3601 16969 3567 3489 16969
nql60 14560 14401 68139 14391 14233 68139
nql90 32640 32401 153509 32336 32098 153509
nql180 130080 129601 614819 129491 129013 614819
qssp30 3691 5674 34959 3690 5673 34950
qssp60 14581 22144 141909 14580 22143 141900
qssp90 32671 49414 320859 32670 49413 320850
qssp180 130141 196024 1289709 130140 196023 1289700
than1 285560 264557 944944 285560 264557 944944
than2 5364 4861 16884 5364 4861 16884
than3 301 520 1524 301 520 1524
than4 520 541 1884 520 541 1884
than5 412064 374461 1320564 412064 374461 1320564
traffic-12 2277 1342 4383 887 876 4380
traffic-24 4593 2722 8955 1888 1865 8955
traffic-36 6909 4102 13527 2899 2864 13527
sched 100 100 orig 8340 18240 104902 8340 18240 104902
sched 100 100 scaled 8338 18238 114899 8338 18238 114899
sched 100 50 orig 4846 9746 55291 4846 9746 55291
sched 100 50 scaled 4844 9744 60288 4844 9744 60288
sched 200 100 orig 18089 37889 260503 18089 37889 260503
sched 200 100 scaled 18087 37887 280500 18087 37887 280500
sched 50 50 orig 2529 4979 25488 2529 4979 25488
sched 50 50 scaled 2527 4977 27985 2527 4977 27985
Sum 1235543 1458057 7269897 1225363 1453418 7256639

Table 2: The test problems.
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Constraints Variables Optimizer
Time (s)

Itera- Interior-
Name Linear Cone Total Upper Cone tions point Total
drttd-11-11-2 7648 14410 43231 0 43230 42 79.0 79.0
drttd-11-7-2 3188 5810 17431 0 17430 33 22.2 22.2
drttd-11-7-7 18418 20335 61006 0 61005 35 224.1 224.2
drttd-21-7-1 281 10710 32130 0 32130 32 30.4 30.4
drttd-21-7-2 11273 21420 64261 0 64260 44 127.9 127.9
drttd-9-9-2 3495 6408 19225 0 19224 42 30.7 30.7
nb 123 793 2381 0 2379 19 21.0 21.0
nb L1 915 793 3174 0 2379 19 24.8 24.8
nb L2 122 839 4193 0 4191 22 65.9 65.9
nb L2 bessel 122 839 2639 0 2637 14 16.0 16.0
nql21 1279 441 2107 0 1323 16 1.8 1.8
nql30 2667 900 4389 0 2700 18 5.2 5.2
nql60 10791 3600 17833 0 10800 19 29.4 29.4
nql90 24236 8100 40198 0 24300 21 82.3 82.3
nql180 97091 32400 161413 0 97200 23 521.6 521.7
qssp30 1799 1891 7564 0 7564 16 6.7 6.7
qssp60 7199 7381 29524 0 29524 20 45.3 45.3
qssp90 16199 16471 65884 0 65884 19 117.8 117.9
qssp180 64799 65341 261364 0 261364 19 771.2 771.3
than1 229864 55696 320253 0 278480 18 561.3 561.4
than2 4068 1296 6157 0 5184 12 3.5 3.5
than3 181 120 520 0 480 13 0.2 0.2
than4 400 120 661 0 480 13 0.3 0.3
than5 312208 99856 474317 0 399424 17 824.3 824.5
traffic-12 1305 418 2141 825 1254 30 2.7 2.7
traffic-24 2762 874 4510 1725 2622 37 8.1 8.1
traffic-36 4229 1330 6889 2625 3990 35 12.2 12.2
sched 100 100 orig 8338 2 18240 0 8238 30 25.2 25.2
sched 100 100 scaled 8337 1 18238 0 8236 37 31.7 31.8
sched 100 50 orig 4844 2 9746 0 4744 26 11.9 11.9
sched 100 50 scaled 4843 1 9744 0 4742 25 12.0 12.1
sched 200 100 orig 18087 2 37889 0 17887 31 69.6 69.6
sched 200 100 scaled 18086 1 37887 0 17885 32 74.3 74.3
sched 50 50 orig 2527 2 4979 0 2477 28 5.4 5.4
sched 50 50 scaled 2526 1 4977 0 2475 19 4.2 4.2
Sum 894250 378604 1797095 5175 1508122 876 3870.3 3871.0

Table 3: Problem and optimizer results.
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Optimizer Final
Feasibility Primal Sig. Primal Sig.

Name primal dual objective fig. objective fig.
drttd-11-11-2 1.2e-008 1.7e-010 7.61821404e+003 9 7.61821404e+003 5
drttd-11-7-2 1.2e-007 2.5e-009 1.14361939e+003 9 1.14361939e+003 5
drttd-11-7-7 4.3e-008 1.1e-009 8.57614313e+003 9 8.57614313e+003 5
drttd-21-7-1 1.6e-008 1.6e-010 1.40452440e+004 9 1.40452440e+004 5
drttd-21-7-2 3.8e-008 4.3e-010 7.59987339e+003 9 7.59987339e+003 5
drttd-9-9-2 7.3e-009 1.5e-010 5.78124166e+003 9 5.78124166e+003 5
nb 4.8e-006 1.7e-007 -5.07030944e-002 10 -5.07030944e-002 9
nb L1 2.7e-007 2.4e-008 -1.30122697e+001 9 -1.30122697e+001 8
nb L2 2.8e-006 1.7e-007 -1.62897176e+000 8 -1.62897176e+000 8
nb L2 bessel 6.4e-008 1.0e-008 -1.02569500e-001 8 -1.02569500e-001 8
nql21 1.9e-013 1.5e-007 -9.55221085e-001 9 -9.55221085e-001 6
nql30 2.9e-011 1.9e-007 -9.46026849e-001 9 -9.46026849e-001 6
nql60 2.3e-010 3.8e-007 -9.35048150e-001 9 -9.35048150e-001 5
nql90 8.4e-011 4.8e-007 -9.31375780e-001 9 -9.31375780e-001 5
nql180 2.8e-009 1.4e-006 -9.27698253e-001 9 -9.27698253e-001 4
qssp30 3.5e-014 2.2e-008 -6.49667527e+000 9 -6.49667527e+000 8
qssp60 1.6e-013 2.4e-007 -6.56269681e+000 10 -6.56269681e+000 6
qssp90 3.3e-013 9.9e-008 -6.59439558e+000 11 -6.59439558e+000 7
qssp180 6.5e-011 8.4e-007 -6.63951191e+000 14 -6.63951191e+000 5
than1 1.6e-010 2.2e-006 -5.59410181e+000 13 -5.59410181e+000 6
than2 5.1e-010 2.5e-007 -5.30444254e-001 11 -5.30444254e-001 7
than3 4.8e-010 1.4e-011 7.76311624e-001 10 7.76311624e-001 10
than4 1.7e-010 5.0e-009 -7.76311611e-001 10 -7.76311611e-001 8
than5 7.6e-009 2.8e-006 -4.63823105e-001 14 -4.63823105e-001 5
traffic-12 1.0e-006 1.2e-007 8.63441371e+002 9 8.63441371e+002 5
traffic-24 6.0e-007 5.4e-008 2.68377252e+003 9 2.68377252e+003 4
traffic-36 4.6e-007 3.5e-008 5.39022850e+003 9 5.39022850e+003 4
sched 100 100 orig 1.1e+000 1.4e-008 7.17367643e+005 9 7.17367643e+005 9
sched 100 100 scaled 4.7e-002 2.7e-008 2.73314579e+001 9 2.73314579e+001 7
sched 100 50 orig 1.0e-001 3.2e-007 1.81889861e+005 9 1.81889861e+005 8
sched 100 50 scaled 3.0e-002 1.4e-007 6.71662899e+001 9 6.71662899e+001 7
sched 200 100 orig 2.4e-001 3.1e-007 1.41359802e+005 9 1.41359802e+005 7
sched 200 100 scaled 9.7e-002 2.3e-007 5.18124709e+001 10 5.18124709e+001 8
sched 50 50 orig 3.5e-004 1.8e-009 2.66729911e+004 9 2.66729911e+004 8
sched 50 50 scaled 2.0e-002 1.6e-007 7.85203845e+000 10 7.85203845e+000 10

Table 4: Feasibility measures and objective values.
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