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On Improved Training of CNN for Acoustic Source

Localisation
Elizabeth Vargas, James R. Hopgood, Member, IEEE, Keith Brown, and Kartic Subr

Abstract—Convolutional Neural Networks (CNNs) are a pop-
ular choice for estimating Direction of Arrival (DoA) without
explicitly estimating delays between multiple microphones. The
CNN method first optimises unknown filter weights (of a CNN)
by using observations and ground-truth directional information.
This trained CNN is then used to predict incident directions given
test observations. Most existing methods train using spectrally-
flat random signals and test using speech. In this paper, which
focuses on single source DoA estimation, we find that training
with speech or music signals produces a relative improvement in
DoA accuracy for a variety of audio classes across 16 acoustic
conditions and 9 DoAs, amounting to an average improvement of
around 17% and 19% respectively when compared to training
with spectrally flat random signals. This improvement is also
observed in scenarios in which the speech and music signals
are synthesised using, for example, a Generative Adversarial
Network (GAN). When the acoustic environments during test and
training are similar and reverberant, training a CNN with speech
outperforms Generalized Cross Correlation (GCC) methods by
about 125%. When the test conditions are different, a CNN
performs comparably. This paper takes a step towards answering
open questions in the literature regarding the nature of the signals
used during training, as well as the amount of data required for
estimating DoA using CNNs.

Index Terms—Microphone Arrays, Direction of Arrival, Neu-
ral Networks, Convolutional Neural Network (CNN), Generative
Adversarial Network (GAN)

I. INTRODUCTION

Estimation of the Direction of Arrival (DoA), or spatial

direction from which a sound is emitted, is an important and

well-studied problem in Acoustic Source Localisation (ASL)

with applications in numerous domains [15], [44]. The advent

of smart assistants (e.g. Amazon Echo, Google Home, Apple

HomePod) [6], equipped with arrays of microphones, has

facilitated the generation of large datasets and has motivated

research into the use of data-driven methods for DoA esti-

mation. In particular, learning via a Deep Neural Network

(DNN) architecture – deployed effectively for computer vision

applications [26] and audio processing [53] – is emerging as

an effective tool for ASL [10].

Traditional methods for performing ASL have been widely

studied in the literature [4], the most common of which

are: (i) Time Difference of Arrival (TDoA)-based approaches,

which normally employ Generalized Cross-Correlation (GCC)

methods [25], [47], [48]; (ii) beamforming-based approaches,
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including the well-known Steered Response Power (SRP) [30],

[33], which solve directly for the most likely source posi-

tion among a grid of candidate locations; and (iii) MUltiple

SIgnal Classification (MUSIC) [42], [46], which uses the

signal subspaces to estimate multiple DoA. More modern

approaches include the use of learning-based methods in ASL,

focused on feature extraction and classifiers [23], [27]. Neural

networks have been applied to various problems related to

ASL including speaker localisation using a robot [44], [45],

passive underwater sensing [15], antennas [31] and acous-

tic emission localisation on a pipeline [21]. Chakrabarty et

al. [8] perform single source localisation by treating ASL

as a classification problem, where the discretised DoA cor-

responds to a class, which they solve using a CNN. This

method has been extended to multiple sources [10] using a

flat spectral uncorrelated random process to train the network.

CNNs combined with Long Short-Term Memory (LSTM) [29]

have been shown to be useful for estimating DoA by using

Generalized Cross-Correlation Phase Transform (GCC-PHAT)

as input data. Some approaches use neural networks to perform

pre-processing such as time-frequency (TF) masking [36],

[51], [52] or denoising and dereverberation [49].

Despite the widespread use of CNNs in applications related

to ASL, numerous questions regarding the quality and quantity

of the training data remain unanswered. In [1], [2], data from

different sound classes is randomly used for both training

and testing, while in [34] the authors propose a method of

data augmentation for the task of room classification from

reverberant speech using a GAN. In [40], deep CNN and data

augmentation are used for environmental sound classification.

On the other hand, Pons et al. [37] use few training samples

(from 1 to 100) per class to train an event and acoustic scene

classifier. It is important to study the impact of training data

for a CNN that estimates DoA, as this will help to generalise

the use of deep learning methods in ASL without the need of

limiting the test data to the same one as used in the training.

In this paper, we test the impact of various sound classes

for training on the accuracy of single source DoA estimation.

We hypothesise and show that using speech and music data

for training will provide more accurate DoA estimation than

using noise, which is used by the current literature [8], [10].

Our reasoning is that speech and music data contains more

relevant spectral information that helps the CNN learn the

room acoustics much better than white noise. Our conclusion

is that using real speech data augmented with synthetic speech

data (using GAN-based methods) performs best for a wide

range of test audio classes and different incident directions.

Our main findings and novel contributions in this work are
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that:

• training with speech data, rather than flat spectral noise,

produces an average relative improvement of 3% in the

accuracy of DoA estimates for test speech signals and

17% when the test signals belong to one of three other

classes: speech, children playing and street music, across

16 acoustic conditions and 9 DoAs in both cases;

• training with music data from a dataset produces an

average relative improvement of 19% in DoA estimation

accuracy across 16 acoustic conditions and 9 DoAs,

compared to training with flat spectral noise;

• synthetic speech data generated using a state-of-the-art

GAN [13], which can be generated automatically, is as

effective in training as using real human speech;

• compared with GCC methods, a CNN trained with speech

is 125% more accurate when the test and training environ-

ments have similar reverberation, and comparable when

the reverberation levels are different.

The article is organised as follows. We review state-of-the-

art DoA estimation using Neural Networkss (NNs) in Sec-

tion II. Section III gives details of our proposed approach for

training the CNN to estimate DoA. We present our evaluation

in Section IV, in which we compare our training methodology

against related state-of-the-art approaches. In Section V we

discuss the results of our experiments. Section VI concludes

our work and states future directions for research.

II. RELATED WORK

This section shows existing DoA-based work in NN for

ASL. We discuss the training data used in each work and at

the end of the section we highlight how our work differs from

previous ones.

DoA methods are subdivided depending on whether they

estimate the DoA for a single source or multiple sources. Since

our contributions are oriented to the estimation of a single

source, we focus our review of the literature in single source

approaches.

The use of planar arrays is very common in single-source

DoA estimation. In [44], for instance, the authors train a

DNN to localise sources using a microphone array embedded

on a humanoid robot. Localisation is presented as a binary

classification problem, in which the algorithm returns either

1 or 0, depending on the existence (or not) of a source at a

given direction. The main contributions arising out of this work

are the uses of a directional activator, similar to MUSIC, and

the use of this activator to treat complex numbers (from the

spectrogram) at each sub-band. The evaluation was performed

using real data from a Japanese dataset as training and testing

sets (with different data used for each set), and accuracy

computed for 72 different DoAs and frames of 200ms. The

main limitation of this work is that the DNN is unable to

localise sources located in positions that not appear on the

training set. The authors propose a new approach to overcome

these limitations in [45], using unsupervised learning together

with a parameter adaption layer and early cessation of the

parameter updates. These changes result in improvements for

some of the DoA angles, but in a deterioration for others.

A similar approach is presented by Chakrabarty et al. [8],

where phase information of the Short-Time Fourier Transform

(STFT) coefficients is used together with a single-class clas-

sifier to train a CNN that outputs the DoA of a group of

signals from a microphone array. The DoA is modeled as a

single-class classification problem, in which the classes are

37 different angles (DoA), with 5° intervals. The network is

trained with synthetic data and tested with speech signals from

the TIMIT dataset. The results are presented as accuracy level

per frames: that is to say, the number of frames that correctly

classify the DoA, similar to [44]. Since this article is the basis

for our work, Section III-A discuss this in further detail. In [29]

the authors use a CNN combined with a LSTM to estimate

DoA. The main contribution of [29] is its adaptability to a

change in microphone array configuration and the use of a very

small amount of data, since the network uses GCC-PHAT as

the input, rather than the spectrogram as in previous cases [8],

[44].

There are a set of approaches that use a NN as a pre-

processing step, including [51], in which the authors use a

Bidirectional Long Short Term Memory (BLSTM) for time-

frequency (TF) masking to arrive at a clean phase TDoA

estimation. They use this to improve conventional Cross-

correlation (CC), beamforming, and subspace-based algo-

rithms for ASL. They perform experiments with a binaural

setup, judging the estimation as accurate when the error is

within 5 degrees. This approach is extended in [52] where

the DoA is calculated directly using monaural spectral in-

formation for mask estimation during training, and therefore

this approach could be extended to different microphone

configurations. Similar to [36], the authors use a CNN to

predict a time-frequency (TF) mask for emphasising the direct

path speech signal in time-varying interference. This approach

is applied in combination with SRP to estimate the DoA.

The main limitation is that it only works on the same audio

class as in the training set while the main assumption is that

there is only one main interference with the target of interest.

The experiments were conducted using speech (English for

training and Japanese for testing) mixed with everyday sounds

(office printer background or household noise) to train and test

the NN for both static and moving speech sources. Wang et

al [49] propose the use of an Acoustic Vector Sensor (AVS)

to estimate DoA, in conjunction with a network for denoising

and dereverberation. The authors’ hypothesis is that clean

features are better classified than unclean ones, therefore they

used a DNN for Signal Denoising and Dereverberation (DNN-

SDD), which maps noise and reverberant speech features

to their clean versions and uses them as input for a DNN

that calculates DoA. The method is evaluated in small-sized

microphone arrays, with the Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) used as evaluation metrics.

There are some works that describe ASL using NNs in

planar arrays for very specific applications. In [15], the authors

present an application of CNN for DoA to passive underwater

sensors, a technique that uses cepstrograms and generalized

cross-correlogram as input to estimate range and bearing. The

network is trained using real, multi-channel acoustic record-

ings of a surface in a shallow water environment. Another
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application is presented in [31], in which DoA estimation

using DNN is used in antennas. The main contributions of the

work in [31] are a proposed end to end DNN for general (not

only acoustic) DoA estimation, the use of an autoencoder for

pre-processing and training with various outputs of a certain

array, so the network is robust to imperfections. The authors

train and test their approach based on simulated data and use

MUSIC as a baseline for comparison. Finally, in [21] we are

presented with an application of acoustic emission localization

on a pipeline, generated when energy is released within a

material. The experiments showed an accuracy of 97% and

execution time of 0.963 milliseconds.

In general, we summarise that the literature in deep neural

networks, as applied to ASL, is focused on creating neural

network architectures and methodologies that generalise the

following:

• Room Acoustic Conditions: The network goal is to be

robust to new acoustic conditions, such as noise and

reverberation, different from those used during training.

One of the clearest examples is [8], in which the net-

work is trained and tested with different room sizes and

reverberations. Moreover, [52] test their pre-processing

TF mask in various noise and reverberant environments.

Perotin et al, [35], train their NN on a large variety of

simulated rooms and test it on unseen rooms. The main

limitation of these approaches is their assumption that

both the train and test data belong to the same audio

class.

• Source Locations: The objective is to be able to estimate

source locations different from those present in the train-

ing set. In [8] the authors considered in their experiments

the influence of source-array distance. Similarly, [35]

evaluated their algorithm on DoAs that lie anywhere on

the sphere rather than on the same discrete grid used for

training.

• Microphone Configuration: The NN should be able to

be tested on any microphone configuration, independent

of the one(s) it was trained with. This is partially achieved

in [29], in which the authors use GCC-PHAT as the input

to the NN, therefore the microphone configurations of

training and testing could be different, provided that the

microphones are located at the same distance. A better

generalisation is presented in [52], in which the NN

uses monaural information: however, this is only for TF

mask estimation as a pre-processing step, rather than DoA

estimation directly.

Even though the literature covers a lot of work in gener-

alising the learning process, there is a gap in the efforts to

generalise the nature of training data. The closest effort has

been presented in [2], in which the authors use various data

classes for training and testing the network: however, they

limit their work to using the same audio class for training and

testing. Accordingly, in this paper we have focused this work

on studying the impact of the quality and quantity of training

data when it comes to DoA estimation. Studying this impact,

will help to generalise the use of deep learning methods in

ASL without the need of limiting the test data to the same

one as used in the training.

III. METHODOLOGY

A. Baseline: DoA estimation using CNNs trained with spec-

trally flat random noise

The focus of this work is on analyzing the impact of training

data, therefore we use an existing architecture [8] and follow

the methodology presented in this section for training and

testing.

The CNN, initially proposed in [8] and used in [9]–[11], is

based on a standard CNN [17] architecture. These networks

typically consist of a set of “convolution layers”, which act

as filters on the input, resulting in the set of features that the

network learns. The convolution is followed by an activation

layer, operating point-wise over each element of the feature

map. Later on, a pooling operation is applied to reduce the

feature map. In the final step, the fully connected layers

aggregate information from all different positions to perform

classification.

In this particular application, the authors use the CNN

architecture presented in [8], which has the following char-

acteristics:

• The CNN treats the phase of the STFT as an image and

the input is a matrix of size M by K, where M is the

number of microphones and K the resolution of the STFT

in the frequency domain. It is important to note that the

input is a single time frame of the total signal per training

data point, as opposed to the entire STFT.

• The CNN uses the rectified linear units (ReLU) as acti-

vation function.

• The CNN does not have any pooling layer, since it

decreases the performance of the network.

• The last layer uses softmax activation function to perform

classification.

• The network was trained using the Adam optimiser [24],

with a learning rate of 0.001, for 5 epochs, and uses

categorical cross-entropy as loss function.

• The output of the CNN is the posterior probabilities of

the input belonging to one of 37 DoA classes (discrete

values from 0 to 180, with a gap of 5 degrees).

We tested the performance of this network to have a baseline

for comparison. Fig. 1 illustrates this. It also presents the

results of the sample experiments available in [7].

B. Acoustic conditions

Four microphones arranged in a linear array were used.

The training and testing conditions are summarised in Ta-

ble I, which are the same as those described in [8], to

aid comparison. Moreover, the signals (16kHz sampling fre-

quency) were transformed using the STFT with a window of

size 256 and overlap of 129. Although the inter-microphone

distance is the same for both training and test, the arrays

are positioned in different locations within the rooms. The

training data is composed of 5.6 million frames, including

cases in which the input combined real and synthetic data,

guarantying a fair comparison among training data variations.
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The test data is composed of 100 audio files per audio

class (see Section III-D). The test signals are generated by

convolving these audio files with Room Impulse Responses

(RIRs) for 9 different DoAs, the same as those established

in the baseline: 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°and

150°. The RIR simulation is performed using the Image Source

Method (ISM) [3]. The noise on the test signals is uncorrelated

additive white Gaussian noise (that is, independent at each

microphone), added using the ISM simulator from [28].

C. Training audio classes

We used two different audio classes to train the CNN:

speech and music. For each of these classes we used different

variations to produce this data (see Section III-C1 and Sec-

tion III-C2), either by using datasets or methods to synthesise

these sounds.

1) Speech: Six different types of speech training data are

used, in order to improve the DoA estimation accuracy of

existing CNN architectures in different audio classes. The

methods used for generating the training data are as follows:

1) Speech (TIMIT) Data from the TIMIT dataset [16],

containing data of 630 speakers from 8 major dialects of

American English, who are reading phonetically rich sen-

tences. The dataset was originally designed as a database

of speech data for acoustic-phonetic studies, as well

as the development and evaluation of automatic speech

recognition systems. This dataset includes silent frames,

usually when the speaker pauses in between words, where

there is little signal energy. We do not remove these

frames. In the case of silent frames, the target label is

defined as the same as for the rest of the frames, since

we assume single static sources.

2) Speech and Voice Activity Detector (VAD)

(TIMIT+VAD) The TIMIT speech data is pre-processed

using a VAD [43], a technique in speech processing,

used to detect the absence of human speech. In this

case, silent frames were detected using a VAD and later

removed from the signal before training the NN.

In general, a VAD algorithm consists of three steps: first,

there is a noise reduction stage; then, some features are

extracted from a section of the signal (which is what is

described here as a frame); and, finally, a classification

technique is applied in order to evaluate whether the

frame contains speech or not. In the classification step,

the algorithm proposed in [5] is employed, using an

implementation available in [43]. The authors use end-

point detection to determine where speech begins and

ends, and also to determine a speech threshold for initial

estimation of silent frames. Moreover, they compute

the zero crossing rate in the vicinity of endpoints, that

is, the number of successive signal samples that have

different algebraic signs. If frames above the initial

threshold have considerable changes in zero-crossing rate,

the endpoints are re-designed to the points at which the

changes take place. The parameters used in [43] (and

in this manuscript) are threshold energy = 0.0012 and

threshold zero cross rate = 1.5.

As a result, when a VAD is applied to the TIMIT data

used for training, silent frames represent 26.47% of the

total number of frames.

3) Synthetic Speech (BSAR) Synthetic speech signal, mod-

elled by using a Block Stationary Autoregressive (BSAR)

process [14]. Eq. 1 illustrates how the signal, st, is

modelled: st is partitioned into M contiguous blocks,

with block i beginning at sample ti; et denotes the

excitation process with variance σi:

st = −

Qi∑

q=1

bi(q) st−q + et, et ∼ N (µ, σ2

i ) (1)

The rational for using this model is to investigate the

effect of a training signal with well-structured but time-

varying spectral characteristics.

4) GAN Speech (GAN-TIMIT) Synthetic speech signal

generated using an implementation of a GAN, known

as WaveGAN [13], trained with TIMIT speech data.

WaveGAN is a machine learning algorithm based on

GANs, which uses real (recorded) audio samples to learn

to synthesise raw waveform audio. The implementation

provided by the authors is capable of learning up to 4

seconds of audio at 16 kHz. GANs, originally proposed

in [18], are composed of two NNs: a discriminator, D,

and a generator, G. D is trained to determine whether

an example is real or not (i.e. if it is realistic enough

to resemble the signal that it is trying to synthesise)

using training data, while G is trained to try to fool the

discriminator into thinking its output is real. Therefore,

G is trained to minimise and D is trained to maximise

the value function. Eq. 2 illustrates such a value function,

V (D,G). PX is a probability distribution over the dis-

crete variable X . Ex∼PX
[f(x)] represents the expectation

of f(x) with respect to PX . The generator commonly

uses randomized input as initial seed. More details about

GANs can be found in the original publication [18].

V (D,G) = Ex∼PX
[logD(x)]+Ez∼PX

[log(1−D(G(z)))]
(2)

The approach proposed in [13] is based on a two-

dimensional deep convolutional GAN (DCGAN) pro-

posed in [38], used for image synthesis. The authors boot-

strap DCGAN to work on spectrograms, proposing an ap-

proach called SpecGAN. Moreover, they use a waveform

approach called WaveGAN, which flattens the DCGAN

architecture to work on one dimension. Moreover, they

increased the stride factor for all convolutions, removed

batch normalisation from generator and discriminator and

finally trained using the WGAN-GP [19] strategy.

5) GAN Speech (GAN-SC09) Synthetic speech signal gen-

erated using WaveGAN [13], trained with Speech Com-

mands Zero through Nine (SC09) data.

6) GAN for Speech Data Augmentation (TIMIT+GAN-

TIMIT) Half of the data is from Speech (TIMIT) while

the other half is synthetically generated using a waveGAN

and no VAD is used.
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TABLE I: Training and Testing Conditions

Parameter Train Test

Inter-mic distance 8 cm 8 cm

Source-array distance 1 m and 2 m 2 m

T60 0.3 s, 0.2 s 0.1 s

STFT window 256 256

STFT overlap 129 129

DoA 0°to 180°, 5°gap 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°and 150°

2) Music:

1) Street Music (StMu): Data from the UrbanSounds8k

dataset [41], which contains 27 hours of audio across 10
sound classes. The authors in [41] downloaded all sounds

returned by Freesound search engine when using the

class (e.g. “street music”) as query. They then manually

checked the recordings, kept the field recordings and

label the start and end times of every occurrence using

Audacity. Signals from the class “street music” were

selected to train the CNN. Similarly as for speech, in

the case of silent frames the target label is defined as the

same as for the rest of the frames, since we assume single

static sources.

2) Street Music and VAD (StMu+VAD): The Street Music

data is pre-processed using a VAD [43] in order to

remove silent frames, using parameters threshold energy

= 0.0012 and threshold zero cross rate = 1.5. When

a VAD is applied to Street Music data used for training,

silent frames represent 26.76% of the total number of

frames.

3) GAN Piano (GAN-Piano): Synthetic speech signal gen-

erated using WaveGAN [13], trained with Piano data.

4) GAN Drums (GAN-Drums): Synthetic speech signal

generated using WaveGAN [13], trained with Drums data.

D. Testing audio classes

We tested the implementation in the following audio classes:

• Example (ex): Sample test speech data provided in [7],

created when convolving a 13 sec long speech signal with

Measured RIRs from the Bar-Ilan Multi-Channel Impulse

Response Database [20].

• Speech (sp): The TIMIT dataset [16], as described above

in Section III-C1.

• Urban Sounds: Data from the UrbanSounds8k

dataset [41], as described in Section III-C2. The classes

used were: Children playing (ch), Siren (si) and

Street music (mu). Although these classes belong to

datasets from urban sounds, in the case of children

playing and street music, they could also be found in

indoors environments and there is a dominant sound

the direction of which could be estimated. In the case

of children playing in particular, while in principle it

involves multiple sounds, in practice test signals were

chosen so that a dominant sound is present. In the case

of the siren, our aim is to represent a very challenging

sound, which involves the repetition of the same signal.

Moreover, its spectral content is also a challenging

aspect, since the siren is in general a narrowband signal,

as opposed to the broadband signals used for training

the CNN. Therefore, the CNN does not learn to estimate

DoA for narrowband signals, which makes the siren a

challenging signal.

E. Evaluation metric

In order to evaluate the trained network, accuracy is used as

a performance metric, similarly to [7], [12], [22], [44], [50].

Accuracy is calculated as Nc/Nt, where Nc is the number

of correctly classified frames and Nt is the total number of

frames.

IV. EXPERIMENTAL RESULTS

For all experiments in this paper, we use RIR simulation [3]

to mimic transport of the source signals to the microphone.

The simulation introduces the appropriate delay and adds noise

and reverberation.

A. Baseline

In order to establish a baseline for comparison, we tested

the performance of a pre-trained network available in [7] on

the test audio classes presented in Section III and the room

conditions are summarised by Table I. Fig. 1 illustrates the

accuracy of testing the pre-trained network for four different

noise (noise free, 30dB, 20dB and 10dB SNR) and reverber-

ation (0s, 0.1s, 0.2s and 0.3s) conditions. Our hypothesis was

that the pre-trained network would perform accurately for the

speech class (given their accurate results in this audio class

presented in [8]), but that the performance would decrease

when presented with new audio classes for testing. The results,

shown in the top row of Fig. 1, are good for speech data under

low reverberation. For other audio classes, the accuracy drops

by about 60% for higher reverberation simulations, confirming

our hypothesis. It appears that although noise forms excellent

training data for estimating DoA from speech signals, it is

surprisingly less effective at generalising to other classes of

test signals such as music. One explanation (see Sec. V-B)

is that the spectral content of noise is better correlated with

speech than with signals that contain repetitive temporal struc-

ture such as music or sirens. This is an intriguing observation

and further work is needed to formalise these connections.

B. Training with speech

In this experiment, we trained the CNN using the six types

of speech training data described in Section III, and tested
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(a) Reverb. 0 s (b) Reverb. 0.1 s (c) Reverb. 0.2 s (d) Reverb. 0.3 s

Fig. 1: Baseline [8] performs inaccurately when tested with data different than speech. The figure shows the accuracy (z-axis)

of testing the pre-trained network for four different noise (top to bottom: noise free, 30dB, 20dB and 10dB Signal-to-Noise

Ratio (SNR)) and reverberation (left to right: 0s, 0.1s, 0.2s and 0.3s) conditions in 5 different audio classes: ex, sp, ch, si and

mu — described in Section III-D. Reverb. 0 s implies that the RIR is used, but T60 = 0, so effectively only time delays and

noise are affected. For each heat-map the x-axis corresponds to the audio classes, the y-axis denotes the DoA used on the test

set and the z-axis illustrates the accuracy from 0 (yellow) to 1 (navy blue). The pre-trained network performed accurately for

the speech class: however, the performance decreased when it was presented with new audio classes for testing, particularly

in noisy and reverberant scenarios.

them on the same data as the baseline (see Table I for details).

Our main hypothesis is that using speech for training the CNN

will provide accurate results and will outperform the ones

obtained with the baseline.

Fig. 2(a) illustrates the results obtained when the TIMIT

database is used for training. It presents high accuracy for

most angles (except 30°, 75°and 150°, in which case it still

outperforms the baseline) and most audio classes (except

the siren, which is the most challenging). Fig. 2(b) presents

the results obtained when training with signals from the

TIMIT dataset, pre-processed using a VAD. In comparison

to Fig. 2(a), the accuracy decreased in general for most audio

classes and angles, except for 45°, 60°, and 120°, where it

is still above 60%. Fig. 2(c) shows the results obtained when

the network is trained using synthetic speech from a BSAR

model. This does not perform very well, perhaps because the

model does not properly represents the speech frequencies

as well as the dataset does. Figs. 2(d) and (e) show the

results using data generated using WaveGAN, using TIMIT

and SC09 respectively. Even though both generate accurate

results, using the WaveGAN trained with TIMIT provides

more accurate results than using the WaveGAN trained with

SC09, particularly for 135° when it is very accurate. These

results are comparable to the results using TIMIT. Finally,
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(d) GAN-TIMIT [13] (e) GAN-SC09 [13] (f) TIMIT+GAN-TIMIT

Fig. 2: A comparison of DoA estimation accuracy (heatmap – 0 in yellow and 1 in navy blue) by training with different

sources of speech data and testing in four different audio classes (x-axis) and 9 DoAs (y-axis). Using speech from the TIMIT

dataset (a) or waveGAN (d) yields the best performance. However, training with any speech achieves higher accuracy than the

baseline (second row of fig. 1) across audio classes. The test data is the same as that used for the baseline, with 30 dB SNR

and 0.1 s reverberation.

Fig. 2(f) illustrates the results obtained when the data from

TIMIT is augmented using WaveGAN with TIMIT input. This

latest approach is the one that presents the best results amongst

speech, surpassing even the ones obtained with TIMIT. These

experiments confirm our hypothesis that using speech for

training the CNN provides accurate results for DoA estimation.

Fig. 3 presents the results obtained when using the pre-

trained network from the baseline compared with the results

obtained when we use synthesised speech from WaveGAN

with TIMIT as input. The results show that our results are

superior to the ones obtained by the baseline, particularly when

the reverberation levels are high. This confirms our hypothesis

that training the CNN using speech data outperforms the

results obtained when the CNN is trained with noise.

C. Training with music

Next, we trained the CNN using the four types of music

training data described in Section III, and tested them on

the same data as the baseline (see Table I for details). Our

hypothesis in this case is that using music for training will

provide accurate results, outperforming those of the baseline,

though not as robust as those obtained with speech. The

rationale behind this hypothesis is that speech data uses speech

recorded especially for a dataset, that is, no background noises,

while street music is recorded in urban scenarios, as explained

in Section III.

Fig. 4(a) illustrates the results obtained when training with

Street Music signals, as recorded in the Urban Sounds 8K

dataset. It shows that the accuracy is very high for all the

tested angles and audio classes, except for siren, where the

accuracy is around 40%. When using a VAD to remove

silent frames, the accuracy obtained is decreased, as presented

in Fig. 4(b). On the other hand, the use of WaveGAN to

generate synthetic music data generates accurate results in both

scenarios, but it shows better performance when the GAN

is trained with Drums, Fig. 4(d), in comparison to when it

is trained with Piano, Fig. 4(c). These results support our

hypothesis that using music for training generates accurate

results, outperforming those obtained using the baseline.

D. Speech vs music

Fig. 5(a) compares the average accuracy for all DoAs

on the test set for the different test audio classes, obtained

when using a CNN trained with variations of speech data.

In general, training the neural network using data from the

TIMIT dataset presents the most accurate DoA estimation,

not only for the test that uses speech, but also for the rest

of the audio classes. Similar results are obtained when using

data generated from WaveGAN for training. In both cases,

the accuracy outperforms that obtained using the pre-trained

network (baseline). In contrast, training using a VAD to pre-

process the signals or using synthetic speech from a BSAR

process decreases the accuracy of the DoA estimation.
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(a) Reverb. 0 s (b) Reverb. 0.1 s (c) Reverb. 0.2 s (d) Reverb. 0.3 s

Fig. 3: A comparison of the DoA accuracy (heatmap – 0 in yellow and 1 in navy blue) for different audio classes (X-axes)

and multiple incident directions (Y-axes). The baseline (top row) performs well for speech signals (particularly at 90°) or when

reverberation levels are low. Training with speech (middle row) is more robust to incident directions as well as audio classes.

Training with music (bottom row) generates the best results. The test data consists of simulated Room Impulse Responses

using the Image Source Method, for 30 dB SNR. Legend: example [7] test data (ex), speech (sp), children playing (ch), siren

(si) and street music (mu).

Similarly, Fig. 5(b) compares the average DoA accuracy,

when the network was trained with variations of music. In

this case, the best results are obtained when training directly

with Street Music (StMu), even when a VAD is used. The use

of synthetic data from a GAN is not as accurate as in the case

of speech: however, they outperform the results obtained using

the baseline for children, siren and music audio classes.

In Fig. 6 we compare the various variations we used for

training among themselves in order to determine the best

training strategy depending on the test scenario. Fig. 6(a)

illustrates the case in which the datasets and VAD are used for

training. In this case, Street Music generates the best results

for all the test audio classes, even when a VAD is used.

In contrast, Fig. 6(b) illustrates the comparison when data

from WaveGAN is used. In this scenario, the best results are

obtained when TIMIT speech data is used as input for the

GAN. Finally, Fig. 6(c) compares the best results for each

type of training data against the baseline. This confirms that

training with either speech or music produces more accurate

results than using the baseline and the best results are obtained

when training with Street Music data. This also confirms that

our hypothesis that training with speech is better than training

with music is not completely accurate, since the best results

are obtained using Street Music. The fact that the CNN trained

with music performs better on speech data than the CNN

trained with speech is because the CNN trained with music

performs better for all DoAs while the one trained with speech

fails for 30° and 150°. However, it is important to remember

that when using data from WaveGAN, it is better to use speech

rather than music.

E. Impact of Amount of data

We investigated the impact of decreasing the amount of

training data on the accuracy of DoA estimation. Our hypoth-

esis is that the data from datasets will be more affected by the

change in the amount of data, rather than the data from the

GAN, since the first one has more variation between samples,

while the latter one is more homogeneous.
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(a) StMu (b) StMu+VAD (c) GAN-Piano [13] (d) GAN-Drums [13]

Fig. 4: A comparison of DoA estimation accuracy by training with different sources of music data. For each heat-map the

x-axis corresponds to the audio classes, the y-axis denotes the DoA used on the test set and the z-axis illustrates the accuracy

from 0 (yellow) to 1 (navy blue). Using speech from the Street Music class from Urban Sounds 8K (a) or WaveGAN trained

with Drums (d) yields the best performance. However, training with any variation of music achieves higher accuracy than the

baseline (second row of fig. 1) across audio classes. The test data is the same as that used for the baseline, with 30 dB SNR

and 0.1 s reverberation.
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Fig. 5: Using synthesized speech (GAN) is marginally worse than using real speech data (TIMIT). However, augmenting real

speech with synthetic (TIMIT+GAN) performs similarly to TIMIT and with a lower standard deviation. Each bar depicts the

accuracy averaged over 9 different DoAs angles and 4 different audio classes, in a simulated scenario with 30 dB SNR and

0.1 sec reverberation.

Fig. 7 presents the results of this study for a network trained

with speech. We used different percentages of the original

training data, 25%, 50% and 75%. In general, the five proposed

training methods do not present a high variation in accuracy;

however, training with WaveGAN yields the least change in

accuracy, even when the amount of data used is 25% of the

original set.

Fig. 7 presents the same results, but for a network trained

with music. Similarly to the speech case, there is a large

variation in the accuracy; however, using data generated with

WaveGAN produces a smaller change in accuracy than it does

to use data from the dataset directly or even using a VAD,

which produces the highest variation.

These experiments slightly confirmed our hypothesis that

data generated from GAN produces the smallest variation in

the output when the amount of training data is considerably

decreased. However, overall the change in the accuracy is

so small for all the training methodologies that it does not

produce a meaningful conclusion.

For the sake of completeness, we also decreased the per-

centage of training data for speech (TIMIT+GAN-TIMIT)

and music (StMu), illustrated in Figure 9. In general, 25%

is the lowest amount of training data that produces accurate

results for both speech and music, however speech seems to be

more robust for lower volumes of training data. For speech,

lowering the volume of training data below 25% decreases

the overall DoA estimation accuracy, with a significant drop

in accuracy at 5%. While in this case the change is not sudden,

it does decrease significantly, as opposed to results obtained

when using 25% (or more) of the data. On the other hand,

when using music, the CNN is unable to learn after a certain

point; therefore, we see that the accuracy suddenly drops to
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Fig. 6: Comparison of training strategies using datasets and synthetic data from speech and music.
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Fig. 7: Impact of the volume of training data (X-axes) on

accuracy (Y-axes) for five different speech training datasets.

The shaded area around the lines represents the uncertainty.

Training with synthesized speech, BSAR and GAN, exhibit

lowest variation across different training volumes with the

latter performing better. 100% corresponds to the full training

data used in other experiments.

0 when 15% of the training data is used. When the volume

of training data is lowered to 1% for speech, the accuracy

drops significantly, reaching the levels obtained when music

is lowered to 20%.

F. Learning vs Cross-Correlation

Finally, we compare our method against a tradi-

tional approach that uses GCC (with no weighting) and

GCC-PHAT [25] (using the PHAT weighting), to understand

the relative merits of machine learning. The GCC-PHAT was

tested using the function available in MATLAB. Fig. 10

illustrates the DoA estimation accuracy under two different

reverberation conditions, one that was used during training

(0.3 s) and one that was not (0.1 s). For 0.1 s, it can be

seen that GCC, GCC-PHAT and both GAN perform very

similarly across the four audio classes. For 0.3 s, however,
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Fig. 8: Impact of the volume of training data (X-axes) on

accuracy (Y-axes) for four different music training datasets.

The shaded area around the lines represents the uncertainty.

Training with synthetic data from a GAN exhibits the lowest

variation across different training volumes. 100% corresponds

to the full training data used in other experiments.

GAN clearly outperforms GCC, especially for DoAs 30°, 45°,

135°and 150°, where the accuracy improves 16× on average.

Even the use of PHAT weighting did not improve performance,

since the accuracy is higher than GCC, but not comparable to

that obtained when training a CNN for the target reverberation.

This suggests that the CNN is potentially learning information

about the room acoustics, whereas GCC and GCC-PHAT

assume a free-field environment.

V. DISCUSSION

A. Nature and volume of training data

In our experiments, we observed that CNNs trained using

real music outperformed other training datasets at estimating

DoA. The next best training data to music was real speech data

augmented with synthetic speech. The augmentation enables

scaling the volume of training. It is indeed possible that these

observations are due to peculiarities in the datasets we used
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Fig. 9: Lowest amount of training data for speech

(TIMIT+GAN-TIMIT) and music (Street Music). Shaded area

around the lines represent the uncertainty. Speech is more

robust for lower volume of training data.

for training. Further investigation is required to generalise this

claim. Curiously, we observed that generating synthetic speech

with WaveGAN yields about a 15% relative improvement in

accuracy over methods such as synthesis using a BSAR model

across 16 acoustic conditions and 9 DoAs. On the other hand,

using a VAD decreases the accuracy by around 8% when it is

used in speech data, but only 3% when used on music data.

Given that the training data, both speech and music, has a high

number of silent frames (around one quarter of the training

data — 26%), the decrease in performance cannot be due to a

low number of silent frames in the training data. Instead, the

VAD we used (described in Section III-C1), eliminates not

only silent frames but also some of the frames that contain

actual speech, which is leading to poorer results in DoA

estimation. We consider that using different parameters could

lead to better results, however further experiments are required

to achieve a significant conclusion. The use of WaveGAN to

generate training data provides higher accuracy for speech than

for music, but only 2% on average.

We also observed that using only 25% of the training

data (as reported in other experiments in this paper) was

sufficient to obtain similar accuracy. Furthermore, for a given

method (and training data), we found that accuracy is not very

dependent on the amount of training data up to 25%. When

smaller amounts of data are used, then the decrease in accuracy

is significant, particularly for music.

B. Insights

Using spectrally flat random signals for training, as pro-

posed in [8], was mainly motivated by the need to accelerate

training data generation, since no datasets were required. This

improves scalability and results in a NN that does not favour

any particular audio class.

Although training with noise has the obvious advantage of

not requiring a dataset to train on, we show that (unsurpris-

ingly) training with speech and music enables more accurate

estimates of DoA. We explain this using importance sampling

as an analogy. While white noise is effective as training, the

spread of energy across the frequency spectrum necessitates

a large volume of training data for accurate estimation across

multiple classes. Speech and music data, on the other hand,

steer the network towards focusing on the ‘important’ spectral
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Fig. 10: CNN outperforms GCC and GCC-PHAT for un-

trained data. Comparison of waveGAN-trained network with

GCC and GCC-PHAT under different reverberation conditions.

For each heat-map the x-axis corresponds to the audio classes,

the y-axis denotes the DoA used on the test set and the z-axis

illustrates the accuracy from 0 (yellow) to 1 (navy blue). The

network used was trained with reverb. of 0.3s. When the test

environment is different (left), the network performs similarly

on average (but with lower variance). When the test condition

matches training (right), the network outperforms GCC and

GCC-PHAT. As expected, GCC’s performance suffers when

the reverberation is increased. An advantage of using super-

vised learning is that the method can be trained to handle such

difficulties.

bands – where the energy is likely to lie in the test signals

– making them more efficient for training. In other words,

spectral correlations in the training signals are important to

learning an accurate estimator for DoA.

In our experiments, training with either synthetic [32], [39]

or real speech yields similar performance. However, for music,

training with synthetic data is not effective. We conjecture that

this is due to synthetic speech generators being able to generate

accurate speech samples, while current music generators are

simple and usually focus on one instrument. Moreover, the

synthetic music generator produces harmonically clean signals

with artificially added noise, which contrasts with the natural

noise present in music sources.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

C. Advantage of learning

Training can be viewed as advantageous when certain

aspects of the test conditions might be known a priori.

For example, training data may be generated specific to the

acoustic behavior of a particular auditorium if the goal is to

track only speakers in that auditorium. Although traditional

methods such as GCC and GCC-PHAT do not require train-

ing, this can be seen as a shortcoming since such specific

information cannot be encoded. For example, if reverberation

within the auditorium is known to be high, it is not trivial

to develop a method that augments GCC or GCC-PHAT with

that information.

D. Limitations and future work

The main limitation of supervised learning is its difficulty in

generalisation. For example, training a CNN to suit a variety

of acoustic environments incurs a penalty (of lower accuracy).

Further investigation is required to ascertain the details of this

trade-off between accuracy and generalisation.

Another avenue for future work could be the extension

of our work for multiple simultaneous sources. The authors

of the original CNN architecture have themselves extended

their work for multiple simultaneous sources in [8] and [10]

by using Sigmoid activation in the last layer. Their main

assumption is W-disjoint orthogonality, which means that two

speakers cannot be active at a given time-frequency point. We

consider that, under the same assumption, our method could

be adapted to work in those type of scenarios.

VI. CONCLUSION

We presented novel findings regarding the training data used

to train a CNN for DoA estimation.

First of all, we observed that training using noise was not

very robust to test signals that involved various audio classes

different from speech, therefore we decided to use variations

of speech and music data, which come from either datasets or

synthetic approaches. We discovered that training with music

data performs better than training with speech data and both of

them performed better than training with spectrally flat random

signals. This is an intriguing observation that warrants further

theoretical as well as empirical investigation.

Then, we compared variants of speech and music data. The

speech data included a speech dataset (TIMIT), pre-processed

speech data using a VAD, synthetic data using a BSAR pro-

cess, and synthetic data using a GAN. Our results indicate that

using a combination of real and synthetic (using WaveGAN)

data performs best, yielding an average relative improvement

of 17% in DoA accuracy across 16 acoustic conditions and

9 DoAs. The music data, on the other hand, included a

street music dataset (StMu), pre-processed data using a VAD,

synthetic data using a GAN from two different instruments,

piano and drums. Our experiments showed that using the data

from the dataset (StMu) performed best, yielding an average

relative improvement of 19% in DoA accuracy across 16

acoustic conditions and 9 DoAs. We also found that the choice

in parameters on the VAD is very relevant in the training

phase, since removing frames that are not silent decreases the

performance of the DoA estimation compared to that obtained

when all the frames are used. Moreover, when comparing the

results obtained when training with speech and music, we

concluded than when using data from recorded datasets, the

best results are obtained when using music; however, when

using synthetic data from GAN, the best results are obtained

using speech.

We also investigated the impact of the amount of data used

for training the CNN. It is encouraging to note that using just

25% of the training data does not notably reduce estimation

accuracy, either with speech or music. Synthetic data generated

with GAN is slightly less prone to changes in the accuracy than

real data from datasets. However, when the amount of data is

decreased further than 25%, the accuracy decreased as well,

particularly when music data is used.

Finally, we showed how the use of a learning-based ap-

proach overcomes the limitations of the GCC approach in

scenarios in which there is some a priori knowledge of the test

environment, improving the DoA accuracy by about 125%.

Our conclusion about training CNN for DoA estimation is to

use data recorded from datasets when the application is related

to music signals. However, when the system will be used in

speech signals, the best approach is to train using synthetic

data from a GAN.

Future work includes the use of transfer learning techniques

in order to use simulated environments for training the CNN

and test using data from real scenarios.
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[9] Soumitro Chakrabarty and Emanuël AP Habets. Multi-speaker localiza-
tion using convolutional neural network trained with noise. In Advances

in Neural Information Processing Systems (NeurIPS) Workshops, 2017.

[10] Soumitro Chakrabarty and Emanuël AP Habets. Multi-scale aggregation
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[35] Lauréline Perotin, Romain Serizel, Emmanuel Vincent, and Alexandre
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