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Abstract. Minimally Unsatisfiable Subformulas (MUS) find a wide range of
practical applications, including product configuration, knowledge-based valida-
tion, and hardware and software design and verification. MUSes also find applica-
tion in recent Maximum Satisfiability algorithms and in CNF formula redundancy
removal. Besides direct applications in Propositional Logic, algorithms for MUS
extraction have been applied to more expressive logics. This paper proposes two
algorithms for MUS extraction. The first algorithm is optimal in its class, meaning
that it requires the smallest number of calls to a SAT solver. The second algorithm
extends earlier work, but implements a number of new techniques. The resulting
algorithms achieve significant performance gains with respect to state of the art
MUS extraction algorithms.

1 Introduction

There has been a remarkable amount of recent work on algorithms for computing min-
imal explanations of unsatisfiability over the last decade (e.g. [28, 16, 3, 15, 14, 9–11,
27, 12, 7, 13, 23, 25]). Most of this work is inspired by earlier work on computing ex-
planations for inconsistencies (e.g. [5, 4, 1]). Algorithms for MUS extraction have often
been characterized as constructive [12] (also referred to as insertion-based [7, 23]), as
destructive [12] (also referred to as removal-based [7], or deletion-based [23]), or as
dichotomic [16, 14]. All MUS extraction algorithms involve a number of calls to a SAT
solver (or some other NP oracle). For destructive approaches, the best performing al-
gorithms require O(m) calls to a SAT solver, where m is the number of clauses in the
original formula. Existing constructive approaches require O(m × k) calls to a SAT
solver, where k is the size of the largest MUS in the original CNF formula [12]. Finally,
the dichotomic approach requires O(k logm) calls to a SAT solver. Recent work pro-
posed an approach based on a weighted Maximum Satisfiability (MaxSAT) solver [7],
but the function problem associated with computing a weighted MaxSAT solution is
in ∆P

2 , and so unlikely to be in NP. There is also a large body of work on comput-
ing good approximations of MUSes (e.g. [23]). Despite the large body of work, MUS
extraction algorithms are not industrial-strength, meaning that, with a few recent ex-
ceptions (e.g. [25]), MUS extraction algorithms are seldom evaluated on large problem
instances or used in practical settings. This is demonstrated in the results section of this
paper, where existing MUS extraction algorithms are shown to be in general inefficient
for large complex problem instances from practical applications.

This paper represents a first effort towards developing industrial-strength MUS ex-
traction algorithms, and has the following main contributions. First, the paper develops
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a constructive algorithm for MUS extraction that requires O(m) calls to a SAT solver.
This result implies (i) that destructive and constructive approaches have the same worst-
case complexity in terms of the number of calls to a SAT solver; and (ii) that when
k = Θ(m), the new algorithm represents the optimal case (as does the destructive algo-
rithm). More importantly, this new algorithm blurs the distinction between destructive
and constructive algorithms. Motivated by this observation, the paper proposes a hy-
brid algorithm that formally operates as a constructive algorithm, but that essentially
exploits all steps of the algorithm to reduce the number of required iterations. This
causes the algorithm to operate in a mostly hybrid mode, iteratively constructing the
MUS, but also exploiting available information to reduce the number of iterations. An-
other contribution of the paper is the integration of a number of techniques that serve
to simplify each SAT solver call, and to reduce the set of clauses that need to be ana-
lyzed through a call to a SAT solver. Moreover, the paper also shows that some existing
techniques need not be considered for MUS extraction. Finally, the paper conducts a
comprehensive evaluation of existing publicly available MUS extractors on represen-
tative industrial problem instances, obtained from well-known practical applications of
SAT, where MUS extraction finds application.

2 Preliminaries

A set of variables X = {x1, . . . , xN} is assumed. A formula F in Conjunctive Normal
Form (CNF) is defined as a set of sets of literals defined on X . A literal is either a
variable or its complement. Each set of literals is referred to as a clause. Moreover, it
is assumed that each clause is non-tautological. Given a clause ci, {¬ci} denotes the
set of unit clauses obtained from negating ci. Additional standard definitions can be
found elsewhere (e.g. [8, 24]). The focus of this paper are unsatisfiable formulas, and
the characterization of the sources of unsatisfiability. Throughout the paper,F ,F ′ ⊆ F ,
FR, FI and U denote CNF formulas, S and S ′ denote MUSes of F , andM denotes a
subset of an MUS S.

Definition 1 (MUS). M ⊆ F is a Minimally Unsatisfiable Subset (MUS) iff M is
unsatisfiable and ∀c∈M,M\ {c} is satisfiable.

Definition 2 (MCS). C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C is satisfi-
able and ∀c∈C ,F \ (C \ {c}) is unsatisfiable.

Throughout the paper,m denotes the number of clauses in the original CNF formula
F , m = |F|, and k denotes the number of clauses in the largest MUSM, k = |M|.
The MUS decision problem, i.e. the problem of deciding whether a CNF formula F is
an MUS isDP -complete. In contrast, the problem of computing an MUS from an unsat-
isfiable CNF formula requires a number of calls to a SAT oracle. Over the years, three
main approaches have been proposed for computing an MUS: constructive [5], destruc-
tive [4, 1] and dichotomic [16, 14]. Constructive approaches require O(m × k) calls to
an NP-oracle, destructive approaches require O(m) calls, and dichotomic approaches
requireO(k× logm) calls. Despite the theoretical interest of the dichotomic algorithm,
the most recent implementation of MUS extraction algorithms are either destructive [2,
25] or constructive [27].
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Algorithm 1: Destructive MUS Extraction
Input : Unsatisfiable CNF Formula F
Output: MUSM

1 begin
2 M← F // MUS over-approximation

3 foreach ci ∈M do
4 if not SAT(M\ {ci}) then // ci is not transition clause

5 M←M\ {ci}
6 returnM // Final M is an MUS

7 end

Most practical MUS computation algorithms iteratively identify transition clauses [12].
The following definition is used throughout this paper.

Definition 3 (Transition Clause). Let F be an unsatisfiable set of clauses and let c ∈
F be a clause. If F \ {c} is satisfiable then c is a transition clause with respect to F .

Lemma 1. Let c be a transition clause of CNF formula F . Then c is included in any
MUS of F .

Proof. F \ {c} is satisfiable. Any unsatisfiable subset of F must include c. 2

Throughout the paper, SAT solvers are used as NP-oracles, that test the satisfiability
of CNF formulas. In general, SAT(F) tests the satisfiability of a formula F ; it returns
value true if the formula is satisfiable, and value false if the formula is unsatisfiable.
Where necessary, SAT(F) may also return the satisfying assignment and an unsatisfi-
able subset. In this case, the output of the SAT solver call is represented as follows:
(st, ν,U) ← SAT(F). st is a Boolean variable assigned value true if the instance is sat-
isfiable, in which case ν contains a solution to F , or assigned value false, in which case
U ⊆ F is an unsatisfiable subformula. Besides the use of SAT solvers as NP-oracles,
some algorithms propose the use of weighted MaxSAT solvers [7].

The standard organization of a destructive MUS extraction algorithm is shown in
Algorithm 1 [12, 23]. The algorithm starts with a working formula M equal to the
original formula F . Iteratively, the algorithm checks whether each one of the clauses
ci ∈ M is a transition clause. Non transition clauses are removed fromM. In the end,
M is an MUS. This algorithm is studied in more detail in later sections.

Recent overviews of MUS extraction algorithms can be found in [12, 7, 23].

3 New Constructive Algorithm for MUS Extraction

This section develops a new constructive algorithm, that takesO(m) calls to a SAT ora-
cle. This result implies that constructive and destructive approaches for MUS extraction
have the same worst-case complexity in terms of the number of calls to a SAT solver,
and improves known results in this area [12, 23].

Algorithm 2 shows the new constructive MUS extraction algorithm. This new algo-
rithm borrows ideas from a number of earlier algorithms. Similarly to AMUSE [26], it
adds relaxation variables to all clauses. In addition, and similarly to the use of weighted
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Algorithm 2: Constructive MUS Extraction with AtMost1 Constraint
Input : Unsatisfiable CNF Formula F
Output: MUSM

1 begin
2 M← ∅ // M: MUS under-approximation

3 R← {ri | ri is fresh variable for ci ∈ F} // R: relaxation variables

4 FR ← {ci ∪ {ri} | ri ∈ R ∧ ci ∈ F} // FR: working formula

5 T ← CNF(
∑

ri∈R ri ≤ 1) // ≤ 1 constraint

6 while FR 6= ∅ do // Repeat while relaxed clauses exist

7 (st, ν,U)← SAT(FR ∪ T ∪M)
8 if st = true then
9 ri ← TrueVariable(ν,R) // Get true relaxation variable

10 cRi ← Clause(FR, ri) // Get clause associated with ri
11 FR ← FR \ {cRi } // Remove clause cRi = ci ∪ {ri} from FR

12 M←M∪ {cRi \ {ri}} // Add clause ci = cRi \ {ri} to MUS

13 else // If unsatisfiable, U ∩ T 6= ∅
14 if U ∩ FR = ∅ then
15 FR ← ∅
16 else
17 cRi ← SelectClause(FR ∩ U)
18 FR ← FR \ {cRi } // Block one MUS

19 returnM // Final M is an MUS

20 end

MaxSAT for MUS extraction [7], a SAT (resp. weighted MaxSAT) test is used to decide
which clause to add to the MUS being built.

The operation of the algorithm is as follows. Assume the original formula F is
unsatisfiable. The algorithm starts by creating a working formula FR by relaxing all
clauses in F . An AtMost1 constraint is created and encoded into the CNF formula T ,
requiring at most one relaxation variable ri to be assigned value true.M is initially an
empty set and in the end is an MUS.

The outcome of the SAT solver call (see line 7) given formula FR ∪ T ∪M can
either be true or false. If the outcome st is true, this means that exactly one relaxation
variable was set to true. This relaxation variable ri is associated with a clause ci that
is part of the MUSM being constructed. If st is false, this means that more than one
relaxation variable would have to be assigned value true for the outcome to be true. This
also implies the existence of more than one MUS, and so the solution is to (arbitrarily)
block one MUS. This is done by simply removing a clause cRi from FR that also occurs
in the unsatisfiable formula U computed by the SAT solver. The process is iterated until
FR becomes empty (denoting thatM is unsatisfiable), in which caseM is an MUS.

To prove that Algorithm 2 computes an MUS of F , the following intermediate re-
sults will be used.

Definition 4. Throughout the execution of Algorithm 2, let FI represent the clauses in
FR without the corresponding relaxation variables. (Observe that FI ∩M = ∅.)
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Lemma 2. AssumeM ( S ⊆ FI ∪M, where S is an MUS. Let FR ∪ T ∪M be
unsatisfiable. ThenM can be extended to strictly more than one MUS.

Proof. Suppose thatM can be extended to exactly one MUS S. Select a clause ci in
S \ M, and relax clause ci. By definition of MUS, S \ {ci} must be satisfiable, and
sinceM can be extended to exactly one MUS, then FR ∪ T ∪M would have to be
satisfiable; a contradiction. 2

Corollary 1. Assume M ( S ⊆ FI ∪ M, where S is an MUS. Let FR ∪ T ∪ M
be unsatisfiable (i.e. line 13 of the algorithm), let U be an unsatisfiable subformula
computed by the SAT solver, and let (ci ∪ {ri}) ∈ FR ∩ U . Then there exists an MUS
S ′ with S ′ ⊆M∪ (FI \ {ci}).

Proof. M∪ (FR \ {ci ∪ {ri}}) ∪ T is either satisfiable, requiring exactly one clause
in FR to be relaxed, or remains unsatisfiable. In either case, it still contains an MUS. 2

Lemma 3. Assume M ( S ⊆ FI ∪ M, where S is a MUS. Let FR ∪ T ∪ M be
satisfiable, and let ci be a clause with an associated true relaxation variable ri. Then,
any MUS with clauses in FI ∪M will include ci.

Proof. By hypothesis, FI ∪ M is unsatisfiable. If FR ∪ T ∪ M is satisfiable, then
FR ∪M has an MCS of size 1, which is identified by the relaxed clause ci. Hence, by
definition of MCS, ci must be part of any MUS in FI ∪M. 2

Theorem 1. Algorithm 2 returns an MUS of unsatisfiable CNF formula F .

Proof. To prove that Algorithm 2 computes on MUS of F , the following invariants
hold after each iteration of the algorithm: (i) FI ∪ M is unsatisfiable; and (ii) there
exists an MUS S , withM⊆ S ⊆ FI ∪M. The invariants can be proved by induction
on the number of iterations of the algorithm. Clearly, the invariants hold for the base
case, withM = ∅ and FI unsatisfiable. Suppose that the invariants hold after iteration
j − 1. Then, the objective is to analyze the invariants after iteration j. Suppose the SAT
call in line 7 returns false. Hence, one clause is removed from FI . From Lemma 2 and
Corollary 1, it is guaranteed that the resulting formula FI ∪ M is still unsatisfiable
and contains an MUS. Alternatively, suppose the SAT call in line 7 returns true. Hence,
the relaxation variable is removed from the identified relaxed clause and the clause is
added toM. From Lemma 3, the identified clause is included in any MUS, and so can
be added toM. Moreover, the two invariants still hold:M continues to be part of an
MUS and FI ∪M is unsatisfiable. 2

Lemma 4. The number of calls to a SAT solver by Algorithm 2 is in Θ(m).

Proof. To prove that the number of calls is O(m), observe that the algorithm removes
one clause from FR at each iteration of the loop. Hence, there can be at most m calls to
a SAT solver. To prove that the number of calls is Ω(m), consider the following CNF
formula F = {¬x1} ∪N−1i=1 {xi,¬xi+1} ∪ {xN}, with |F| = N + 1 = m. F has a
single MUS, containing all clauses. Each iteration of the algorithm will add exactly one
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clause toM. Hence, the number of calls to the SAT solver is N + 1 = m. Thus, the
number of calls to a SAT solver is in Ω(m). 2

Lemma 4 shows that deletion-based and insertion-based MUS extraction algorithms
can have the same asymptotic complexity in terms of the number of calls to a SAT
solver. Moreover, Algorithm 2 provides one concrete example of such algorithm. It
should be noted that Algorithm 2 runs the SAT solver on a modified problem instance.
However, as will be shown later, despite working on a modified problem instance, Al-
gorithm 2 provides a few practical advantages.

4 Hybrid MUS Extraction

One of the interesting aspects of Algorithm 2 is that it blurs the distinction between
constructive and destructive algorithms. On the one hand, the algorithm iteratively ex-
pands a subset of an MUS. On the other hand, the algorithm requires O(m) calls to a
SAT solver. Similarly, one can develop a variant of Algorithm 1 that is essentially a con-
structive algorithm. Algorithm 3 shows this variant. As with Algorithm 2,M denotes a
subset of an MUS, and the number of calls to a SAT solver is O(m). Nevertheless, Al-
gorithm 3 also shares similarities with Algorithm 1, namely that each clause is analyzed
exactly once, thus guaranteeing Θ(m) calls to a SAT solver. Besides the minor changes
needed to make a constructive variant of Algorithm 1, Algorithm 3 also includes a num-
ber of key optimizations detailed below. Observe that for these techniques to be easily
integrated, the algorithm needs to operate in constructive mode.

A first observation is that the input formula is assumed to be trimmed, i.e. the use of
iterative identification of unsatisfiable cores was used to reduce the size of the working
CNF formula. Clause set trimming is detailed in Section 4.2. To describe the techniques
used to improve the performance of MUS extraction, it is convenient to isolate the
clauses known to be part of an MUS (i.e. M) from the clauses yet to be analyzed
(i.e. F ′). Hence, the algorithm can be viewed as constructive. The new techniques are
included in lines 7, 10, and 12.

The first technique (line 7) consists of creating a more constrained instance of SAT,
by adding to the CNF formula the negation of the removed clause. It is well-known
that ci is redundant if F \ {ci} ∪ {¬ci} is unsatisfiable [19]. Although this technique
was first proposed elsewhere [27], in the context of an O(m × k) algorithm for MUS
extraction, it has not been used in destructive (or hybrid) MUS extraction algorithms.
In addition, its use affects the integration of other techniques, as discussed below.

Next, we analyze the technique summarized in line 12 of Algorithm 3. First, assume
that the redundancy removal technique is not used, i.e. {¬ci} is not added to the CNF
formula given to the SAT solver. Let the outcome of the SAT solver be false. In this case,
one can refine the working set of clauses with the unsatisfiable subformula computed
by the SAT solver.

Lemma 5 (Clause Set Refinement). Let F , F ′,M and U be as defined in Section 2.
Consider the outcome of the SAT solver on formulaF ′∪M. If the result is unsatisfiable,
with unsatisfiable subformula U , then any MUS in U contains M. Thus, the working
formula F ′ can be set to U \M.
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Algorithm 3: Hybrid MUS Extraction
Input : (Trimmed) Unsatisfiable CNF Formula F
Output: MUSM

1 begin
2 F ′ ← F // Working CNF formula

3 M← ∅ // MUS under-approximation

4 while F ′ 6= ∅ do
5 ci ← GetClause(F ′)
6 F ′ ← F ′ \ {ci}
7 (st, ν,U) = SAT(M∪F ′ ∪ {¬ci}) // Add redundancy checking

8 if st = true then // If SAT, ci is transition clause

9 M←M∪ {ci}
10 (F ′,M)← Rotate(F ′,M, ν) // Find more transition clauses

11 else if U ⊆M∪F ′ then // Equivalently, if U ∩ {¬ci} = ∅
12 F ′ ← U \M // Clause-set refinement

13 returnM // Final M is an MUS

14 end

Proof. By construction,M is composed of transition clauses, each of which is part of
an MUS (see Lemma 1). Hence, any MUS in U must contain the clauses inM. Since
the clauses in M are known to be transition clauses, the working formula F ′ can be
updated to U \M. 2

A more complicated version of clause set refinement, that involves considering the
resolution proof after each unsatisfiable outcome, has been described elsewhere [6, 25].
Our approach considers solely the computed unsatisfiable core, and so allows using the
SAT solver as a black box (provided the solver returns an unsatisfiable core).

The integration of the redundancy removal technique (line 7) and clause set refine-
ment is not immediate. The solution is to provide a test (line 11) to decide when the
unsatisfiable core can be used as the next working CNF formula.

Proposition 1. Let U be the unsatisfiable core returned by the SAT solver in line 7 of
Algorithm 3. If U ∩ {¬ci} = ∅, then U contains an MUS S of F .

Finally, we analyze the technique summarized in line 10 of Algorithm 3. Let the
outcome of the SAT solver be true and let ν be the computed model. This assignment
must unsatisfy the clause removed from F ′. Similarly, any assignment that unsatisfies
a single clause ck from F ′ and satisfies all clauses inM proves that ck must be part of
an MUS.

Lemma 6. Let F , F ′ ⊆ F and M be as defined in Section 2. Let ν be a model of
M∪F ′ ∪ {¬ci} (that must unsatisfy clause ci). Then ci is included in any MUS of F
that containsM.

Proof. ci is a transition clause. Hence, by Lemma 1, ci is included in any MUS of F ′.
Since F ′ ⊆ F , any MUS of F ′ is an MUS of F . 2

Therefore, given a model ν, we can compute additional clauses to add to the MUS
by selective flipping of the variable assignments in ν. The question is then how to decide
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which variable assignments to flip. The technique described in this paper is referred to
as model rotation. This technique consists of analyzing changes to the computed model
ν that will satisfy the single clause unsatisfied by ν. In order to keep the overhead low,
only single literal flips are considered. This is illustrated with the following example.

Example 1 (Model Rotation). LetF = {c1, c2, c3, c4} be an unsatisfiable formula, with
c1 = {¬x1, x2}, c2 = {¬x1,¬x2}, c3 = {x1}, and c4 = {¬x2, x1, x3}. Also, let
M = ∅. Suppose that c1 is removed from F . Then F \ {c1} is satisfiable, with model
ν = {x1,¬x2}. This means that c1 is part of an MUS, and so it is added toM. Observe
that this model (necessarily) unsatisfies c1. The next step is to check whether a literal flip
in ν unsatisfies exactly another clause. For this example, flipping ¬x2 to x2 satisfies c1
and solely unsatisfies c2. This means that c2 is also part of an MUS of F . The resulting
model ofM∪F \ {c2} is ν′ = {x1, x2}, andM is updated to {c1, c2}. We can now
analyze ν′ and check for a single flip that satisfies c2 and unsatisfies a single clause of
the remaining clauses not already inM, namely c3 and c4. For example, flipping x1 to
¬x1 satisfies c2 and unsatisfies c3. Since c3 is the solely unsatisfied clause, then c3 is
also part of an MUS ofF . The resulting model ofM∪F\{c3} is ν′′ = {¬x1, x2}, and
M is updated to {c1, c2, c3}. Observe that the model cannot be further rotated, since
M = {c1, c2, c3} is already unsatisfiable. This also means that c4 is excluded from the
computed MUS.

Clearly, model rotation could use more elaborate approaches for finding assignments
that unsatisfy a single clause. For example, local search or even a complete SAT solver
could be considered. Nevertheless, the objective of model rotation is to eliminate calls
to the SAT solver, and so a simple (linear time) procedure is used instead. The analysis
of computed models was first used in [27]. However, model rotation is a fundamen-
tally different technique. Whereas the approach in [27] associates a model with each
clause and requires worst-case quadratic space, model rotation simply considers single
variable value changes to each computed model, so as to identify clauses that are in an
MUS of the original formula.

Our results indicate that model rotation is a very effective technique, often allowing
a large percentage of the satisfiable SAT calls to be skipped. Clearly, it is far more
efficient to evaluate possible model rotations (in linear time), than to modify the SAT
instance and call the SAT solver (in worst-case exponential time). This observation
holds even if the problem instance is easy to solve.

Although the techniques described in this section are integrated in Algorithm 3, they
can be applied with minor modifications to any destructive, constructive or dichotomic
MUS algorithm.

4.1 Analysis of Other Techniques

Algorithm 3 integrates, adapts and extends several techniques proposed in earlier work.
One additional technique could be considered, namely autarkies [17]. For example, au-
tarkies have been successfully used in recent MUS enumeration algorithms [21]. In
contrast, the use of autarkies in Algorithm 3 is less clear. First, by definition a clause is
part of an autarky if and only if it is not included in any resolution refutation. Hence,
since the proposed algorithms start by trimming the initial CNF formula, the autarkies
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of F are guaranteed to be automatically removed. Nevertheless, a less known observa-
tion is that, since clauses are discarded while searching for an MUS, it is possible that
additional autarkies may exist with respect to F ′. Nevertheless, and similarly to clause
set trimming, the use of clause set refinement also guarantees that autarkies are auto-
matically eliminated, and so need not be computed. Although the previous observations
suggest that identification of autarkies is unnecessary if clause set trimming and refine-
ment are used, there are cases where autarkies can still find application in Algorithm 3.
Observe that, due to the redundancy removal technique, clause set refinement may not
be applicable after every unsatisfiable outcome. When this happens, then autarkies may
exist, and can be identified. However, our experimental results indicate that the size
of new autarkies does not justify their computation during the execution of the MUS
extraction algorithm.

4.2 Preprocessing & Interfacing SAT Solvers

As indicated earlier, a standard technique for computing MUSes of large CNF formulas
is clause set trimming, that consists of iteratively calling the SAT solver on computed
unsatisfiable subformulas until no changes are detected in between calls to the SAT
solver [28]. However, for large practical problem instances, iterating the computation
of unsatisfiable subformulas until a fixed point is reached can be inefficient. A simpler
alternative is to iterate the computation of unsatisfiable subformulas a constant number
of times, or until the size change in the computed unsatisfiable subformulas is below a
given threshold. Observe that clause set trimming can be viewed as the preprocessing
step equivalent to clause set refinement described earlier in Section 4.

In MUS extraction algorithms, SAT solvers can either be used in incremental or
non-incremental mode (e.g. [2]). Recent experimental results suggest that incremen-
tal mode provides significant performance gains [27, 25]. Our implementation uses an
incremental interface to the SAT solver, with one key change. Any clause ci declared
as being part of the MUS M needs not continue to be handled in incremental mode.
Hence, the assumption variable used to activate ci can be eliminated. This technique is
beneficial for problem instances with large MUSes, since the overhead of the incremen-
tal interface is reduced as more clauses are added to the MUSM.

5 Results

The algorithms described in the previous sections were implemented in the MUS ex-
traction tool MUSer (MUS ExtratoR), built on top of the Picosat [2] SAT solver. Sup-
ported by existing experimental evidence [23], the incremental interface of Picosat was
used. (Observe that other work [25] also proposes the use of the incremental inter-
face of modern SAT solvers.) The experimental evaluation focused on the following
MUS extractors: the new constructive MUS extraction algorithm based on relaxation
variables (CRV) described in section 3; the hybrid MUS extraction algorithm (HYB)
described in section 4; a reference destructive algorithm (DREF); a reference construc-
tive algorithm [5] (CREF); the recent constructive algorithm from [27] (MUNSAT); a
recent local-search-guided destructive MUS extraction algorithm from [11] (AOMUS);
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Fig. 1. Cactus plot with running times of MUS extractors

a well-known MUS extractor from [28] (ZMIN); SAT4J [18] MUS extractor in linear
constructive mode (S4J I), in QuickXPlain [16] mode (S4J Q), and in destructive mode
(S4J D). Finally, a destructive MUS extraction algorithm available in the Picosat distri-
bution [2] (PMUS). As shown by the results below, fairly recent MUS extractors [11,
27, 7] perform considerably worse than the most recent generation of MUS extractors,
including the ones described in this paper.

The experimental evaluation focused on 500 problem instances submitted to the
upcoming MUS track of the 2011 SAT Competition 3. All problem instances were ob-
tained from practical applications of SAT, including hardware bounded model checking,
FPGA routing, hardware & software verification, equivalence checking, abstraction re-
finement, design debugging, function decomposition, and bioinformatics. Clause set
trimming was applied to all problem instances before running any of the MUS ex-
traction algorithms. Otherwise, algorithms that do not implement clause set trimming
would perform poorly. All results were obtained on an HPC cluster, where each node
is an 8-core CPU Xeon E5450 3GHz, with 32GByte RAM and running Linux. For
each problem instances, the specified resources were a time limit of 1200 seconds and
a memory limit of 4 GByte. For SAT4J, the Java virtual machine used was the Java
HotSpot(TM) 64-Bit Server VM (build 19.1-b02). Figure 1 shows a cactus plot with all
MUS extractors, showing the instances solved by increasing run times. The following
conclusions can be drawn. First, the new constructive algorithm based on relaxation
variables (CRV) clearly outperforms all other constructive algorithms, namely MUN-
SAT, S4J C and CREF. Second, and more importantly, the new hybrid algorithm HYB
outperforms all other MUS extraction algorithms. It solves more instances, but the plot
also shows a clear performance edge with respect to all other algorithms. Third, fairly
recent MUS extractors algorithms, namely MUNSAT [27] and AOMUS [11], perform

3 http://www.satcompetition.org/2011/.
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Table 1. Number of solved instances

Solver CREF MUNSAT S4J I CRV ZMIN AOMUS S4J Q PMUS S4J D DREF HYB
# Solved 112 154 158 228 235 374 429 444 453 454 473

Table 2. Comparison with [25]

Instance 3pipe 4pipe 1 barrel6 barrel7 barrel8 longmult6 longmult7 longmult8
Best in [25] 167 1528 348 700 4110 968 5099 —
HYB 194 1143 35 72 400 11 99 811
DREF 365 — 40 94 332 30 398 —
PMUS — — 68 102 701 51 283 —
S4J S 223 — 395 829 — 152 883 —

significantly worse than the more recent generation of MUS extractors. Fourth, and fi-
nally, constructive algorithms perform significantly worse than destructive algorithms,
the exceptions being the new algorithms CRV and HYB. However, the results confirm
that constructive algorithms requiring O(m × k) calls to a SAT solver simply do not
scale in practice.

The cactus plot is completed with Table 1, that shows the number of solved in-
stances. The main conclusions here are that: (i) the new algorithm HYB solves the
largest number of instances; and (ii) recently published MUS extraction algorithms [11,
27] are unable to solve many instances, many of which are easily solved by other ap-
proaches.

Finally, Figure 2 shows scatter plots comparing the run times of HYB with the next
best MUS extraction algorithms, namely DREF, S4J D, PMUS, and AOMUS. Again
the results are clear. HYB clearly outperforms DREF, i.e. the reference implementation
of destructive MUS extraction. Moreover, HYB clearly outperforms PMUS, in many
cases by one order of magnitude or more. Also, HYB extensively outperforms AOMUS,
in most cases by more than one order of magnitude. Finally, HYB also outperforms
S4J D, although in this case there are a number of outliers. These outliers represent
problem instances with small MUSes, for which S4J D performs well.

To conclude the experimental evaluation, the best performing MUS extraction tools
are compared against the MUS extractor from [25], on selected problem instances. The
best run times from [25] are used, since the tool is not publicly available. Moreover,
the hardware where the MUS extractors were run is similar. The run times (in seconds)
are shown in Table 2. As can be concluded, HYB performs significantly better. For
the barrel instances, the speedup is around one order of magnitude. For the longmult
instances, the speedup is almost two orders of magnitude. For the pipe instances, HYB
performs better in one instance, and worse in another.

6 Related Work

To the best of our knowledge, Algorithm 2 is new. Nevertheless, the use of relax-
ation variables for MUS extraction has been proposed in earlier work. For example,
AMUSE [26] also uses relaxation variables. However, AMUSE does not compute an
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Fig. 2. Scatter plot comparing HYB with other MUS extractors

MUS, and identifies instead a reduced unsatisfiable subset. The use of relaxation vari-
ables has also been considered extensively in the enumeration of MUSes [20, 22], and
in the use of MaxSAT for MUS extraction [7]. Although the use of relaxation vari-
ables resembles the use of selector variables [25], it is fundamentally different. Selector
variables serve solely to specify clause (de)activation in incremental SAT. Relaxation
variables serve to specify constraints on how many clauses can be relaxed.

Algorithm 3 is novel, even though its organization can be viewed as a (constructive)
variant of Algorithm 1. Moreover, some of the techniques implemented by Algorithm 3
are novel, and their integration is also novel. Also, the implementation of these tech-
niques requires a constructive MUS extraction algorithm. Clause set refinement was
first studied in [6, 25]. However, the solution proposed there is more complicated, be-
ing based on analyzing resolution proofs. In contrast, our approach simply uses the
returned unsatisfiable core. The analysis of computed models for finding more than one
transition clause per iteration of the algorithm was first used in [27], in the context of a
constructive algorithm requiring Θ(m×k) calls to a SAT solver. In [27], each clause is
characterized by an associated assignment, that aims to satisfy all clauses in a working
set of clauses but itself; clearly this can entail non-negligible memory requirements for
large-scale problems instances. The model rotation technique proposed in this paper
is novel, since computed models are only analyzed immediately after being computed,
and only checked for single changes of variable values. Finally, the technique of includ-
ing {¬ci} in the CNF formula given to the SAT solver is standard in CNF redundancy
checking [19], and was first used for MUS extraction in [27]. Our implementation fol-
lows this approach. Nevertheless, this paper proposes a new solution for integrating the
redundancy removal technique and clause set refinement.
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7 Conclusions

This paper develops new algorithms for the efficient extraction of MUSes from unsat-
isfiable CNF formulas, and has two main contributions. The first contribution is a new
constructive MUS extraction algorithm. Whereas existing algorithms requireO(m×k)
calls to a SAT oracle, the new algorithm requires O(m) calls. In practice, the new al-
gorithm is shown to outperform all existing constructive algorithms. More importantly,
this new algorithm shows that constructive and destructive MUS extraction algorithms
share a number of important similarities. The second contribution exploits this observa-
tion, and develops a hybrid algorithm, that is organized as a constructive algorithm, but
that exploits features of destructive algorithms. In addition, this algorithm integrates a
number of key MUS extraction techniques, including redundancy removal, clause set
refinement, and model rotation, that essentially exploit all of the main steps of the MUS
extraction algorithm, i.e. calls to the SAT solver, and both unsatisfiable and satisfiable
outcomes. Moreover, the paper also develops conditions for the integration of these
techniques. Although these techniques are integrated in the new algorithm, they can be
used with any MUS extraction algorithm. The resulting algorithm (HYB) outperforms
all publicly available MUS extraction tools. The performance gains often exceed one
order of magnitude when compared with state of the art MUS extraction tools. Finally,
algorithm HYB is shown to also outperform recent non-publicly available MUS extrac-
tion algorithms [25].

The experimental results are promising and indicate that HYB represents the new
state of the art in the area of MUS extraction algorithms. Nevertheless, practical ap-
plications of MUS extraction algorithms can gain from more efficient solutions. En-
visioned research directions include better heuristics for model rotation and adapting
SAT solvers to minimize computed unsatisfiable subformulas, e.g. by exploiting the
AMUSE [26] heuristics.
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11. É. Grégoire, B. Mazure, and C. Piette. Local-search extraction of MUSes. Constraints,
12(3):325–344, 2007.
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