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Abstract

In this paper, we focus on improving the online face live-

ness detection system to enhance the security of the down-

stream face recognition system. Most of the existing frame-

based methods are suffering from the prediction inconsis-

tency across time. To address the issue, a simple yet ef-

fective solution based on temporal consistency is proposed.

Specifically, in the training stage, to integrate the temporal

consistency constraint, a temporal self-supervision loss and

a class consistency loss are proposed in addition to the soft-

max cross-entropy loss. In the deployment stage, a training-

free non-parametric uncertainty estimation module is de-

veloped to smooth the predictions adaptively. Beyond the

common evaluation approach, a video segment-based eval-

uation is proposed to accommodate more practical scenar-

ios. Extensive experiments demonstrated that our solution

is more robust against several presentation attacks in vari-

ous scenarios, and significantly outperformed the state-of-

the-art on multiple public datasets by at least 40% in terms

of ACER.

1. Introduction

In this paper, we focus on online face liveness detection

for common real-world use cases such as face authoriza-

tion. Unlike offline video analysis [27], which can observe

an entire video to make a final prediction, online processing

requires low-latency prediction for each incoming frame.

In this setting, the most common approach is to predict the

liveness probability per frame [17, 18]. However, as de-

picted in Fig. 1a, such a frame-based model has larger pre-

diction variance within a short period (the standard devia-

tion of predictions is 0.2). By further analyzing the false

positives and false negatives, we noticed that it tends to

make unstable predictions when the subject undergoes large

motion or illumination changes. Therefore, we hypothesize

that one common underlying issue for the frame-based live-

ness detection systems is temporal inconsistency.

To address this issue, a simple yet effective Face anti-

spoofing system using Temporal Consistency (FasTCo) is

(a)

100 102

FLOPs (G)
10 4

10 3

10 2

10 1

100

AC
ER

 (%
)

(b)

Figure 1: Depiction of (a) temporal inconsistency of the

predictions on one video clip from a fame-based baseline

model (gray curve) and the predictions with uncertainty es-

timations from our model - FasTCo (the blue curve repre-

sents prediction probability and the shade represents con-

fidence levels, the face is blurred to hide identity); (b)

model comparison of previous methods and two variations

of FasTCo using ACER (%) on SiW with protocol one and

FLOPs (G). Bottom left is the best (Best view in color).

proposed with temporal-aware model training and adaptive

model predictions. Specifically, in the training stage, be-

yond the softmax cross-entropy loss for multi-class classifi-

cation, to enforce consistency of video sequences in the em-

bedding space, two additional loss functions are proposed

to improve the training, aiming to minimize the intra-class

embedding distances for video sequences and presentation

attacks, respectively. In the deployment stage, based on

temporal consistency, a training-free uncertainty estimation

module is developed to adaptively update the liveness prob-

ability, which results in much more consistent predictions.

For instance, as depicted in Fig. 1a, the liveness probabil-

ities predicted by FasTCo on the same video clip have a

much lower variation (standard deviation is 0.04) compared

with the baseline model. This approach can be considered

as a special way to select informative past frames in the on-

line setting. Additionally, it is a generic approach that can

deploy a more lightweight backbone (FasTCo-MN) and still

achieve better performance than state-of-the-arts, as shown

in Fig. 1b. Such lightweight model provides great potential

for low-latency applications, especially on edge deployment

environment such as mobile phone or IoT devices.

To evaluate the online models, besides the commonly

used frame-based evaluation, a video segment evaluation

approach is introduced to provide metrics for different ap-



plication scenarios. Extensive experiments including the

ablation studies were conducted, and have demonstrated

that our method significantly outperforms the state-of-the-

art on several publicly available datasets with at least 33%

fewer FLOPs. On the SiW [17] dataset, FasTCo obtained

an ACER of 3 × 10−6, almost 0.1% of state-of-the-art un-

der the protocol one, while achieving at least 50% relative

improvement using other protocols. Meanwhile, the pro-

posed solution exceeds the state-of-the-arts by 40%+ on

OULU-NPU [4], SiW-M [18], and cross-domain datasets.

In summary, our method is more robust against multiple

factors in practical use cases such as unseen presentation

attacks, illumination change, and acquisition devices.

With the temporal consistency, the following benefits can

be expected: (i) Simple thresholding: because the predic-

tion of the model is unstable in adjacent continuous frames,

it is difficult to determine an appropriate threshold for live-

ness classification. The system would either have less se-

curity if the threshold is too low (APCER ↑) or bad user

experience from false rejects when the threshold is too high

(BPCER ↑). However, with temporal consistency, the sys-

tem outputs a more consistent prediction, leading to a much

easier balance of APCER and BPCER in real applications.

(ii) Uncertainty estimation: with the proposed uncertainty

module, in addition to the liveness score, the system outputs

the uncertainty estimation, which can be used to filter out

frames with highly uncertain predictions. This greatly en-

hances the robustness of the system. In summary, the con-

tributions of this paper are: (i) Temporal inconsistency was

identified as a common issue of the current face liveness de-

tection systems; (ii) A simple yet effective solution, includ-

ing two additional losses and a training-free uncertainty es-

timation module, was proposed to significantly improve the

model performance without extra complexity and latency;

(iii) In addition to the common frame-based evaluation ap-

proach, a video segment-based evaluation was proposed to

measure both the latency and accuracy of the model for dif-

ferent application scenarios.

2. Related Work

The common presentation attacks [9] to face recognition

systems include using print photos, video replay, and 3D

masks. The recent face liveness detection methods to iden-

tify these attacks can be classified into two major streams

in general: (i) Static approaches: Some image clues from

color space and frequency domain [3, 14] were used to de-

tect artifacts. In addition, some human-crafted features such

as LBP [3] and the features learned by CNN [1, 19, 33, 22]

were extracted to train a binary classifier. Domain gener-

alization and meta-learning techniques [29, 21, 23] have

also been used to learn generalized feature representations

[16, 15, 22, 26, 13] from multiple domains to improve the

generalization of the model. Liu et al. [18] developed a deep
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Figure 2: Overview of (a) the training stage: in addition to

the multi-class classification loss Lc, we propose a temporal

self-supervision (Lt) loss on the features extracted from the

same video sequence and a class consistency loss (Le) to

enforce the intra-class distances; (b) the deployment stage:

a training-free uncertainty module U is proposed to estimate

the uncertainty based on the temporal consistency to smooth

the liveness probabilities in the online setting.

tree-structured learning process to learn homogeneous fea-

tures of presentation attacks in the upper nodes of the tree

and distinct features to classify each specific attacks in the

leaf nodes. However, such static methods do not consider

the relationship across the temporal dimension, and thus

lacking the temporal consistency in predictions. (ii) Dy-

namic methods: The motion of the face, either part or as

a whole, was used to predict the liveness. Multiple fea-

tures extracted from video frames were aggregated and the

predictions were fused by Siddiqui et al. [25] to generate

a liveness score. Similar to the common approach in ac-

tion recognition [27, 24, 28, 10], both spatial and temporal

information [30, 31] of a video clip have been explored to

make the final decision based on a CNN-LSTM network

[8]. Nevertheless, it is hard to learn the temporal informa-

tion by jointly learning CNN and LSTM networks. In this

work, we improved the model training by introducing new

loss functions and inference consistency with an uncertainty

estimation module.

3. Temporal Inconsistency

Compared with the sequential models [31], the frame-

based model is easier to implement and can be directly used

to process online untrimmed videos. To find the root cause

of why the model fails in some cases, the ResNet-50, a com-

monly used network structure serving as the baseline in the

literature [31, 33], was used to train a frame-based online

liveness detection model with a softmax loss on SiW [17]

dataset. The evaluation was performed following the proto-

col one of the dataset. The videos were ranked according to

the number of predictions errors. After analyzing the errors,

there are two observations: (i) Time-wise, one common pat-

tern across the false positive and false negative samples is

the prediction inconsistency. The predictions are not stable

and there are many spikes in the estimated probabilities. By

analyzing the frames corresponding to the false predictions,



we made a hypothesis that such sudden prediction change

was due to the movement of the subject or the environment

changes such as reflection. (ii) Prediction-wise, the prob-

ability outputs are either extremely high for false positives

or low for false negatives at some time stamps, indicating

that the model is over-confident of its predictions on out-

liers. Based on these observations, to improve the baseline

model, we need to answer the following questions: (i) How

to use temporal information to improve the training of a sin-

gle network model? (ii) How to use temporal consistency to

increase the robustness of the model inference? Therefore,

this paper will focus on solving the temporal inconsistency

issue from both training and inference stages.

4. Online Face Liveness Detection System

We first define two key properties for the online face

liveness detection system, and then propose two strategies

to improve the robustness of the model based on temporal

consistency.

4.1. Formulation

Mathematically, a live video can be represented as a se-

quence of frames V = {I0, . . . , It, . . . , IT }, where t is the

current time stamp and T is the total number of frames. To

ensure the input sequence of faces belongs to the same iden-

tity, a face tracker [2] can be deployed instead of a naive

face detector to provide the temporal-spatial information for

a sequence of face bounding boxes bt.

Input: The input of the system is a cropped face from the

video frame Ii using its bounding box bi from tracking.

From now on, we will use Ii to represent the face region

frame for simplicity.

Output: The output of the system is a liveness probability

pt, where a binary decision y (live or attack) can be deter-

mined with a threshold.

Model: Usually, a face liveness detection model Φ(·) con-

sists of a feature extractor φ(·) and a classifier C(·). The

liveness logit qt can be obtained by forwarding the current

face frame It to the network denoted as qt = C(φ(It)) =
C(xt), where xt is the feature representations of the frame

It. The liveness probability pt can be generated by apply-

ing a normalization activation function such as softmax or

sigmoid to the logit qt. As an additional constraint due to

the online setting, when making a prediction on the frame

It, the model Φ(·) can only use the information from [I0, It]
but is forbidden to access [It+1, IT ] (Fig. 2b).

4.2. Temporal Consistency Properties

By deploying the face tracker, the temporal consistency

comes with the following two properties:

Property 1 (Identity Consistency) There is only one sub-

ject identity in the input stream.

Property 2 (Prediction Consistency) The model should

have consistent predictions on the frames within the same

video tracklet.

4.3. Improving Consistency

Applying the properties of temporal consistency, the fol-

lowing loss functions are used to train the network in an

end-to-end manner (Fig. 2a) and a uncertainty module is

proposed to keep prediction consistency in the deployment

stage (Fig. 2b):

Classification Supervision: Unlike the previous methods

[17, 14, 31, 18] that trained a binary classifier, the labels

of video types (e.g., print, video replay) can be used as the

supervision to train a multi-class classifier using a softmax

cross-entropy loss:

Lc = −
1

m

m∑

i=0

log pyi
, (1)

where m is the batch size. The benefits of converting a

binary classification problem into a multi-class classifica-

tion setting are in three-folds: (i) The discriminative fea-

tures to distinguish different types of presentation attacks

can be learned; (ii) The embedding space of liveness class

can be squeezed into a more compact space than using a bi-

nary classification, which helps decrease the false positive

rate; (iii) Fine-grained analysis can be conducted when the

model makes mistakes.

Temporal Consistency Self-Supervision: To keep tempo-

ral consistency across multiple frames (e.g., frames within

the same video tracklet), a self-supervision loss is proposed

to regularize the intra-video consistency in the embedding

space, denoted as:

Lt =
1

m

m∑

i=0

max
i,j∈v

||xi − xj ||
2
2, (2)

where xi and xj are the feature representations of two

frames from the same video clip v within the batch.

Class Consistency Loss: Similar to the temporal con-

sistency self-supervision, the embedding learned from the

same class but from different videos should be as close as

possible. Therefore, a class consistency loss function can

be defined as follows:

Le =
1

m

m∑

i=0

max yij ||xi − xj ||
2
2, (3)

where yij is equal to 1 when xi and xj belong to the same

class within the batch, otherwise yij is 0. In the end, the

final loss can be formulated as:

L = Lc + βLt + γLe. (4)



4.3.1 Filtering with Uncertainty Estimation

During the deployment stage, to keep the prediction consis-

tent within the same tracklet, a simple yet effective solution

is proposed to estimate the model uncertainty and smooth

the model predictions adaptively.

Due to the online setting, the uncertainty module can

only observe the historical logit outputs {q0, . . . , qt} from

the model. Based on the temporal consistency, we can as-

sume that: (i) The random variable of the liveness score πt

at the time step t follows a Gaussian distribution N (µ̂t, δ̂
2
t ),

where µ̂t and δ̂t denote the moving average and standard

deviation of π; (ii) The single logit observation qt follows

another Gaussian distribution N (πt, δ
2). According to the

Bayesian rule, the posterior can be written:

p(πt|π0, . . . , πt−1; qt) =
p(π0, . . . , πt−1; qt|πt) · p(πt)

p(π0, . . . , πt−1; qt)

= α · p(qt|πt) · p(πt|π0, . . . , πt−1),

(5)

where α is a normalization constant. Based on the assump-

tions of temporal consistency, the Equ. (5) can be derived

into the following equation:

(πt − µ̂t)
2

2δ̂2t
=

(πt − qt)
2

2δ2t
+

(πt − µ̂t−1)
2

2δ̂2t−1

. (6)

Therefore, the best estimate of the current liveness µ̂t and

its uncertainty δ̂t can be derived as:

µ̂t =
δ̂2t−1qt + δ2t µ̂t−1

δ2t + δ̂2t−1

=
δ̂2t−1

δ2t + δ̂2t−1

qt +
δ2t

δ2t + δ̂2t−1

µ̂t−1,

δ̂t =
δ2t δ̂

2
t−1

δ2t + δ̂2t−1

.

(7)

Since µ̂t−1 can be considered as the best measurement of

the current state, we can compute δ2t = (qt − µ̂t−1)
2. To

adapt the probability with the uncertainty estimation, the

current moving average µ̂t is used as the updated probabil-

ity and the δ̂t as the estimated uncertainty. In the end, an

activation function such as sigmoid can be applied to nor-

malize the liveness estimation.

In practice, we can only keep recent liveness predictions

to compute the moving average µ̂t−1 and the standard devi-

ation δ̂t−1 as a relaxation. Then, the whole inference pro-

cess in the deployment stage is depicted in Alg. 1. Interest-

ingly, if we assume that θ = δ̂2t−1/(δ
2
t + δ̂2t−1) is a constant

value and discard the uncertainty, the Eq. (7) would degrade

to the Exponential Moving Average (EMA) [6], which is a

common technique used in the finance domain.

Algorithm 1: Training-Free Uncertainty Module

Input : Current video stream It, window size w
Output: Calibrated probability µ̂t and estimated

uncertainty δ̂t
1 Obtain current liveness logit qt;

2 Compute µ̂t−1 and δ̂t−1 with a window size w;

3 Compute the weight θ =
δ̂2
t−1

δ2
t
+δ̂2

t−1

;

4 Compute µ̂t = θqt + (1− θ)µ̂t−1 and δ̂t = θ · δ2t ;

5. Experiments

5.1. Experiments Settings

Datasets: Several public datasets were used to benchmark

the proposed method: (i) SiW [17] dataset consists of 165
subjects with 4, 620 videos in total to evaluate the robust-

ness of the model with various poses, data sources, and un-

known attacks. (ii) OULU-NLP [4] dataset contains 4, 950
real and attack videos, recorded using six different phone

cameras. (iii) SiW-M [18] dataset consists of 493 subjects

with up to 13 types of spoofing attacks. The protocols in

this dataset were designed for open scenario evaluation. It

adopts a leave-one-out setting, using twelve “attack” videos

as the training set and the remaining one as the testing set.

Baselines: Several baselines were implemented: (i) R50:

This model was trained using the ResNet-50 network [11]

to extract the features of each frame. It served as a base-

line of the frame-based face liveness detection system.

(ii) R50-LSTM: This model was trained using LSTM to

learn the temporal information with the features generated

by R50. (iii) STASN [31]: This model explored both spatial

and temporal information to make a final prediction. The

original paper only reported ACER, so we implemented our

own version (denoted as STASN*), which obtained slightly

better performance than the original work.

Model Variants: FasTCo was developed on R50 net-

work by default. Another lightweight extension using Mo-

bileNetv2 [20] backbone with a growth rate of 0.5 was also

developed, denoted by FasTCo-MN, to show the potential

of low-power deployment like edge devices.

Evaluation Metrics: In addition to some widely used met-

rics (e.g., APCER, BPCER, ACER, and ROC) suggested by

ISO [12] and Zhang et al. [33] that measures on the frame

level, we proposed to report the evaluation metrics based

on the video segment level. The videos were divided by

the sequence of video segment with length K, and each

video segment is treated independently, where the previ-

ous mentioned metrics (e.g., ACER and ROC) can be ap-

plied. For 30 FPS video, we suggest the maximum latency

K of less than 30 (1 second) to have a good user experi-

ence. Such evaluation approach have the following advan-



Table 1: Comparison of different model implementations.

Method Spatial Temporal Uncertainty ACER (%)

R50 X 0.2849

R50-SMA X X 0.0927

R50-LSTM X X 0.0794

FasTCo-NA X X 0.0632

FasTCo-EMA X X 0.0028

FasTCo X X X 0.0003

Table 2: Ablation study on the hyper-parameters of losses.

Hp Binary Multi-class

β - 0 1 0 1 1 1 5

γ - 0 0 0.5 0.1 0.5 1.0 0.1

ACER (%) 3.3 2.5 2.1 1.7 1.3 0.8 2.5 1.7

tages: (i) Compare to frame-based evaluation, it provides

two-dimensional metrics, which fitt better to the practical

scenario that cares more about the performance with a spe-

cific latency (video segment length); (ii) It allows the use of

temporal information to some extent, which could provide a

fair comparison with video segment-based models (e.g., 3D

Convolutions) in the future.

For all the experiments, to fairly compare with the previ-

ous methods and the baseline models, we strictly followed

the evaluation protocols provided in each dataset. In the

cross-domain experiments, in addition to the frame-based

metrics, we also compared the model performance with

state-of-the-art on the video-segment level.

5.2. Ablation Study

Module: The SiW dataset with protocol one was used to

evaluate the effectiveness of various components in the pro-

posed framework. To fully evaluate the components, dif-

ferent model implementations were configured as follows:

(i) R50-SMA: a simple moving average with a window size

of five was used to smooth the R50’s predictions; (ii) FasT-

Co-NA: a R50 model trained with the proposed temporal

consistency loss functions; (iii) FasTCo-EMA: an EMA

with a smoothing factor of 0.1 and a window size of five was

used to smooth the predictions of the model FasTCo-NA.

Table 1 presents the experimental comparisons on the

baselines and proposed modules: (i) Comparing R50 with

R50-SMA, a simple moving average can help smooth the

predictions and reduce the ACER by 3 times; (ii) Com-

paring R50 with R50-LSTM, the temporal information en-

coded in LSTM does improve the accuracy by 4 times;

(iii) Comparing FasTCo-NA with R50 and R50-LSTM,

it can be observed that, rather than using more complex

LSTM, the temporal consistency introduced by the pro-

posed loss functions further increases the accuracy of the

model; (iv) The uncertainty module does help to improve

the robustness of the predictions. Even compared with the

Table 3: Different pre-trained weights as initializations.

Datasets APCER (%) BPCER (%) ACER (%)

NA 2.49 3.13 2.81

VGGFace-2 0.76 0.64 0.70

ImageNet 0.30 0.26 0.28

Table 4: Runtime comparison with the recent methods.

Metrics STASN [31] DTN [18] FasTCo FasTCo-MN

FLOPs (G) 8* 6 4 0.08

Size (M) 208 - 90 2.8

Time (ms) 11.8 - 3.8 0.9

EMA, it still achieved much better performance. If compar-

ing the full model with the R50 model, FasTCo improved

ACER by 1000 times approximately.

Weights of the Losses: OULU-NPU dataset with the proto-

col one was used to evaluate the hyper-parameters to weight

the different loss functions. The results are summarized in

the Table 2: (i) Compared with the binary classification,

the multi-class training (β = 0, γ = 0) reduced the error

rate from 3.3% to 2.5%. (ii) To compare the two proposed

loss functions, ACER would decrease to 2.1 if the temporal

consistency loss Lt (β = 1, γ = 0) was applied. By apply-

ing the class consistency loss Le, the ACER would further

drop to 1.7%, showing that Le had a larger impact than Lt.

(iii) To balance the loss of the three losses (the weight for

multi-classification loss is 1), the final ACER could be fur-

ther reduced from 2.5 to 0.8 when β = 1 and γ = 0.5,

demonstrating the necessity and effectiveness of both loss

functions.

Pre-trained Models: To analyze the impact of using dif-

ferent pre-trained weights as initialization of the backbone

R50 model, we tried three different settings: (i) Random ini-

tialized weights; (ii) Initialization using the pre-trained R50

weights trained on VGGFace-2 dataset. We used cropped

face images from the VGGFace-2 dataset [5] to train a R50

model for face recognition task, whose weights of the con-

volutional layers were then used to initialize and fine-tune

the new model for the face livness detection task; (iii) Ini-

tialization using the pre-trained R50 weights trained on Im-

ageNet [7]. Evaluation results on the SiW dataset are de-

picted in Table 3. Surprisingly, the model initialized from

the ImageNet dataset achieved a better performance than the

model trained from the VGGFace-2 dataset. One possible

reason is that the ImageNet dataset provides a wider distri-

bution of the features, which can better capture the clue of

presentation attacks rather than a face recognition dataset.

Though all models are based on the R50 architecture, we

believe this conclusion is generalizable to other model ar-

chitectures as well.
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Figure 3: Depiction of (a) 2D t-SNE visualization of

the representations generated by R50 (Left) and FasTCo

(Right) on the SiW dataset; and (b) one sample video live-

ness predictions across time from R50 and FasTCo models.

5.3. Comparison with the StateoftheArts

Runtime Complexity: Inference efficiency is very critical

to the low-latency online applications. The total number of

floating-point operations (FLOPs) of the model was used to

measure the runtime complexity. Note that “*” denotes the

estimated FLOPs based on our implementation because this

information cannot be found in the literature. The lower the

FLOPs are, the fewer operations are performed and thus the

faster of the inference speed. As summarized in Table 4, our

model has the least operations, demonstrating better run-

time efficiency (FasTCo only takes 3.8 ms to infer on a sin-

gle frame, which is approximately three times faster than

STASN [31]). If switching to a lightweight backbone, like

FasTCo-MN, FLOPs and inference time reduced dramat-

ically, showing great potential for low-latency low-power

applications.

In-the-Wild Scenario: The SiW dataset [17] was used to

evaluate the face liveness detection system in the presence

of variances of subject pose, environment illumination, and

unseen presentation attacks. The comparison with the cur-

rent state-of-the-art methods on this benchmark is summa-

rized in Table 5: (i) The baseline model (R50) initialized

with ImageNet pre-trained weights, without any additional

data, has already achieved comparable performance to the

current state-of-the-art, STASN+, which used additional

synthetic augmented data during training. One possible rea-

son is that it is easier for the optimizer to find a better local

minimum when using this single CNN network rather than

training CNN and RNN jointly. (ii) FasTCo achieved sig-

nificantly better performance on protocol one, even using

the lightweight backbone. One possible explanation is as

follows: the subjects in the training set are frontal faces

only, leading to slight overfitting to frontal faces for the

trained model. However, the subjects in the test videos have

more pose changes. Due to the temporal consistency in-

troduced in our uncertainty module, the large variation on

the predictions due to the pose change was extremely sup-

pressed, which results in predictions of higher confidence.

(iii) FasTCo outperformed the state-of-the-art methods by

at least 65% using the last two protocols. Even in proto-

col three for the open-set scenario, our method achieved

better performance, demonstrating the effectiveness of the

Figure 4: 2D t-SNE Visualization of the representations of

FasTCo in the open-set liveness detection scenario (Best

view in color and zoom in).

proposed model for liveness detection in the wild. To vi-

sually understand the learned model, the feature represen-

tations generated by our baseline R50 and FasTCo on the

testing set are plotted in Fig. 3a. Compared with the base-

line model, the representations of each class produced by

our method are more compactly clustered and clearly sepa-

rated, which could possibly explain the better classification

performance. As a qualitative comparison on the prediction

scores with the baseline depicted in Fig. 3b, our proposed

loss functions improved the temporal consistency compared

with the baseline while the uncertainty estimation module

can further improve the prediction quality during inference.

Mobile Scenario: The comparison with the state-of-the-art

on the OULU-NPU dataset [4] is depicted in Table 6. Sim-

ilarly, our single network method outperformed the state-

of-the-art on this benchmark on three out of four proto-

cols. Note that STASN+ consisted of multiple networks

(R50+LSTM for extracting temporal information and R50

for local spatial information). Besides it was trained with

additional synthetic data, while FasTCo only used the pro-

vided training set. However, it obtained comparable per-

formance using protocol one and two and achieved at least

40% improvement using protocol three and four, indicating

more robustness to acquisition device changes, unseen illu-

mination conditions, and unseen presentation attacks.

Open-world Scenario: The SiW-M dataset [18] was used

to evaluate the performance of the model when it encoun-

ters unseen presentation attacks in the open-world scenario.

Two state-of-the-art methods [17, 18] were reported on this

dataset. Due to the lack of validation set to choose a thresh-

old in this zero-shot scenario, a high threshold of 0.99

was set to reduce the false positive alarms. The compari-

son with the recent methods, depicted in Table 7, demon-



Table 5: Comparisons on the SiW dataset with three protocols (Pr.). The best results are marked in gray.

Pr. Metrics (%) TD-SF-CS [33] STASN* [31] STASN+ [31] R50 R50-LSTM FasTCo FasTCo-MN

1

APCER 1.27 0.72 - 0.30 0.13 0.06× 10−2 0.70× 10−2

BPCER 0.33 0.89 - 0.26 0.02 0.00× 10−2 0.15× 10−2

ACER 0.80 0.81 0.30 0.28 0.08 0.03× 10−2 0.43× 10−2

2

APCER 0.08± 0.17 0.29± 0.16 - 0.08± 0.05 0.03± 0.02 0.02 ± 0.02 0.02 ± 0.02

BPCER 0.25± 0.22 0.27± 0.14 - 0.07± 0.03 0.03± 0.03 0.00 ± 0.00 0.01 ± 0.01

ACER 0.17± 0.16 0.28± 0.15 0.15± 0.05 0.03± 0.03 0.03± 0.03 0.01 ± 0.01 0.01 ± 0.02

3

APCER 6.27± 4.36 11.05± 3.30 - 9.18± 4.32 4.45 ± 0.51 2.73 ± 0.91 3.36 ± 1.94

BPCER 6.43± 4.42 7.74± 3.08 - 8.41± 0.94 3.61 ± 0.67 1.28 ± 0.21 5.00 ± 0.36

ACER 6.35± 4.39 9.39± 3.19 5.85± 0.85 8.80± 2.62 4.03 ± 0.08 2.00 ± 0.56 4.18 ± 1.15

Table 6: Comparison on the OULU-NPU dataset with four protocols (Pr.). The best performance is marked in gray.

Pr. Method APCER (%) BPCER (%) ACER (%)

1

Auxiliary [17] 1.6 1.6 1.6

De-Spoofing [14] 1.2 1.7 1.5

STASN+ [31] 1.2 0.8 1.0

CDCN++ [32] 0.4 0.0 0.2

R50 2.3 4.7 3.5

R50-LSTM 3.3 0.8 2.1

FasTCo 0.8 0.8 0.8

2

Auxiliary [17] 2.7 2.7 2.7

De-Spoofing [14] 4.2 4.4 4.3

STASN+ [31] 1.4 0.8 1.1

CDCN++ [32] 1.8 0.8 1.3

R50 2.0 1.1 1.6

R50-LSTM 3.4 1.3 2.3

FasTCo 1.0 1.3 1.1

Pr. Method APCER (%) BPCER (%) ACER (%)

3

Auxiliary [17] 2.7 ± 1.3 3.1 ± 1.7 2.9 ± 1.5

De-Spoofing [14] 4.0 ± 1.8 3.8 ± 1.2 3.6 ± 1.5

STASN+ [31] 1.4 ± 1.4 3.6 ± 4.6 2.5 ± 2.2

CDCN++ [32] 1.7 ± 1.5 2.0 ± 1.2 1.8 ± 0.7

R50 3.4 ± 3.0 0.7 ± 1.0 2.0 ± 1.9

R50-LSTM 4.7 ± 1.4 2.6 ± 4.2 3.7 ± 2.7

FasTCo 1.2 ± 1.3 1.0 ± 1.0 1.1 ± 0.8

4

Auxiliary [17] 9.3 ± 5.6 10.4 ± 6.0 9.5 ± 6.0

De-Spoofing [14] 5.1 ± 6.3 6.1 ± 5.1 5.6 ± 5.7

STASN+ [31] 0.9 ± 1.8 4.2 ± 5.3 2.6 ± 2.8

CDCN++ [32] 4.2 ± 3.4 5.8 ± 4.9 5.0 ± 2.9

R50 5.1 ± 3.9 4.1 ± 2.4 4.6 ± 2.1

R50-LSTM 8.9 ± 7.6 4.6 ± 3.7 6.7 ± 3.6

FasTCo 1.0 ± 2.0 2.0 ± 4.1 1.5 ± 1.2

Figure 5: 2D t-SNE visualization of the feature represen-

tations generated from SiW and OULU-NPU datasets by

FasTCo trained on SiW dataset only.

strated that our method outperformed the previous meth-

ods by at least 40% in terms of APCER, ACER, and EER.

Diving deep into the details of the unseen attack scenarios,

the following observations can be summarized: (i) In gen-

eral, our method performed well on detecting paper mask,

mannequin head, impersonation, and partial paper or pa-

per cut attacks. (ii) Compared with DTN [18], FasTCo

obtained a worse result on predicting video replay attacks

and achieved comparable performance on detecting print at-

tacks. (iii) Compared with DTN [18], a significant improve-

ment was achieved by FasTCo in detecting various masks,

makeup (especially obfuscation attack), and partial occlu-

sion attacks. It reveals that our uncertainty estimation mod-

ule using temporal consistency also works well on detecting

most of the unseen presentation attacks.

To visually understand the performance in seen and un-

seen attack scenarios, we separated out the video with sili-

cone attacks, a hard case to 2D face liveness detection sys-

tem, as the unseen presentation attacks. Then, a randomly

selected 80% of the other videos were selected as the train-

ing set and the rest was used as the seen attacks. We re-

trained the model and depicted the representations gener-

ated from the testing set in Fig. 4: (i) Most samples belong

to the same attack types are clustered, even for the unseen

silicone mask attack samples. It demonstrates the general-

ization of our model to this unseen attacks. (ii) There is a

small overlap between silicone mask samples and live sam-

ples, which explains why this attack is more difficult to de-



Table 7: Comparison on SiW-M dataset with open-set evaluation protocols. The best overall performance is marked in gray.

Method Metrics (%) Replay Print
Mask Attacks Makeup Attacks Partial Attacks

Average
Half Sili. Trans. Paper Manne. Obf. Imp. Cos. F. Eye P. Glass P. Paper

APCER 23.7 7.3 27.7 18.2 97.8 8.3 16.2 100.0 18.0 16.3 91.8 72.2 0.4 38.3 ± 37.4

BPCER 10.1 6.5 10.9 11.6 6.2 7.8 9.3 11.6 9.3 7.1 6.2 8.8 10.3 8.9 ± 2.0

ACER 16..8 6.9 19.3 14.9 52.1 8.0 12.8 55.8 13.7 11.7 49.0 40.5 5.3 23.6 ± 18.5
Auxiliary [17]

EER 14.0 4.3 11.6 12.4 24.6 7.8 10.0 72.3 10.1 9.4 21.4 18.6 4.0 17.0 ± 17.7

DTN [18]

APCER 1.0 0.0 0.7 24.5 58.6 0.5 3.8 73.2 13.2 12.4 17.0 17.0 0.2 17.1 ± 23.2

BPCER 18.6 11.9 29.3 12.8 13.4 8.5 23.0 11.5 9.6 16.0 21.5 22.6 16.8 16.6 ± 6.2

ACER 9.8 6.0 15.0 18.7 36.0 4.5 7.7 48.1 11.4 14.2 19.3 19.8 8.5 16.8 ± 11.1

EER 10.0 2.1 14.4 18.6 26.5 5.7 9.6 50.2 10.1 13.2 19.8 20.5 8.8 16.1 ± 12.2

APCER 1.7 0.0 2.8 9.9 3.4 0.0 0.0 22.9 0.0 10.1 40.9 12.0 0.0 8.0 ± 12.0

BPCER 20.6 12.0 10.2 9.4 20.7 9.2 14.6 10.8 8.1 9.9 8.5 9.5 14.8 12.2 ± 4.3

ACER 11.2 6.0 6.5 9.7 12.1 4.6 7.3 16.8 4.0 10.0 24.7 10.7 7.4 10.1 ± 5.6
FasTCo

EER 7.1 5.6 7.7 9.8 14.8 0.0 2.3 14.0 1.0 10.0 14.9 10.3 1.8 7.6 ± 5.3

Table 8: Comparison with the state-of-the-art methods in a cross-domain setting (Best results are marked in gray).

Method APCER (%) BPCER (%) ACER (%) EER (%)
FNR(%)@FPR=

1E-5 1E-4 1E-3 1E-2 1E-1

Auxiliary [17] 26.82 14.17 20.50 17.07 98.07 96.91 94.70 79.26 34.45

STASN* [31] 13.24 5.47 9.35 5.42 67.13 62.46 52.22 20.67 3.13

R50 8.32 4.48 6.40 4.28 84.38 81.93 77.15 15.60 1.64

FasTCo 5.14 2.44 3.79 2.57 49.69 46.25 44.68 12.94 0.10

tect. (iii) The features from obfuscation are more scattered,

indicating that the network suffers from learning a unique

representation for this attack.

Cross-domain Scenario: To verify the generalization of

the model, the following experiment was designed: Be-

cause both the SiW and OULU-NPU datasets contain the

print and video attacks yet there is a large domain gap be-

tween these two, the SiW dataset was selected as the train-

ing set and the OULU-NPU dataset was used as the test-

ing set. The state-of-the-art models such as Auxiliary [17]

and STASN [31] and R50 model were selected as the base-

lines in this experiment. The model of Auxiliary gener-

ously provided by the authors was directly used to test its

performance. Table 8 shows that FasTCo achieved signifi-

cantly better performance (40%+ in ACER) compared with

all baselines across all metrics. The video-segment level

evaluation was performed and the results are depicted in

Table 9. FasTCo consistently outperformed all baselines

across different video segment lengths. Considering both

model performance and latency, the video segment length

between 5 to 15 were highly recommended in practice. Fig-

ure 5 depicts the t-SNE visualization of feature representa-

tions extracted from two different domains. (i) The model

correctly learned the liveness features directly from videos

since the features from two different domains were highly

clustered. (ii) The feature representations from SiW-Print

were isolated to the other features while the features from

SiW-Replay were cluttered with the attack features from the

OULU-NPU dataset, which indicates that the clue to distin-

Table 9: Comparison with the state-of-the-art in a cross-

domain setting using the proposed segment level evaluation

(Best results are marked in gray).

Method Metrics (%)
video segment length K =

1 3 5 10 15 30

STASN* [31]
ACER 9.35 9.11 8.87 8.74 9.17 8.91

FNR@FPR=1E-2 20.67 20.86 19.50 17.53 18.77 18.08

R50
ACER 6.40 6.08 5.98 5.87 5.61 5.61

FNR@FPR=1E-2 15.60 16.70 16.65 15.60 16.21 14.15

ACER 3.96 3.92 3.87 3.77 3.70 3.69
FasTCo

FNR@FPR=1E-2 9.72 8.94 8.55 8.60 8.28 7.86

guish the presentation attacks from the OULU-NPU dataset

was mostly learned from Replay attacks in the SiW dataset.

In summary, FasTCo has better generalization for cross-

domain applications than current state-of-the-arts, and the

actual performance will be even better if the target domain

has higher overlap with the source domain.

6. Conclusion

In this paper, the temporal inconsistency was identified

as a common underlying issue that undermines the model

performance in the face liveness detection task. To ad-

dress this issue, in addition to the classification loss, tem-

poral consistency and class consistency losses were pro-

posed for training the model. Moreover, a training-free un-

certainty estimation module was developed to update the

prediction adaptively in a smooth manner. Extensive exper-

iments have demonstrated that, by applying two proposed

strategies based on temporal consistency, the model outper-

formed the current state-of-the-art by a significant margin.



References

[1] Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming

Liu. Face anti-spoofing using patch and depth-based CNNs.

In IEEE International Joint Conference on Biometrics, pages

319–328, Denver, CO, Oct. 1- 4 2017. 2

[2] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe.

Tracking without bells and whistles. In Proc. IEEE Interna-

tional Conference on Computer Vision, Oct. 27–Nov.2 2019.

3

[3] Zinelabidine Boulkenafet, Jukka Komulainen, and Abdenour

Hadid. Face Spoofing Detection Using Colour Texture Anal-

ysis. IEEE Transactions on Information Forensics and Secu-

rity, 11(8):1818–1830, 2016. 2

[4] Zinelabinde Boulkenafet, Jukka Komulainen, Lei Li, Xiaoyi

Feng, and Abdenour Hadid. OULU-NPU: A mobile face

presentation attack database with real-world variations. In

Proc. IEEE International Conference on Automatic Face and

Gesture Recognition, pages 612–618, Washington, DC, May

30-Jun. 3 2017. 2, 4, 6

[5] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and An-

drew Zisserman. VGGFace2: A dataset for recognising faces

across pose and age. In Proc. IEEE Conference on Auto-

matic Face and Gesture Recognition, Xi’an, China, May 15–

19 2018. 5

[6] Wikipedia Contributors. Moving average: https://en.

wikipedia.org/wiki/Moving_average, 2019. 4

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and

Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image

Database. In Proc. IEEE Conference on Computer Vision

and Pattern Recognition, pages 248–255, Miami Beach, FL,

Jun. 20–25 2009. 5

[8] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 2625–2634, 2015. 2
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