
On Improving the Accuracy of OSPF Traffic
Engineering�

Gábor Rétvári, József J. Bíró, and Tibor Cinkler

High Speed Networks Laboratory,
Department of Telecommunications and Media Informatics,

Budapest University of Technology and Economics,
H-1117, Magyar Tudósok körútja 2., Budapest, Hungary

{retvari, biro, cinkler}@tmit.bme.hu

Abstract. The conventional forwarding rule used by IP networks is to
always choose the path with the shortest length – in terms of administra-
tive link weights assigned to the links – to forward traffic. Lately, it has
been proposed to use shortest-path-first routing to implement Traffic En-
gineering in IP networks, promising with a big boost in the profitability
of the legacy network infrastructure. The idea is to set the link weights
so that the shortest paths, and the traffic thereof, follow the paths des-
ignated by the operator. Unfortunately, traditional methods to calculate
the link weights usually produce a bunch of superfluous shortest paths,
often leading to congestion along the unconsidered paths. In this paper,
we introduce and develop novel methods to increase the accuracy of this
process and, by means of extensive simulations, we show that our pro-
posed solution produces remarkably high quality link weights.

Keywords: OSPF, traffic engineering, linear programming, shortest
paths.

1 Introduction

OSPF Traffic Engineering (OSPF TE) exploits the potential of the Internet
network infrastructure to implement economic and efficient traffic management
right at the IP level. IP routers traditionally forward traffic along the shortest
path(s) towards the destination, where the path length is computed in terms of
an administrative weight associated with network links, and load-balancing is
achieved by the optional Equal-Cost-MultiPath (ECMP) technique, that allows
the traffic to be split roughly evenly amongst equal cost shortest paths. OSPF TE
basically means the careful manipulation of OSPF link weights aiming towards
balanced traffic distribution and reduced congestion [1], [2], [3].

The process model of OSPF TE is as follows. A dedicated TE network com-
ponent participates in the signaling of the Open Shortest Path First (OSPF, [4])
or Intermediate-System-to-Intermediate System (IS-IS) routing protocol. Based
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on the routing information gathered from the network it becomes possible to
compute OSPF link weights, so that the resultant shortest paths manifest some
sophisticated TE goal. After the link weights are distributed back to the routers,
the traffic in the network will follow the paths assigned by the traffic engineer,
leading to, hopefully, more optimal network utilization and better user experi-
ence. And all this happens without modifying the basic operation of OSPF/IS-IS
in any regards. This is in sharp contrast to the conventional models for traffic en-
gineering, where TE functionality is delegated to a dedicated connection-oriented
infrastructure, that has to be purchased, operated and maintained separately
from the IP layer.

A fundamental restriction of OSPF TE is that all traffic must follow the
shortest paths in the network. Only if a path set can be represented as a set
of shortest paths, that is, positive, integer-valued link weights exist over which
the paths are all shortest paths, it can be used in conjunction with OSPF TE.
Notably, this limitation does not turn out to be overly restrictive, because any
optional path set is either shortest path representable by itself, or otherwise, by
eliminating redundant loops, it can be reduced to a shortest path representable
one. Moreover, the reduced path set is not only capable to satisfy the same
bandwidth requirements as the original path set, but it is also strictly shorter
in terms of the overall number of edges traversed. This ground-breaking result,
which is due to Wang et al. [5], immediately catapulted OSPF TE into the
focus of interests, since it suggests that the range of potential path assignment
strategies compatible with OSPF routing is much wider than anyone would have
expected previously.

OSPF TE is generally NP-hard [1]. Thus, it is common to subdivide the
process into two, mostly independent phases. In the first phase, a set of “good”
paths is assigned to each ingress-egress router pair in the network (these will be
referred to as sessions hereafter), and then, these paths are mapped to shortest
paths. In a predecessor of this paper, [6], we pointed out that it is the first phase
that hides the origin of exponential complexity of OSPF TE. Thus, to select the
path set it is plausible to invoke some quick heuristics, such as for example the
widest-shortest-path algorithm [7], which, in some way or another, promise with
improving the performance of OSPF routing. What remains to be done is to
map this designated path set to shortest paths with the greatest accuracy that
is achievable.

Unfortunately, it has gone mostly unnoticed that this process is highly prone
to ambiguity, and the resultant set of shortest paths usually contains a plethora of
additional (and, unfortunately, completely superfluous) paths besides the ones
designated in the first phase. Therefore, the carefully selected and fine-tuned
traffic engineered path set often deteriorates into a bunch of overlapping and
interfering shortest paths. In [6] we showed that, due to the adverse interference
caused by traffic routed to those additional paths, the useful throughput might
fall to an arbitrary small fraction of the optimal throughput realizable by OSPF
TE. Thus, it is essential to devise methods to restrict the number of paths in
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a shortest path representation to the fewest possible. This is precisely the main
purpose of the research work presented in this paper.

In Section 2, after briefly reviewing the mathematical model, we show an
illustrative example, that exhibits all the shortcomings of the traditional OSPF
TE methodology. Then, in Section 3, we overview the theory related to shortest
path representability and in Section 4, we introduce some new concepts with the
aim to restrict the number of superfluous shortest paths to the bare minimum.
We also give a polynomial time algorithm, which, according to the simulation
results presented in Section 5, proves itself remarkably useful in practice. Finally,
in Section 6, we draw the conclusions of our work.

Due to space limitations, in the sequel we shall confine ourselves to the most
basic theory. For an in depth exposition the reader is referred to [8].

2 An Illustrative Example

In this Section, first we introduce the relevant notation. Let the network be
described by the directed graph G(V, E), formed by the set of nodes V (|V | = n)
and the set of edges E (|E| = m). Let N be the corresponding node-arc incidence
matrix. Furthermore, suppose that we are given a set of source-destination pairs,
or sessions, (sk, dk) : k ∈ K and, provisioned between these source-destination
pairs, some set of designated paths Pk. A path in Pk is single sk → dk (sk ∈ V ,
dk ∈ V, k ∈ K) path, say, P , given by its consecutive edges: P := {(vi, vi+1) ∈
E : i = 1 . . . LP , v1 = sk, vLP +1 = dk}, where LP denotes the length of P . In
vector-form, the support of P is a column m-vector p, such that the component
corresponding to link (i, j) is 1 if (i, j) ∈ P and zero otherwise. We generally
assume that paths do not contain loops, and that all dks are distinct, which
assures that IP maintains a separate entry in the routing table for each session.
Let tk = |Pk| denote the number of designated paths for session k.

The collection of all the designated paths is given as P = ∪k∈KPk, whose
support is p =

∑
Pk∈P pk (here, pks are the supports of the Pk sets). We say

that a path set P ′ is equivalent to another path set P ′′, that is, P ′ ≡ P ′′ if
E(P ′) = E(P ′′), where E(P) = {(i, j) ∈ E : ∃P ∈ P , so that (i, j) ∈ P}.
Similarly, P ′ ⊆ P ′′ if E(P ′) ⊆ E(P ′′).

Let wij be an additive, positive valued weight associated with each network
link (i, j). Gather wijs into a row m-vector w. The length of a path P (of support
p) over the link weights W = {wij} is defined as W (P ) = wp. The set of shortest
paths over W is denoted by P(W). In the remainder of this paper, link weights
will be sought for in the form w = ξ + ω, ω ≥ 0, where ξ is an strictly positive
m-vector introduced with the sole purpose of separating w away from zero.

Now, we move on to introduce an illustrative example to demonstrate the
main points of the paper. Suppose that we are given the network1 depicted in
Fig. 1, which we adopted from [5]. All edge capacities equal to 1. Furthermore,
1 Note that, for the sake of simplicity, we shall use an undirected network in this

example. However, the theory will be formulated for directed networks later on,
which models the real case more thoroughly.
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SPR mSPR
Link weight load weight load
A,B 1 1.75 2 1
A,F 1 1.75 1 1
A,D 1 1.5 2 1
B,C 1 1.75 1 1
C,D 1 1.75 1 1
C,E 1 0.5 1 1
D,G 1 0.75 1 1
F,G 1 0.75 1 1
G,E 1 0. 5 1 1

Designated paths:

(F,B): F → A → B
(A,D): A → D
(B,G): B → C → E → G
(C,F): C → D → G → F

“Plain” SPR paths:

(F,B): F → A → B
(A,D): A → D
(B,G): B → C → E → G

B → C → D → G
B → A → D → G
B → A → F → G

(C,F): C → D → G → F
C → E → G → F
C → D → A → F
C → B → A → F

mSPR paths:

(F,B): F → A → B
(A,D): A → D
(B,G): B → C → E → G

B → C → D → G
(C,F): C → D → G → F

C → E → G → F

Fig. 1. Sample network topology, the set of designated paths and shortest paths in
different representations and a table summarizing the weight and the emergent load of
each link, assuming ECMP load-balancing

we are given 4 source-destination pairs, (namely, (F, B), (A, D), (B, G) and
(C, F)) between which a set of paths, each of capacity 1, is assigned as indicated
in the figure. The paths were provisioned as to assure that all links are filled to
capacity. Our task is then to achieve, by the careful setting of the link weights,
that all the shortest paths follow the designated paths.

Our first observation is that, by coincidence, all the designated paths are
actually minimum-hop paths (so they traverse the least hops possible). There-
fore, setting all the link weights uniformly to 1 assures that all the designated
paths become shortest paths. This setting obviously conforms to the following
conventional definition of shortest path representability [5]:

Definition 1. A path set P is shortest path representable (SPR), if there exists
a positive weight setting W, such that P ⊆ P(W).

We call the attention of the reader to a subtlety in the definition. Namely, we
do not require the equivalence of P and its shortest path representation P(W).
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We only require P to be a subset of P(W), and quite often this is precisely the
case. In our example, the “plain” shortest path representation contains signifi-
cantly more paths than P . For instance, in the case of session (B, G) not just the
designated path, but also three other paths have become shortest paths. This,
according to the ECMP load-balancing scheme, implies that the traffic of ses-
sion (B, G) will be distributed evenly to the shortest paths, and the additional
traffic directed to the superfluous paths will substantially overload some of their
links. To avoid this, it is crucial to eliminate as many superfluous paths from
the representation as possible. Perhaps, the most straightforward strengthening
of Definition 1 would be the following:

Definition 2. A path set P is perfectly shortest path representable (pSPR), if
there exists a positive weight setting W, such that P ≡ P(W).

Unfortunately, very often one can not achieve the total equivalence of the des-
ignated path set and the representation. Instead, the best one can hope for is
to reduce the number of paths in the representation to the bare minimum by
dropping the most paths possible. In other words, a minimal shortest path rep-
resentation Pmin is constituted of only those paths, which participate in all the
shortest path representations.

Definition 3. A weight set Wmin implements a minimal shortest path repre-
sentation (mSPR) of a path set P, if for each weight set W: P ⊆ P(W) ⇒
P(Wmin) ⊆ P(W). We denote P(Wmin) as Pmin.

In Fig. 1, we indicated a possible choice of weights that implements a minimal
representation, and the set of shortest paths it induces. Observe that we still
have superfluous shortest paths (exactly one for both (B,G) and (C,F)), but,
interestingly, these paths can never be dropped from the shortest path represen-
tation. This is because, if we wanted to eliminate for example path B → C →
D → G from the set of shortest paths of (B,G), we would need to increase the
weight of either link (C,D) or (D,G). But in this case, the designated path C
→ D → G → F would cease to be a shortest path for session (C,F). Finally, it
is noteworthy that using the minimal representation we could avoid to overload
any of the links in the network.

In the remaining part of this paper, we shall argue that the concept of mini-
mal representations is a remarkably useful one. First, it manifests an interesting
theoretical lower bound on narrowing a shortest path representation, and, as
shall be shown, this lower bound is well-defined. As a corner case, it contains
perfect representations. Furthermore, a minimal representation can always be
obtained in polynomial time, though, it might pose significantly more computa-
tional burden than in general.

3 A Flow-Theoretic Approach

Below, we give a brief overview of the theory of Shortest Path Representability.
The fundamental result that characterizes shortest path representable paths is
as follows [5], [8]:
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Proposition 1. Let P = ∪k∈KPk be a set of paths for some set of sessions
K, and let pk be the support of Pk for each k ∈ K. Then, P is representable
as shortest paths, if and only if the setting xk = pk yields an optimal feasible
solution to the primal fundamental LP of P, P-LP(P):

∑

k∈K
ξpk − min

∑

k∈K
ξxk : Nxk = tk ∀k ∈ K (1)

∑
k∈K xk ≤ p (2)

xk ≥ 0 ∀k ∈ K (3)

where tk, the vector of the number of designated paths for k, is defined as:

(tk)v =

⎧
⎪⎨

⎪⎩

−tk if v = sk

tk if v = dk

0 otherwise

In this case, the optimal objective is zero. If, in contrast, the optimal objective
is positive, then P is not SPR.

The most important observation regarding the fundamental LP is that – apart
from a constant term – it basically is a minimum cost multicommodity flow
problem. Constraints (1) give the flow conservation constraints with respect to
tk. The bundle constraints (2) restrict the sum of the arc-flows to remain under
P ’s support, pij , at every link. In fact, p acts as some sort of link capacity.
Finally, arc-flows are required to be non-negative by (3). Under the hood, P-
LP(P) can be interpreted as the task to reallocate the paths in the network,
such that after the reallocation the number of paths placed on a link does not
exceed the number of paths using that link in P . If this can be done such that
the length of the new path set (in terms of ξ) is less than that of P , then the
path set is not SPR, because it contains loops.

The proof of the Proposition proceeds as follows. Let πk be a row n-vector for
each k ∈ K, which denotes the dual variables for constraints (1). Similarly, let ω
(a row m-vector) be the dual for the constraints (2). Now, for the dual variables
it holds that:

∀k ∈ K, ∀(i, j) ∈ E : πk
j − πk

i ≥ ξij + ωij , ωij ≥ 0 . (4)

Hence, we could interpret πk as distance labels, or node potentials, so that πk
v

defines an upper bound on the shortest distance from the source node sk to any
node v over the positive-valued weight set W = {ξij + ωij}. The Shortest Path
Optimality Conditions [9] require that a path Pk is shortest path from sk to dk,
if and only if (4) holds with strict equality at all (i, j) ∈ Pk:

pk
ij > 0 ⇒ πk

j − πk
i = ξij + ωij . (5)

But pk
ij is the dual variable corresponding to the constraints (4). Therefore, it

follows from complementary slackness that (5) holds true, if and only if [pk] is
optimal to P-LP(P).
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Formulating the SPR problem as a multicommodity flow problem provides a
wealth of options to easily solve it [10]. Furthermore, Proposition 1 gives impor-
tant insights into the very nature of the problem, which we shall exploit in the
foregoing discussions in our quest for improving the accuracy of shortest path
representations.

4 Minimum and Perfect Shortest Path Representations

In the previous Section, we have seen that in order to obtain the link weights
that represent a set of paths P as shortest paths, one needs to solve the dual
of P-LP(P). This yields the link weights in the form: wij = ξij + ωij . How-
ever, in the vast majority of the cases there arises a large number of alternative
optimal solutions, both for the primal and the dual problem, probably due to
highly degenerate nature of the feasible region. The following important result
characterizes the set of paths in a shortest path representation, in terms of the
different alternative optimal solutions of P-LP(P).

Theorem 1. The set of paths in the minimal representation is spanned by the
alternative optimal solutions of the primal fundamental LP.

More formally, given a set of paths P and some sk → dk path P for some
session k ∈ K: P ∈ Pmin if and only if there exists some [xk] optimal feasible
solution to P-LP(P), such that ∀(i, j) ∈ P : xk

ij > 0.

Proof (Sketch). Due to the Complementary Theorem of Linear Programming
[11, p. 310, Exercise 6.39], there exists some [xk] optimal feasible solution to P-
LP(P), so that ∀(i, j) ∈ P : xk

ij > 0, if and only if (4) holds with strict equality
at all links of P in all the dual solutions. Noting that, for an SPR path set, the
optimal region and the feasible region of the dual coincide, this precisely means
that any such P will be a shortest path over any SPR link weights. �

Regarding our example in Fig 1, the existence of additional paths in the min-
imal representation can be attributed to the fact that, for session (B,G) and
(C,F), the subpaths of the designated paths between nodes C and G can be
swapped, and both configurations supply a potential optimal feasible solution to
the fundamental LP.

The significance of Theorem 1 is manifold. First, it implies that the concept
of minimal representations is well-defined, because the set of alternative optimal
feasible solutions of P-LP(P) is also well-defined. Therefore, the minimal repre-
sentation is the intrinsic property of the path set itself, and there is theoretically
no way to obtain a more precise shortest path representation. Another interest-
ing corollary is that, for the single-path routing case, Theorem 1 gives a nice
characterization of perfect representations:

Corollary 1. Suppose that some path set P contains only one path for each
distinct (sk, dk) : k ∈ K. Now, P is perfectly shortest path representable, if and
only if [pk] is the unique optimal feasible solution of P-LP(P).
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This result explains, why it is relatively rare for a path set to be pSPR: the
support of P must be a unique optimizer of the corresponding fundamental LP,
which, as it is usual with minimum cost multicommodity flow problems, is not
a particularly frequent occurrence.

Finally, we construct an algorithm to search for the minimal representation.
For this, first we introduce some more notation. Let vk ≥ 0 be a row m-vector of
slack-variables for each session k ∈ K, so that vk is complementary to xk in the
fundamental LP. With this notation, we can write (4) as πk

j −πk
i +vk

ij = ξij +ωij .

Corollary 2. For some sk → dk path Pk: Pk /∈ Pmin, if and only if there exists
some optimal feasible solution of the dual of P-LP(P), so that vk

ij > 0 for some
(i, j) ∈ Pk.

Proof. From Theorem 1, Pk /∈ Pmin if and only if Pk traverses at least one link,
say (i, j), so that xk

ij = 0 for each optimal feasible solution of P-LP(P). But this,
from the Complementary Theorem of Linear Programming, precisely means that
there exists a dual optimal solution with vk

ij > 0, so Pk is not a shortest path
according to the Shortest Path Optimality Conditions. �

In [8], we show that vk
ij > 0 also implies that there exists an optimal ray d in

the set of optimal feasible solutions of the dual, such that the entry in d corre-
sponding to vk

ij is strictly positive. Now, our algorithm to search for the minimal
representation is based on the idea that if we elevate as many slack variables vk

ij

from zero as possible, while simultaneously assuring that all the designated paths
remain shortest paths, we eventually obtain a minimal representation. First, we
add a constraint

∑
k∈K vkpk = 0 to the dual problem, which explicitly requires

that all slack variables corresponding to the designated paths are bound to zero.
Hence, solving the problem will yield yet another SPR link weight set. Second,
we perturb the objective function vector by setting the cost of some vk

ij to an
arbitrary positive value and all other costs to zero. Finally, we set the direction of
the optimization to maximization. Now, either the perturbed LP is bounded, in
which case no appropriate directions exist for vk

ij , or otherwise it is unbounded.
Let the ray causing the unboundedness be d. Notably, d has strictly positive
surplus in the position corresponding to vk

ij (otherwise, the problem might not
have become unbounded) and it has non-negative surplus corresponding to all
other slack variables due to the non-negativity constraint imposed on the slack
variables. Hence, moving along d yields a new SPR weight set, but now vk

ij is
separated away from zero, so all paths of k traversing (i, j) cease to be shortest
paths. Repeating this step for each slack variable yields the mSPR algorithm:

INPUT: A designated path set P and initial costs ξ > 0.
OUTPUT: Link weight set Wmin that implements a minimal shortest path

representation of P .
THE mSPR ALGORITHM:

1. Solve the dual of P-LP(P). If the optimal objective is positive, then
conclude that P is not SPR. Otherwise, let a feasible solution of the
dual be [π̂1, . . . , π̂K , v̂1, . . . , v̂K , ω̂].
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2. For all k ∈ K and for all (i, j) ∈ E \ E(P) with vk
ij = 0, construct and

solve the perturbed dual LP:

max vk
ij :

∑
k∈K vkpk = 0 (6)

πkN + vk = ξ + ω ∀k ∈ K (7)
ω ≥ 0, vk ≥ 0 ∀k ∈ K (8)

If the perturbed problem is unbounded, then, for some optimal ray d
causing the unboundedness:

[π̂1, . . . , π̂K , v̂1, . . . , v̂K , ω̂] ← [π̂1, . . . , π̂K , v̂1, . . . , v̂K , ω̂] + d .

3. Now, Wmin = {ξ+ω̂} implements a minimal shortest path representation
of P .

Interestingly, the mSPR algorithm is still a polynomial time algorithm, since
the underlying solution technique remains to be linear programming. However,
upgrading the definition from “plain” SPR to mSPR results in a significant com-
plexity penalty: while computing an SPR weight set generally requires the so-
lution of one multicommodity flow problem instance, mSPR requires O(mK).
Fortunately, we do not have to solve all problems from scratch: given an initial
optimal feasible solution we can always start (6)-(8) from this solution, which, in
the case of the two-phase simplex algorithm, eliminates all the tedious computa-
tions of the first phase. Our experiments suggest that obtaining the optimal rays
is usually a matter of some few dozen simplex pivot operations. Furthermore, it
is not necessary to compute a separate ray for each slack variable, because very
often one ray increases multiple slack variables at once.

5 Simulation Studies

In this Section, we present the results of extensive simulation studies with the
purpose of comparing different concepts of shortest path representability.

We chose to develop our SPR software toolkit in Perl, which – thanks to the
unique flexibility and performance – provides an excellent platform to quickly
prototype algorithms. For solving the fundamental LP we used the GNU Linear
Programming Toolkit, GLPK [12]. Although GLPK does not support network
programming, it is reliable, stable and, first and foremost, open source letting us
to integrate the SPR toolkit very tightly into the simplex solver2 We used the
random network topology generator, BRITE [13] with the router-level Waxman-
model (α = 0.15, β = 0.2, m = 3) throughout the simulations. The source
and destination node of the sessions and the capacity of the links (between 10
and 1024 units) were selected according to independent uniform distributions.
Our methodology was to generate 30 random graphs with increasing number of
2 See the Math::GLPK project page at http://qosip.tmit.bme.hu/~retvari/
Math-GLPK.html.

http://qosip.tmit.bme.hu/~retvari/
Math-GLPK.html
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sessions and average the results (the level of significance was chosen as 95 %).
Below, we present the results for networks of 45 nodes.

To select the designated paths, we used the breadth-first-search (BFS) al-
gorithm (which manifests minimum hop-count routing), shortest path routing
over random weights (SPF_RND) (which represents the case when a network
operator chooses the link weights randomly) and the widest-shortest-path (WSP,
[7]) and the shortest-widest-path (SWP, [14]) algorithms3. One may argue, why
would anyone want to compute the shortest path representation of some paths,
which are immediately shortest paths by themselves. For example, setting the
weight of all links to 1 apparently reproduces BFS paths. The reason is that
we want to observe, how many superfluous paths such a naive representation
produces by comparing it with the corresponding minimal representation.

The average number of shortest paths per session in the plain SPR is depicted
in Fig. 2. Note that the SPR link weights were generated by extreme point so-
lutions of the dual fundamental LP. Our first observation is that such extreme
point solutions, due to the relatively huge number of implicit zero-valued slack
variables, produce low quality shortest path representations. For the WSP and
the BFS paths the representation contains about one and a half times as much
paths as the designated path set (which contains exactly one) almost irrespec-
tively of the number of sessions. However, the representation of SPF_RND paths
contains more than two paths in average, while this value is 4 for SWP. This
suggests that a naive setting of the link weights can easily turn out to be adverse.
Even if the designated paths were chosen by a SPR-compatible algorithm, such
naive link weights usually only implement a superposition of a huge number ran-
dom paths, and there are no appropriate mechanisms built into OSPF to select
exactly the designated one from amongst them. One needs to carefully tweak
the link weights to minimize the ambiguity, and this is exactly what the mSPR
algorithm can do for us. As affirmed by Fig. 3, a minimal representation usually

3 Since SWP paths are not guaranteed to be SPR [15], we always substituted the
corresponding shortest path representation.
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contains only a few superfluous paths up to the point that, except for SWP, it
becomes almost perfect in most of the cases.

This observation is further confirmed by Fig. 4, which, as the function of the
session number, shows the number of cases out of the total 30 simulations when
the minimal representation turned out to be perfect as well. Observe that BFS
and WSP paths are almost always pSPR. However, it seems that it is completely
hopeless to expect a SWP path set to be pSPR, especially as the number of
sessions grows close to the range of the number of nodes in the network.

Finally, we compared the average bottleneck bandwidth of the paths in the
designated path set and its plain and minimal representations (see Fig. 5). While
this choice obviously omits the interference amongst the sessions, the average
bottleneck bandwidth is indeed a good measure of the transmission capacity
that is made available by the network for the sessions. On the one hand, SWP is
clearly superior in this regard by providing almost twice as much capacity as the
other path selection schemes. On the other hand, sharpening the representation
apparently improves the capacity of the paths in the representation (by one and
a half times in the case of SWP). Our results indicate that in smaller networks
the SWP algorithm combined with shortest path routing constitutes a really
promising traffic engineering platform. Not just that SWP paths can be mapped
quite accurately to shortest paths in this case but, in addition, these paths
usually provide an abundance of capacity at the same time.

6 Conclusions

OSPF TE holds tremendous potential to optimize the performance of legacy
IP networks. Wang et al. showed that whatever path set the traffic engineer
assigns for the traffic instances, it is either immediately shortest path repre-
sentable or otherwise, it can be reduced to a shortest path representable one.
In this paper, however, we have shown that this result alone is not sufficient to
warrant optimal performance of OSPF networks, because the process of map-
ping paths to shortest paths is highly prone to ambiguity. We have supplied both
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theoretical and empirical evidence that the concept of minimal representations
is a remarkably useful one, or at least, it is much more useful than plain or per-
fect representations. A minimal representation constitutes a theoretical upper
bound on the achievable precision and, moreover, it also contains perfect and
plain representations as corner cases. In addition, using he mSPR algorithm, a
minimal representation can always be computed in polynomial time by solving
a series of linear programs.
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